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Abstract

Forecasts of product demand are essential for short-
and long-term optimization of logistics and production.
Thus, the most accurate prediction possible is desirable.
In order to optimally train predictive models, the
deviation of the forecast compared to the actual demand
needs to be assessed by a proper metric. However,
if a metric does not represent the actual prediction
error, predictive models are insufficiently optimized and,
consequently, will yield inaccurate predictions. The
most common metrics such as MAPE or RMSE, however,
are not suitable for the evaluation of forecasting errors,
especially for lumpy and intermittent demand patterns,
as they do not sufficiently account for, e.g., temporal
shifts (prediction before or after actual demand) or
cost-related aspects. Therefore, we propose a novel
metric that, in addition to statistical considerations, also
addresses business aspects. Additionally, we evaluate
the metric based on simulated and real demand time
series from the automotive aftermarket.

1. Introduction

Forecasts are crucial in making accurate decisions
about the future when it is uncertain. Accurate
forecasting is considered an important prerequisite for
effective planning and organization in various areas
such as finance, supply chain management, sales,
meteorology and many others.

In order to meet the manifold characteristics of
various domain-specific forecasting problems, there
are several techniques available for estimating future
conditions. Depending on which forecasting method
is chosen one would evaluate which method appears
to be most appropriate for the underlying problem
formulation. Hence, to estimate the performance
of forecasting methods and to evaluate predictions
accordingly, various accuracy measures have been
proposed and intensively discussed over the last couple
of decades. However, there is no overall best single

performance metric which can be applied universally to
any kind of forecast problem [1].

Depending on the chosen metric, forecasts can yield
completely different performances, which makes an
appropriate evaluation extremely difficult. Additionally,
some metrics are not suitable for the application on
certain data. For example, the mean absolute percentage
error (MAPE) produces infinite or undefined values
when actual values are zero or close to zero which
often is the case in certain applications [2]. Hence,
most existing metrics work only with smooth and linear
patterns, however, become less precise or even unusable
with an increasing frequency of intermittent patterns
[3]. Product demand forecasting in particular is one
such case of application since products with intermittent
demand tend to have many occurrences of zero values
[4]. Evaluating forecasts of stock-keeping units with
traditional accuracy metrics can result in misleading
findings which creates the need to develop appropriate
error measures in such industry fields by including
further factors. [5].

Intermittent demand is characterized by non-demand
intervals, whereas lumpy demand is characterized
by large fluctuations in the size of actual demand
occurrences (see Figure 1) [3, 6].

Figure 1. Exemplary lumpy and intermittent patterns

In this work, we present various commonly applied
metrics for the evaluation of forecast performance
and discuss the advantages and disadvantages of each.
In addition, following the Design Science Research
paradigm according to Vaishnavi and Kuechler [7], we
propose a new metric that, in addition to statistical



considerations, also addresses business aspects for
this particular type of sporadic demand pattern. In
comparison to other proposed measurements this metric
takes into account horizontal and vertical shifts in
prediction over the forecasting horizon. This means,
not only errors of specific points in time are considered
but also temporal interaction between predictions of
different points in time. Our proposed metric measures
the state of outstanding orders or units in stock
by considering opportunity and stock-keeping costs.
Therefore, this metric depicts the actual forecasting
error in terms of business and cost factors and
constitutes an appropriate decision support tool.

The remainder of this work is organized as
follows. In Section 2, we explore existing literature
about performance metrics for intermittent and lumpy
demand forecasting. Section 3 addresses the need
for a suitable performance measure by proposing the
Stock-keeping-oriented Prediction Error Costs (SPEC)
metric. In Section 4, the SPEC metric is evaluated by
means of synthetic data covering various possible cases
and real demand data from the automotive after-market.
Section 5 provides a robustness check on a different data
set. Finally, we form a conclusion in Section 6.

2. Related Work and Research Gap

In literature there are many different metrics used to
evaluate forecasting accuracies. Assessment of forecasts
depends on the choice of a proper metric. In different
studies a variety of accuracy measures have been applied
[8, 9, 10, 11, 12]. Table 1 compares the most common
representatives and their characteristics. Full circles
represent a satisfied criterion, while empty circles imply
that a characteristic is not met. Half circles, on the other
hand, mean that no clear statement is possible.

Simultaneous simple yet unreliable absolute error
measures are used particularly frequently. They are
based on the absolute error between the actual value
at a time and its associated prediction. Different
authors investigate the capabilities of such measures to
evaluate forecasting techniques and compare them with
another. The authors Chen and Yang [13] claim that the
root mean squared error (RMSE), for instance, is not
an appropriate metric to compare different forecasting
methods since the metric is not unit-free. Armstrong
and Collopy [14] state the high sensitivity against
outliers. The disadvantages of these metrics being
scale-dependent and highly sensitive against outliers are
addressed by percentage errors [15].

Percentage errors have the advantage of being
scale-independent because the forecast error is divided
by the actual value [16]. However, this creates

the disadvantage that these metrics are infinite or
undefined if the actual values are zero or close to zero
[15]. Especially in scenarios where demands with
actual values likely being zero should be predicted,
representatives like MAPE or RMSPE (root mean
squared percentage error) are not proper choices for
evaluation purposes [14, 16]. Additionally, percentage
errors have the disadvantage of putting a heavier penalty
on positive errors than on negative errors which leads
to asymmetry. In order to overcome this issue,
so-called symmetric error measures have been proposed
[17]. Despite its name the symmetric mean absolute
percentage error (sMAPE) is also assymetrical and
prone to infinity [18].

Scaled measures try to overcome the scaling
issues by comparing the forecasts with another
benchmark forecast method; usually the naı̈ve one
[16]. Additionally, metrics like mean absolute scaled
error (MASE) are symmetric and insensitive to outliers.
Nevertheless, measures such as MASE or RMSSE (root
mean squared scaled error) can be undefined because
they are divided by zero [15].

In terms of interpretability, metrics based on
unscaled absolute errors like MAE or MAPE are well
comprehensible. Contrastingly, scaled and squared
measures (MSE, RMSE, RMSPE, MASE, RMSSE) are
relatively difficult to interpret because they generate
distorted values [15, 16].

In addition to the metrics discussed in this section,
there are a number of other metrics that try to address
disadvantages of others by, for example, choosing the
median as an aggregation technique instead of the
mean. The resulting metrics, such as the median
absolute percentage error (MdAPE), however, can
hardly be distinguished from the original variants in
their characteristics [15, 16].

Especially in the case of lumpy or intermittent
demand time series which are characterized by many
zero values, the division by zero is particularly critical.
Another disadvantage arises if classic statistical metrics
are used. Most metrics are based on isolated deviations
between prediction and actual value without taking the
dependency between historical and future values into
account. This is due to calculating the mean over
these deviations throughout every single time step in
the time series. Wallström and Segerstedt [3] present
a metric that avoids such limitations. In their work on
supply chain prediction systems the so called periods
in stock measure counts the number of periods that
goods spend in a fictive warehouse and the number of
periods, goods are not available due to absence in stock.
According to the authors, big values emerge due to
overestimating demand as well as big negative values
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Absolute Errors
- MAE / MdAE #  #   #
- MSE #  #  G# #
- RMSE #  #  G# #
Percentage Errors
- MAPE / MdAPE  # # #  #
- RMSPE  # # # G# #
Symmetric Errors
- sMAPE  # # # # #
Scaled Errors
- MASE # #   G# #
- RMSSE # #   G# #
SPEC (this work)   G#    

Table 1. Properties of traditional metrics and SPEC

from underestimating demand. However, a limitation of
their work is that over- and underestimation of demand
can also result in small values of the metric in which the
result does not represent the actual quality of the forecast
leading to a possibly biased evaluation criterion.

We propose integrating the economic aspects of this
metric into a novel metric that avoids the shortcomings
of the statistical nature of periods in stock as well as of
traditional metrics.

3. Suggestion and Development

In order to address the lack of applicability of
existing metrics on demand time series with the special
characteristic of frequent zero values, we propose a
new metric, which accounts the shortcomings stated
in the previous section as well as economic aspects in
particular.

The purpose of this new metric is to measure the
prediction accuracy by comparing actual demand and
forecast in the form of theoretically incurred costs over
the forecast horizon. In retail, stock-keeping costs
are incurred for stock in the warehouse. The greater
the amount and longer the duration the inventory stays
in the warehouse, the higher the stock-keeping costs.
In addition, opportunity costs arise in the form of
unsatisfied customer orders if requested items are not

available in the warehouse. The proposed metric should
be zero for optimal storage by a perfect prediction and if
the deviation from the perfect prediction increases, the
metric should be greater than zero, representing the costs
of the misprediction.

The calculation of the metric is based on the
assumption that the stock is depicted by forecasts and
demands in a fictitious stock. Accordingly, forecasts
represent deliveries, and thus storage in the warehouse
at a given time. Demands, however, represent departures
from the warehouse for the respective time. If,
according to this logic, an item is unavailable over
several units of time in the warehouse, the forecast
should be penalized more severely. Accordingly,
unsatisfied orders arising from zero stock of an item will
also be penalized more heavily the longer the order can
not be fulfilled.

Thus, our proposed metric measures a cost
equivalent caused by a forecasting error, which is
composed of stock-keeping and opportunity costs.
Because of this special characteristic we introduce the
Stock-keeping-oriented Prediction Error Costs (SPEC)
metric which is calculated by the equation in Equation 1.

The length of the time series is labeled by n, whereas
the actual demand at time t is characterized by yt
and the corresponding forecast by ft. The opportunity
and stock-keeping costs are defined by the parameters
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Equation 1. Stock-keeping-oriented Prediction Error Costs (SPEC)

α1 ∈ [0,∞] and α2 ∈ [0,∞], respectively. Our
recommendation is to choose α1 and α2 so that their
sum is 1. Thus, we recommend the relationship α1 =
1 − α2 to ensure comparability despite a possible
changing cost ratio. However, any values greater than
zero can be chosen to reflect business-specific monetary
cost equivalents.

SPEC calculates an error term for each time step
of the forecast. For each of these time steps either
opportunity costs or stock-keeping costs arise, but never
both at the same time. The inner max-min-term of the
equation specifies if either of them exists at a given
time step. Iterating over each time step beginning with
the first element, the equation penalizes every fictive
Stock Keeping Unit (SKU) that is yielding to this gap
in stock at the current time step. By doing so, each
time step is assessed so the actual demand is forecasted
accurately up to that point in time. Underestimation is
accounted for the left minimum function counting SKUs
not available in a fictive stock and therefore creating
opportunity costs. In case of overestimation of the
actual time series, the right minimum function counts all
SKUs sitting in that fictive stock. Such a characteristic
resembles situations where the forecast is penalized with
stock-keeping costs. With the aid of this approach,
the metric is able to account the forecast of the entire
forecasting horizon instead of inspecting on specific
time steps only. Nevertheless, SPEC may also penalize
time steps at which actual value and forecast coincide.
However, due to inaccurate prediction in the entire time
frame the seemingly perfect forecast at this time step
results in costs, as SKUs are already sitting in stock or
are unavailable in situations of coming demand. Hence,
the evaluation of the forecast is put into the context of
the time series as a whole. Especially in situations where
not only one-step ahead forecasts are relevant but n-step
ahead forecasts are needed, SPEC overcomes issues of
traditional error metrics applied in past studies.

While traditional metrics only address forecast errors
in isolation, the SPEC metric also includes the deviation
of the prediction time (prediction error in x-direction)
in addition to the vertical deviation (prediction error in
y-direction).

By utilizing SPEC it is possible to measure forecasts
two-dimensionally as the magnitude and time difference
are taken into account. In scenarios where predictions

are based on SKUs a pure focus on the difference of
actual value and forecast may be insufficient for a proper
evaluation of such a time series. When demand is
not predicted accurately, costs not only arise at this
particular time step but comprise stock-related costs
over time. SPEC is overcoming these shortcomings
by assessing both, x- and y-direction of time series
forecasts.

Figure 2 on page 5 illustrates this issue with
an exemplary time series (green) and two associated
predictions (light blue and dark blue) of two fictive
models. In both examples, the actual demand is
forecasted almost perfectly, however, the demand (8
units) at time unit 9 is predicted one time unit too
soon by model A and additionally 4 units too few by
model B. Evaluating the prediction quality of model A
particularly, this means that storage costs would be
incurred for 8 units for exactly one time unit.

While the RMSE for the prediction of model A
depicted in Figure 2 is 3.02 (see Table 2), the
SPEC0.75,0.25 rates the error at 0.14. Would the
misprediction not be shifted to the left by one time
unit, but be overestimated by 11 units at time unit
9 instead, the RMSE results in an almost equal
value of 2.94. However, the SPEC0.75,0.25 of 2.30
represents the clear overestimation of demand compared
to the actual demand more accurately. Another factor
arising when incorporating the forecast of model B
depicts the property of comparing different models with
another. Applying error metrics can be utilized not
only for assessing one model’s performance but also
for benchmarking against other models. The goal of
such comparisons constitutes the determination of the
model which best fits to make predictions for a given
time series. Considering the bottom part of Figure 2 it
becomes clear that model B causes an overall smaller
absolute error than model A, which is also reflected in
smaller values of the traditional error measures (see e.g.,
MAE, RMSE, MASE in Table 2). However, it is obvious
that model A better estimates the actual demand, as
the lack of demand is compensated after only one unit
of time, while model B still lacks four units. Thus,
in this example model B achieves a SPEC0.75,0.25

of 2.00 (worse than for model A) while the RMSE
is 2.39 (better than model A). This is due to the fact
that the forecast of model B clearly underestimates the
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Figure 2. Exemplary demand time series and associated predictions (top) as well as absolute errors (bottom) of

two exemplary predictive models

actual demand since four SKUs are not available and
corresponding orders cannot be fulfilled until the parts
arrive in the warehouse. While the RMSE actually
states the outcome of model B as the more accurate
one, SPEC0.75,0.25 properly assigns model A as a more
precise prediction tool when considering the actual time
series. Thus, this example shows the evaluation property
of SPEC0.75,0.25 when assessing several models in
situations with incoming warehousing costs. Our metric
better addresses this than other traditional metrics, like
RMSE.

Model A Model B
MAE 1.143 0.857
RMSE 3.024 2.390
MAPE inf inf
sMAPE 0.667 0.667
MASE 0.297 0.223
SPEC0.75,0.25 0.143 2.000

Table 2. Results of different metrics scoring forecast

errors of exemplary models depict in Figure 2

Figure 3 depicts the composition of the SPEC values
of the models illustrated in Figure 2 by their individual
contributions per time unit. Considering the evolvement
of SPEC over the forecasting horizon as shown in

Figure 2 for both models we can see that at time unit 8
the prediction of model A leads to a stock level of eight
units. These eight units are kept in stock until demand
occurs at time unit 9. Overall, for model A we receive
stock-keeping costs of 2 (= α2 · 8 = 0.25 · 8) at time
unit 8 which lead to a SPEC0.75,0.25 of 0.14 (mean over
complete forecast horizon). Since model B only predicts
half the amount at time unit 8 compared to model A the
stock-keeping costs for time unit 8 result in a value of 1.
Nevertheless, demand at time unit 9 cannot be fulfilled
completely since too few units are in stock. This leads
to opportunity costs of 3 (= α1 · 4 = 0.75 · 4), since
the weighing factor addressing the opportunity costs α1

is 0.75. Furthermore, at time unit 11 there are four
units for three days missing which is why opportunity
costs of 9 occur. First at time unit 12 model B predicts
six units but at the same time six units are inquired.
Therefore the four units, which were requested at time
unit 9 are fulfilled first. Simultaneously, two units
of the new occurring demand can be met additionally.
Hence, a demand of four cannot be satisfied leading
to opportunity costs of 3 at time unit 12. Comparing
the SPEC approach to other accuracy measures like the
absolute error, the latter is accounting the prediction
shift at time unit 8 and 9 of model A twice which leads to
an incorrect evaluation of the forecasts. Since model B
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Figure 3. Composition of exemplary SPEC values according to exemplary models depict in Figure 2

only predicts half the amount at time unit 8 compared
to model A the absolute error diminishes. However,
in terms of stock-keeping units and upcoming demand
the prediction of model A leads to a more precise result
compared to model B since orders can be fulfilled faster.

By adjusting the weightsα1 andα2, the sensitivity of
SPEC can be adapted to respective costs of a particular
application. Maintaining α1 = 1 − α2 resulting SPEC
values for the two exemplary models (see Figure 2)
are shown in Figure 4 on page 7. Parameter α1

is used to address the impact of opportunity costs
for unfullfilled customer orders, while α2 is adjusting
the stock-keeping costs. The figure emphasizes that
higher valuation of stock-keeping costs results in a
higher SPEC for model A and a lower SPEC for
model B in the considered case. This is due to
the fact that for model A stock-keeping costs for
eight units occur, whereas for model B costs arise
for four units. Conversely, model A does not incur
any opportunity costs at all, while model B—as a
consequence of underestimating the actual demand at
time unit 9—incurs a series of costs associated with
the limited satisfiability of customer orders. Hence,
the position of the curves of different predictive models
relative to each other can be utilized to analyze whether
one specific model generally outperforms competing
ones or decipher which parameter ratio α1/α2 on a
particular model performs best. Therefore, we suggest
that the parameters α1 and α2 be chosen depending on
the application characteristics and related cost.

4. Evaluation

Our proposed novel SPEC metric is evaluated on
the basis of simulated and real demand time series
data originating from the automotive aftermarket. In
particular, we address the reliability and validity of
the metric. Additionally, we evaluate the expense,
understandability and the relationship to decision
making.

4.1. Data set

In order to be able to cover as many scenarios
of lumpy and intermittent time series and associated
forecasts as possible, the time series and their
predictions used for evaluating are simulated. Time
series from real use cases alone are insufficient in
covering all possible scenarios. First, the actual values
of a fixed-length time series are simulated, whereas
the number of values greater than zero as well as the
actual values are normally distributed. In contrast,
the arrangement of values greater than zero on the
time series of a predefined length follows a uniform
distribution. This ensures that the number of non-zero
values, the horizontal as well as the vertical distribution
of the simulated time series are random.

In addition, a second part of the evaluation is based
on real demand data from spare parts of an automobile
manufacturer. The mobility of the spare parts varies
greatly depending on product characteristics. This
means that both very rarely and more frequently
requested products are contained in time series over a
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gathering period of about two years.

4.2. Reliability

Reliability describes a measure of formal accuracy
or consistency of scientific measurements. It is part
of the variance which can be explained by actual
differences in the characteristic that are being measured
and not by measurement errors. Highly reliable results
must be free of random errors. Thus, the reproducibility
of results under the same conditions is guaranteed.
However, reliability can not be measured, but only
estimated [19, 20].

For this reason, there are a number of factors and
corresponding approaches to investigate the reliability
of a measuring instrument without measuring it directly.

One of these is the repeatability or test-retest
reliability, which is determined by repeating the same
measurement at a different time [19]. Obviously,
the repeated application of the proposed SPEC metric
always yields the same result, caused by its deterministic
character. Thus, this requirement for reliability is met.

Additionally, it must be ensured not only for
repeated evaluation on equal time series (actual demand
and forecast), but also for similar time series, that similar
results are produced. Thus, we simulate a set of different
time series representing the actual demand in different
scenarios. To do this, we choose appropriate parameters
for µ and σ in normal distributions, which control the
horizontal and vertical arrangement of demand values.
For each of these simulated actual demand series, we
simulate several forecasts matching the actual time

series by adding a normal distributed error in both
the vertical and horizontal directions. Therefore, the
parameter σ of the two distributions influences the
variance of the artificially generated prediction error.

Simulation results show that with a small variance
of the artificially induced prediction error, the variance
of the SPEC values is low, whereas with increasing
variance in error, the variance of the metric also
increases. Pearson’s correlation coefficient [21] between
generated and measured variance in 5,000 simulated
time series and 1,000 simulated forecasts for each
simulated actual time series with varying error variance
in both horizontal and vertical directions yields 0.996,
whereas in the same data set other metrics perform
comparably well.

In addition, we also evaluated the variances on
real data, which are produced by a naı̈ve forecast
on multiple extracts from different time series of
products of different mobility. The intuition behind
this assumption is that the characteristics of a time
series over randomly selected excerpts remain basically
the same, whereas different time series depicting the
demand of different parts show structural differences.
The results of Levene’s test [22] confirm that the
variances of SPEC values assessing different segments
of each time series are significantly (p-value < 0.001)
below the variance of SPEC values between the different
time series. The traditional metrics considered show
comparable results. Thus, it can be deduced that the
repeated evaluation on different segments of a respective
time series leads to only slightly differing SPEC values,
which indicates a high reliability.



Thus, it can be confirmed that the SPEC metric
achieves reliable results that match those of traditional
metrics.

4.3. Validity

While the reliability describes that the same results
are produced by repeating a measurement, the validity
describes whether the correct variable is measured. In
addition to reliability, validity is another quality criterion
of statistical measurement methods. It generally
describes the accuracy to which extent a feature being
measured is actually measured. Measurements must be
measured accurately to be interpreted in a meaningful
way. In this respect, validity is a necessary criterion for
assessing the quality of a measure [19, 20].

Assessing the validity of a metric requires
information about the true object of a measurement,
which is difficult to determine. We therefore assume that
the SPEC metric should measure the prediction error as
precisely as possible with regard to accruing opportunity
and stock-keeping costs. Thus, it can be assumed that
by overestimating the actual demand, storage costs
arise. Similarly, by shifting the prediction—relative
to the actual demand—to the left results in premature
coverage of demand, which results in stock-keeping
costs. However, shifting the prediction to the right
results in delayed coverage, which leads to opportunity
costs. Based on these assumptions, we simulate another
set of random demand time series and associated
forecasts. According to the assumptions, the prediction
error is varied by adjusting the parameters µ of the
normal distributions which provide either the horizontal
or vertical shift of the prediction error.

For the sole change of the vertical error by adaptation
of the parameter µ, an average correlation coefficient
between the values of µ and all metrics considered
(including SPEC) is 0.999. This results from 5,000
simulated actual time series and 1,000 simulated
predictions each with constant variance of the prediction
error. This result shows that all considered metrics map
a vertical increasing under- or overestimation equally
well.

In contrast, changing the horizontal error by
adjusting the parameter µ, which provides for shifting
the prediction relative to the demand times, shows a
different picture. The parameter µ and the values of
the traditional metrics are either uncorrelated (MAE,
RMSE, MASE) or not calculable at all (MAPE,
sMAPE). Thus, the SPEC metric performs much better
yielding a correlation coefficient of 0.867. Hence,
the resulting stock-keeping and opportunity costs are
addressed significantly better.

In a second step, we utilize real data from the
automotive aftermarket to make sure the proposed
metric actually measures what it should measure. To
do this, we calculate the naı̈ve forecast of randomly
selected extracts of actual demands and calculate
the actual costs based on empirical values for costs
caused by inaccuate predictions. It becomes clear that
the SPEC metric (r = 0.964, p-value < 0.001), in
contrast to traditional metrics (e.g., MAE: r = -0.021,
p-value > 0.05), represents much better the true costs to
be assumed.

4.4. Additional criteria

In addition to the criteria of validity and
reliability—both essential for a metric—we discuss a
few rather soft criteria.

The significantly more complex calculation of the
SPEC metric compared to the traditional metrics results
in a certain disadvantage with regard to the calculation
performance. Nevertheless, all of these metrics can
be calculated on today’s computers without noticeable
performance differences.

Similarly, some of the traditional metrics have an
advantage over SPEC in terms of understandability.
Notably the MAE which is very simple compared
to the SPEC which appears more complex especially
after considering horizontal deviations. Nevertheless,
the aspect that SPEC represents stock-keeping and
opportunity costs is conducive to understandability.

An absolute advantage of SPEC over traditional
metrics is the direct link to business aspects and
decision-making. Since cost equivalents can be
addressed by the choice of the parameters α1 and
α2, the costs accrued by a prediction error can be
interpreted directly. This peculiarity makes SPEC
the ideal metric when it comes to evaluating demand
forecasts where prediction errors cause stock-keeping
and/or opportunity costs.

5. Robustness Check

In order to demonstrate the robustness of our
proposed SPEC metric we evaluate it on an additional
real-world data set that did not apply during the
development of the presented metric. In addition to the
simulated data sets and the automotive spare parts case
already elaborated on in the previous section, this data
set comes from five different supermarket branches in
the food retail sector and describes the hourly demand
for a specific, rather sporadically required product group
over one year [23]. The data set shows a total of about
25% zero values, which do not follow any recognizable
regularity across all branches. In addition, we have



approximated numbers about actual storage costs of the
respective product group and corresponding opportunity
costs represented by profit losses. As in the automotive
spare parts case considered in Section 4, a ratio of 3
to 1 between opportunity costs and stock-keeping costs
seems to be an appropriate choice for the parameters α1

and α2.
Analogous to the procedure in Section 4, we point

out that reliability and validity are also given on this
data set. The results of Levene’s test show that the
variance of the prediction error measured by SPEC over
different segments of one time series are significantly
(p-value < 0.001) smaller than the variance over
different time series from different branches. This
means that, assuming consistent characteristic demand
patterns within a branch, the reliability of the proposed
metric can also be confirmed on this data set. In
addition, SPEC also rates the actual costs significantly
better than traditional metrics do (SPEC0.75,0.25:
r = 0.912, p-value < 0.001; e.g., MAE: r = 0.201,
p-value > 0.05).

6. Conclusion

The most accurate forecast of product demand
is essential for the optimization of logistics and
production. In order to optimally train predictive
models, which account for this requirement, the forecast
compared to the actual demand needs to be assessed
by a proper metric. However, if a metric does not
represent the actual prediction error, predictive models
are insufficiently optimized and, consequently, will
yield inaccurate predictions. To overcome this issue,
we have developed a novel accuracy measure called
Stock-keeping-oriented Prediction Error Costs (SPEC).

This metric takes into account not only deviations
of the forecast relative to the actual demand in vertical
direction but also in horizontal direction. Thus, the
SPEC metric addresses the costs incurred by a company
in the case of early or late delivery to the customer,
resulting either in stock-keeping costs or opportunity
costs. Especially for these types of deviations, the
results of the evaluation show that the metric achieves
significantly better results in terms of validity than
traditional metrics. Due to the generic formulation any
cost equivalent is allowed to be mapped by choosing
proper α parameters. The fields of applications of the
SPEC metrics are therefore not limited to the automotive
aftermarket. Additionally, it is applicable to all
possible areas where there is a partial sporadic demand.
Examples include certain products in supermarkets,
online retail, gastronomy or even services for which
either costs for late or too early delivery, caused by a

forecast error, may be incurred.
Nevertheless, our proposed metric also has

limitations. To critically summarize, SPEC considers
fictive opportunity and stock-keeping costs. Especially
in time series scenarios with a forecast horizon of n > 1,
this error metric is a significantly more representative
accuracy measure compared to others. One can argue,
that SPEC is penalizing missing parts until the end of
the forecast horizon even though in reality, for example,
SKUs with high urgency can be delivered via express
orders. However, costs arise for such express orders as
well and can be outlined by SPEC.

Overall, we are convinced that the proposed metric
is a viable and appropriate alternative to traditional
accuracy measures. We therefore recommend readers
from academia as well as practitioners to approach
the SPEC metric in future studies as an additional
prediction error measure for lumpy and intermittent
demand forecasts.
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pp. 107–120, Springer International Publishing, 2020.


