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Summary  

 

 

Organometal halide perovskites for solar cells are hybrid semiconductors that recently have 

caught the attention of the scientific community due to its excellent performance and attractive 

optical properties. Since then, they have been used in solar cells, LEDs, and lasers, although the 

mechanisms by which such good performances are obtained are not known completely.  

This dissertation presents a study of the optical characteristics of perovskites for thin-film solar 

cells. Due to their small thickness, the morphology of the layer is sensitive to manufacturing 

parameters. In this way, the manufacturing process is optimized, trying to improve the 

perovskite characteristics.  

Among the challenges perovskites pose for implementation, the lack of stability during 

operation is one of the most relevant. Therefore, in this dissertation, the reasons for stability 

losses are also studied. For this purpose, interlayers are used, which introduce changes in the 

interface of the perovskite with the electron extraction layer, with the initial purpose of 

reducing the hysteresis in the current-voltage curve. In addition to reducing it, they stabilize the 

power extracted from the solar cell under illumination. The effects of degradation on the 

electrical characteristics of the solar cells allow the identification of the sources for degradation 

and propose a solution to avoid or delay damage to the perovskite layer. With this in mind, it is 

established that the problem of stability does not only lie within the perovskite layer but also in 

the contact between the layers and in the charge transport within the perovskite solar cell. 

Careful control of these interfaces, then, facilitates the achievement of stable performances and 

long lifetimes of the perovskite solar cells. 
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Zusammenfassung 

 

Organometallhalogenid-Perowskite sind hybride Halbleiter, die in jüngster Zeit aufgrund ihrer 

hervorragenden Halbleitereingeschaften und attraktiven optischen Eigenschaften die 

Aufmerksamkeit der Wissenschaft auf sich gezogen haben. Seitdem wurde die exzellente 

Eignung dieser Materialklasse für verschiedenste opto-elektrische Anwendungen wie z.B. 

Solarzellen, LEDs und Lasern unter Beweis gestellt. Die physikalischen Mechanismen, die die 

Grundlage für diese einzigartigen, qualitativ Hochwertigen Eigenschaften bilden, sind jedoch 

noch weitgehend unbekannt. 

 Dieses Manuskript stellt eine Studie über die optischen Eigenschaften von Perowskitfilmen für 

den Einsatz in Dünnschichtsolarzellen dar, die mit dem Spin-Coating-Verfahren hergestellt 

wurden. Aufgrund des geringen Dicken der Perowskitschichten ist deren Morphologie 

empfindlich gegenüber kleinen Variationen der Fertigungsparameter. Deshalb muss der 

Herstellungsprozess durch Feinjustierung dieser Parameter optimiert werden, um 

hocheffiziente Solarzellen herzustellen. 

Eine der größten Herausforderungen für die Kommerzialisierung der Perowskitphotovoltaik ist 

neben der Herstellung durch die mangelnde Stabilität des Wirkungsgerades während des 

Betriebs gegeben. Daher werden in der vorliegenden Arbeit zusätzlich die Gründe für diese 

Stabilitätsverluste untersucht. Zu diesem Zweck werden zusätzliche Nanoschichten zwischen 

der Perowskit- und der Elektronenextraktionsschicht appliziert, die nicht nur eine Reduzierung 

der Hysterese in der Strom-Spannungskurve bewirken, sondern die Leistung der Solarzelle 

unter Sonneneinstrahlung stabilisieren.  

Der Vergleich der Stabilität von Solarzellen mit und ohne zusätzlichen Zwischenschichten 

ermöglicht Rückschlüsse auf die Ursache der Degradationsmechanismen. Ein Hauptresultat 

dieser Stabilitäts- bzw. Degradationsstudie ist die Tatsache, dass ein Großteil des beobachteten 

Effizienzverlustes nicht durch die Perowskitdegradation innerhalb des Filmes, sondern 

vielmehr durch die Instabilität der Grenzflächen des Perowskits mit den Extraktionsschichten 

zustande kommt. Die Grenzflächendegradation erzeugt eine Barriere für den Ladungstransport 

durch die Erhöhung der lokalen „Trap-Dichte“. Basierend auf dieser Erkenntnis eröffnet die 

sorgfältige Modifikation der Grenzflächen innerhalb der Solarzelle vielfältige Möglichkeiten, um 

eine stabile Betriebsleistung der Solarzelle über längere Zeiten durch Vermeidung bzw. 

Verzögerung der Degradation zu erzielen. 
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Resumen 

 

Las perovskitas organometálicas de haluros para celdas solares son un tipo de semiconductor 

híbrido que recientemente ha atrapado la atención de la comunidad científica debido a su 

excelente desempeño y atractivas propiedades ópticas. Desde entonces, han sido utilizadas en 

celdas solares, LEDs y lasers, a pesar de que los mecanismos por los cuales se obtienen tan 

buenos desempeños no son completamente conocidos.  

Con esta disertación se presenta un estudio sobre las características ópticas de la perovskitas 

para su utilización en celdas solares de películas delgadas. Debido a su delgado grosor, la 

morfología de la capa es sensible a los parámetros de fabricación. De manera que se optimiza el 

proceso de fabricación tratando de mejorar las características de la perovksita.  

Entre los retos que presentan las perosvkitas para su implementación, la falta de estabilidad 

durante su funcionamiento es uno de los más relevantes. Entonces en este disertación se 

estudian también las razones por las que se presenta pérdidas de estabilidad. Para esto se 

utilizan entrecapas, que introducen cambios en la interfaz de la perovksita con la capa 

extractora de electrones, y con el propósito inicial de reducir la histéresis en la curva de 

corriente-voltaje. Además de reducirlo, estabilizan la potencia extraída de la celda solar bajo 

iluminación. Los efectos de la degradación en las características de las celdas solares nos 

permiten identificar sus orígenes y presentar propuestas para evitar o retardar los daños a la 

capa de perovskita. Teniendo esto en cuenta, podemos establecer que el problema de la 

estabilidad no radica sólo dentro de la perovskita, pero también en el contacto entre las capas y 

en el transporte de carga dentro de la celda solar de perovskita. El cuidadoso control de estas 

interfaces, entonces, permite la obtención de un rendimiento estable y una vida larga del 

dispositivo. 
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1. Introduction 

 

Recently in the solar energy research area, perovskite solar cells (PSCs) have become the center 

of attention given their spectacular rise to fame. PSCs are solar cells with organo-metal halide 

(OMH) perovskites as the key component for absorbing light and converting it to electricity. 

This type of perovskites are semiconductors that, given their outstanding optical properties and 

ease of fabrication (among other reasons), have become the rising star of solar energy research.  

The first paper with perovskites for solar cells is published in 2009 [1], showing a power 

conversion efficiency (PCE) of 3.8 %. After just a few years of research, the PCEs achieved with 

PSCs have reached >20 % [2] and its ever-increasing efficiency has amazed the entire photo-

voltaic community. Among their many interesting optical properties, the absorption coefficient 

[3]–[5] and the tunability [6]–[9] of the bandgap have led to many researchers in solar energy 

research to readdress their efforts and choose the perovskites as the absorber for their devices. 

In consequence, the number of papers published on the topic has increased from a few dozen 

per year to thousands of papers per year (Figure 1).  

 
 
 

 

 
 
 

Figure 1. Number of publications on Web of Science, using the keywords: a.) Perovskite and b.) 
Perovskite solar cells. Source: Web of Science (accessed August 2019) [10].  

The combination of PSCs excellent optical properties with the diversity of deposition methods 

has been the key in the performance enhancement achieved in such a short time (compared to 

other solar cell types such as organic solar cells). For their fabrication, there is a wide variety of 

methods used. These methods include doctor blading, drop-casting, spin-coating and thermal 

evaporation. This versatility offers many fabrication options in comparison to silicon solar cells, 

which are fabricated using the Czochralski method for fabricating a monocrystalline silicon 

ingot [11] or by chemical decomposition of silane (SiH4) as is the case in thin films Si-solar cells 

[12].  

There are still many challenges in PSC’s implementation. First, the main component of the pe-

rovskite crystalline structure is lead, and its toxicity is well known [13]. Second, the devices are 

usually short-lived, compared to the 20-year warranty for commercial Silicon solar modules 

[14]. Third, PSCs are strongly affected by environmental parameters such as air humidity [15], 
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[16], oxygen [17], temperature [18] and light [19]. Lastly, PSCs show hysteresis during the 

measurement of their PCE. Hysteresis is the deviation in the J-V curve when measured in the 

backward and forward direction, or with a different scanning speed. This hysteresis impedes 

the accurate estimation of the PCE in the devices. As a result of these challenges, much of the 

research currently addresses different methods to either minimize the damages due to the 

degradation of the absorber material or to reduce the hysteresis by different methods. 

In terms of the underlying principles behind the performance of PSCs, the working mechanisms 

are not well understood yet. It is then required to analyze their transport properties through the 

characterization of the devices and layers.  

 

1.1.  Aims   

The main goal of this thesis is to understand the charge carrier transport in perovskites, given 

its strong impact on the performance of perovskite solar cells (PSCs). To accomplish this goal I 

will explore the mechanisms behind the charge transport through the optical and electrical 

characterization of layers and devices, initially by analyzing the influence of the fabrication 

parameters in the quality of the layers, as well as its impact in the performance of the devices. 

Thereafter, I identify the mechanisms that assist the current generation and extraction in full 

devices. This is later used to improve the devices performance and long term stability. 

This dissertation starts with the portrayal in chapter 2 of the fundamental concepts used 

throughout this dissertation, starting from the description of the band theory that describes the 

electronic band structure of semiconducting materials, followed by the definition of solar cells 

and the different technologies that have been implemented. Moreover, the crystalline structure 

of the perovskites used in PSCs is described in chapter 2, as well as the different architecture 

used in PSC and the usual architectures used.  For the optical and electrical characterization of 

OMH perovskites, different techniques are used throughout the dissertation. They are 

described, alongside the underlying principles behind each technique, in chapter 3.  

In chapter 4, the different fabrication methods used in this research are described. In chapter 5, 

the influence of the fabrication parameters in the photoelectric characteristics of perovskite is 

evaluated as well as the effects on the layer quality and device performance. Additionally, a 

study on the changes in the wettability of the substrate upon the presence of passivating layers 

is assessed. The light soaking effect seen in the perovskite absorber is presented, both in steady-

state and time-resolved photoluminescence. In this chapter, an estimation of the influence of the 

fabrication parameters or methods on the absorption of the resulting perovskite layer is 

evaluated. 

In chapter 6, a solution for hysteresis is proposed in the way of a fullerene passivating layer to 

improve the contact between the electron transport layer and the absorber. In this chapter we 

present a study of the time-dependent degradation of the devices, using the electrical perfor-

mance of the devices as media. Upon fabrication, the devices fabricated with passivating layers 

maintain their power output for a longer time. To explain this boost in their long-term 

performance, further studies on the different J-V curve parameters are executed.  
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In chapter 7, an evaluation of the degradation of the solar cells is executed in devices with short 

shelf-time, in comparison to devices that present a longer shelf-time, in order to determine the 

mechanisms that lead to degradation. 
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2. Fundamental Concepts in Perovskites for 

Solar Cells 

 

Solar cells rely on the photoelectric effect and semiconductor materials for their operation. In this 

chapter, I first describe the theory of electronic bands and the concept of semiconductors. Next, I 

describe how solar cells work and the different types of cells that exist. Lastly, I describe properties 

and optical characteristics that are used in the characterization and the concepts on which they 

are based. 

 

2.1. Band theory and semiconductors 

Band theory is a theoretical model used to describe the forbidden and allowed energy ranges in 

which electrons within the solid may have, differentiating between insulators, semiconductors 

and conducting materials. This model states that in a crystalline solid, where atoms are 

arranged in a periodic structure or lattice, there is an almost continuous structure of discretized 

energy levels for the electrons, forming bands of allowed and forbidden electron energies. The 

bands closer to the atom core enact little influence as they are deeply bound to the core. The 

bands that strongly influence the macroscopic properties are those generated by electrons in 

the outer shells of the atom (valence band, VB). The next (and higher) energy band is the 

conduction band (CB). The gap between these energy bands is also known as bandgap or 

forbidden zone. This band structure influences the electrical and optical properties of materials 

such as their conduction and absorption of electromagnetic radiation and can be grouped in 

four categories of materials, taking into account interactions between electrons and the nucleus 

and between the electrons themselves [20].  

 Insulators: materials with a large bandgap and no available electrons in the conduction 

band. Due to these characteristics, they have very high thermal and electrical insulation 

capabilities (e.g. diamond). 

 Semiconductors: materials with a small bandgap (~1 eV). Electrons can be excited from 

the valence to the conduction band with external stimuli such as thermal excitation or 

illumination, (e.g. Germanium, Silicon). 

 Conductors type 1: materials with semi-filled conduction band. They are highly 

conductive both electrically and thermally. 

 Conductors type 2 or semimetals: materials with empty conduction band but 

superimposed to the valence band.       

The study of semiconductors and their implementation in different types of electronic devices 

(transistors, diodes, circuits) has led the current technological development. In the field of solar 

energy, semiconductors are used as charge carriers (electrons, carriers of a negative charge, and 
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holes, carriers of a positive charge1) generators. For the implementation of semiconductors in 

electronic devices, impurities are often added to the semiconductor crystalline structure during 

the fabrication process, creating n-type (doped with excess electrons and known as electron 

donors) or p-type (with vacancies in the semiconductor lattice and known as hole donors) 

materials, which will be briefly introduced next.  

 

2.1.1. p-i-n junction  

The p-i-n junction is an optoelectronic device that consists of an intrinsic semiconductor (i), an 

n-type material and a p-type material (Figure 2a). This type of junction is used to improve the 

charge extraction from a semiconductor device. Unaided, charges can be extracted upon 

excitation from intrinsic semiconductors placed between two electrodes but they are subject to 

many losses and, thus, the extraction process is not effective. Materials such as p-(hole) or n-

type (electron) are used on either side of the semiconductor, forcing a band bending that 

ensures that electrons are driven into one direction of the junction and holes in the other 

direction (Figure 2b). Furthermore, this junction also blocks the back-transfer of charges of the 

opposite type. In the photovoltaics research field, the p-i-n junction is often used in thin-film 

solar cells.  

 

 

 

Figure 2. (a) Schematic diagram of a biased p-i-n junction (b) Band diagram of a p-i-n junction 
under bias voltage [21]. 

 

2.2. Solar cells 

Solar cells (SC) are optoelectronic devices that use the photoelectric effect for the generation of 

electric current. The photoelectric effect, first demonstrated by Edmond Becquerel in 1839 [22] 

and explained by Albert Einstein in 1905 [23], [24], establishes that materials under 

electromagnetic radiation can generate free electrons. For solar cells, the source of the 

electromagnetic radiation is the sun, whose radiation is present in a broad spectral range 

(Figure 3), with the highest intensity in the 300-1100 nm range. As a consequence, the material 

to be chosen as the main absorber for solar cells should have a bandgap suitable for absorption 

in this wavelength range. 

                                                           
1
 The term “hole” is used throughout this dissertation following the definition of an “electron hole”, that is, 

the absence of an electron, where there should be one (in an atom or crystal lattice). This absence will 
exert a net positive charge at the holes location[20].  
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Figure 3. Standard solar spectrum in space (AM0) and terrestrial (AM1.5 Global), following the 
standards ASTM E490 and ASTMG 173[25]. In green, the 300-1100 nm range is 
highlighted. 

Semiconductors with bandgap from 1-1.8 eV [26] are often used in solar cells with only one 

absorber, also called single-junction cells. The absorption process in this semiconductor film 

would be as described: 

 Photons with energy lower than the semiconductor bandgap pass through the material 

as if it is transparent.  

 Photons with energy equal to the bandgap have the ability to form an electron-hole pair 

and are absorbed by the semiconductor.  

 Photons with larger energy to the bandgap are absorbed and will discard part of their 

excess energy through thermal vibrations inside the semiconductor lattice. After the 

absorption and conversion of the photons into electrons, the next process within a solar 

cell is charge extraction. 

In addition to a semiconductor material to absorb light and generate electrons, a solar cell uses 

membranes for selective charge collection (also known as extraction layers) to attract the 

photo-generated charges according to their charge and extract them through the electrodes of 

the device. n-type materials or wide-bandgap semiconductors are used as electron extraction or 

transport layer (ETL) and p-type materials are used as hole transport layers (HTL).  

 

2.2.1. Types of solar cells  

Since the demonstration of the photoelectric effect in 1839, many types of solar cells have been 

proposed: 

Silicon solar cell: Using silicon as the absorber material, these cells are the most commercially 

available. For the implementation, both monocrystalline and polycrystalline silicon are used. 

The record power conversion efficiencies (PCE) are 26.1% for the monocrystalline silicon and 

22.3% for multicrystalline silicon SC [27]. The advantages they present include the long lifetime 

(20 years guaranteed [14]) and their low toxicity. Silicon is also an indirect band semiconductor 

(and this induces additional losses in the current extraction process). 
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Thin-film cells: So called due to the thin thickness of the absorber material (from a few 

nanometers to tens of micrometers2). For the absorbent material, several semiconductors are 

used including CIGS (Cadmium-indium-gallium selenide, [28]), chalcopyrites (Cu(In, Ga)(S, Se)2 

[29]), sensitized high bandgap semiconductors [30] and perovskites.  

Organic solar cells: organic semiconductors are used as absorber materials. Among the 

advantages they present is the reduction of fabrication costs and the diversity of substrates that 

can be used to implement them (flexible substrates [31] or wear-on PV [32], [33]). However, 

after 20 years of doing research on the subject, the highest PCE is 15.6% [27].  

Dye-sensitized solar cells (DSSC): this type of cell uses a wide bandgap semiconductor (~3eV) 

that is sensitized by a dye absorbing in the visible range (380-740 nm) to increase light 

absorption in smaller energies. DSSCs were developed by Brian O'Regan and Michael Grätzel in 

1991 as a thin-film solar cell with a wide band-gap semiconductor sensitized by an organic dye 

[34]. DSSCs consist of a mesoporous n-type titania (titanium dioxide, TiO2) layer that collects 

photo-generated electrons, a sensitizing dye to infiltrate the mesoporous titania and absorb 

light in the visible range, and an electrolyte to regenerate the electrons in the dye. The main 

disadvantage of DSSCs is their low efficiency. Nonetheless, due to their promising performance, 

different strategies are being followed in order to achieve competitive efficiencies. One of the 

first steps to boost the DSSC’s efficiency is the insertion of quantum dots as absorbers over the 

mesoporous layer. They are deposited alongside the dye, due to their bandgap tunability 

through variable particle size. However, overall efficiency has only reached 8.6 % [35], mostly 

due to charge recombination [36] generated by significant losses at the semiconductor-

sensitizer interface [1]. 

 

2.2.2. Perovskites for solar cells 

Another proposed solution for the DSSCs is the replacement of the dye as the sensitizer by 

organo-metal halide (OMH) perovskites. The efficiencies obtained with this architecture barely 

reached 3 % but this result launched the research of perovskite as an absorber for SCs [1]. After 

this implementation, a new branch of thin-film solar cells was established with OMH 

perovskites as the absorber material in SCs [37]. OMH perovskites as the main absorber in solar 

cells are first used in photovoltaics in 2009, achieving very low power conversion efficiency 

(PCE) [1], but the perovskite optical properties showed a lot of promise. Since then, perovskites 

have become the rising star of the solar energy research field, reaching PCE >20 % in less than 

10 years. 

Advantages of using organo-metal halide perovskite for solar cells include: 

 Their advantageous intrinsic optical properties: the absorption coefficient in the visible 

range is higher in OMH perovskites than in crystalline silicon [38]; 

 The bandgap tunability: Perovskites can be fabricated from a variety of precursors and 

changing the ratio between precursors materials allows for a precise tunability of the 

bandgap either by mixing the organic cations or by using a mixture of halides for the 

inorganic ion [39], [40]; and 

                                                           
2
 Thin in comparison with the silicon wafers, which can be implemented up to 200 µm in devices [226] 
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 The assortment of fabrication methods: perovskites have been fabricated using solution-

processed spin-coating [41], inkjet-printing [42], dip-coating [43], blade-coating [44], 

and thermally evaporation [39].  

The conjunction of these characteristics offers a wide range of options for improving the 

efficiency in SCs and adapting it even further to other optoelectronic devices, such as LEDs [45] 

or lasers [46]. 

 

2.2.2.1. Organometal halide perovskites 

Perovskites are materials that take their name from the perovskite mineral (calcium titanate, 

CaTiO3), as they have the same crystalline structure. The general formula is ABX3, where X is an 

anion that can be replaced by either carbon, oxygen, nitrogen or by the halogen elements [47], 

while the A and B are mono- or divalent cations that stabilize the structure (Figure 4). By 

changing the ions, the characteristics of the perovskite change. The perovskite family of 

materials is known for the diverse characteristics that can be present, such as ferroelectric 

behaviour [48]; superconductivity at high temperature or increase of their ionic conductivity 

due to oxygen vacancies [49]; and, acting as insulators or having photovoltaic properties due to 

their high absorption coefficient [47]. For SCs applications, OMH perovskites are used, where X 

is a halide anion; A, a monovalent organic cation and B, a metal cation [5]. 

 
 
 

 

 

Figure 4. Crystalline structure of perovskites including a monovalent organic cation (A), a metal 
cation (B) and a halide anion (X). 

The OMH perovskites follow the ABX3 formula with the following components:  

 A is an organic cation with oxidation state +1 (such as methylammonium (MA, CH3NH3
+), 

ethylammonium (CH3CH2NH3+) and formamidinium (FA, NH2CH=NH2+) [50], [51]).  

 B is a metallic cation with oxidation state +2 (tin (Sn2+) or lead (Pb2+)) and  

 X is a halide anion with oxidation state -1  limited to chloride (Cl-), bromide (Br-) and 

iodide (I-) [47].  

The first perovskite used for SCs is methylammonium lead tri-iodide (CH3NH3PbI3) [37]. 

Deposited from two precursor materials (methylammonium iodide (MAI) and lead iodide 

(PbI2)), this perovskite was the starting point for perovskite solar energy research. In order to 

improve its open circuit voltage and tuning the bandgap for different applications, other types of 

perovskite have been studied as well. 
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Methylammonium lead tri-iodide using PbCl2 precursors is used as well [47], [52]–[57]. The 

addition of chlorine to the precursor materials modifies the morphology of the final perovskite 

layer, improving the crystalline structure and its optoelectrical properties [6], [58]. Layers of 

MAPbI3-xClx have shown longer diffusion lengths than CH3NH3PbI3 [59] and chlorine has shown 

a role in improving carrier transport [58]. Perovskite layers using PbCl2 as lead precursors are 

deposited in a number of ways: directly from MAI and lead chloride (PbCl2 [57]), or from MAI 

and a mixture of lead acetate (PbAc2) and PbCl2 [60], among others. There is, however, still some 

disagreement on whether the chlorine content from the precursor remains in the perovskite 

layer after annealing. A possible explanation is that a small percentage of chloride remains in 

the structure after annealing [61], [62] while some studies prove that there is no evidence of 

chloride left in the layer [63], [64]. In this document, I will use the MAPbI3-xClx notation for 

perovskite layers fabricated from precursors that include PbCl2, to differentiate from MAPbI3, 

fabricated only with PbI2 precursors. 

Mixed cation lead perovskites are another type of perovskites used in solar energy research 

since 2016 [65]. The organic precursors are prepared as a mixture of two organic cation sources 

(MA and FA [66]) with cesium (Cs) (for the triple cation perovskite, [67]). This has been shown 

to stabilize the FA phase and influence the crystal growth [9]. Additionally, for the halide 

component, a mixture of iodine and bromide is used to stabilize the perovskite structure at 

room temperature[68]. The general formula used to address these types of perovskite is MAy 

FA1-y Pb (I1-xBrx)3 for double-cation perovskite and Csz (MAyFA1-y)1-z Pb (I1-xBrx)3 (with x, y and z 

ranging from 0 to 1) for triple-cation perovskite. 

Tin perovskites have also been investigated alongside the lead perovskites [69]–[72], although 

to a lesser degree. The tin iodide perovskites are strongly affected by air and moisture[73]. In 

order to maintain most of their performance in humid air for 15 days, mixed cation perovskites 

have been used (cesium with either MA or FA, [73]) as precursors for the organic part. These 

latter types of perovskite (mixed cation lead-based, and tin-based) are not studied in this 

document.  

 

2.2.2.2. Working principle 

The first PSCs are similar in their structure and working principle to the DSSCs: a compact layer 

of a wide-bandgap semiconductor is deposited over a transparent conductive substrate. On top 

of this, a layer of n-type mesoporous semiconductor is deposited to lengthen the recombination 

time of photo-generated electrons [74]. Titanium dioxide [75]–[77] and tin oxide [78], [79] are 

widely used, but others, such as aluminum oxide have also been used as scaffold [80], [81].  

The perovskite layer deposited over a mesoporous layer can be performing in different 

capabilities:  

 as a sensitizer, the perovskite infiltrating the n-type layer [82]–[85];  

 as an absorber conformally coating an insulating layer (which acts only as scaffold),  

A schematic diagram of PSC architectures can be seen in Figure 5. The most commonly used 

architecture is the n-i-p structure [43], [86], [87]. In this structure, the perovskite layer lies 

between an n-type material to act as electron transport layer (ETL) for electron extraction and a 
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p-type material to act as hole transport layer (HTL) for charge regeneration at the perovskite 

layer. By ensuring that the fabricated layers maintain homogeneous and planar surfaces, the 

efficiency of the devices is greatly increased [88]–[90]. Over the perovskite layer, a hole 

transport layer (HTL) is deposited, regenerating the perovskite after electron depletion. Finally, 

the circuit is closed with a metal electrode, usually gold, since lead-based perovskites corrode 

silver electrodes [91]. 

Devices with an inverted architecture (p-i-n) are also implemented using often organic layers 

for charge extraction, such as PEDOT:PSS (poly(3,4-ethylene dioxythiophene) polystyrene 

sulfonate) as p-type layer, and PCBM (phenyl-C61-butyric acid methyl ester) or nickel oxide 

(NiO) as an n-type material [92].  

Mesostructured cells have also been implemented, where the electron transport material is 

replaced by an insulator that acts as a scaffold for the perovskite layer [93]. In this type of cell, 

the electron charge transport occurs within the perovskite layer. HTL-free devices [94] have 

been implemented as well to a lesser degree, as evidence of the ambipolar (i.e. conduction of 

both electrons and holes) charge transport properties of perovskites [95], [96].  

 

Figure 5. PSCs Architectures and the schematic of the band diagram. HTM: hole transfer 

material; ETL: electron transfer layer; TCO: transparent conductive oxide 

There are currently two main principles for current generation within Perovskite-based Solar 

Cells, according to the layers inside the architecture. For PSC with DSSC and planar 

architectures, the photoactive layers form a p-i-n junction. In this case, the performance of the 

solar cell under illumination is described as follows: the solar cell, connected to an external load 

is illuminated. A photon with energy higher than the perovskite bandgap is absorbed by the 

perovskite layer and it excites an electron into the conduction band. This generates an electron-

hole pair within the perovskite: an electron in the conduction band and a hole in the valence 

band. The charge separation occurs through two processes: the excited electron passes to the 

conduction band of the ETL (e.g. a TiO2 mesoporous layer) and it is transported to the electrode 

for extraction (Figure 5, p-i-n junction). In the valence band of the perovskite, a positive charge 

(hole) is left behind and then regenerated to its original state by electrons from the HTM (e.g a 

SpiroMeOTAD layer), increasing the separation of charges. Holes are thus transported from the 

HTL into the electrode where it is finally extracted to an external load.  

https://en.wikipedia.org/wiki/Poly(3,4-ethylenedioxythiophene)
https://en.wikipedia.org/wiki/Polystyrene_sulfonate
https://en.wikipedia.org/wiki/Polystyrene_sulfonate
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The second principle for current generation applies to mesostructured cells with an insulator 

used as a scaffold (for example, Al2O3) and HTM-free cells. Perovskites can act as absorbers, but 

also as electron and hole transport materials. Since the crystalline structure of perovskites 

allows the ambipolar transport [95], [96], the electron transport is executed within the 

perovskite itself (Figure 5, [50]). For these architectures, perovskite properties such as the long 

charge carrier diffusion length maintain the photovoltaic performance of the cell.   

 

2.2.2.3. Challenges for OMH perovskites 

Despite its many advantages, perovskites as absorbers for SCs face obstacles before an 

industrial implementation at a large scale is possible. A better understanding of the perovskite’s 

structure, properties, and performance within a solar cell is paramount to bring this solar cell 

technology closer to industrial application. 

The main challenges that need to be overcome for a large scale implementation of perovskite-

based SCs are:  

 the content of lead in the perovskite structure; 

 the fast degradation of devices;  

 the sensitivity of perovskites to oxygen and moisture; 

 the hysteresis in the J-V characteristic curve. 

In terms of the perovskite itself, the sole presence of lead in its crystalline structure is a 

deterrent for the implementation of perovskites in solar cells and consequent use in a 

commercial capacity. The toxicity of the lead is well known [13], [97], and initial solutions have 

been proposed for overcoming this challenge. Replacing lead within the perovskite crystalline 

structure for another element from the same periodic table group [98], [99], tin perovskites 

have been proposed as a solution. However, recent studies have estimated that tin-based 

perovskites are not a substitution that is entirely toxicity-free [100]. Antimony, bismuth [101] 

and titanium [102] have also been suggested. Despite all these attempts, the performance of the 

lead-free perovskite solar cells is poorer compared to that of lead-based perovskites [2].  

Degradation of the perovskite layers in the devices leads to a loss in electrical performance 

[103]–[105] and leakage of toxic material into the environment. A solution proposed to solve 

the latter issue is the encapsulation of the devices. The encapsulation consists of insulating the 

device in a transparent polymer [106], [107], with access only to the electrodes for electrical 

connection. The encapsulation has a two-fold purpose: to avoid leaking of lead waste from the 

device into the environment [108], and to prevent leakage of air and moisture into the device 

[16], [109]. This addition to the solar cell architecture is still being evaluated as the 

encapsulation introduces losses in the performance due to reduced incident light and it 

increases the cost of the entire device.  

Due to the perovskite’s sensitivity to oxygen and moisture, the life of the devices is currently 

short. Even factors related to solar cell implementation such as light exposure [19], [110] and 

temperature variations [18] contribute to the degradation and lower the performance even 

further [111]. Although device stability has been extended —maintaining 80 % of the initial 
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performance after 1000 h [112]—, it is still not comparable to that of silicon SCs (of 20 years 

[14]).  

A challenge that has arisen in the evaluation of the performance of PSCs is the presence of 

hysteresis in the J-V characteristic curve. This phenomenon (described in more detail in Section 

3.3) is first mentioned by Snaith et al. in 2014 [113] and it is seen as a discrepancy in the 

current extracted when the J-V measurement is executed under various starting conditions. 

Changing the measurement speed or the applied starting voltage delivers altered J-V curves 

with a range of power conversion efficiencies (PCE) for the same incident light, making the 

measurement of the real PCE a challenge. Reduction of the hysteresis in PSCs is paramount to 

determine accurately the performance of the solar cells. 

Sources of the hysteresis in the J-V characteristic curve have been related to [114]–[116]:  

 ion migration within the perovskite layer and  

 charge trapping and detrapping at the perovskite interfaces  

One of the sources of hysteresis in PSCs is the existence of ion migration within the perovskite 

layer, which consists of the drift of mobile ions in the perovskite layer due to vacancies. As a 

result, when a potential differential is applied to the perovskite solar cell or device (as is the 

case during the J-V curve measurement), the ions drift within the perovskite layer and 

accumulate at the interfaces [92]. This ion migration within the layer presents resistance to the 

current flow [117] and is reflected as a modification of the shape in the J-V characteristic curve 

that will depend on the measurement scan direction and speed.  

Another source of hysteresis in PSCs is the charge (de)trapping in the interfaces. During the J-V 

measurement, charges can become trapped at the interface with either the HTL or ETL [118], 

[119]. It has been reported [120], [121] that the influence of both mechanisms during the 

measurement is the origin of the hysteresis in the J-V characteristic curve (Figure 13b).  

In order to reduce the hysteresis due to ion migration, changes in the ratio of the perovskite 

precursors [122] or additives to the perovskite layer [123] have been implemented. 

Furthermore, to lessen the influence of charge trapping and detrapping, interface engineering 

has been employed [124] through the use of passivating layers [125] or double-layered contacts 

[126].  
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3. Characterization Techniques 

 

In this chapter I describe the characterization techniques used in the following chapters during the 

evaluation of the perovskite layers and solar cells, and the evaluation of fabrication parameters on 

the layer quality. 

 

For the evaluation of the influence of fabrication methods and to determine the processes that 

improve performance, characterization of the perovskite layers and solar cells is executed using 

several methods. Since solar cells are optoelectrical devices, both optical and electrical 

characterizations are required for an integral evaluation.  

For evaluating the perovskite layers, the following techniques are investigated: 

 photoluminescence characterization, which reflects the material quality and the 

efficiency of the charge transport (Section 3.1),  

 transmittance and reflectance spectra which measures the transmission and absorption 

of materials for the estimation of the diffusion length (Section 3.2), 

 x-ray diffraction, to study the crystalline structure of the layers (Section 3.5), 

 scanning electron microscopy and atomic force microscopy for imaging the layers and 

their topography. 

For evaluating the perovskite solar cells (PSCs), the following techniques are investigated: 

 Current density-voltage (J-V) measurement of the devices, to determine the power 

conversion efficiency (PCE) and other photovoltaic parameters (Section 3.3), 

 Evolution of the PCE under constant voltage, to establish the stability of the devices in 

time, 

 Absorption measurements, in order to obtain the external quantum efficiency (EQE) 

spectra, to determine the spectral response of the PSCs and the loss mechanisms 

(Section 3.4). 
 

 

3.1. Photoluminescence  

Characterization of the photoluminescence (PL) is a method to detect changes in the quality of a 

material, giving a measure of the optical bandgap (Eg). In this technique, the layer under study is 

illuminated, or equivalently, optically excited using a photo-emitting light source (e.g. a laser) 

with energy higher than the bandgap of the material.  

Photoluminescence emission can be measure in steady-state mode, to determine the bandgap of 

the layer under study, or in time-resolved mode, to evaluate the changes in PL intensity through 
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time. In this mode, the charge carrier lifetime can be estimated and charge transport 

mechanisms can be studied.   

 

3.1.1. PL concepts 

Photoluminescence (PL) is the emission of a photon due to the absorption of light in a 

semiconductor. Incoming photons with energy equal or higher than the bandgap are absorbed, 

exciting the electrons from the valence band into higher energy states (Figure 6). In other 

words, electrons (negative charges) are excited to the conduction band, leaving holes (positive 

charges) in the valence band. These photo-generated charges transmit the excess energy 

through the crystal lattice until they reach the lower edge of the conduction band, in a process 

called relaxation. Then, the electron at the edge of the conduction band recombines with holes 

in the valence band and this energy is emitted as a photon. The number of photons radiated in 

this PL process reflects the quality of the material.  

 

 

 

Figure 6. Schematic diagram of the radiative recombination upon illumination. In yellow circles, 
photo-generated electrons upon incident photons (green arrows) are shown; in white 
circles, holes or positive charges are shown. Eg: energy bandgap; PL: 
photoluminescence. 

In practice, the absorption of a photon with energy larger than the bandgap (Eg) can generate 

different types of recombination [127]: 

 Radiative recombination: the absorption of the photon leads to the excitation of an 

electron into the conduction band, leaving a hole in the valence band, known as an 

electron-hole pair. In the radiative recombination of the electron-hole pair, a photon 

with energy close to the bandgap is emitted as PL (Figure 6).  

 Shockley-Read-Hall recombination: this is a type of non-radiative recombination, in 

which a photo-excited electron in the conduction band reaches an intermediate state in 

the energy bandgap (Eg). From this state, the photo-excited electron reaches a hole in 

the valence band. The excess energy is then thermally transmitted within the crystal.  

 Auger recombination, or three-body recombination: a photo-excited electron 

recombines with a hole in the valence band, transmitting its energy to a second electron 

in the conduction band, instead of emitting a photon. This second electron then 

thermally dissipates the excess energy to reach the edge of the conduction band.  

For PL measurements, the dominating recombination type and the photo-generated charge 

carrier density are determined by the fluence of the incident light. The fluence is defined in Eq 
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(3.1) as the incident laser pulse energy on the effective focal spot area and it is given in units of 

J/cm2 [128]. The photo-generated charge carrier density (n) at the surface is calculated using 

Eq. (3.2): 

  

Fluence =
𝑃𝑢𝑙𝑠𝑒 𝐸𝑛𝑒𝑟𝑔𝑦

𝐴𝑟𝑒𝑎
 

 

𝑛 =
𝐹𝑙𝑢𝑒𝑛𝑐𝑒 ∗ 𝛼

𝐸𝑝ℎ
 

 
(3.1) 
 
 
(3.2) 

where Eph is the energy of the incident photon and 𝛼 the absorption coefficient of the 

semiconductor at the incident wavelength.  For low fluences, the generated PL signal is linearly 

proportional to the photo-generated charge carrier density (n). The limit of the linear regimen 

for perovskites is n~3.7 x 1017/cm3 [129]. Exciting the perovskite layer with incident light in the 

linear fluence regime ensures that the response measured is that of monomolecular 

recombination, often related to trap-assisted recombination [127], [130]. Higher fluence will 

generate PL signals that are no longer following a single exponential response. For intermediate 

fluences, the PL is proportional to n2, since it reflects the bimolecular charge carrier 

recombination [127]. For higher fluences, the PL is proportional to n3, where the Auger 

recombination dominates the PL signal and quenches it much faster [127].   

Under low fluences [131], the PL emission is linearly proportional to the photo-generated 

charge carrier density. Therefore the decay of the PL signal in time can be modeled for thin 

layers using the one-dimensional (1-D) diffusion equation [127]. This equation (also called the 

continuity equation) describes how the charge carrier density changes in time along one 

dimension and it is given by Eq. (3.3).  

 ∂n

∂t
= D

∂2n

∂z2
−
n

𝜏
+ 𝐺(𝑧), 

(3.3) 

where n is the charge carrier distribution, D is the diffusion coefficient, 𝜏 is the PL lifetime of the 

layer and G is the generation rate in which the charges are generated by an external field in 

terms of position within the absorber thickness (set as z in Eq. (3.3), [132]). For pulsed 

excitation such as the one used in time-resolved photoluminescence, the generation rate is set 

to zero  as there is not further excitation after photoexcitation. 

 

3.1.2. Estimation of the diffusion length  

With time-resolved photoluminescence (trPL), optical parameters such as the diffusion 

coefficient can be calculated. Shaw et al. [133] used this method to calculate the exciton 

diffusion in organic semiconductors, and it has also been used to determine diffusion 

coefficients in semiconductors like silicon [134] and perovskites [135]. It should be noted, that 

for the perovskites, the photo-generated electron-hole pairs have binding energies below the 

thermal energy at room temperature [136] and are therefore considered free charges [130], 

[137]. 

The time-dependent PL emission of an absorber such as perovskites on an insulating substrate 

is measured (Figure 7, left). The emission presents a single exponential decay given by:  
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 I(t) = I0 ∗ e
−t

τe⁄  (3.4) 

where I0 is the maximum intensity and τe is the time that it takes for the PL signal to reach 1/e 

of its maximum intensity. Additionally, to account for other types of recombination, a stretched 

exponential is often used to fit the PL signal:  

 I(t) = I0 ∗ e
−(t τs⁄ )βs  (3.5) 

where τs is the lifetime of the stretched exponential and βs is a dispersion factor between 0 and 

1, as used in [135]. β is associated with the disorder within the crystal, whether due to variation 

of crystallite sizes or due to grain boundaries [138].  

 
 
 

 

 

Figure 7. Schematic diagram of the architecture system used for extraction of the diffusion 
length based on the time-resolved photoluminescence: (left) the absorber on an 
insulating substrate and (right) in presence of an electron quencher. Thicknesses of 
layers in the schematic diagram are not in scale. 

The measurement of the PL in the absorber itself provides information on the effective charge 

carrier decay within the film, but it does not determine the charge carrier dominating the decay. 

For that, the absorber is also measured on an electron quencher or on a hole quencher (Figure 

7, right), resulting in the loss or quenching of the photoluminescence in comparison to the 

absorber in an insulating substrate. This quenching depends on the diffusion length of the 

semiconductor and the thickness of the semiconductor. The selection of the quencher layer is 

crucial: first, the quencher is either an n-type (for electrons) or p-type (for holes) material that 

facilitates the charge extraction. Also, the interface between the semiconductor and the 

quencher should be stable and well-defined, where the free charges are effectively 

disassociated. Last, no diffusion should occur between the two layers otherwise the level of 

quenching will be underestimated [133]. 

By fitting the normalized PL signal with the solution of the diffusion equation (Eq. (3.3)), 

parameters such as the diffusion coefficient can be extracted:  

 ∂n(z, t)

∂t
= D

∂2n(z, t)

∂z2
− k(t) ∗ n(z, t), 

(3.6) 

where n is the charge carrier distribution, D is the diffusion coefficient, and k(t) is the PL decay 

rate without quencher [135]. The PL decay rate is defined as: 

 k = kr + knr = β ∗ τS
−βS ∗ tβ−1 (3.7) 

To solve this equation, the boundary and initial conditions must be defined.  

For the model, all charge carriers must be generated in the perovskite surface so the initial 

distribution is given by 𝑛(𝑧, 0) = 𝑛0𝑒
−𝛼𝑧, where α is the absorption coefficient at the excitation 

wavelength and n0 is the initial charge distribution. Also, all charge carriers are quenched only 
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in the perovskite/quencher interface (as opposed to the perovskite/substrate interface) 

so: 𝑛(𝐿, 𝑡) = 0. This applies for diffusion lengths longer than the thickness of the perovskite 

layer [139]. With these conditions taken into account, the equation can be solved for the charge 

carrier distribution: 

 

The charge carrier density is integrated over the active layer thickness, we can obtain the 

number of charges, N(t) [129]: 

 

If other types of recombination are included, the number of charges changes to: 

with 𝐴 = 𝛽𝑠 ∗ 𝜏𝑠
−𝛽𝑠 , 𝐵 = 𝛽𝑠 − 1, and the diffusion coefficient as the unknown variable [139], Eq. 

(3.10) is fitted to the normalized PL decay of the quenched sample and the diffusion coefficient 

can be extracted for electrons and holes. Once known, the diffusion length can be calculated 

from LD = √D ∗ τe [140], where the diffusion coefficient depends on the type of charge and the 

lifetime is measured in the absence of a quencher.  

Another parameter to observe the efficiency of charge injection is the charge transfer efficiency 

(CTE) [141]. It is a figure of merit of the efficiency of the conversion from charge generation in 

the absorber to injection in the quencher. It is given by: 

 
𝐶𝑇𝐸 =

𝑘𝑇

𝜏𝐴
−1 + 𝑘𝑇

 (3.11) 

where kT is the sum of the transfer rate of all available acceptors and it is given by:  
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1
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−
1
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where τDA is the PL lifetime of the absorber in the presence of a quencher and τD is the PL 

lifetime of the absorber in the absence of a quencher.  

 

3.1.3. PL Setup 

In order to measure the photoluminescence in perovskite layers, the setup shown in Figure 8 is 

used. A green pump laser (532 nm, AOT ACE Laser) is used to illuminate the sample, with a 

temporal resolution of 2.5 ns. The emitted light is measured using an ACTON spectrometer and 

a gated ICCD (intensified charge-coupled device) camera PIMAX512 with a gated mode at room 

temperature. Unless otherwise stated, the fluence used in the experiments is 500 nJ/cm2, in 

order to excite the absorber in the low fluence regimen.  

 
 
 

 

 

Figure 8. Schematic diagram of the time-resolved photoluminescence setup. The sample is 
placed in the sample holder and excited by the pump laser. In the diagram: (1) dichroic 
mirror, (2) UV filter, (3) neutral density (ND) filters, (4) Green laser filter, (5) Detection 
optics. 

 

3.2. Transmission and Absorption 

The UV-Vis spectrum is measured to observe the transmission (T) and absorption (A) of a 

material. Relative measurements allow additionally assessment of the influence that fabrication 

parameters have on the quality of the layer. In order to calculate the absorptance, Eq. (3.13) is 

used: 

 𝐴 = 100 − (𝑅 + 𝑇) (3.13) 

where A is the absorption, R is the reflection and T is the transmission of materials. Estimation 

of the absorption coefficient is calculated using the method described in Section 3.2.1. 

 

3.2.1. Estimation of the absorption coefficient in thin-films 

The absorption coefficient is an intrinsic property of a material, defined as the rate in which the 

photons are absorbed per unit length. However, when the layers are very thin (from the 
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nanometer to tens of micrometer range), as those used in thin-film SCs, the structural 

characteristics, morphology, and geometry of the layer play a larger role in the absorption. The 

absorption coefficient will then change depending on fabrication and coating techniques, and 

influence the response of the system to optical stimuli. Therefore, the challenge is to properly 

estimate the absorption coefficient, taking into account the characteristics of the system to 

provide an accurate description.  

 

 

 

Figure 9. (a) Schematic diagram of the light beams as they pass through a single slab of 
material. (b) Absorption of the incident beam and how it affects the transmitted beam. 

The classical approach derives the value for the absorption coefficient from the transmission 

and reflection measurements (Figure 9), normalized by the material thickness (Eq. (3.14)). 

Within the material, the intensity of the beam follows the Lambert-Beer law (Eq. (3.14)), as it 

decreases with the traveled distance and absorption coefficient. The transmitted beam can be 

estimated from the incident light intensity after reflection and the attenuation due to the 

material have been deducted, such that: 

 𝑇 = 𝐴 ∗ 𝑒(−𝛼∗𝑑𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙), (3.14) 

where α is the absorption coefficient and d is the thickness of the material. However, this 

derivation is valid only in the cases of one slab of material. When the absorption is calculated for 

a system where a thin layer is deposited over a substrate (e.g. an insulator) the classical 

approach fails to properly estimate the absorption coefficient. 

The classical approach states two assumptions when a system of two finite layers is evaluated 

(Figure 10a). First, that the reflection of the system is due only to the first (top) layer (Eq. 

(3.15)), as it assumes that all internal reflections are absorbed and there is no influence of either 

the reflections at the interface or at the bottom of the substrate. Second, the transmission of the 

system is taken as a product of the transmission of the film and the transmission due to the 

substrate (Eq. (3.16)). From these assumptions, the absorption coefficient (𝛼) of the film is 

estimated: 

 𝑅𝑓𝑖𝑙𝑚 ≈ 𝑅𝑡𝑜𝑡 (3.15) 
 

 
𝑇𝑓𝑖𝑙𝑚 ≈

𝑇𝑡𝑜𝑡
𝑇𝑠𝑢𝑏

 (3.16) 
 
 

 
𝛼𝑓𝑖𝑙𝑚 =

1

𝑑𝑓𝑖𝑙𝑚
ln
1 − 𝑅𝑓𝑖𝑙𝑚

𝑇𝑓𝑖𝑙𝑚
 (3.17) 
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From Eq. (3.17), the absorption coefficient of the film could be easily calculated from 

quantifiable data. And while this approach may be valid for architectures with layers of similar 

thickness, in the case of a thin film other considerations should be taken into account.  

The conventional approach for the estimation of the absorption coefficient relies on two 

assumptions:  

 the system to be studied presents a flat surface, and  

 the reflections at the bottom interface are negligible, as mentioned above.  

In the case of thin-film perovskite layer, such assumptions are not fulfilled. The perovskite film, 

when deposited from a solution, has good coverage of the substrate where they are deposited 

and presents a dark and shiny layer, indicators of a good reflection, but in the nanometer range, 

the film layer has a roughness of ~18 nm. Therefore estimation of the absorption coefficient 

that accounts for scattering is required. 

Additional issues arise for the evaluation of thin films of a material deposited on a substrate: 

since the thickness of the material is thin, the internal morphology of the film comes into play, 

as well as the surface morphology. Also, the assumptions initially taken from the conventional 

approach have to be revised, as they no longer apply. The method to calculate the absorption 

coefficient of thin films deposited on a substrate (usually much thicker than the films) and to 

estimate it precisely is proposed by Cesaria [142].  

For the description of the method, the system is defined in this section as the slab that contains 

the thin film and much thicker substrate (indicated by the suffix sys in Figure 10), not to be 

confused with either substrate measurements or by film estimations (indicated by suffix sub 

and film, respectively).  

 

 

 

Figure 10. (a) Schematic diagram of the transmission and reflection beams for an architecture 
of a film-substrate system in a finite-thickness substrate (classical approach) and (b) 
with a semi-infinite substrate. 

One of the revised assumptions is the measurement of the reflection upon the system. In the 

conventional approach, for a slab of material deposited on top of a substrate, the main 

component of the reflection beam comes directly from the top layer (𝑅𝑠𝑦𝑠 ≈ 𝑅𝑓𝑖𝑙𝑚). Other 

reflections (either of the interface with the substrate, or at the bottom of the system) are 

assumed to be negligible, based on a complete absorption of the reflected beams due to the 

thickness of both materials. On the other hand, when a thin film on a much thicker substrate is 

measured, this assumption is no longer correct. There is still an influence of the internal 

reflections at the film-substrate interface on the system reflectance. 
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The substrate itself is a semi-transparent material (i.e., glass) with a thickness much larger than 

that of the film (Figure 10b). For films with hundreds of nanometer of thickness, a typical glass 

substrate of 1 mm is several orders of magnitude larger. In this system, the substrate can be 

assumed as semi-infinite, and the reflection beams generated at the bottom would not 

participate in the system´s reflection as they would be absorbed by the substrate on their path. 

The transmitted beams from the internal reflections would also not affect the total transmission 

of the system for the same reason, so the only component of the transmission of the system 

would be the (initial) transmitted incident beam. 

When Rsys is measured, it contains the information regarding the reflection at the surface of the 

film, but also of the non-measurable influence of the interface film-substrate, as well as 

contributions of the interface formed by the perovskite film and the rear contact and additional 

scattering. 

For the transmitted signal, Eq. (3.14) can be used to extract the transmission for the second 

slab. If we add the suffixes it can be written as:  

 𝑇𝑓𝑖𝑙𝑚 = 𝑐 ∗ 𝑒
(−𝛼𝑓𝑖𝑙𝑚∗𝑑𝑓𝑖𝑙𝑚) 

𝑇𝑠𝑢𝑏 = 𝑐 ∗ 𝑒
(−𝛼𝑠𝑢𝑏∗𝑑𝑠𝑢𝑏) 

𝑇𝑠𝑦𝑠 = 𝑐 ∗ 𝑒
(−𝛼𝑠𝑦𝑠∗𝑑𝑠𝑦𝑠) 

(3.18) 

Where c is a value of the light entering the layer after reflection has been taken into account. 

For a system with two layers, the beam transmitted to the substrate from the film is attenuated 

by a factor of 𝑒−𝛼𝑓𝑖𝑙𝑚∗𝑑𝑓𝑖𝑙𝑚 . In the same way, the total transmitted beam of the system would be 

dampened by a factor of 𝑒−𝛼𝑠𝑢𝑏∗𝑑𝑠𝑢𝑏, such that 

 𝑇𝑠𝑦𝑠 = (1 − 𝑅𝑠𝑦𝑠) ∗ 𝑒
(−𝛼𝑓𝑖𝑙𝑚∗𝑑𝑓𝑖𝑙𝑚) ∗ 𝑒(−𝛼𝑠𝑢𝑏∗𝑑𝑠𝑢𝑏) 

𝑇𝑠𝑦𝑠 = (1 − 𝑅𝑠𝑦𝑠) ∗ 𝑒
(−𝛼𝑓𝑖𝑙𝑚∗𝑑𝑓𝑖𝑙𝑚−𝛼𝑠𝑢𝑏∗𝑑𝑠𝑢𝑏) 

 
(3.19) 

and a relation between the absorption coefficient of the total system and that of each slab can be 

established  

 𝛼𝑠𝑦𝑠 ∗ 𝑑𝑠𝑦𝑠 = −𝛼𝑓𝑖𝑙𝑚 ∗ 𝑑𝑓𝑖𝑙𝑚 − 𝛼𝑠𝑢𝑏 ∗ 𝑑𝑠𝑢𝑏 (3.20) 

As the distance of the system is the sum of the thickness of each layer and the thickness of the 

film is much smaller than the thickness of the substrate, then Eq. (3.20) can be written as: 

 
𝛼𝑠𝑦𝑠 ∗ 𝑑𝑠𝑢𝑏 (1 +

𝑑𝑓𝑖𝑙𝑚

𝑑𝑠𝑢𝑏
) = −𝛼𝑓𝑖𝑙𝑚 ∗ 𝑑𝑓𝑖𝑙𝑚 − 𝛼𝑠𝑢𝑏 ∗ 𝑑𝑠𝑢𝑏  

 

 
𝛼𝑓𝑖𝑙𝑚 ∗ 𝑑𝑓𝑖𝑙𝑚 = 𝛼𝑠𝑦𝑠 ∗ 𝑑𝑠𝑢𝑏 (1 +

𝑑𝑓𝑖𝑙𝑚

𝑑𝑠𝑢𝑏
) − 𝛼𝑠𝑢𝑏 ∗ 𝑑𝑠𝑢𝑏 ≈ (𝛼𝑠𝑦𝑠 − 𝛼𝑠𝑢𝑏) ∗ 𝑑𝑠𝑢𝑏 

 

 
𝛼𝑓𝑖𝑙𝑚 =

𝑑𝑠𝑢𝑏
𝑑𝑓𝑖𝑙𝑚

(𝛼𝑠𝑦𝑠 − 𝛼𝑠𝑢𝑏) 
(3.21) 

where both 𝛼𝑠𝑦𝑠 and 𝛼𝑠𝑢𝑏 can be calculated from quantifiable data.  

Following this method, the internal reflections at the back of the thin film will still influence the 

total reflectance of the system’s reflectance. When evaluating thin films, reflection of the system 

is not only a reflection of the thin film itself but the sum of it and the internal reflections at the 

substrate/film interface, since the structural features of the film will have a stronger 
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contribution than in the case of a thick slab of material. Furthermore, beams reflected at the 

bottom or at the film-substrate interface are not neglected in the calculation. Therefore, this 

calculation is deemed realistic because it does not disregard the influences of the scattering 

from the internal interfaces and the film-volume interface [143]. 

The thickness of the thin film is assumed as uniform, but should it include a level of roughness, 

as it is in the case of perovskite layers. However, this method is still accurate in the estimation of 

the absorption coefficient as it takes into account the microstructural effects of the film [142]. 

Since this approach also includes the contribution of scattering, the non-uniform effects of 

changes in the film thickness are still taken into consideration, rendering this method valid for 

the perovskite layers here presented. 

 

3.2.2. UV-Vis setup 

The UV-Vis measurements are executed in air using a Lambda 1050 UV/VIS/NIR Spectrometer 

(PerkinElmer, Figure 11). The samples are illuminated with two lamps to have a broad range of 

the excitation spectrum: a deuterium lamp and a tungsten-halogen lamp. The wavelength range 

used for the measurements is 300-1200 nm. Unless otherwise stated, all samples are measured 

from the top side and in air.  

 
 
 

 

 

Figure 11. Schematic diagram of the UV-Vis setup. 
 

3.3. J-V characterization 

The measurement of the current-voltage characteristics of a solar cell under illumination is the 

tool that evaluates the electrical performance and quality of a completed solar cell or device on 

its implementation. In this measurement, the device is illuminated with a light source, 

simulating the light intensity and spectrum of the sun, while a voltage is applied to its terminals. 

An equivalent circuit for a solar cell can be found in Figure 12. 

The current (I) extracted from the solar cell is the photo-generated current (IL) minus the 

current consumed by the diode (ID) and the shunt resistor (ISH), so that: 

 𝐼 = 𝐼𝐿 − 𝐼𝐷 − 𝐼𝑆𝐻  (3.22) 

The electrical behavior can be rewritten in terms of the Shockley diode equation[144]: 
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𝐼 = 𝐼𝐿 − 𝐼𝑜 [𝑒

𝑒∗(𝑉+𝐼𝑅𝑠)
𝑛∗𝑘𝐵∗𝑇 − 1] −

𝑉 + 𝐼𝑅𝑆
𝑅𝑆𝐻

 
(3.23) 

Where I0 is the dark saturation current3, e is the electron charge (1.6x10-19 C), kB is the 

Boltzmann constant (1.38x10-23 m2 kg s-2 K-1), n is the diode ideality factor, V is the voltage, and 

RS and RSH, the series and shunt resistance, respectively[145]. 

 
 
 

 

 

Figure 12. Equivalent circuit of a solar cell, including parasitic resistances. 

However, for laboratory cells, the curve that is analyzed is the current density-voltage (J-V) 

characteristics, taking into account the small active area of each individual cell. From the J-V 

characteristic curve, several parameters can be extracted that reflect the devices’ performance 

and limitations.  

 
 
 

  
 

 

Figure 13. (a) J-V characteristics of a solar cell under illumination with important parameters 
shown on the plot. In red, the power extracted from the solar cell. (b) J-V characteristic 
curve of a solar cell with hysteresis, measured in backward and forward direction. In 
the plot: JSC stands for short-circuit current density; JMPP, for maximum power current 
density; VOC, for open-circuit voltage; VMPP, voltage at the maximum power point. 

The open-circuit voltage (VOC) [146], seen in Figure 13a at the intersection of the extracted 

current density and the x-axis, is the maximum voltage generated by the devices when no 

current is passing through the device. The short-circuit current density (JSC), identifies the 

maximum extracted current density and it is set at the intersection of the extracted current 

density in the y-axis, where no voltage is applied to the device. The maximum power point 

(MPP) is the maximum of the power plot calculated from the J-V characteristic curve. The 

                                                           
3
 i.e. the current that flows through the diode in the dark under reverse bias 
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voltage at maximum power (VMPP) and the current density at maximum power (JMPP) are taken 

as the x and y- coordinates for the MPP.  

The fill factor is a parameter that showcases the quality of the cell providing an estimation of 

how close to ideal the device performs. It is calculated from the ratio of the maximum power 

and the power calculated from VOC and JSC (Eq. (3.24)).  

 
FF =

𝑉𝑀𝑃𝑃 ∗ 𝐽𝑀𝑃𝑃
𝑉𝑂𝐶 ∗ 𝐽𝑆𝐶

 
(3.24) 

From these three parameters, and the incident light power, the power conversion efficiency 

(PCE) is calculated:  

 
PCE =

𝑉𝑂𝐶 ∗ 𝐽𝑆𝐶 ∗ 𝐹𝐹

P𝑖𝑛
 

(3.25) 

where VOC is the open-circuit voltage (in V), JSC is the short-circuit current density (in mA/cm2), 

FF the fill factor (adimensional) and Pin the incident power density.  

Other criterions that are taken into consideration are the power conversion efficiency quotient 

(PCEq) and the hysteresis index (HI). PCEq is the ratio of the power conversion efficiency in 

backward and forward direction. The hysteresis index (HI) is the ratio of the area under the 

curve of the backward and forward direction. The main difference between the two parameters 

is that the first parameter takes into account only the variation of the maximum power point 

between the two measurements, while the second considers the entire data range. 

These parameters have a strong relevance taking into account that perovskite SCs are known to 

show hysteresis in the J-V characteristic curve [147]. In other words, they present a deviation in 

the J-V curve when a measurement parameter is changed, like the measuring speed or the 

direction of measurement (whether it is done on the backward direction (VOC to JSC) or the 

forward direction (JSC to VOC) (Figure 13b). All devices described in this document are measured 

in both directions. The hysteresis is evaluated in two ways: with the PCEq and the hysteresis 

index (HI).  

The sample is placed under illumination in a solar simulator for the evaluation of the power 

conversion efficiency. The solar simulator has a Xenon lamp calibrated at 1000 W/m2 (AM 1.5G) 

with a certified Silicon solar cell (Newport) at 25 °C. The voltage is applied to the device with a 

Keithley Source Measure Unit (SMU). Each sample (16x16 mm) has 4 cells for statistical 

measurements of each parameter. The area of each individual cell is 10.5 mm2. The speed of the 

measurement is kept at 600 mV/s. 

The measurement of the samples is done through several cycles, to observe and record the light 

soaking effect, if present. Additionally the evaluation in time of the power conversion efficiency 

at constant voltage is measured to observe the stability of the devices. Between measurements 

the samples are stored in the dark inside a nitrogen glovebox to avoid degradation. In the cases 

of long term studies, silver ink is additionally used to cover the golden electrodes to prevent the 

breaking of the electrode contact points.  
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3.4. External Quantum Efficiency (EQE) 

External quantum efficiency (EQE) is the measure of the charges extracted per incident photons 

at a given wavelength in a photovoltaic (PV) device. This measurement provides a spectral 

interpretation of the current extraction process and assists in the determination of the loss 

mechanisms that could be affecting the effective performance.  

The photovoltaic devices are illuminated with a light source that simulates the solar spectrum 

and that has been previously calibrated with a certified silicon solar cell. The photo-generated 

current is measured, doing a spectral sweep of the incident light on the PV device. For the PSCs 

studied in this dissertation, with Eg ~1.6 eV, the wavelength range used is 300-800 nm.  

For the calculation of the EQE, the spectral response of the certified silicon solar cell is used as a 

reference to calculate the JSC of the PSCs [148]. The equation used to calculate the external 

quantum efficiency is the following: 

 
EQE(λ) = EQE𝑟𝑒𝑓(λ)

𝐼𝑝ℎ(λ)

𝐼𝑝ℎ
𝑟𝑒𝑓
(λ)

 
(3.26) 

where 𝐼𝑝ℎ(λ) and 𝐼𝑝ℎ
𝑟𝑒𝑓
(λ) are the photocurrent flowing through the solar cell and the reference 

solar cell, respectively and  EQE𝑟𝑒𝑓(λ) is the known EQE of the certified silicon solar cell[149]. 

 

3.5.  X-ray diffraction 

X-ray diffraction is a characterization technique that uses X-ray radiation to extract information 

regarding the composition and crystalline structure of a material. When x-rays strike a sample 

of a crystalline material, the regular distribution of the atoms acts like a grid and diffracts the 

rays, as they are of the same order of magnitude. The scattered rays that are in phase achieve 

constructive interference and those that out of phase will suffer destructive interference.  

The rays scattered in constructive interference are reinforced according to Bragg's law[150]: 

 2 ∗ dhkl ∗ sin θ = n ∗ λ (3.27) 

where dhkl is the distance between the atomic planes; θ, the incident beam angle; n, the 

diffraction order (usually taken as 1, [20]) and λ, the X-ray wavelength. For X-ray diffraction, the 

condition described in Eq. (3.27) must be met.  

For the evaluation of the x-ray diffraction presented in this dissertation, a Bruker D2 phaser, 

with Cu Kα radiation is used.   

 

3.6. Transient absorption (TA) 

Transient absorption is an optical characterization technique that measures the changes in the 

absorptance/transmittance of a sample after it has been illuminated (or probed). This technique 

uses two laser pulses: a pumping pulse and a probing light. The first excites the charges in the 
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sample, and the second is delayed to measure the changes of the transmission of the sample 

after it has been depleted.  

 

3.7. Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) is a technique used for imaging at very high resolution (up 

to 10 nm). In order to obtain the images, the sample is bombarded with electrons that interact 

with the sample surface. This interaction releases charges and scattered electrons that are 

detected by the microscope and possess information on the morphology and the type of 

material at the surface of the sample. The SEM is used for scanning surfaces with a resolution in 

the nanometer scale and, that way; observe the morphology of the grains and layers. 

 

3.8. Atomic force microscopy (AFM) 

Atomic force microscopy (AFM) is a technique used to characterize the morphology of the layer, 

by measuring the atomic force between the probe and the sample. In this technique, a cantilever 

with a tip (or probe) is set on a piezoelectric support. The cantilever is swept across the sample, 

and the interactions between the tip and the sample surface will induce a force on the 

piezoelectric element, registering as changes in the mechanical pressure exerted by the 

cantilever. The probe is then scanned throughout the sample to obtain a mapping of the surface 

topography of the sample.  
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4.  Fabrication methods  

 

In this chapter, we describe the different deposition methods used in this dissertation and in the 

optimization of the devices, including the fabrication protocols are described for each method and 

layer. In later chapters, the evaluation of the optical properties of perovskite thin-films will be 

examined comparing the influence of different fabrication methods in order to select the highest 

layer quality and device performance.  

 

4.1. Transport layer deposition  

In this section, the method used to deposit the hole transport layer (HTL) and the electron 

transport layers (ETL) is described. 

4.1.1. Spiro layer 

Spiro-MeOTAD (Spiro), used as HTL in the devices, is spin-coated over the perovskite layer from 

solution. The Spiro solution is prepared by dissolving 2,2,7,7-tetrakis-(N,N-di-p-

methoxyphenylamine)-9,9-spirobifluorene (Lumtec) in a chlorobenzene (CB), 4-tert-

butylpyridine (4tBP, Sigma Aldrich) and lithium salt solution. The lithium salt solution is 

prepared from bis (trifluoromethane) sulfonimide lithium salt (Li-salt, Sigma Aldrich) in 

acetonitrile (Table 1). The solution is warmed at 60 °C for 10 min after mixing the solvents and 

then left to cool down.  

 Spiro Solution 160 mg Spiro 2010 µL CB 57.3 µL 4tBP 35.2 µL 
Li-salt 
solution 

 

Lithium salt 
solution 

104.308 mg Li-salt 200 µL ACN    

 

  

Table 1. Parameters for the Spiro and the Lithium salt solution used. 

After perovskite deposition and before spin-coating the Spiro layer, it is important to ensure 

that the samples are completely cooled down (~45 min). This is both for heat dissipation (in the 

samples) and for solvent extraction (from the glovebox). 

For the deposition of the Spiro layer, 35 µL of the Spiro solution are used per sample (substrate 

area 16x16 mm) and the droplet is dragged throughout the surface before initiating the spin-

coating cycle (slow dispense technique, Table 3).  In order to finish the layer, the substrates are 

placed in a dry box for a period of ~16 h (23 % RH in air at room temperature) for oxygen 

doping.  
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4.1.2. SnO2 layer 

SnO2 used as ETL is spin-coated over the ITO substrates from solution. The SnO2 precursor 

solution is prepared from tin (IV) chloride pentahydrate (98%, Sigma Aldrich), dissolved in 

anhydrous isopropanol (IPA) in a concentration of 28 mg/ml [18] (weighted in air at 25 % and 

30 % RH, inside the cleanroom). The SnO2 precursor is weighted in air and the solvent added in 

nitrogen glovebox environment. Afterward, the vial is stirred to achieve a full dissolution of the 

solid precursors. For the deposition of each SnO2 layer, 30 µL of this solution per sample are 

used, using a fast dispense spin-coating technique [151]. After spin-coating, the sample is placed 

on a hotplate for solvent evaporation and later annealed in air for the formation of a compact 

SnO2 layer. The samples are kept in a nitrogen atmosphere between depositions. 

Heating the samples with SnO2 at 100 °C inside a glovebox is implemented as well, to extract any 

residual moisture content from the layers. However, devices built with this additional step 

presented lower power conversion efficiency in the J-V characteristic curve. 

 

4.1.3. TiO2 layer 

Titanium dioxide (titania, TiO2), used as ETL is prepared from a titanium dioxide precursor 

solution. The solution is prepared with titanium diisopropoxide bis(acetylacetonate) (TAA) 

dissolved in absolute ethanol in a 1:39 ratio [152]. The TiO2 solution is spin-coated for 30 s at a 

3000 rpm and the solvent evaporated in air for 10 min at 100 °C. The TiO2 solution is deposited 

three times for each substrate. The TiO2 compact layer is annealed (at 500 °C for 1 h in air) to 

allow electron conduction [30]. 

 

4.1.4. C60 layer  

In chapter 6, an evaluation of the interfaces as a source of hysteresis is executed and a 

passivating layer (or interlayer) made of C60 fullerene (hereafter referred to as C60 or fullerene) 

is used to further these studies. In chapter 7, C60 is used as ETL to evaluate degradation 

mechanisms in the PSCs. Deposition of solution-processed C60 on top of hygroscopic surface 

such as SnO2 and a posterior deposition of perovskite layer are a challenge, due to the 

conflicting wettability of the surfaces.  

 

 

 

Figure 14. (a-d) Water droplet deposited on C60 layers for measurement of the static contact 
angle. (e) Attempt to measure the roll-off angle on C60 samples. 
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Therefore, before a complete implementation of a solution-processed C60 layer is achieved, the 

method for the fabrication of the C60 layer is optimized: variations of the substrate temperature 

and of the solution temperature, as well as optimization of the annealing treatment and 

deposition technique, are executed. The highest quality of the layer is found to be deposited by 

using slow dropping of the C60 solution before spin-coating, that is, executing a static (slow) 

dispense of the solution [151]. This technique was implemented upon measuring the water 

droplet contact angle on the C60 layers. With increasing the C60 concentration, the 

hydrophobicity increased until it reached a plateau (with a contact angle ~90 °). Measurement 

of the roll-off angles was also attempted but none was found. The slow dispense technique suits 

the deposition on the hydrophilic SnO2 layers because it relies on the adhesion of the solution to 

the substrate. In the case of the C60 layer, the strong adhesion ensured the formation on a fully 

covered layer upon spin-coating4 (Figure 14). 

 

 

 

Figure 15. Schematic diagram of the deposition of the C60 layer via spin-coating. 

C60 layers are deposited via solution processed spin-coating to maintain vacuum-free deposition 

throughout the active layers. C60 (Fullerene powder, sublimed, 99.9+%C60, AlfaAesar) is 

dissolved in 1, 2-dichlorobenzene (DCB) and magnetically stirred overnight. For a systematic 

determination of the best concentration range for the C60 solution, steps of 2.5 mg/ml ranging 

from 2-20 mg/ml are evaluated. Higher concentrations than 20 mg/ml are not used to avoid 

reaching the solubility of C60 in DCB (~27 mg/ml, [153]).  For each sample, 35 µL of the C60 

solution is used. Before C60 deposition, the samples are set in the plasma oven for 1 min at 30 % 

in O2. The C60 solution is deposited on the sample area and dragged throughout the entire 

sample before spin-coating. After spin-coating, the substrates are annealed on a hot plate for 

drying the solvent.  

Samples with evaporated C60 are also implemented in order to compare performance. C60 layers 

(5-15 nm) are deposited via thermal evaporation (Model: Spectros, Kurt J. Lesker) under high 

vacuum (10-6 mbar) for comparing the validity of the solution process method. 

 

4.2. Perovskite layer fabrication  

As mentioned before, one of the advantages of using perovskites for SCs is that this group of 

materials allows a broad range of fabrication methods. From solutions, perovskites can be spin-

coated [154]–[156], blade-coated [44], [157], inkjet-printed [158], [159] or dipped [83], [160]; 

                                                           
4
 The contact angle images are taken by Aiman Roslizar. 
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from powders, they can be evaporated individually [161] or from dual sources for homogeneous 

morphology of the resulting perovskite layers [85], [162].  

The same advantage can become one of the challenges as there are many approaches for the 

fabrication of organo-metal halide (OMH) perovskites. In that case, it is important to evaluate 

and optimize the fabrication method that offers the most advantages. There are several methods 

used and part of the optimization process involves, not only getting the highest quality of layer 

(which can be interpreted as better coverage, larger grain size, and homogeneity of the layers) 

but also, the morphology that ensures best electrical performance.  

A preferred method of solution-processed perovskite fabrication is the spin-coating of 

perovskite solutions, followed by an annealing process. Advantages involve the scalability of the 

fabrication method along with the compatibility of this technology with pre-existing processing 

methods as well as the possibility of using it as a top cell in tandem with CIGS or c-Si [163]. One 

of the disadvantages is that during spin-coating, the resulting perovskite layer can be irregular 

and present uncovered regions, especially when it is compared to the layers fabricated from 

dual-source thermal evaporation, typically planar and uniform. In this dissertation, the focus is 

on the solution-processed fabrication of perovskite layers as our goal is the scalability of the 

fabrication methods.  

 

4.2.1. One-step lead iodide  

The perovskite layer fabrication described in this section is used in the layers studied in Chapter 

5. 

MAPI (or MAPbI3, methylammonium lead triiodide) is the first type of perovskites used for solar 

cells. To form the MAPI layers, the one-step process with a solvent-engineering step is 

implemented. The perovskite precursors: lead iodide (PbI2, Sigma Aldrich) and 

methylammonium iodide (MAI, Lumtec) are dissolved (MAI:PbI2 in 1:1 ratio) in a molar 

concentration of 1.4M MAPbI3 in a solvent mixture. For this deposition, the solvents are γ-

butyrolactone (GBL, Sigma Aldrich) and dimethylsulfoxide (DMSO, Sigma Aldrich) used in a 7:3 

ratio [158], [164]. Furthermore, a solvent-engineering step is also implemented using toluene 

during spin-coating of the perovskite solution, schematized in Figure 16. 

 

 

 

Figure 16. Schematic diagram of the deposition of perovskite with the one-step solvent-
engineering (toluene) process. 

The perovskite solution is left in the hotplate at 65 °C until the solid content is completely 

dissolved (c.a. 15 min). The substrates are cleaned with isopropanol and acetone followed by 

plasma etching. The TiO2 ETL is deposited using the method described in the previous section. 

The warm substrate is placed in the spin-coater and 25 µL of the perovskite solution is 

deposited with a fast-dispense method for the spinning cycle (1000 rpm for 13 s, followed by 
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5000 rpm for 25 s, Figure 16). Between the spin-coating cycles, 1 µL of toluene is deposited on 

the layer[165], [166]. After the spinning cycle is finished, the substrates are placed again in a 

hotplate at 100°C for 10 min under nitrogen flow, before they are left to cool down in air. The 

perovskite layers produced using this method will be addressed as MAPI (or MAPbI).  

 

4.2.2. Lead acetate process 

The perovskite layer fabrication described in this section is used in the layers studied in Chapter 

5. 

In order to improve efficiency and layer quality, the one-step lead acetate process is 

implemented. In the perovskite solution, MAI is used alongside lead diacetate trihydrate (PbAc, 

Pb (CH3CO2)2·3H2O)) as the lead precursors [156]. The solid content is dissolved in 

dimethylformamide (DMF, Sigma Aldrich). Moreover, the solvent-engineering step is 

implemented in the perovskite solution by adding hypophosphorous acid (HPA, Sigma Aldrich 

[167]) (Figure 17). 

 

 

 

Figure 17. Schematic diagram  of the deposition of perovskite with lead acetate process 

Mixed halide perovskites are also implemented, using the lead acetate process and adding lead 

chloride (PbCl2, Sigma Aldrich) to the perovskite solution. Perovskite layers with PbCl2 [41], 

[57], [129], [168]–[170] as a precursor do not show a bandgap shift (as is seen with the usage of 

lead bromide [171]) but show a slower crystallization rate, resulting in an improvement of the 

layer quality and of the electrical properties [61], while maintaining optical properties. In 

earlier communications on the topic, perovskite thus fabricated are called mixed halides [172], 

[173], but x-ray diffraction (XRD) measurements executed on the samples indicate that the 

presence of chloride is acting as a scaffold that is evaporated during post-deposition thermal 

treatment (or annealing). In this dissertation, the perovskite deposited from lead chloride 

precursors will be noted as MAPbI3-xClx, even though the crystalline distribution is that of 

methylammonium lead triiodide, to differentiate it from precursors with only lead iodide as the 

lead base.  

 

4.2.3. Optimized lead acetate method 

The perovskite layer fabrication described in this section is used in the layers studied in Chapter 

5, and devices studied in Chapter 6 and 7. 

In the optimized lead acetate method, the perovskite solution is prepared for two precursor 

solutions: the first solution uses lead diacetate trihydrate (PbAc, Pb (CH3CO2)2·3H2O, Sigma 
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Aldrich) and methylammonium iodide (MAI, Lumtec) dissolved in dimethylformamide (DMF, 

Sigma Aldrich); the second, lead (II) chloride (PbCl2, Sigma Aldrich) and MAI dissolved in DMF. 

The weight and volume used for each chemical can be found in Table 2. The two solutions are 

stirred overnight with a magnetic stirrer and 360 µL of the PbCl2 solution is added to the PbAc 

solution before using (Table 2). Before perovskite deposition, the samples are set in the plasma 

oven for 1 min at 30 % in O2. If the samples have a C60 layer, this step is skipped since the 

plasma treatment destroys the C60 layer. For each perovskite layer, 40 µL of the perovskite 

solution is used to ensure coverage of the substrates. 

 PbAc solution 455.2 mg PbAc 572.0 mg MAI 1140 µL DMF 

PbCl2 solution 89.4 mg PbCl2 152.1 mg MAI 400 µL DMF 
 

Table 2. Parameters for the perovskite solutions used in the optimized lead acetate method. 

The deposition technique for the lead acetate method is optimized for the implementation of 

hydrophobic substrates (namely C60 layers, further discussions in Chapter 6 and 7). C60, used as 

interlayer and as ETL in Chapters 6 and 7, forms layers that reduce the wettability of the 

perovskite solution. The decrease in wettability resulted in a lack of coverage upon deposition 

of the perovskite solution since most of it would be swept away from the substrate when the 

spin-coating cycle is started (Figure 18b). This resulted in incomplete coverage and the loss of a 

high percentage of the fabricated devices. It is often suggested that the hydrophobicity of the C60 

surface hampers the formation of high-quality perovskite films (Figure 18, [174], [175]) and 

therefore, thermally evaporated C60 has been widely used both in n-i-p [126], [174], [176] and 

p-i-n [87], [125], [177]–[180] architectures to ensure full coverage, often followed by the 

evaporation of the perovskite layer [181]. In p-i-n architecture, the C60 layer is deposited on top 

of phenyl-C61-butyric acid methyl ester (PCBM)/perovskite layers and thus, the lack of 

wettability would not interfere in the formation of the perovskite layer. However, vacuum-

based fabrication methods are difficult for the large-scale implementations of PSCs. Solution-

processed fabrication methods are, on the other hand, easily scalable and cheaper to implement 

at larger scales. Therefore a method is devised to implement high-quality perovskite layers on 

hydrophobic substrates. 

 

 

 

Figure 18. Wettability issues in the perovskite layers due to the hydrophobic substrates (a) fast 
dispense on hydrophilic substrates (e.g. SnO2). (b). fast dispense on hydrophobic 
substrates 

In the literature, it is acknowledged that control of the perovskite crystallization rate is very 

important for high-quality layer [156], [182] and many authors recommend a fast dispense 

technique for the deposition of the perovskite solution, either by spin-coating the perovskite 
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solution on an already spinning substrate or by using a solvent to slow down the crystallization 

[165], [166]. This technique, when implemented on hydrophilic substrates such as SnO2, 

guarantees a fully covered substrate with homogeneous layers (Figure 18a).  However, using a 

fast dispense deposition technique on hydrophobic substrate reduces the area covered by the 

perovskite solution and the final layers do not cover the substrate and are often inhomogeneous 

(a schematic is shown in Figure 18b; photo of the layers, in Figure 20a). 

 

 

 

Figure 19. Schematic diagram of the slow dispense deposition of the perovskite solution on 
hydrophobic substrates. 

Good coverage of the substrate is achieved by using the strong adhesion of the C60 layer (Section 

4.1.4). Even though C60 performs as a hydrophobic surface (water droplet contact angle 

measured is 90° for concentrations of 10-20 mg/ml, in Figure 14), the adhesion of the water 

droplet indicates that once the surface coverage (by the solution) is ensured, a layer will be 

formed. A slow dispense technique for the deposition of the perovskite solution is thus 

implemented (Figure 19): the perovskite solution is placed on the substrate and dragged 

throughout the entire sample area before initiating the spin-coating cycle. This ensures that the 

solution covers the entirety of the substrate and upon spin-coating; a fully covered 

homogeneous layer is achieved (Figure 20b). 

 

 

 

Figure 20. (a) Perovskite layers deposited on C60 layers using fast solution dropping. (b) 
Perovskite layers deposited on C60 layers using slow solution dropping.  

The perovskite solution is placed on the substrate and dragged throughout the entire sample 

area before initiating the spin-coating cycle, ensuring that the entire surface is covered by the 

perovskite solution, before initiating the spin-coating cycle. After the spin-coating cycle, the 

samples are set aside for a waiting period, after which they are annealed. They are left to cool 
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down completely before Spiro deposition (a period longer than an hour provided the best 

results).  

With the method here described, the strong adhesion of the C60 surface, described in Section 

4.1.4, is contributing to the perovskite layer formation, by facilitating the attachment of the 

perovskite solution to the substrate. During spin-coating, the layer becomes homogeneous and 

control over the crystallization rate is achieved by keeping the samples 10-15 min at room 

temperature after spin-coating and before the annealing process. 

The timeframe between the slow dispense and the start of the spin-coating cycle may be enough 

for the perovskite layer to start growing on the C60 substrate, and thus, the C60 layer below is 

maintained (not be driven away before perovskite crystallization). Evidence of C60 layer still 

being present in the architecture are quenching of the PL amplitude and lifetime, change of the 

transmission interference peak due to the different C60 thickness used in the range, among 

others (discussed further in Chapter 6). 

 

4.3. Optimization of the solar cell architecture 

The solar cell fabrication described in this section is used in the devices studied in Chapter 6 

and 7. 

ITO substrates are cleaned with glass cleaning detergent and cut into 16x16 mm samples, then 

labeled and sonicated with acetone for 10 min, dried with nitrogen gun, then sonicated with 

isopropanol anhydrous for 10 min and dried upon extraction. They are placed in a plasma oven 

with O2 for 3 min at maximum power before the deposition of the SnO2 layer. The spin-coating 

parameters and post-deposition treatment used for SnO2, C60, perovskite5, and SpiroMeoTAD 

are indicated in Table 3. 

  Concentration Solvent Spin-coating Post-annealing 

SnO2 28 mg/mL Isopropanol 
anhydrous 
(IPA) 

1500 rpm, 30 s,  
1000 ramp  

Drying: 
100 °C, 10 min 
(Nitrogen) 
Annealing:  
180 °C, 1 h (air) 

C60 2, 5, 7.5, 10, 
12.5, 15, 20 
mg/mL 

1,2-dichloro-
benzene 
(DCB) 

1500 rpm, 60 s,  
1500 ramp 

75 °C, 5 min  

Spiro-
MeOTAD 

  4000 rpm, 30 s,  
1000 ramp 

NA, oxygen doping 
overnight 

MAPbI3-xClx  Dimethyl-
formamide 
(DMF) 

3000 rpm, 30 s, 
1000 ramp 

Waiting: 15 min 
Annealing: 115°C for 
10 min, leave to cool 
down before Spiro. 

 

 

 

Table 3. Spin-coating parameters for the layers in the devices for the optimized method. 

                                                           
5
 Using the optimized lead acetate method 
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Before the gold electrode is evaporated on the substrates, the samples are swiped with different 

solvents to ensure contact of the evaporated electrode to the ITO. GBL is used to remove the 

perovskite layer and IPA is used to remove traces of GBL, followed by a clean swipe for 

removing excess solvents. Nitrogen is also used to ensure all solvents are dried from the 

substrates before electrode evaporation. Special care should be taken when using the IPA as it 

can damage the C60 layer (seen as cracks in the perovskite layer). 

The gold electrodes are evaporated on the samples at room temperature using a BellJar 

evaporating chamber to obtain 60 nm-thick Au layers. In order to protect the electrode from 

scratches, silver ink is used to ensure the contacts remain after several measurements.  
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5. Optimization of the fabrication method via 

optical characterization 

 

In this chapter, I consider three solution-processed methods for the fabrication of the perovskite 

layer and we compare the results of the optical characterization to determine which offers the best 

layer quality. In order to do this, characterization of the optical properties is executed on 

perovskite layers fabricated with different methods. Thus, the influence of the varying fabrication 

parameters on the layer characteristics such as defect density but also the optical properties like 

the absorption coefficient can be estimated.  

Furthermore, the light soaking (LS) effect in perovskites is described and studied through steady-

state and time-resolved photoluminescence. Upon light soaking, the lifetime in the perovskite 

shows an increase, which may be related to photoactive traps filling. The variations in the 

recombination rate k are estimated in a variable to quantify the LS effect, ∆k.  This variable is 

defined for the different fabrication methods to compare the quality of the resulting layer made 

with each method. From there, we optimize and define the method that will be defined as a 

reference for chapters 6 and 7.   

 

Perovskite solar cells (PSCs) use thin perovskite layers, in the nanometer range (also called 

thin-films), to absorb sunlight and convert it to electricity. The challenges of the implementation 

of such thin-films include the dependence of the macroscopic characteristics of the perovskite 

on the layer morphology and on the fabrication parameters.  Therefore it is relevant to evaluate 

the influence of the fabrication method and parameters on the effective layer quality and optical 

properties.  

In order to determine how steps from a deposition method or how different methods of 

deposition affect the quality of the final perovskite layer, samples with perovskite layers 

prepared with different deposition methods are studied to determine the influence in the final 

optical characteristics of the perovskite layers.  

 

5.1. Evaluation of one-step lead iodine process 

The first perovskite fabrication methods for solar cells use the one-step lead iodide method 

[74], [135]6. This method consists of spin-coating the perovskite layer from a single precursor 

solution, followed by a thermal annealing. The perovskite solution is fabricated for two 

precursor materials: methylammonium iodide (MAI) and lead iodide (PbI2) dissolved in 

dimethylsulfoxide (DMSO). The one-step lead iodide process facilitates the implementation of 

                                                           
6
 The layer deposition using this method was executed by Dr. Aina Quintilla. 
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the perovskite layer due to its simplicity but the quality of the layers formed with this method is 

not very high. From the optical point of view, it presents both pinholes reducing the amount of 

perovskite material absorbing the light. Besides this, there are imperfections in the crystal, 

which present nonradiative recombination centers, trapping the photogenerated charges. In 

Figure 21a, layers manufactured with the one-step lead iodide method show a white haze 

throughout the surface, evidence of pinholes in the layer. 

 

 

  

 

 

 

Figure 21. MAPbI3 layers fabricated with the one-step lead iodide method (a) on glass and (b) 
on FTO/TiO2 and using the toluene solvent-engineering step (c) on glass, (d) on 
FTO/TiO2, with visible scratches from the toluene drop.  

In order to improve the crystallization of the perovskite layer, the solvent-engineering step was 

proposed [165]. The solvent-engineering step consists of the addition of a solvent to induce the 

crystallization in the forming crystal layer [183] so that imperfections that may form during the 

rapid crystallization process are reduced. Solvent-engineering aims to control the speed of the 

perovskite layer formation being able to slow down the process, which starts upon first contact 

of the perovskite solution on the substrate. The addition of solvent during spin-coating helps to 

induce crystallization and improve the coverage of the layer [166]. Additionally, it is proposed 

that the presence of toluene expels residues from the solvent of the perovskite solution [184]. 

Different solvents are used in the solvent-engineering step to improve the perovskite layer: 

toluene [185], diethyl ether [186], isopropanol ([87] and anhydrous chlorobenzene [187], 

among others. In this section I address the usage of toluene dropping as solvent-engineering 

step.  

The optical characteristics of the perovskite layer fabricated with and without the toluene 

dropping (solvent-engineering) step are analyzed. The photoluminescence (PL) spectra and 

time-resolved PL (trPL) of the perovskite layer on glass is evaluated to assess the perovskite 

layer quality and optical properties (Figure 22a and 22b). By implementing the solvent-

engineering step during the perovskite deposition, the layer appears to the eye to have better 

quality, with the white haze no longer visible and presenting a homogeneous layer. The higher 

layer quality is evidenced in the increase of the PL of the perovskite layer on glass. Moreover, 

the lifetime is extended. The absorptance is increased as well compared to the layer deposited 

without toluene dropping, given the better coverage and lack of pinholes (Figure 22c). 

Estimation of the absorption coefficient using the Cesaria method [142], described in Section 

3.1.2, corroborates that the absorption coefficient (α) is increased in the perovskite layers with 

the toluene step: it increases from an absorption coefficient of 0.69 x 105 cm-1 in the layer 

deposited using the one-step lead iodide method to an absorption coefficient of 4.7 x 105 cm-1 in 
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the layer with the toluene step (Figure 22d)7. Furthermore, the calculated (effective) diffusion 

coefficient using the trPL measurements for the one-step process was 0.87x10-2 cm2/s for 

electrons, and 1.53 x 10-2 cm2/s for the toluene process, indicating a change in the diffusion 

length from 89 nm to 117 nm8.  

 This increase can only be an indication of the reduction in the layer pinhole density. The PL 

measurements indicate that the addition of the toluene solvent-engineering step is reducing the 

transmission by improving the perovskite layer coverage, and increasing the charge carrier 

lifetime by reducing the recombination centers.  

 
 

 

  

 

 

 

Figure 22. Perovskite layer fabricated with the lead iodide method, with and without solvent-
engineering step (toluene), (a) Absorptance, (b) Absorption coefficient.  

Adding the solvent-engineering step improves the quality of the perovskite layer. This 

improvement can be corroborated from the optical characterization where it is observed that 

the absorptance and the PL emission are increased. Even though the changes in the absorptance 

can be related to a reduction of pinholes in the layer, the increase of the absorption coefficient 

and the charge carrier lifetime indicate an improvement in the quality and optical properties of 

the layer fabricated with the solvent engineering step.    

In Figure 23, a scheme is presented with the differences in the perovskite layers prepared with 

this method: Samples prepared with the one-step lead iodide method have a higher number of 

pinholes, reducing the total absorbed light. Furthermore, the low lifetimes ( ~3 ns) indicate high 

                                                           
7
 The absorption coefficient here indicated is the estimated at 532 nm. This wavelength was used to excite 

charge carriers in the photoluminescence measurements 
8
 The diffusion coefficient is a property of the material and as such it is not sensible to changes in the 

macrostructure. However, the modifications in the fabrication method imply a change in the quality of the 
layer and its contact with the (electron) quencher. Therefore, it is an effective value, not an absolute one. 
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influence of recombination centers in the charge carrier dynamics within the perovskite layers. 

Samples prepared with the toluene process, show an improved absorption given by the better 

coverage and reduced number of pinholes, with lifetimes larger than in samples without the 

solvent-engineering step but still remaining at low values (~6 ns, compared to those obtained in 

the literature ~100 ns [168], [188]). Moreover, a challenge presented by the use of the solvent-

engineering step is the application of the toluene drop to the layers, because it can introduce 

scratches in the layer during toluene dropping, rendering the method very unreliable (Figure 

21d). It is necessary then to improve the fabrication process to reduce recombination centers 

and increase reliability to the perovskite fabrication method. 

          
Figure 23. Schematic diagram of the perovskite layer quality in the: (a) one-step lead 

iodide process (b) one step process with the solvent engineering (toluene) step.   
 

The reduction of the recombination centers in the perovskite layer will not only improve the 

charge carrier dynamics but also improve the power conversion efficiency of the solar cells 

fabricated with such layers. Perovskite solar cells fabricated with the toluene solvent-

engineering method performed with a power conversion efficiency of 12% (backward 

direction), compared to the 6.5-7.4% PCE of solar cells fabricated without the solvent-

engineering step, with unstable performance and a large percentage of devices lost due to the 

unreliability of this method.  

 

5.2. Evaluation of the lead acetate method 

In order to remove the solvent-engineering step that introduced uncertainty during device 

fabrication, another method was evaluated, changing the lead precursor. The lead acetate 

method replaces the lead iodide within the perovskite precursor materials for lead acetate9 

(lead diacetate trihydrate, PbAc, Pb (CH3CO2)2·3H2O) [156], to improve coverage and layer 

morphology. In the perovskite solution, the lead acetate is combined with MAI in 

dimethylformamide (DMF). Moreover, hypophosphorous acid (HPA) [189] is added to the 

perovskite solution to improve the perovskite layer optoelectrical properties, via crystallization 

enhancement10. During the spin-coating process and posterior annealing, the acetate anion 

evaporates and then the perovskite crystal maintains its MAPbI3 structure [156]. 

                                                           
9
 The layer deposition was executed by Tobias Abzieher and Florian Holley. 

10
 This step is an equivalent to the toluene solvent-engineering step from the previous section, with the 

added benefit of removing the uncertainty created by dropping the solvent during spin-coating. 
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In Figure 24, the steady-state (a) and time-resolved (b) PL of layers deposited with the lead 

acetate method and further evaluation of the HPA solvent-engineering step is shown. The 

comparison then provided information on the crystallization of the perovskite layer. It can be 

observed that the PL signal is increased for the 2.5 and 7.5 µL/mL concentrations of HPA. There 

is, however, an unpredicted red-shift in the PL center for the sample with HPA in comparison to 

the perovskite layer deposited with the lead acetate process and a broadening of the PL spectra 

indicating a stronger presence of traps close to the bandgap. Moreover, the range of lifetimes is 

also low compared to those in the literature (~13 ns compared to ~100 ns  [190], [191]). 

Therefore another approach is necessary. 

           
Figure 24. Steady-state and time-resolved PL for reference device under different fluences.  

Further optimization of the lead acetate process includes the variation of the solid content 

percentage in the perovskite solution (indicated as weight percent in Figure 25). The thickness 

of the perovskite layers is controlled through different solid content percentages. From the 

studied range, the solid content showing the best optical properties is for 40-50 wt.% of PbAc in 

DMF.  

 

   

 

Figure 25. Steady-state and time-resolved PL of lead acetate process on glass, with different 
solid concentration of the precursor powders in the solvent, compared to perovskite 
layers deposited from the one-step lead iodide (with solvent engineering step). 

 

5.2.1. Mixed halide lead acetate process 

In organo metal-halide perovskites, the halogen component can be iodine, bromine or chlorine. 

Bromide-based perovskites emit in the 500-550 nm range ([192]) making them not suitable for 

solar cells on their own. CH3NH3PbCl3 perovskites (methylammonium lead trichloride [193]) 
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are used as ultraviolet detectors due to the strong responsivity in the UV and emission in the 

400-430 nm range. CH3NH3PbI3 or MAPI is the perovskite most often used for PSCs since it has 

an emission in the 750-800 nm range with a bandgap of 1.61 eV. Nevertheless, in order to 

improve the perovskite layer, mixed-halide perovskites are often used. With the addition of lead 

bromide (PbBr2) to the perovskite solution, the perovskite bandgap shows a blue-shift with 

increasing PbBr2 percentage and as such, it is often used to tune the bandgap of perovskite layer 

[192].  Lead chloride (PbCl2) is also used in PSCs to stabilize the perovskite crystal [61], [194], 

[195]. The chloride ion modifies the perovskite crystallization rate, facilitating the formation of 

a higher quality layer [64], [194], improving the transport properties, without modifying the 

bandgap.  In this section, the perovskite solution was prepared using lead acetate and lead 

chloride in small percentages.  

 

 

  

 

Figure 26. (a) Steady-state, (b) time-resolved PL and (c) transmittance spectra of perovskite 
layers on glass, deposited with the lead acetate process, with different PbCl2 
percentage in the perovskite solution. In (c), the transmittance of PbI2 spin-coated on 
glass is included (in green) for comparison.  

 
Samples of perovskite layers on glass are fabricated using the lead acetate method with 

different percentages of PbCl2. In the PL spectra (Figure 26a) no shifts are observed as expected. 

There is however an increase of the PL amplitude for a optimal concentration of PbCl2. Excess or 

lower PbCl2 percentages than the critical hinder the optical characteristics. The response in time 

is also extended by changing lifetimes from 30 ns to 100 ns for the critical concentration (Figure 

26b, 20%). In the transmission spectrum, it can be seen that the main change in is the range of 

500-750 nm. Comparing the transmission spectra of the perovskite layers with PbI2 spin-coated 

on glass (Figure 26c), it can be stated that the 500-700 nm range in the perovskite spectrum is 

related to the remnant  PbI2 in the layer. Under not-critical PbCl2 percentages, PbI2 is in excess 

in the layer, showing as an increased in the transmission spectra before the perovskite bandgap 

onset (750 nm). In the sample with critical PbCl2 percentage (20%), the transmittance in this 
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wavelength range is reduced due to a reduction of PbI2 in the resulting perovskite layer and the 

PL lifetime lengthened, evidence of an improved layer quality. However, despite the long 

lifetime obtained with the optimal PbCl2 percentage, devices maintained low performances: the 

best performing device had a PCE of 14%, with a fill factor of 0.6 and strong instability in the J-V 

curve. Therefore, other PL-based method was devised to evaluate the stability of the perovskite 

layer. 

 

5.3. Light soaking effect 

One of the limitations of the perovskite for large scale implementation is their lack of stability. 

During current density-voltage (J-V) measurements, the power conversion efficiency (PCE) 

incurs an increase after repeating the measurement several times. This makes the identification 

of the real power conversion efficiency (PCE) of the PSCs a great challenge. This increase in the 

PCE is known in the CIGS research community [196]  as the light soaking (LS) effect and it is a 

sign of self-healing of the material [197].  

In order to establish the origin of the LS effect, photoluminescence (PL) measurements on the 

perovskite layers on glass deposited from the considered solution-processed methods are 

executed throughout a time frame. The measurements are executed with a 532 nm pulsed laser 

(further described in Chapter 3) during 30 minutes with a fluence in the range of 30-500 nJ/cm2 

to avoid nonlinear effects [198], at constant room temperature. The samples are measured 

before and after LS for 30 min.  

PL spectra of the perovskite layers exhibit an increase of the PL emission upon constant 

illumination. The evolution of this increase is presented in Figure 27, for a MAPbI3 layer 

deposited with the toluene process. After a time, the increase reaches a stable state. The time for 

stabilization depends on the fluence used to illuminate, reaching the stabilization point faster 

with higher fluences (within the measured range) [199]. 

 

  
 

 

Figure 27. (a) Light soaking on perovskite samples during illumination and after 2 cycles of 
darkness. (b.) Normalized values of the PL spectra, showing no degradation of the 
sample.  

Further evaluation of this increase after illumination in a series of intermittent dark and light 
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is reversible, as the PL emission is back to the original state after 30 min in the dark. 

Comparison of the PL steady-state measurement in different points of the light soaking period 

(Figure 27b) shows that the PL spectra does not incur in spectral shifts or reshaping of the 

perovskite peak, indicating that the increase in the PL intensity is not associated to a 

degradation of the perovskite peak or the formation of different phases within the layer. 

Therefore the origin of the LS effect cannot be related to changes in the composition of the 

perovskite layer. 

The PL dynamics are also evaluated, before and after LS (Figure 28). After LS, the PL emission is 

increased; both in amplitude and in lifetime indicating that, after the light soaking period, there 

are more free charges available for radiative recombination. The increase in PL amplitude 

(Figure 28a), for the same incident fluence, indicates that the absorption and emission 

conversion process are more effective in the perovskite layers after LS. Since the measured spot 

remains constant (and thus changes in the topography can be disregarded), for the same 

amount of incident photons there are fewer losses after light soaking.  

The slope change in the semi-log plot of the time-resolved PL (Figure 28b) leads to the same 

conclusion. The total recombination rate, that is the inverse of the lifetime measured (1/τ) 

depends on the rate of radiative and non-radiative recombination. The radiative depends on the 

material, and is not subject to changes, while the non-radiative depends on layer morphology, 

substrate temperature, surface traps, among others. An increase in the lifetime after light 

soaking indicates that the non-radiative processes are reduced after a period of illumination.  

 

 

 

 

 

 

Figure 28. Steady-state and time-resolve PL of MAPbI on glass before and after LS deposited 
using the one-step solvent-engineering process (a, b) and of MAPbI3-xClx on glass 
deposited using the optimized lead-acetate process (c, d).  
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The same LS effect measurement is taken on MAPbI3-xClx11 layers deposited from the optimized 

lead acetate process (Figure 28c and 28d). Upon light soaking for the same timeframe and 

fluence, the PL spectra present changes but much less pronounced than in the samples 

fabricated from the toluene process, making the layers less susceptible to the LS effect upon 

illumination. This different response indicates that the light soaking effect is dependent on the 

fabrication process and also on the layer quality.  

 

5.4.1. Delta k estimation 

When the PL of a perovskite layer, stored in the dark for a long time, is evaluated, all the traps in 

the perovskite layer are empty and the number of photons to be emitted after light absorption 

will be reduced by them. By using light soaking to study the PL dynamics, the photoactive traps 

are filled, so that their influence on the emitted PL is reduced. A more precise estimation can be 

then made of the lifetime of the charge carriers in the material.  

Time-resolved PL before and after illumination (that is, the light soaking period), evaluates the 

decay rate in which the charge carriers are recombining radiatively. Therefore, in the case that 

illumination fills the traps at the perovskite layer, then, non-radiative recombination centers 

will be reduced, and a higher charge carrier density will recombine radiatively (Figure 29) 

[137], [199].  

 

 

 

Figure 29. Schematic diagram of the trap filling in the perovskite layer upon light soaking. 

The higher trap density in the evaluated samples, the higher the probability of a charge loss 

(that is, that non-radiatively recombines [200]). As consequence, the PL amplitude will be 

reduced, and also, the decay rate will be increased, as the charges have a higher probability of 

being trapped by the traps, and the PL transients will decay faster. 

Trap deactivation occurs by illuminating the sample [201]. The absorbed photons will be 

effectively converted to electron-hole pairs and then reemitted after recombination, reducing 

the number of trapped charges since the losses due to traps will no longer have an influence on 

the final recombination rate. The total recombination rate is then the sum of the radiative 

                                                           
11

 In chapter 4.3 it was stated that the notations used here for the perovskite layer (MAPbI3 and MAPbI3-

xClx) do not indicate different crystalline structure. The notations are a reminder of the lead precursor of 
the perovskite layer (PbI3 in the case of MAPbI3 and PbCl2 for MAPb3-xClx). 
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recombination rate and the non-radiative recombination rate, presented in Eq.(5.1). There, the 

suffix 1 is for the measurement before LS and the suffix 2 for the measurement after LS. 

  𝑘𝑃𝐿1 = 𝑘𝑟1 + 𝑘𝑛𝑟1 
 𝑘𝑃𝐿2 = 𝑘𝑟2 + 𝑘𝑛𝑟2 

 
(5.1) 

where kr is the intrinsic decay rate, in the absence of non-radiative processes. knr is the non-

radiative recombination rate and it will be affected by changes in the temperature, trap density, 

and layers defects. As the measurements are being executed on the same spot, same fluence and 

under constant temperature, the radiative recombination rate before and after does not change 

and thus 𝑘𝑟1 = 𝑘𝑟2. Rewriting (5.1) 

  𝑘𝑃𝐿1 − 𝑘𝑛𝑟1 =  𝑘𝑃𝐿2 − 𝑘𝑛𝑟2 
 𝑘𝑃𝐿1 −  𝑘𝑃𝐿2 = 𝑘𝑛𝑟1 − 𝑘𝑛𝑟2 

 
(5.2) 

In this case, 𝑘𝑛𝑟2 < 𝑘𝑛𝑟1, since after lightsoaking, the influence of the photoactive traps on the 

non-radiative recombination is reduced. ∆𝑘 is defined as the difference between the non-

radiative recombination before and after LS and will be related to the photoactive traps that are 

passivated by irradiation: 

 ∆𝑘 = 𝑘𝑛𝑟1 − 𝑘𝑛𝑟2 (5.3) 

The photoluminescence phenomenon is the consequence of an effective conversion from 

absorbed photon to an excited state (electron) in the conduction band of a semiconductor and a 

hole left behind in the valence band, which recombine radiatively emitting a photon. During this 

process, the presence of traps can generate losses showing in the PL measurements as 

quenching. During fabrication and deposition, defects and traps may be formed and can act as 

electron leaks. In SCs this will manifest as a loss in performance, and part of the absorbed light 

will be lost and not participate in the current extraction.  

In this case, the value of ∆𝑘 will estimate the change in the PL decay due to the photoactive traps 

present on the illuminated sample. Traps that are not photoactive will not be modified before 

and after the measurement and will continue to hinder but these temporal changes will not 

address them. This value is sensitive to the morphology of the sample and of the local quality of 

the layer; therefore the experiment is repeated in different spots for a range of samples to 

obtain a better picture of the average influence of the traps in the decay.  

 

 

 

Figure 30. ∆k values for perovskite layers deposited from lead acetate two-step process and the 
reference process, under different fluences. 

In Figure 30, ∆k is presented for two methods of deposition: the toluene process (2-step 

solution deposition of MAI and PbI2 with solvent-engineering step), the lead acetate process (1-
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step solution deposition of MAI and PbAc). For the toluene process, the ∆k value is larger 

compared to low solid concentrations of the lead acetate process and one order of magnitude 

larger than the results from the optimized lead acetate process, meaning that the decay slope 

has a stronger change after LS. Such changes are usually related to photoactive traps that are 

passivated by the incoming photons [75] and that, in the initial state, quench the total PL 

emission and shorten the decay.   

Perovskite layers that show little or no increase in the PL intensity (and lifetime) after light 

soaking may still contain traps that hinder the optical characteristics. These traps are not 

photoactive12 and implementation in devices will render no light soaking effect in the 

measurement of the power conversion efficiency. 

 

5.4. Evaluation of optimized lead acetate method 

In spite of the optimization processes, in many cases, the solar cells maintained low levels of 

efficiency, with strong hysteresis in the J-V characteristic curve and reduced stability in the 

evaluation of the PCE evolution in time. In order to reduce the hysteresis in the devices, a C60 

fullerene interlayer is used (further discussed in chapter 6). However, this extra layer presents 

an additional challenge: the deposition of perovskite layers on hydrophobic substrates (C60) 

limited the number of pixels per sample and often prevented the formation of a fully covered 

layer.  

 

   

 

Figure 31. Perovskite layer quality on hydrophobic substrates deposited on (a) hot substrates, 
(b) cold substrates. (Perovskite solution deposited with slow dispense technique 
before spin-coating). 

The lead acetate process, less sensitive to the light soaking effect, was implemented and 

optimized taking into account the implementation in hydrophobic substrates. In order to 

maintain the perovskite layer quality, factors such as the substrate temperature before 

perovskite deposition and the waiting time after spin-coating and before thermal annealing are 

optimized. The temperature change of the substrate would accelerate the formation of the 

perovskite layer before it was dispersed during the spin-coating. The evaluation of different 

waiting times after spin-coating would assist in ensuring a controlled crystallization rate for the 

perovskite layer.  

 

                                                           
12

 At the wavelength that the samples are being excited. 
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Figure 32. (a) Transmittance and (b) absorptance spectra of perovskite layers deposited on 
warm substrates (red), and cold substrates (blue). (Perovskite solution deposited with 
slow dispense technique before spin-coating). 

Deposition of the perovskite layer on warm (75 °C) substrates facilitated the formation of the 

perovskite layer on hydrophobic substrates but it increased the inhomogeneities in the layer 

quality. Despite attempts of achieving homogeneous layers from sample to sample, the fast 

formation of the perovskite layer (upon perovskite solution dropping) hindered the 

homogeneity of the entire sample group (Figure 31a). Deposition of the perovskite solution on 

cold substrates (at room temperature) using the slow dispense technique, provided good 

continuity in the perovskite layer quality (Figure 31b). 

Measurement of the transmission spectra showed the same onset for the perovskite absorption 

(740 nm) for both cold and warm substrates (Figure 32a). The main difference observed is in 

the 500-700 nm range, where the lead iodide peak is present (Appendix, Figure 74). In the cold 

substrates, the transmission in this range is larger, while it is suppressed in the warm 

substrates, indicating a stronger presence of PbI2 in the perovskite layers deposited on the cold 

substrates. Higher PbI2 content in the layers is reflected as a reduced absorptance in this 

wavelength range (Figure 32b).  

Solar cells (devices) using this method are fabricated with the architecture: 

ITO/SnO2/Perovskite/Spiro/Au, with increasing C60 interlayers between SnO2 and the 

perovskite layer. The devices presented a large dispersion on the J-V statistics and a large series 

resistance (Rs). Temperature variation of the perovskite solution on top of the perovskite layer 

facilitated the coverage of the perovskite solution, but these perovskite layers are 

inhomogeneous and filled with pinholes, which explains the low power conversion efficiencies 

(PCE) obtained (Figure 33) despite the larger short-current density. Devices fabricated from 

cold substrates, performed with higher open-circuit voltage and fill factor, that is reflected on 

the larger PCE compared to the warm substrates.  
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Figure 33. Statistical distribution of solar cell parameters extracted from J-V measurements in 
PSCs deposited with the optimized lead acetate with warm (a)-(d) and cold (e)-(h) 
substrates. Architecture: ITO/SnO2/C60/MAPbI3-xClx/Spiro/Au with solution-processed 
C60 interlayers (for evaluation of the process on hydrophobic substrates).  In the figure: 
PCE: power conversion efficiency, JSC: short-circuit current, VOC: open circuit voltage 
and FF: fill factor.   

Having established a protocol for the substrate temperature, the following factor to be 

evaluated is the waiting time. The manufacturing process on hydrophobic surfaces takes into 

account a slow deposition of the perovskite solution on the substrate. But as such, the use of a 

slow dispense system indicates that with rapid crystallization of the perovskite, accelerated 

crystallization can be created (leading to a higher number of defects and voids). Thus, to delay 
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the crystallization of the perovskite layer, a short time period (hereafter named waiting time) is 

inserted between the spin-coating and annealing cycles.  

 

 

 

 

Figure 34. Statistical distribution of solar cell parameters extracted from J-V measurements in 
PSCs deposited with the optimized lead acetate with 10 and 15 minutes of waiting 
time.  Architecture: ITO/SnO2/MAPbI3-xClx/Spiro/Au. (a) Power conversion efficiency, 
PCE. (b) Short-circuit current, JSC. (c) Open circuit voltage, VOC. (d) Fill factor, FF. (e) 
PCE quotient, PCEq, the ratio of the backward and forward PCE, and (f) Hysteresis 
index, HI.   

During the waiting time, the slow formation of a transparent brown perovskite layer is 

observed. 10 min is the minimum time it takes for the entire layer to present the same brown 

shade (shorter times show transparent yellow areas), but statistical evaluation shows that 15 

min is a more suitable waiting time.  Upon annealing after the waiting time, all layers turn 

opaque dark grey. In Figure 34, the statistical J-V parameters of devices with the architecture 

ITO/SnO2/MAPbI3-xClx/Spiro/Au are shown. The addition of the waiting time improved the PCE 

compared to devices without any waiting time (Figure 33) and for a waiting time of 15 min a 

higher short-current density and open-circuit voltage are achieved. Furthermore, the PCEq and 

HI are slightly higher in the PSCs with longer waiting times. These two parameters are 

indicators of the deviation between the two measurements (back- and forward direction) or 

hysteresis. 
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In Figure 35, the UV-Vis spectra of MAPbI3-xClx samples deposited on glass with the optimized 

lead acetate method and a waiting time of 15 min are presented to showcase the reproducibility 

of the method and the estimation of the absorption coefficient calculated from these 

measurements (1.5 x105 cm-1 at 532 nm). The (effective) diffusion coefficient and diffusion 

length calculated from the time-resolved PL (Figure 28d) and the method described in chapter 

3.1.2 reaches up to 5.5x102 cm2/s and 1300 nm, respectively, for electron extraction. These 

values are comparable to very high quality perovskite layers and are consistent with the 

literature[93], [135], [202]. Furthermore, the values calculated for the optimized lead acetate 

method are from 2-3 times larger than those obtained with the previous methods. Additional PL 

spectra and decay discussion on these layers is executed in chapter 6. 

 

 

 

 

Figure 35. (a) Transmittance, (b) reflectance, (c) absorptance spectra and (d) absorption 
coefficient of perovskite layers deposited from the optimized lead acetate with 15 
minutes of waiting time.  Architecture: Glass/MAPbI3-xClx. Colors denote several 
samples to confirm reproducibility.   

 

5.5. Discussion 

In this chapter three perovskite solution manufacturing methods are evaluated. As a result of 

the changes in the optical properties of the resultant layers, the optimization of each method is 

carried out. 

After LS, it is also important to evaluate the performance of samples with varying parameters by 

comparing data that has been generated by the same recombination mechanisms. By increasing 

the fluence from a low-injection regimen, we can observe that the PL decay changes, from 

presenting a mono-exponential decay to decays with more than one time constant. This means 
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the same recombination mechanism and then the comparison will not provide an accurate 

description of changes in the film charge transport. 

A value interesting to evaluate for morphology studies is ∆k, described as the difference 

between the linear recombination rate before LS and after LS. As this process may fill surface 

traps that inhibit the radiative recombination of the charges, it provides information on the 

influence of the surface trap density on the recombination of the charge carriers. This indicated 

that changes in the fabrication method (in this case, precursor wise) cause a difference of an 

order of magnitude in the density values of photo-active traps. Of the three methods, the 

optimized lead acetate using the slow-dispense technique shows the lowest value, i.e. less 

susceptibility to the light soaking effect. This method is then used as the perovskite deposition 

method for the studies in chapters 6 and 7. 
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6. Perovskite interfaces as a source of hysteresis 

 

In this chapter one of the sources of hysteresis in perovskite solar cells, charge trapping and 

detrapping at the perovskite interfaces, is addressed. A method to reduce the hysteresis is 

presented, where the J-V performance is improved by introducing an interlayer thus improving the 

contact between the electron transport layer (ETL) and the perovskite layer. Additionally, a study 

on the changes in the optical characteristics of the samples is performed to determine the 

mechanisms that lead to this improvement. 

 

One of the challenges to overcome when fabricating perovskite solar cells (PSCs) is the presence 

of hysteresis in the evaluation of the electrical performance. The hysteresis is a deviation of the 

current extracted in the current density-voltage (J-V) characteristic curve when the 

measurement is executed in the backward or forward direction (described in Chapter 2), or by 

changing the speed of the measurement. This variation makes the reproducible characterization 

and optimization challenging.  

Processes that originate hysteresis in PSCs are ion migration within the perovskite layer [203]–

[207] and charge trapping and detrapping at the perovskite interfaces [118], [119], [125], [208]. 

Imram et al. state that it is the interaction of both these processes that yields a valid theoretical 

description for hysteresis as observed in the J-V curve [120]. Furthermore, they include a 

theoretical description of the J-V curve deformations close to the point (VOC, JSC) typically 

referred to as s-shapes. A crucial consequence of their findings is that interface properties 

between the perovskite and the ETL as well as the HTL can have a huge impact on the observed 

hysteresis.   

In this chapter, we examine the impact of tin (IV) oxide (SnO2)/perovskite interfaces on the 

hysteresis and s-shape effects in devices with the planar architecture: ITO/SnO2/MAPbI3-

xClx/Spiro/Au. Tin (IV) oxide (SnO2) is commonly used as a compact ETL[209], as an alternative 

to titanium dioxide (TiO2), due to its high mobility and low fabrication temperature. Both 

hysteresis and s-shape effects, however, remained a challenge to overcome for the device 

fabrication, as can be seen in the J-V curve in Figure 36(a). Juarez-Perez et al. in [210] state that 

the hysteresis is an indication of imperfect contacts at the perovskite interfaces and Xu et al. in 

[211] propose that the s-shape in the J-V curve is generated by the accumulation of charges in 

the interface. This configuration is known to present charge accumulation in the perovskite 

interface due to deep trap states[212]. Aygüler et al. mention that the optimum annealing 

temperature for achieving maximum power conversion efficiency (PCE) and smallest hysteresis 

in devices with SnO2 as ETL is 180 °C. Thus, the reference device used in this study is fabricated 

at this annealing temperature. In this chapter, I address the charge trapping at the perovskite 

interface with the ETL by introducing a solution-processed C60 interlayer with the purpose to 

reduce hysteresis and improve the device performance.  
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C60 is introduced in the architecture as it is an effective electron acceptor [168] that has been 

largely used as a passivating layer in photovoltaics [213]. Fullerene-C60 or commonly known as 

C60 has been thermally evaporated alongside a PCBM (phenyl-C61-butyric acid methyl ester) 

layer to passivate the traps at the interface [125]. The introduction of a passivating layer or 

interlayer into the PSC architecture will affect not only the optical characteristics, as there is an 

additional layer before the absorber layer, but also the transport properties, due to the presence 

of an interlayer that changes the charge extraction processes. Regarding the morphology of the 

perovskite layer, an interlayer would introduce changes in the surface where the perovskite 

crystallization is occurring, possibly affecting the crystalline orientation within the perovskite 

layer, and at a larger scale, variations in grain size and roughness.  

 

6.1. Electrical Performance  

The solution-processed C60 layer to be used as interlayer is spin-coated on top of SnO2, followed 

by a thermal treatment, to evaporate the solvent before perovskite deposition. Further 

description of the fabrication method can be found in Chapter 4.  

 

 

(b) 

 
 
 
 
 
 
 
 
 

Layers are not to scale 

 

 

  

 

Figure 36. (a) J-V characteristic curve of the reference architecture. (b) Schematic diagram of 
the architecture used for PSCs with C60 interlayers. (c) J-V characteristic of perovskite 
solar cells with solution-process C60 interlayer in different concentrations (reference 
device in black). (d) Evolution of the PCE measured at constant voltage for the PSCs.  

It was previously reported that through the control of the concentration of C60 in 1-2, 

dichlorobenzene (DCB), a range of thicknesses for the C60 layer can be achieved13. Here the 

concentration range shown for the devices and analysis is from 5 to 20 mg/ml in 5 mg/ml steps 

as this led to the best solar cell performance. The perovskite (MAPbI3-xClx) is deposited using the 

optimized 1-step lead acetate method described in Chapter 4. The hole transport layer used is 

                                                           
13

 Due to their small thickness, the determination of the thickness of solution-processed layer was non-
trivial. However, the thicker layers are in the 10 nm range.  
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Spiro-MeOTAD (or in short Spiro), and the back electrode is a layer of evaporated gold (Figure 

36b). With the inclusion of passivating layers into the device architecture, a modification of the 

electrical response is achieved: the s-shape of the reference in the forward J-V measurement 

(Figure 36c) is absent in the C60 devices. Additionally, the hysteresis between the forward and 

backward measurement is reduced. This effect can be related to a reduction of the charge 

carrier accumulation at the interface [211], indicating that the addition of the C60 interlayer is 

improving the contact between the ETL and perovskite layer.  

The evolution in time of the power conversion efficiency measured under constant voltage (sta-

bilized PCE or SPCE) is compared in Figure 36d. The reference device shows power conversion 

efficiency (PCE) of 12.5 % initially but after some minutes, this efficiency drops to 10 %. For the 

devices with C60 interlayers, the PCE stabilizes after a few seconds and at higher values (Figure 

36d, Table 4). The usage of different C60 concentration for the interlayer formation point to a 

critical thickness of the C60 interlayer required for an optimum performance.  

  ETL Scan 
direction 

JSC 

(mA/cm2) 
FF 

 (%) 
VOC 

(V) 
PCE 
(%) 

SPCE 
(%) 

SnO2: ref 

forward 

backward 

21.42±0.83 

21.59±0.76 

46.25±2.22 

71±1.41 

1.04±0.01 

1.11±0.01 

10.34±0.62 

17.01±1.12 
7.9 

SnO2/C60 
5 mg/ml 

forward 

backward 

20.65±0.67 

20.88±0.43 

53.57±2.37 

79.14±0.90 

0.99±0.01 

1.06±0.01 

11.15±0.70 

17.34±0.66 
12.3 

SnO2/C60 
10 mg/ml 

forward 

backward 

21.03±0.32 

21.15±0.44 

57.75±2.06 

82.0±1.15 

1.02±0.01 

1.07±0.01 

12.36±0.66 

18.54±0.35 
17.1 

SnO2/C60 
15 mg/ml 

forward 

backward 

21.09±0.52 

21.13±0.27 

54.00±4.05 

79.83±2.14 

1.02±0.02 

1.07±0.012 

11.67±1.06 

18.06±0.73 
15.8 

SnO2/C60 
20 mg/ml 

forward 

backward 

20.86±0.45 

21.10±0.51 

56.5±5.21 

78.00±2.90 

1.03±0.01 

1.07±0.003 

12.21±1.33 

17.71±1.03 
14.0 

 

 

Table 4. Average parameters for the devices with architecture ITO/SnO2/C60/MAPbI3-

xClx/Spiro/Au, with different C60 concentrations, extracted from the current density-
voltage curve and power conversion efficiency measured after 300 s at a constant 
voltage.  

From Figure 37, we can observe the statistical parameters of the J-V characteristic values, taken 

with the configuration described here, and evaluating the presence of the C60 passivating layer 

in different concentrations. The PCE measured in backward direction is seen in Figure 37a, 

where the highest efficiency is achieved with the layer deposited from the 10 mg/ml solution. 

Comparing these results, it is clear that the increase in the efficiency does not come from a 

statistical increase of JSC and VOC, but from the fill factor, where an increase in 10 percentage 

points follows the same trend seen in the PCE. The hysteresis index (HI) indicates that devices 

with a thicker C60 interlayer have a stronger response against hysteresis and this is clearly seen 

in the J-V curves (Figure 36) where the s-shape is absent. In consequence, the implementation of 

C60 interlayers lessens the hysteresis in the devices by reducing the accumulation of the charge 
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carriers at the interface. This reduction, in turn, improves the power conversion stability of the 

devices.  

 

 

 

 

Figure 37. Statistical distribution of solar cell parameters extracted from J-V measurements in 
devices with C60 interlayer in the architecture: ITO/SnO2/C60/MAPbI3-xClx/Spiro/Au. 
Reference is the control device without C60 interlayer. (a) Power conversion efficiency, 
PCE. (b) Short-circuit current, JSC. (c) Open circuit voltage, VOC. (d) Fill factor, FF. (e) 
PCE quotient, PCEq, the ratio of the backward and forward PCE, and (f) Hysteresis 
index, HI. 

Solar cells with C60 interlayers deposited through thermal evaporation were also implemented 

to compare the performance of the devices. Three thicknesses (5, 10 and 15 nm) were used. As 

with the solution-processed interlayers, the inclusion of an interlayer in the cell architecture 

improved the performance: both in the J-V, and in its stability.  

 

6.2. Morphology of the interfaces and layers  

Having shown that the C60 interlayer is effective in its improvement of the ETL/perovskite con-

tact and as such, an improvement of the electrical performance, a study of the underlying 

principles behind this improvement is executed. The morphology of the interfaces and layers is 

now studied through AFM and SEM images. 

In Figure 38, AFM images of the surface of the C60 interlayers can be compared to the bare SnO2 

surface14. The reference substrate, with SnO2 as the underlying substrate (Figure 38a), presents 

a rough surface with a roughness of ~20 nm. The perovskite layer is ~300 nm thick, so it can be 

assumed that there is a uniform coverage of the perovskite forming on top of them. However, 

the roughness of the surface may oppose the transfer of charges. The C60 layers in the 

concentrations here used can be seen in Figure 38b-e. The thinnest concentration used (5 

mg/ml) does not fully cover the SnO2 layer and the low quality of this layer can be responsible 

for the drop in performance when used in devices. In the other parameters, the roughness of the 

                                                           
14

 The AFM images in this manuscript are taken by Tobias Leonhard. 

Ref. C05 C10 C15 C20
12

14

16

18

20

P
C

E
 (

%
)

(a)

Ref. C05 C10 C15 C20
19

20

21

22

23

J
S

C
 (

m
A

/c
m

2
)

(b)

Ref. C05 C10 C15 C20
0.8

0.9

1.0

1.1

1.2

V
O

C
 (

V
)

(c)

Ref. C05 C10 C15 C20
50

60

70

80

90

F
F

(%
) 

(d)

Ref. C05 C10 C15 C20

0.4

0.6

0.8

1.0
P

C
E

q
 

(e)

Ref. C05 C10 C15 C20
0.5

0.6

0.7

0.8

0.9

1.0

H
y
s
te

re
s
is

 I
n
d
e

x
 

(f)



6 Perovskite interfaces as source of hysteresis 

 
  
 

59 
 

SnO2 underlying layer is dampened, giving an effective roughness of ~10 nm with the addition 

of the C60 interlayer (or even less for the 20 mg/ml concentration). As it grows thicker, the C60 

layers start showing also aggregations on the surface, seen as the white round peaks in Figure 

38d and e. Altogether, the reduction of the surface roughness can facilitate the contact between 

the perovskite layer and the ETL, due to a more homogeneous interface.  

 

 

 

Figure 38. AFM images of the substrates for the perovskite layer in the reference and with the 
passivating layers. (a) ITO/SnO2 (reference), (b) ITO/SnO2/C60 10 mg/ml, (c) 
ITO/SnO2/C60 15 mg/ml, (d) ITO/SnO2/C60 20 mg/ml. 

After the deposition of the perovskite solution on the different surfaces, SEM images of the 

perovskite layers are taken to observe the quality of the layers and whether the underlying 

layer has an influence on the final morphology and crystallization of the top (perovskite) layer15.  

Figure 39 depicts the SEM images of a perovskite (MAPbI3-xClx) layer deposited with the 

optimized lead acetate method (described in 4.2.3). In Figure 39a and b, SEM images of the 

reference (ITO/SnO2/ MAPbI3-xClx) show that the resulting perovskite layer consists of flat and 

large grains (~1 µm), with uneven layers covering the surface. The layer does not present any 

visible pinholes, demonstrating good coverage of the perovskite layer on top of SnO2. There are, 

additionally, some smaller grains, seen in the image as lighter in color that may be an indication 

of PbI2 formation and serrated boundaries on the perovskite grains. It should be noted that the 

reference layer already shows signs of degradation as evidenced by the small grains and 

serrated edges in the larger grains. These serrated boundaries may provide recombination 

centers or traps for the charges during extraction and as such, are undesirable. In contrast, the 

perovskite layers deposited over the C60 interlayer (10 and 15 mg/ml in Figure 39c-f) have large 

grains as well (~1 µm), with a well-defined layered surface. The serrated boundaries and 

smaller lighter grains seen in the reference are notably absent, indicating a reduction of the 

recombination centers and showing that the perovskite layer using the C60 interlayer has a 

higher quality than on the reference substrate.  

                                                           
15

 The SEM images in this manuscript were taken by Tobias Abzieher. 
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Figure 39. SEM images of perovskite layers with different substrates. (a, b): ITO/SnO2. (c, d) 
ITO/SnO2/C60 10 mg/ml. (e, f) ITO/SnO2/C60 15 mg/ml. Images on the left are taken 
with a 20k x magnification and the images on the right with 50k x magnification.  

 

6.3. Crystallization of the perovskite layer 

In order to determine the composition of the smaller grains, and the orientation of the 

crystalline planes in the perovskite layer, x-ray diffraction (XRD) is executed on the layers to 

evaluate the influence of the underlying passivating layer in the formation of the perovskite 

crystalline layers.   

Figure 40a shows the diffractogram of the perovskite layer deposited on the different 

substrates. The main perovskite peaks can be seen at 14 ° ( (100) plane, cubic), 28 ° ((200) 

plane, cubic) and 32 ° ((210) plane, cubic), indicating a pseudo-cubic crystalline structure [214]. 

These peaks are very strong indicating a high crystallinity in the perovskite layer. The dominant 

peak is the (100) crystalline plane, and the second largest is the (200) peak reaching ~36 % of 

the maximum. A small lead iodide peak can also be seen at 12.7 °, accounting for ~1.1 % of the 

highest perovskite peak (at 14 °). This percentage remains constant for all samples. This finding 

showcases that the smaller grains are not an indication of additional PbI2 formation since lead 

iodide content remains constant all through the samples. The smaller grains then are evidence 

of broken pieces of the larger perovskite grains due to a higher defect density during 

crystallization.  
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Figure 40. X-ray diffractogram of perovskite deposited on different substrates, following the 
ITO/SnO2/C60/MAPbI3-xClx architecture. Reference is the control device without C60 
interlayer. The y-axis is a logarithmic scale. The perovskite peaks are signaled by 
purple circles, the PbI2 peaks, with yellow squares. 

Through the analysis of these spectra, it can be stated that there are no discernable differences 

in the alignment of the perovskite crystal planes for the samples with and without C60 interlayer, 

so the underlying substrate does not affect the crystallization of the perovskite layer. Therefore, 

the improvement of the electrical performance cannot be related to a change in the perovskite 

crystallization.  

 

6.4. Optical characteristics    

In the previous section, it is established that the crystal formation in the perovskite layer 

doesn’t suffer strong changes due to the underlying layer. In this section the influence of the 

underlying layer is evaluated in terms of the optical response. Firstly, the transmission of 

different systems is presented in Figure 41a and b, (from the air side16 and from the ITO side): 

the perovskite layer on glass, on ITO/SnO2, and with the additional passivating layers. A sharp 

increase in the transmission is seen in all samples above 730 nm, related to the perovskite 

response. The slope and the starting point of the transmission band remain constant for all 

samples, ensuring that there are no changes in the bandgap of the perovskite layer, agreeing 

with the XRD results, as the lattice constants do not change in the different samples and thus, 

maintaining the same bandgap. The perovskite layers were also deposited on evaporated C60 

layers following the same method to compare the optical characteristics (Appendix B), and the 

spectra showed no difference from the perovskite layers deposited on solution-processed C60, 

thus confirming the robustness of the method. 

A small increase in the transmission of the layers in the 500-700 nm range is the contribution of 

the presence of PbI2 in the layer, corroborating the results of the X-Ray diffraction. After the 

bandgap, evidence of interference can be observed in the 750-1000 nm range due to the 

changes in the thickness of the different C60 layers. However, the drop in transmission at higher 

wavelengths (>1000 nm) is caused by an increase in the absorption of the substrate (ITO/SnO2).  

 

                                                           
16
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Figure 41. UV-Vis spectra of the ITO/SnO2/C60/MAPbI3-xClx architecture, with different C60 
layers. (a) Transmittance spectra, (b) Absorptance spectra of MAPbI3-xClx on 
ITO/SnO2/C60 (measured from the air side).   

In Figure 42a, the spectral response of the solar cells with this configuration (C60 as interlayer, 

SnO2 as ETL) shows an overall increase in the EQE with increasing C60 concentration, especially 

strong in the higher wavelengths (from 450-750 nm). This is another evidence of recombination 

losses that affect the reference device. The addition of a passivating layer reduces the losses at 

the interface and improves the overall performance. It should be noted that the reference 

devices do not perform with stable efficiency. Therefore, JSC values do not match current density 

calculated from the EQE (JEQE). In the C60 devices, the JSC values match and the trend seen in JSC is 

seen as well in JEQE (Figure 43b). 

In Figure 42b, the normalized EQEs are presented, taking the maxima of the reference EQE as 

normalization value to observe clearly the influence of the C60 interlayer. We can observe then, 

the trend in the higher wavelengths, with the EQE growing with the increase in the C60 

concentration (or the thickening of the layers). However, in the PCE statistical values (Figure 

37a), for increasing C60 concentration, the trend reaches a plateau. For a concentration of 20 

mg/ml, there is a drop in the EQE at lower wavelengths (400-500 nm) that would indicate a 

reduction on the successfully extracted electron-hole pairs. This can also be evidenced in the 

transmission spectra of the C60 layers deposited on ITO/SnO2: the transmittance drops in this 

range indicating absorption of light in this range that doesn’t reach the perovskite layer (Figure 

43a).  

 

  

 

Figure 42. (a) EQE of the solar cells following the configuration ITO/SnO2/C60 X/ MAPbI3-

xClx/Spiro/Au. C60 is deposited via spin-coating from solutions. (b) Normalized EQE of 
the same cells. All signals are normalized to the maximum at the reference (at 400 nm).  
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The EQE peak shifts from 400 nm at the reference to 645 nm for the thicker concentrations. The 

layer with 10 mg/ml C60 concentration presents peaks both at 400 and at 645 nm, pointing at 

the origin of the plateau seen in the statistical PCE. A critical thickness of the C60 passivating 

layer is needed to balance the drop due to absorption at the interlayer, with the increase of the 

spectral response at higher wavelengths.  

 

  

 

Figure 43. (a) Transmission of layers before perovskite deposition. The ITO/SnO2 layer as 
reference and ITO/SnO2 layers with C60 deposited from different concentrations. Black 
line denotes the wavelength for the maximum EQE value in the reference, shown here 
as a guide to the eye. (b) Ratio of the integral current from EQE measurement and the 
short circuit current (JSC, measured in backward and forward direction). 

The conjunction of these characterizations explains the changes in the electrical performance 

with different thickness of the passivating layer, despite having a similar transmittance 

response.  Further evaluation of the layer indicated that when the evaluation of the spectra is 

measured from the ITO side (Appendix A), the absorption spectra of all the systems are 

increased compared to the same measurement from the air side. However, they do not 

significantly differ from one another. Despite the increasing thickness of the passivating layers, 

the absorption of the systems remains unchanged indicating that a percentage of the incoming 

light is absorbed by the C60 layer. In consequence, the light intensity that reaches the perovskite 

layer is reduced, compared to the light intensity for the reference or for the perovskite on glass, 

in agreement with the electrical parameters obtained in Figure 36, where the use of passivating 

layer also results in the drop of the short circuit current. These results, however, do not explain 

the improvement of the power conversion efficiency.  

 

6.5. Transport mechanisms  

With the evaluation of the UV-Vis spectra, the influence of the passivating layers in the 

absorption is defined and the source of the reduction of the short-circuit current determined. In 

order to discern the improvement of the fill factor in the devices, the generation and extraction 

of photo-generated charges in the samples are evaluated using photoluminescence and 

transient absorption. 
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Figure 44. (a) Steady-state and (b) Normalized time-resolved Photoluminescence of perovskite 
layers on glass, ITO/SnO2 (reference), and ITO/SnO2/C60 in different concentrations. In 
grey, the perovskite layer on glass for comparison. 

The photoluminescence (PL) of the perovskite layers (without hole transport layer and gold 

electrode) is measured and compared (Figure 44) to observe the influence of the C60 layers in 

the charge transfer after optical stimulation. The measurement is executed before and after light 

soaking for 300 s (following the timeframe used for the stabilized PCE). During this time, there 

is no evidence of changes in the steady-state PL intensity and shape, indicating that there is no 

degradation of the samples during the measurement.  

  Perovskite 
on 

τ1 (ns) A1 τ2 (ns) A2 τw (ns) CTE 
relative 
to τw 

CTE 
relative 
to τ1 

Glass 320±0.2 1 - - 320 ±0.2 - - 

ITO/SnO2: ref 11.4±0.1 0.96 41.6±2.0 0.05 12.8±0.2 0.95 0.96 

ITO/SnO2/C60 
5 mg/ml 

4.4±0.3 0.63 16.2±1.0 0.36 8.7±0.5 0.97 0.98 

ITO/SnO2/C60 
10 mg/ml 

2.6±0.2 0.64 14.1±1.0 0.34 6.5±0.4 0.98 0.99 

ITO/SnO2/C60 
15 mg/ml 

1.9±0.1 0.60 14.6±0.6 0.39 6.9±0.2 0.98 0.99 

ITO/SnO2/C60 
20 mg/ml 

4.2±0.4 0.87 24.7±1.1 0.13 6.8±0.5 0.97 0.98 

 

 

Table 5. Lifetimes (τ1 and τ2) obtained from time-resolved photoluminescence measurements. 
For the sample in glass and ITO/SnO2, a single-exponential decay equation is used (Eq. 
(6.1)). For the samples with C60 layers, a two-exponential decay equation (Eq. (6.2)) 
where A1 and A2 are the respective weights of τ1 and τ2. The weighted lifetime is 
calculated from 𝜏𝑤 = (𝜏1 ∗ 𝐴1 + 𝜏2 ∗ 𝐴2) (𝐴1 + 𝐴2)⁄ . The CTE is calculated using Eq. 
(3.11). 

The photoluminescence of the perovskite layer on glass (Figure 44, in grey) is used as an 

insulating layer, to observe the lifetime of the charges when there is no quencher for the 

generated electron-hole pairs. The strong PL intensity and long lifetime (~320 ns) are evidence 

of the high-quality of the perovskite layer [129], [135]. In the steady-state measurement (Figure 

44a), the reference sample (in black) is one order of magnitude smaller than the PL of 

perovskite on glass, indicating a quenching of the photoluminescence. The addition of the 

passivating layers continues to quench the PL signal even further, but it does not modify the 

shape of the PL. It should be noted that the quenching of the PL signal of a semiconductor, when 
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deposited on a quencher (in this case, an electron transport layer), is an indication of charge 

transfer between the semiconductor material (the perovskite) and the electron quencher (the 

ETL). This charge transfer results from the photo-generated charges no longer radiatively 

recombining but being transferred to the quencher (ETL) for further extraction. In consequence, 

the stronger quenching in the samples with a C60 interlayer is a sign of an improvement of the 

transfer of charges. 

In the time-resolved measurements, the decay in the ITO/SnO2/ MAPbI3-xClx sample substrate is 

shortened compared to the perovskite on glass. This indicates an alternative path for the 

recombination of the photo-generated electrons: in addition to recombining radiatively at the 

perovskite layer (band-to-band recombination[215]), they can also be transferred to the SnO2 

layer and then extracted. This process is fast and it explains the drop in the lifetime (from 320 

ns to 23 ns). The PL decay in this layer can be described using a single-exponential decay 

equation (Eq. (6.1)), where τ1 is the charge transfer lifetime, A1 is the weight of the lifetime and 

y0 is the offset: 

 𝑦(𝑡) = 𝑦0 + 𝐴1 ∗ 𝑒
−𝑡 𝜏1⁄  (6.1) 

Adding the passivating layers to the architecture has two effects on the photoluminescence: an 

even stronger quenching of the steady-state PL (compared to the reference) and a faster decay 

of the time-resolved PL. However, in this case, the PL decay can no longer be described with a 

single exponential decay, indication of a second mechanism at work. In order to obtain the 

lifetime, the PL decay in the samples with C60 interlayers is fitted with a two-exponential decay 

equation (Eq. (6.2)), where τ1 and τ2 are the short and long lifetimes, A1 and A2 represent the 

weights of each lifetime and y0 is the offset.  

 𝑦(𝑡) = 𝑦0 + 𝐴1 ∗ 𝑒
−𝑡 𝜏1⁄ + 𝐴2 ∗ 𝑒

−𝑡 𝜏2⁄  (6.2) 

The fast lifetime is related to the transfer of charges [216], while the longer one is generated by 

another mechanism: electron back-transfer to the perovskite layer after being transported to 

the C60 layer, due to the closeness of the conduction band of C60 and the perovskite. This 

mechanism is explained further in Section 6.5.1.  

For the architectures evaluated here, Table 5 presents the lifetimes and weights extracted from 

time-resolved measurements, with the weighted lifetime and charge transfer efficiencies (CTE). 

Both the CTE relative to the weighted lifetime and the CTE relative to τ1 are included. It is 

relevant to note that for all C60 layers, the CTE is higher than in the reference, indicating that the 

addition of the C60 interlayer improves the charge transport in all cases.  

 

6.5.1. Transient absorption 

The second long lifetime seen in the time-resolved PL of the systems with C60 passivating layers 

can be attributed to a number of sources: delayed radiative decay [179], [216], and electron 
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back transfer. The transient absorption (TA) spectra and decay are then evaluated to determine 

the origin of the slow lifetime17.  

 

  

  

 

Figure 45. (a) Transient Absorption (TA) spectra of ITO/SnO2/C60 (10 mg/ml)/MAPbI3-xClx. 
Transient Absorption decay and time-resolved photoluminescence data of (b) 
Reference: ITO/SnO2/MAPbI3-xClx and (c) Sample with C60: ITO/SnO2/C60 (10 
mg/ml)/MAPbI3-xClx. The TA signal is integrated from the 600-700 nm range and 
inverted for ease of comparison. The blue lines serve as a guide to the eye. 

Figure 45a and c show the transient absorption spectra of MAPbI3-xClx measured on the 

reference (ITO/SnO2) and with on ITO/SnO2/C60 (10 mg/ml). For both samples, a first band can 

be seen in the 600-700 nm range, an indication of the induced absorption. A second band is 

seen, centered at 750 nm, sign of stimulated emission, alongside the ground state bleaching.  

The evaluation of the transient is done by integrating the decay of the transient absorption in 

the 600-700 nm range and comparing it with the time-resolved PL (Figure 45b and d). For the 

reference (Figure 45b), the two decays (PL and TA) have lifetimes with different orders of 

magnitude, indicating that the mechanisms at work are different: the PL probes the extraction of 

electrons and is related then to the transfer of charges as explained above. Conversely, the TA is 

sensitive to the holes remaining in the valence band and will decay from non-radiative 

recombination with deeper states in the valence band (Figure 46a). 

 

                                                           
17

 The TA spectra were measured by Marius Jakoby. 
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Figure 46. Schematic diagram of the energy bands and transport mechanisms in: (a) the 
reference (ITO/SnO2/ MAPbI3-xClx) and in (b) ITO/SnO2/ C60 (10 mg/ml)/ MAPbI3-xClx.   

On the samples with C60, the long PL lifetime follows the decay of the TA as seen in Figure 45d. 

After probing the sample, the excited charges are transferred to the extraction layer, 

demonstrated by the fast lifetime in the time-resolved PL measurement. However, due to the 

small difference of the energy level at the conduction bands of the perovskite and the C60, a 

percentage of these charges can be transferred back to the perovskite conduction band. There, 

they can recombine radiatively with the holes remaining in the valence band, seen in the PL 

measurements as the second slower lifetime.  At this moment, there are two mechanisms that 

are competing for the hole population in the valence band: the radiative recombination of the 

back-transferred electrons at the conduction band and the non-radiative recombination with 

electrons from deeper states at the valence band (Figure 46b). Since both mechanisms are 

limited by the hole density at the valence band, it shows as a similar lifetime in the TA decay and 

the time-resolved PL. In the reference layers, the difference at the conduction band is larger (4.5 

eV [217]) and it is unlikely that charges return to the perovskite conduction band for any 

electron back transfer to occur. Additionally, the transfer of charges in the reference is slower 

and thus, dominates for longer time over other mechanisms. 

 

6.6. Discussion    

In the devices evaluated here, the influence of the C60 passivating layers is seen as an 

improvement in the fill factor of the J-V characteristic curve and in the absence of s-shape 

(which has been often related to interface phenomena [211]). Therefore, conclusions extracted 

from these transients assist in identifying the origin of such improvements. Even though the 

band alignment of C60 is not the optimal choice due to the closeness of the energy levels at the 

conduction band with the perovskite, it allows for a strong improvement of the charge transport 

from the perovskite towards the ETL. In the reference, the extraction is hindered by traps and 

charges are accumulated at the interface.  During the backward measurement, the charges are 

easily extracted, and both the incoming light and the driving potential push for the extraction of 

current, facilitating the separation of charges. When the devices are measured in forward 

direction, the driving potential is not large enough to extract the charges that may accumulate 

during generation and extraction, increasing the resistance of the material to the electron flow 

and can explain the loss in efficiency and s-shape seen (with the second slope in the curve 
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caused by the breaking of the depletion zone due to a larger potential differential). In the 

forward measurement of the C60 devices, the closeness of the bands may introduce charges at 

the interface thus reducing the resistance of the material to the electron flow. During the 

measurement, the s-shape fades and therefore the fill factor increases. 

In summary, hysteresis in the J-V characteristics can be significantly reduced by engineering the 

PSCs interfaces. To achieve an improvement in the performance, the good contact between the 

extraction and the perovskite layers needs to be ensured, and the perovskite interfaces need to 

be tightly controlled. The presented results show that the introduction of a passivating layer 

leads to a significant improvement of the performance by passivating the traps and facilitating 

the charge transport through the interface to better performing devices.  
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7. C60 as ETL: Stability and long-term 

performance  

 

In this chapter, I study the effect of degradation in perovskite devices and layers. It is found that 

architectures with C60 as ETL maintain the quality of the perovskite layer for longer shelf-time and 

sustain the electrical performance of devices in time. 

 

7.1. Introduction  

Having determined that the interfaces are paramount for the improvement of the electrical 

performance, the stability of the devices is evaluated, and whether the proposed architecture is 

promising for a long-term stable device. 

While evaluating the stabilized power conversion efficiency (PCE) of the devices with C60 as 

interlayer, it was established that the sole addition of the interlayer generates an increase in the 

efficiency after 300 s. Posterior measurements after storing the devices in nitrogen gloveboxes 

in the dark (Figure 47), show that the SnO2 reference has a strong decrease in its performance. 

The devices with C60 as interlayer are stable, during a period of 2 months, but after 70 days, the 

performance dropped to 15 % (1 percentage point lost in the timeframe measured, 75 days). 

 

  

 

Figure 47. Evolution of the PCE at constant voltage for architecture with SnO2 as ETL and C60 as 
interlayer measured: (a) upon fabrication, (b) after 7 days and (c) after 70 days.  

SnO2 as ETL introduces degradation mechanisms in the PSC through the accumulation of 

charges at the perovskite/ETL interface. In the J-V characteristic curve of reference devices 

(ITO/SnO2/Perovskite/Spiro/Au), an s-shape can be seen reducing the PCE of the devices and in 

the evaluation of the PCE under constant voltage, a reduction of the stabilized PCE is measured 

after only 60 s of measuring. From the analysis executed in Chapter 6, it can be stated that under 

illumination, holes accumulate at the perovskite/ETL interface. The sustained presence of 

charges at the interface will facilitate the layer decomposition at the surface[218], detrimental 

to the perovskite crystal and increasing even further the surface trap density. Furthermore, the 

easy absorption of water in the SnO2 surface affects electron mobility within the SnO2 layer and 

causes a reduced band bending [219], hindering the electrical performance but also offering a 

degradation mechanism to the moisture-sensitive perovskite.  
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With the addition of the C60 interlayer in the device architecture described in Chapter 6, it is 

concluded that the charge accumulation at the ETL/perovskite interface can be avoided by 

improving the charge transport at the interface. Furthermore, since the devices are better with 

the addition of an interlayer, and C60 itself is an n-type semiconductor, the usage of SnO2 as ETL 

can be brought into question.  

C60 is a hydrophobic material with ambivalent behavior. It will repel the presence of water on its 

surface, acting as a hydrophobic material but when the water molecule is placed in the space 

between two fullerenes, it will keep the moisture caged [220]. When deposited in the 

ETL/interface of n-i-p PSCs, as shown in Chapter 6, the presence of C60 assists in the reduction of 

charge carrier accumulation at the frontal perovskite interface, facilitating the charge transport 

at this interface and, improving the performance of the devices. In perovskite solar cells, C60 has 

been used both as a passivating layer but also as ETL. So-called self-assembled monolayers (2 

nm) have been deposited from dipping the substrates in a C60 solution [203], as well as single 

C60 layers fabricated from thermal evaporation (from 1-40 nm) [126], [174], [176]–[178], [180] 

obtaining a range of PCEs from 1.6% to 18.2%.  

From chapter 6, solution-processed C60 layers are established as viable options for interlayers 

between the ETL and the perovskite to achieve stable and high-efficiency perovskite solar cells 

(PSCs). The next step involves the implementation of devices without the metal oxide ETL, given 

that the devices with the stand-alone ETL had lower and unstable performance. In this chapter, 

the metal oxide ETL is replaced by an organic semi-hydrophobic n-type material such as C60 and 

the effects of this modification on the long-term stability and degradation of the devices are 

studied. 

 

7.2. Electrical performance upon fabrication 

The architecture analyzed in this chapter consists of ITO/C60/MAPbI3-xClx/Spiro/Au. The 

transparent frontal electrode is pre-structured ITO; C60 is deposited via spin-coating from 

solution as the electron transport layer (ETL). The fabrication parameters are described in 

Chapter 4 for the perovskite layer (deposited using the lead acetate 1-step optimized method), 

the C60 layer, the SpiroMeOTAD layer, and the gold evaporation. The concentrations used here 

for the samples are 5, 10, 15 and 20 mg/ml. During the experiments, it became clear that the C60 

solution with 5 mg/ml concentration is too thin for providing sufficient coverage of the 

substrate, and therefore it is not an adequate concentration to use as a stand-alone ETL. 

However, this parameter is included in the analysis to establish the lower limits of the C60 

concentration to use. Higher concentrations than 20 mg/ml reach the solubility limit of C60 in 

DCB and are not used in this study. The high performance of devices built with solution-process 

C60 layers with the concentrations of 10, 15, 20 mg/ml is corroborated in the statistical studies 

(Figure 49). Despite the loss in short-circuit current (compared to the ITO/SnO2 reference 

device, with an average of 21.8 mA/cm2), the devices show improved efficiency, influenced by 

the high open-circuit voltage and excellent fill factor. The hysteresis is also reduced in these 

devices.  
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Figure 48. Left: Schematic diagram of the architecture. Right: J-V characteristic curve of solar 

cells with the architecture: ITO/C60/MAPbI3-xClx /Spiro/Au, with different C60 
concentrations. 

The devices with the architecture previously described (Figure 48, left) perform successfully 

upon fabrication, without evidence of shunt paths within the device due to perovskite 

infiltration into the C60 ETL. Furthermore, the average power conversion efficiency (PCE) in the 

devices with C60 as ETL is improved with respect to the former architecture (with SnO2 as ETL 

and C60 as interlayer). For C60 concentrations higher than 10 mg/ml, the PCEs obtained in the J-V 

curve are over 18 % (18.8 % for the best cell), with open-circuit voltages (VOC) around 1.1 eV, fill 

factors (FF) over 80% and very good hysteresis indexes (HI), despite the loss in short-circuit 

current density. Furthermore, a reduction of the series resistance can be seen with increasing 

C60 layer concentration (Figure 48, right). 

 

 

 

 

Figure 49. Statistical parameters extracted from the J-V characteristic curves of solar cells with 
the architecture: ITO/C60/MAPbI3-xClx /Spiro/Au. a.) power conversion efficiency, b.) 
Open circuit voltage, c.) Short-circuit current, d.) Fill factor, e.) PCE quotient f.) 
Hysteresis index. 

The drop in short-circuit current for increasing C60 concentration is generated by the reduction 

in the incident light reaching the perovskite absorber. As mentioned in Chapter 6, Section 6.4, 

the thickening of the C60 layer with increasing solution concentration reduces the transmission 
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in the 320-600 nm range. However, this reduction is compensated by the increase in fill factor, 

leading to the improvement in the PCE. 

 

7.3. Morphology and crystallization  

In terms of the morphology of the perovskite layers, SEM images of the perovskite layers 

deposited directly on ITO (Figure 50, upper images) are evaluated, showing a mixture of two 

types of grains: a large, flat one, related to the MAPbI3-xClx and smaller grains, often related to 

the formation of PbI2 [221]. As mentioned before, the smaller grains can be a source for non-

radiative recombination due to the higher density of defects. On the other hand, when C60 is 

used as ETL (Figure 50, lower images), the C60 acts as a stabilizer of the perovskite in formation, 

and as a consequence, the quality of the perovskite layer is improved, with tightly-packed flat 

grains, with well-defined boundaries and fully covered layers.  

 

  

 

Figure 50. SEM images of perovskite layers with different substrates. (a) ITO/ MAPbI3-xClx, (b) 
ITO/C60/MAPbI3-xClx. Images with 50k x Magnification.   

In order to evaluate the resistance of the devices to degradation, measurements of the 

characteristics are executed at different times. Alongside this, we evaluated the reference 

(ITO/SnO2/ MAPbI3-xClx) under the same circumstances to establish a control device.  

In the initial results of the x-ray di ffraction (XRD) of the perovskite layers on the different ETLs, 

the data indicates that there are no discernable shifts or peak reduction between the spectra of 

the perovskite deposited on C60 or on SnO2 (Figure 51a). Therefore, in the initial state, the 

crystal alignment of the perovskite deposited on the two types of ETL remains constant. 

Moreover, in all evaluated samples a small PbI2 peak can be seen at 12.7 °, indicating a small 

percentage present in the perovskite layers. Bi et al.[222] reported that a small percentage of 

PbI2 in the perovskite layer may improve the performance since it reduces non-radiative 

recombination.  

Further evaluation on days 7 and 90 (Figure 51b-d) shows that there is an increase of the PbI2 

peak in all samples, evidence of the aging process already started even though the samples are 

kept in the dark and in the glovebox. The main differences are seen in the perovskite peaks 

(100) and (200): in the reference, the perovskite peaks are smaller and narrower after 90 days, 

while in the C60 samples, the perovskite peaks remain stable. A narrower peak often is related to 

an increase in the crystallite size; however, the reduction of the peak magnitude also indicates a 

reduction in the crystalline planes alignment.  Based on these results, the crystal alignment and 

intensity of the perovskite peaks is maintained during 90 days in the perovskite layers with C60 
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as a substrate. In the reference, the perovskite peaks get reduced during this timeframe, 

evidence of the erosion and increased crystal disorder of the perovskite layer.  

With these characterizations, the initial frame is established for high-performance devices using 

C60 as ETL. The perovskite layer thus obtained has an improved quality layer evidenced by the 

increased stability of the perovskite crystal, reduced defect density, and improved grain size.  

 

    

  

 

Figure 51. (a) X-ray diffraction spectra of MAPbI3-xClx layers on ITO/SnO2 and ITO/C60 (from 
different concentrations). Zoom of the main perovskite peaks, (100) and (200), as 
evaluated from day 6 and day 90 in (b) Reference, (c) C60 10 mg/ml, (d) C60 15 mg/ml.    

 

7.4. Degradation in the EQE 

Having corroborated that the morphology of the perovskite layers with different substrates is 

modified, however, the crystal alignment remains similar. Therefore, the next step is to study 

the spectral performance and how the aging mechanisms affect the response.  

Evaluation of the EQE spectra in the C60 devices compared to the SnO2 reference devices upon 

fabrication is presented in Figure 52a. In the EQE spectra, a sharp drop at 750 nm is observed 

for all devices. In the C60 devices, there is an increase in the overall EQE compared to the 

reference, seen mainly in the longer (red) wavelengths. The reduction of the EQE in the 

reference is introduced by recombination losses (as described in Section 6.4). Replacing the 

SnO2 with a solution-processed C60 layer improves the EQE and normalizing the values at the 

maxima of the control device, it can be determined that the increase is seen in the entire range 

of the EQE. However, since the C60 layer absorbs in the blue region, it is only seen as a change in 

the red wavelength range. 
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Reductions in the overall EQE are often related to reflection losses and changes in the diffusion 

length, but the perovskite layer remains unaltered for the evaluated devices and the reflection 

spectra do not show strong differences that could explain the EQE response (Appendix C). 

However, the charge transport between the perovskite and the C60 layer is significantly 

improved compared to the charge transport between SnO2 and the perovskite layer, and as 

such, the increase of the overall EQE is a consequence of the improved charge transfer in the C60 

/perovskite interface. A slowed-down transport limited by charge carrier accumulation at the 

ETL/ perovskite interface will render (if calculated) an underestimation of the perovskite 

diffusion length, given that the real value is going to be masked by the charge accumulation at 

the interface.   

 

  

   

 

Figure 52. (a) EQE of the C60 devices under illumination compared to the Reference (SnO2 as 
ETL). Comparison of the EQE after storage time in (b) the Reference device, (c) device 
with 10 mg/ml C60 layer as ETL and (d) the device with 20 mg/ml C60 layer as ETL. 

Further evaluation of the changes in the EQE after the devices are stored in the dark in a 

nitrogen glovebox (after 20 and 80 days, to impose aging degradation, Figure 52b-d), indicates 

that the reference device shows a reduction of the EQE all throughout the wavelength range. 

Normalizing the spectra (insert in Figure 52) shows that this loss is related to the reduction of 

the total current extracted from the device in the measured range. On the other hand, the C60 

devices barely suffer any changes between the two measurements, evidencing a suppression of 

the aging process that in the reference devices starts as a drop in current.  

7.5. Degradation in the J-V measurements 

After studying the spectral response of the devices and identifying initial sources of 

performance losses, the following step was performed to study the performance in time and 

how the aging mechanisms affect the stability of the PCE.  
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One of the limiting factors of PSCs is their performing lifetime in comparison with silicon SCs. 

Thus, much of the current research is devoted to extend their lifetime either by isolating the 

material from environmental factors that degrade the absorber or by making the absorber less 

susceptible to these factors. As mentioned earlier, SnO2 is a material sensitive to both 

moisture[219] and oxygen [223] and its electronic properties change under the presence of 

either. Thus, even by ensuring that the water is extracted from the devices after SnO2 deposition 

(e.g. by placing the devices in a hot plate for over an hour at 100 °C inside of a glovebox), there is 

the probability of oxygen absorption in the SnO2 layer during the oxygen doping step for the 

Spiro layer and thus, a path for the degradation of the device.  

 

  

 

Figure 53. J-V curve of the reference (a) and the C60 device (b) evaluated in the backward and 
forward direction and throughout a range of days. The samples are stored between 
measurements in a nitrogen glovebox in the dark. 

Comparison between the current density-voltage (J-V) curve of the reference devices and the J-V 

of devices with C60 as ETL, measured throughout a range of days, showcases a different 

influence of the aging in the electrical parameters (Figure 53). For the reference sample at the 

starting point, the s-shape in the forward measurement is an indication of charge accumulation 

at the frontal interface (as is discussed in Chapter 6). With aging, this s-shape is accentuated, 

even appearing in the backward measurement. At the end of this period, the performance of the 

reference devices has lost 10 percentage points. On the other hands, in the C60 devices (with the 

10 mg/ml concentration here presented due to its optimum performance) the J-V curves barely 

show any changes throughout the timeframe of measurements. The fill factor remains stable in 

this period and while there is a slight drop in the open-circuit voltage (VOC), the average 

performance is sustained.    

The evolution in time of the electrical parameters is presented in Figure 54, as they are 

measured through a 180-days timeframe. The reference sample presents a strong loss of the 

PCE (from 17 to 15%) in the first 10 days, continuing to lose percentage points at a slower rate 

after. The evaluation of the XRD of the reference shows also the PbI2 peaks increase after 

storage time, as an indication of a larger percentage of PbI2 in the perovskite layer, and that the 

perovskite peaks are reduced in intensity, compared to the initial measurements. In other 

words, the quality of the perovskite layer in the reference is reduced after storage time. Erosion 

of the perovskite layer introduces then, additional defects states that diminish the electrical 

performance.  

On the other hand, C60 devices presented no changes in the perovskite peaks during the 

measured timeframe. In the same way, the PCE of the C60 devices remained stable. At the 
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beginning of the evaluation, the average PCE is 18% and the devices maintained a PCE over 16% 

throughout 180 days of measurement, losing only 2 percentage points after the measured 

timeframe. 

In terms of aging, the fill factor in the J-V curve is the parameter that introduces the most 

discerning information, as a loss of the quality of the perovskite layer will be reflected directly 

on this parameter, facilitating the identification of the level of damage affecting the absorber. In 

this evaluation, the reference device loses most of the performance on the first few days and this 

reduction is led by the fill factor (Figure 54d). On the later part of the timeframe, the fill factor 

remains constant while the VOC and JSC start to drop. Therefore losses related to these 

parameters start affecting the devices after 60 days. 

 

  

  

 

Figure 54. Average values of the J-V parameters of the reference and C60 devices (10 mg/ml), 
measured in the backward direction through a range of days: (a) PCE, (b) JSC (c) VOC, (d) 
FF. In dotted lines, the forward measurement.  

In order to observe the stability of the device after illumination, constant power output 

measurements are done for 300 s (Figure 55a). The devices with thicker C60 layers are 

performing during the measurement with PCE above 16 %, confirming that solution processed 

C60 is an apt replacement for SnO2, circumventing its disadvantages. Upon fabrication, the power 

conversion efficiency measured at a constant voltage over time remains over 16.2 % for the 

measured time frame (best cell: 17.1 %). Devices with the lower concentration (5 mg/ml) 

performed with a much lower PCE than its counterparts and the power conversion efficiency 

measured at a constant voltage over time drops to less than 10 % in a few minutes. 

A comparison of the stabilized PCE upon fabrication and after different storage times can be 

seen in Figure 55a-c, with the results from the reference included as a control. In these 

measurements, the performance of the C60 devices (10, 15 and 20 mg/ml) remains constant, 

while the reference continues to diminish. In the devices with interlayers (Figure 47) a small 
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drop in performance is seen after 75 days, but in the devices where the SnO2 is altogether 

removed from the architecture, the stabilized PCE is higher and stable for a longer time. The 

stable performance of the C60 devices after such a timeframe indicates that the degradation 

mechanisms are being retarded in devices with C60 as ETL.  

 

   

 

Figure 55. Evolution of the PCE of the devices with C60 as ETL measured at constant voltage upon 
fabrication (a), in day 20 (b) and day 75 (c). In black, the reference. The samples are 
stored between measurements in a nitrogen glovebox in the dark. 

 

7.6. Temperature stability over time 

During the implementation of the devices in real conditions, they can be subjected to a range of 

temperatures different than in the usual lab conditions. The J-V characteristic curve is e.g. 

measured at a constant temperature of 25°C. In real conditions, as the day starts, the 

temperatures can be cool, with temperatures rising in the midday and then cooling down again 

as night approaches. In this section, the impact of the temperature variation on performance is 

evaluated in three different architectures: SnO2 as ETL, C60 as ETL and C60 as an interlayer. 

The short-circuit current density (JSC) of the selected devices is measured to evaluate their 

stability under a temperature cycle18 (Figure 56a). The devices are measured from 10-60 °C in 

5° C steps, from low to high temperatures and then low again following the progression in 

Figure 56 (in green). The evaluation under this temperature cycle shows how the short-circuit 

current density is affected by the variation of temperature and the stability of the samples under 

the correspondent cycle. 

 

  

 

Figure 56. (a) Normalized short-circuit current density in perovskite solar cells with different 
ETLs under a temperature cycle (10 °C-60 °C, in steps of 5 °C, in green). (b) J-V 

                                                           
18

 The evaluation of the J-V and short-circuit current density under temperature variation was measured 

by Jonas Schwenzer.  
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characteristic curve of the C60 devices (as interlayer and as ETL) before, after the 
temperature cycle (3h), and after 4.5 and 14h.  

During this measurement, the JSC is heavily degraded in devices with SnO2 as ETL, presenting a 

continuous decay during the measurement and losing 20 % of the initial value after the cycle. 

This reduction in the JSC under temperature variation is related to an increase in the ion 

accumulation at the interface [18]. On the other hand, in devices with SnO2 as ETL and C60 as 

interlayer (labeled SnO2/C60), a small loss can also be seen but it is significantly reduced 

(smaller than 4 % after the temperature cycle). Furthermore, in the devices with C60 as ETL, the 

JSC remains constant during the measurement and the degradation of the short-circuit current 

can thus be avoided. In these cases, the presence of the C60 interlayer is then reducing the 

charge accumulation at the frontal interface and the series resistance in the J-V measurements, 

which is the main source of JSC losses [18]. 

After measurement under the temperature cycle (Figure 56b), the J-V curve of the C60 devices is 

measured. The devices with C60 (either as ETL or as interlayer) presented recovery while the 

SnO2 devices are no longer stable (not shown as the devices are no longer working). In this 

measurement, the devices with C60 interlayer presented an instant recovery and maintained its 

performance during 14h.   

 

7.7. Discussion   

Wojciechowski et al. state that DMF deposition on top of a C60 layer dissolves the layer [224] 

and proceed to build PSCs devices with evaporated MAPI. In this publication, they measured the 

UV-vis spectra of C60 layers before and after spin-coating DMF. However, using the method 

evaluated in this chapter, we have no evidence that the C60 layer is dissolved. Both in PL 

measurements (where the PL amplitude and lifetime are quenched in samples with C60) and in 

the evaluation of the solar cells, the influence of the C60 layer is present. Furthermore, in the 

case that the C60 layer was, in fact, dissolved by the solvent in the perovskite solution, the 

devices would not have an ETL, leading towards performance with very low power conversion 

efficiencies. In the experiments here executed, the results are the opposite: the devices perform 

with increased efficiency and stability. It can be stated then, that with this fabrication method, 

the C60 layer remains in the solar cell architecture after deposition of the perovskite solution.  

Furthermore, a strong improvement in the performance and stability of the PSCs is achieved 

when SnO2 is replaced as ETL for C60. The increased charge transport assist in the improvement 

of the electrical performance and a reduction in the hysteresis. The fast extraction of charges 

increases the PCE stability due to the reduction of charge accumulation in the frontal perovskite 

interface. Moreover, charge accumulation at the interface erodes the perovskite layer 

shortening the useful life.  

Undesired accumulation of charges at the interface cause cumulative damage to the perovskite 

layer since the presence of non-extracted charges will break the perovskite crystal bonds. The 

breaking of the bonds will facilitate the formation of undesired components while eroding the 

perovskite layer. With SnO2, perovskite layers fabricated with the same method suffered an 

accelerated degradation, indicating the PSC lifetime has to be evaluated in terms of the 
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interfaces that the perovskite layer is in contact. C60 as ETLs facilitates the charge transport and 

eliminates the charge accumulation, protecting the absorber from degradation in the process. 

By controlling extraction layers and ensuring that charge extraction is executed properly, the 

lifetime of the perovskite device can be lengthened. As a result of this study, it can be stated that 

the ETL/perovskite interface is a governing factor in reduction of hysteresis and in the 

extension of the stability and life of the PSCs. It is then important to note, when doing 

degradation studies, not only to evaluate the performance of the perovskite layer but also the 

interaction with their extraction layers.  
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Conclusions 

 

By means of different characterization methods, I have studied the optical properties and 

charge transport mechanisms in perovskites. Different deposition techniques modify the thin 

perovskite film properties and through optical characterization, the selection of the fabrication 

method that provides a better layer quality and a better performance in solar cells can be 

chosen.  

Since the quality and morphology of the perovskite layer affect strongly the electrical 

performance, special care needs to be implemented to ensure that the layer quality is not 

affected when introducing changes to the architecture of the solar cell.  Moreover, evaluation of 

the perovskite absorber alone is not sufficient for the determination of the electrical 

performance. Assessment of the interaction with the extraction layers and the contact between 

the interfaces is paramount for the evaluation of a material for the solar cell architecture. 

During the evaluation of these results, it can be concluded that interfaces are an important 

parameter of the cells that need to be controlled and carefully designed to obtain better 

electrical performance and delay the degradation. It is through the interfaces that the 

degradation mechanisms start damaging the perovskite layer, accelerating the degradation and 

reducing the solar cell life.  

Even though light soaking can be seen as beneficial to the device performance, it is also a sign of 

photosensitive traps and of higher photoactive trap density. The light soaking phenomena is 

evidence of an increase in the number of non-radiative traps still present in the perovskite layer 

and in the long term can still impair the device. 

Hysteresis in the devices can be reduced with an improvement of the contact between the 

extraction layers and the perovskite. In this dissertation, this was addressed with the 

introduction of passivating C60 layer, improving both power conversion efficiency and stability.  

Moreover, the improvement of the contact is directly related to better charge transport which 

will reduce undesired charge accumulation at the perovskite interfaces. Charge accumulation at 

the interfaces should be avoided, not only because it reduces the power conversion efficiency 

but also can cause cumulative damage to the perovskite layer since the presence of non-

extracted charges will break the perovskite crystal bonds.  

Further investigation can improve the perovskite interface with the hole transport layer. In this 

dissertation, Spiro is used as HTL, and the addition of interlayers between the perovskite and 

the HTL layer may improve the device power conversion efficiency. It also offers an opportunity 

to use a layer to insulate the cell from the environment and further protect it from degradation.  

Using layers with hydrophobic properties may provide a solution to the perovskite sensitivity to 

moisture. An additional layer of carbon or C60 after gold evaporation may protect even further 

from any moisture infiltration into the cell, which may be one of the most damaging factors 

affecting the perovskite layer. Coffee grounds have been used to remove lead ions in drinking 

water due to their strong lead ion adsorption[225]. Adding the coffee grounds to the perovskite 
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solution can be used to reduce ion migration within the perovskite layer, increasing then the 

stability of the devices.  

Another future approach can further evaluate the energy of the traps within perovskite devices 

and it would provide an accurate identification of the trap types a fabrication method creates. 

This can be executed through the combination of the characterizations included here with 

thermally stimulated current (TSC) or transient photocurrent/photovoltage (TPC/TPV). TSC is a 

powerful technique proven to identify the TPV/TPC is a technique used to extract the effective 

recombination mechanism on optoelectrical devices, which, alongside the photoluminescence 

measurements, would give an integral perspective on the dominant recombination on the 

complete solar cells.  
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Abbreviations 

 

A absorption  
AFM atomic force microscopy 
CCD charge-coupled device 
CIGS 
CTE 

Cupper-indium-galium selenide, CuIn1-xGaxSe2  
Charge transfer efficiency 

DCB 1,2- dichlorobenzene 
DMF dimethylformamide 
DMSO dimethlysulfoxide 
DSSC dye-sensitized solar cell 
Eg Bandgap energy (also called bandgap) 
EQE  external quantum efficiency 
ETL 
FA 

electron transport layer 
formamidinium, NH2CH=NH2 

FF fill factor 
FTO fluor-doped tin oxide 
GBL γ-butyrolactone 
JSC short circuit current 
HI hysteresis index 
HTL hole transport layer 
HTM 
ICCD 

hole transport material 
intensified charge-coupled device 

IPA isopropanol  
ITO indium-doped tin oxide 
I-V current-voltage 
J-V  current density-voltage 
LS light soaking 
LTI Light Technology Institute 
MA methylammonium (cation) 
MAI methylammonium iodide 
MAPI methlyammonium lead iodide 
MPP 
ND 

maximum power point 
neutral density 

NREL National Renewable Energy Laboratory 
OMH organometal halides 
OPV organic photovoltaics  
PCBM phenyl-C61-butyric acid methyl ester 
PCE power conversion efficiency 
PCEq power conversion efficiency ratio (between backward and forward 

direction of measurement) 
PL 
PSC 
PV 

Photoluminescence 
Perovskite solar cells 
photovoltaics 

R reflection 
RH relative humidity 
SC 
SMU 

Solar cell 
Source measurement unit  
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SEM scanning electron microscope 
SPCE Stabilized power conversion efficiency 
Spiro Spiro-MeOTAD, 2,2,7,7-tetrakis-(N,N-di-p-methoxyphenylamine)-

9,9-spirobifluorene 
T transmission 
TA 
trPL 

transient absorption 
time-resolved photoluminescence 

VOC open circuit voltage 
UV ultraviolet 
UV-Vis ultraviolet-visible 
XRD X-ray Diffraction 
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[149] A. H. M. Smets, K. Jäger, O. Isabella, R. A. van Swaaij, and M. Zeman, Solar energy : the 
physics and engineering of photovoltaic conversion, technologies and systems. UIT 
Cambridge Ltd., 2016. 

[150] W. H. Bragg and W. L. Bragg, “The Reflection of X-rays by Crystals References,” Proc. R. 
Soc. London, vol. 88, pp. 428–438, 1913. 

[151] “Spin Coating: A Guide to Theory and Techniques – Ossila.” [Online]. Available: 
https://www.ossila.com/pages/spin-coating#spin-coating-nanoparticles. [Accessed: 01-
Mar-2019]. 

[152] A. Farooq, I. M. Hossain, S. Moghadamzadeh, J. A. Schwenzer, T. Abzieher, B. S. Richards, E. 
Klampaftis, and U. W. Paetzold, “Spectral Dependence of Degradation under Ultraviolet 
Light in Perovskite Solar Cells,” ACS Appl. Mater. Interfaces, vol. 10, pp. 21985–21990, 
2018. 

[153] R. S. Ruoff, D. S. Tse, R. Malhotra, and D. C. Lorents, “Solubility of fullerene (C60) in a 
variety of solvents,” J. Phys. Chem., vol. 97, no. 13, pp. 3379–3383, 1993. 

[154] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, and Y. M. Lam, 
“The origin of high efficiency in low-temperature solution-processable bilayer 
organometal halide hybrid solar cells,” Energy Environ. Sci., vol. 7, no. 1, p. 399, 2014. 

[155] K. F. Lin, S. H. Chang, K. H. Wang, H. M. Cheng, K. Y. Chiu, K. M. Lee, S. H. Chen, and C. G. 
Wu, “Unraveling the high performance of tri-iodide perovskite absorber based 
photovoltaics with a non-polar solvent washing treatment,” Sol. Energy Mater. Sol. Cells, 
vol. 141, pp. 309–314, 2015. 

[156] D. B. Liu, G. Wang, F. Wu, R. Wu, T. Chen, B. F. Ding, and Q. L. Song, “Crystallization process 
of perovskite modified by adding lead acetate in precursor solution for better 
morphology and higher device efficiency,” Org. Electron., vol. 43, no. February, pp. 189–
195, 2017. 

[157] H. Röhm, T. Leonhard, M. J. Hoffmann, and A. Colsmann, “Ferroelectric domains in 
methylammonium lead iodide perovskite thin-films,” Energy Environ. Sci., vol. 10, no. 4, 
pp. 950–955, 2017. 

[158] F. Mathies, T. Abzieher, A. Hochstuhl, K. Glaser, A. Colsmann, U. W. Paetzold, G. 
Hernandez-Sosa, U. Lemmer, and A. Quintilla, “Multipass inkjet printed planar 
methylammonium lead iodide perovskite solar cells,” J. Mater. Chem. A, vol. 4, no. 48, pp. 
19207–19213, 2016. 



Bibliography 

 

96 
 

[159] F. Mathies, H. Eggers, B. S. Richards, G. Hernandez-Sosa, U. Lemmer, and U. W. Paetzold, 
“Inkjet-Printed Triple Cation Perovskite Solar Cells,” ACS Appl. Energy Mater., p. 
acsaem.8b00222, Apr. 2018. 

[160] H. Li, S. Li, Y. Wang, H. Sarvari, P. Zhang, M. Wang, and Z. Chen, “A modified sequential 
deposition method for fabrication of perovskite solar cells,” Sol. Energy, vol. 126, pp. 243–
251, 2016. 

[161] T. Abzieher, F. Mathies, M. Hetterich, A. Welle, D. Gerthsen, U. Lemmer, U. W. Paetzold, 
and M. Powalla, “Additive-Assisted Crystallization Dynamics in Two-Step Fabrication of 
Perovskite Solar Cells,” Phys. status solidi, vol. 214, no. 12, p. 1700509, Dec. 2017. 

[162] O. Malinkiewicz, C. Roldán-Carmona, A. Soriano, E. Bandiello, L. Camacho, M. K. 
Nazeeruddin, and H. J. Bolink, “Metal-Oxide-Free Methylammonium Lead Iodide 
Perovskite-Based Solar Cells: the Influence of Organic Charge Transport Layers,” Adv. 
Energy Mater., p. n/a-n/a, Jun. 2014. 

[163] H. J. Snaith, “Perovskites: The Emergence of a New Era for Low-Cost , High-Efficiency 
Solar Cells,” J. Phys. Chem. Lett., vol. 4, pp. 3623–3630, 2013. 

[164] P.-H. Huang, Y.-H. Wang, J.-C. Ke, and C.-J. Huang, “The effect of solvents on the 
performance of CH3NH3PbI3 Perovskite Solar Cells,” Energies, vol. 10, no. 5, p. 599, 2017. 

[165] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. Il Seok, “Solvent engineering for 
high-performance inorganic–organic hybrid perovskite solar cells,” Nat. Mater., vol. 13, 
no. 9, pp. 897–903, Sep. 2014. 

[166] K. Lin, S. Hsiung, K. Wang, H. Cheng, K. Yuan, K. Lee, S. Chen, and C. Wu, “Unraveling the 
high performance of tri-iodide perovskite absorber based photovoltaics with a non-polar 
solvent washing treatment,” Sol. Energy Mater. Sol. Cells, vol. 141, pp. 309–314, 2015. 

[167] W. Zhang, S. Pathak, N. Sakai, T. Stergiopoulos, P. K. Nayak, N. K. Noel, A. a. Haghighirad, V. 
M. Burlakov, D. W. deQuilettes, A. Sadhanala, W. Li, L. Wang, D. S. Ginger, R. H. Friend, and 
H. J. Snaith, “Enhanced optoelectronic quality of perovskite thin films with 
hypophosphorous acid for planar heterojunction solar cells,” Nat. Commun., vol. 6, no. 
May, p. 10030, 2015. 

[168] A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, A. K. Y. Jen, and H. J. Snaith, “High-
performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene 
monolayers,” Nano Lett., vol. 13, no. 7, pp. 3124–3128, 2013. 

[169] J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, “Low-temperature processed meso-
superstructured to thin-film perovskite solar cells,” Energy Environ. Sci., vol. 6, no. 6, p. 
1739, 2013. 

[170] P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal 
trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates.,” 
Nat. Commun., vol. 4, p. 2761, Jan. 2013. 

[171] P. Brenner, M. Stulz, D. Kapp, T. Abzieher, U. W. Paetzold, A. Quintilla, I. a. Howard, H. Kalt, 
and U. Lemmer, “Highly stable solution processed metal-halide perovskite lasers on 
nanoimprinted distributed feedback structures,” Appl. Phys. Lett., vol. 109, no. 14, 2016. 

[172] S. Luo and W. Daoud, “Crystal Structure Formation of CH3NH3PbI3-xClx Perovskite,” 
Materials (Basel)., vol. 9, no. 12, p. 123, 2016. 

[173] D. Wang, Z. Liu, Z. Zhou, H. Zhu, Y. Zhou, C. Huang, Z. Wang, H. Xu, Y. Jin, B. Fan, S. Pang, 



Bibliography 

 
  
 

97 
 

and G. Cui, “Reproducible One-Step Fabrication of Compact MAPbI 3 − x Cl x Thin Films 
Derived from Mixed-Lead-Halide Precursors,” 2014. 

[174] K. M. Lee, C.-C. Chen, L.-C. Chen, S. H. Chang, K. S. Chen, S. C. Yeh, C. T. Chen, and C. G. Wu, 
“Thickness effects of thermally evaporated C60 thin films on regular-type CH3NH3PbI3 
based solar cells,” Sol. Energy Mater. Sol. Cells, vol. 164, no. February, pp. 13–18, 2017. 

[175] G. Mihu, I. Mihalache, I. Graur, N. Watanabe, H. Jintoku, T. Sagawa, J. Park, Z. Wang, and D. 
Kwon, “Surface Free Energy and Wettability Determination of Various Fullerene 
Derivative Films on Amorphous Carbon Wafer Surface Free Energy and Wettability 
Determination of Various Fullerene Derivative Films on Amorphous Carbon Wafer,” Jpn. J. 
Appl. Phys., vol. 47, no. 7, pp. 5730–5733, 2008. 

[176] L.-C. Chen, Y.-S. Lin, P.-W. Tang, C.-Y. Tai, Z.-L. Tseng, J.-H. Lin, S.-H. Chen, and H.-C. Kuo, 
“Unraveling current hysteresis effects in regular-type C 60 -CH 3 NH 3 PbI 3 heterojunction 
solar cells,” Nanoscale, vol. 2, pp. 17802–17806, 2017. 

[177] D. Shin, D. Kang, J. Jeong, S. Park, M. Kim, H. Lee, and Y. Yi, “Unraveling the Charge 
Extraction Mechanism of Perovskite Solar Cells Fabricated with Two-Step Spin Coating: 
Interfacial Energetics between Methylammonium Lead Iodide and C60,” J. Phys. Chem. 
Lett., vol. 8, no. 21, pp. 5423–5429, 2017. 

[178] K. Zhang, H. Yu, X. Liu, Q. Dong, Z. Wang, Y. Wang, N. Chen, Y. Zhou, and B. Song, 
“Fullerenes and derivatives as electron transport materials in perovskite solar cells,” Sci. 
China Chem., vol. 60, no. 1, pp. 144–150, 2017. 

[179] A. Al Mamun, T. T. Ava, K. Zhang, H. Baumgart, and G. Namkoong, “New PCBM/carbon 
based electron transport layer for perovskite solar cells,” Phys. Chem. Chem. Phys., vol. 19, 
no. 27, pp. 17960–17966, 2017. 

[180] D. Liu, Q. Wang, C. J. Traverse, C. Yang, M. Young, P. S. Kuttipillai, S. Y. Lunt, T. W. Hamann, 
and R. R. Lunt, “Impact of Ultrathin C 60 on Perovskite Photovoltaic Devices,” ACS Nano, p. 
acsnano.7b08561, 2018. 

[181] K. Wojciechowski, T. Leijtens, S. Siprova, C. Schlueter, M. T. Ho, J. T. W. Wang, C. Z. Li, A. K. 
Y. Jen, T. L. Lee, H. J. Snaith, M. T. H??rantner, J. T. W. Wang, C. Z. Li, A. K. Y. Jen, T. L. Lee, H. 
J. Snaith, M. T. Hoerantner, J. T. W. Wang, C. Z. Li, A. K. Y. Jen, T. L. Lee, and H. J. Snaith, 
“C60 as an efficient n-type compact layer in perovskite solar cells,” J. Phys. Chem. Lett., vol. 
6, no. 12, pp. 2399–2405, 2015. 

[182] A. Bera, A. D. Sheikh, M. A. Haque, R. Bose, E. Alarousu, O. F. Mohammed, and T. Wu, “Fast 
Crystallization and Improved Stability of Perovskite Solar Cells with Zn 2 SnO 4 Electron 
Transporting Layer: Interface Matters,” Appl. Mater. Interfaces, vol. 7, pp. 28404–28411, 
2015. 

[183] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. 
Cheng, and L. Spiccia, “A Fast Deposition-Crystallization Procedure for Highly Efficient 
Lead Iodide Perovskite Thin-Film Solar Cells,” Angew. Chemie, vol. 126, no. 37, pp. 10056–
10061, Sep. 2014. 

[184] Y. Zhou, M. Yang, W. Wu, A. L. Vasiliev, K. Zhu, and N. P. Padture, “Room-Temperature 
Crystallization of Hybrid-Perovskite Thin Films via Solvent-Solvent Extraction for High-
Performance Solar Cells,” J. Mater. Chem. A, vol. 3, pp. 8178–8184, 2015. 

[185] X. Fang, Y. Wu, Y. Lu, Y. Sun, S. Zhang, J. Zhang, W. Zhang, N. Yuan, and J. Ding, “Annealing-



Bibliography 

 

98 
 

free perovskite films based on solvent engineering for efficient solar cells,” J. Mater. Chem. 
C, vol. 5, no. 4, pp. 842–847, Jan. 2017. 

[186] N. Ahn, D.-Y. Son, I.-H. Jang, S. Min Kang, M. Choi, and N.-G. Park, “Highly Reproducible 
Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% 
Fabricated via Lewis Base Adduct of Lead(II) Iodide,” J. Am. Chem. Soc, vol. 137, p. 8699, 
2015. 

[187] J. Liu, C. Gao, X. He, Q. Ye, L. Ouyang, D. Zhuang, C. Liao, J. Mei, and W. Lau, “Improved 
Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency 
Solar Cell,” 2015. 

[188] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion 
lengths >175 mm in solution-grown CH3NH3PbI3 single crystals,” Science (80-. )., vol. 
347, no. 6225, p. 967, 2015. 

[189] W. Zhang, S. Pathak, N. Sakai, T. Stergiopoulos, P. K. Nayak, N. K. Noel, A. A. Haghighirad, 
V. M. Burlakov, W. Dane, A. Sadhanala, W. Li, D. S. Ginger, R. H. Friend, and H. J. Snaith, 
“Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for 
planar heterojunction solar cells,” Nat. Commun., vol. 6, no. May, pp. 1–9, 2015. 

[190] A. Buin, P. Pietsch, J. Xu, O. Voznyy, A. H. Ip, R. Comin, and E. H. Sargent, “Materials 
Processing Routes to Trap-Free Halide Perovskites,” Nano Lett., vol. 14, pp. 6281–6286, 
2014. 

[191] J. Shi, H. Wei, S. Lv, X. Xu, H. Wu, Y. Luo, and D. Li, “Control of Charge Transport in the 
Perovskite CH 3 NH 3 PbI 3 Thin Film,” pp. 842–847, 2015. 

[192] P. Brenner, T. Glöckler, D. Rueda-Delgado, T. Abzieher, M. Jakoby, B. S. Richards, U. W. 
Paetzold, I. A. Howard, and U. Lemmer, “Triple cation mixed-halide perovskites for 
tunable lasers,” Opt. Mater. Express, vol. 7, no. 11, 2017. 

[193] W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, J. 
Huang, Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, 
“Visible blind ultraviolet photodetector based on CH 3 NH 3 PbCl 3 thin film,” Opt. 
Express, vol. 24, no. 8, 2016. 

[194] Q. Chen, H. Zhou, Y. Fang, A. Z. Stieg, T.-B. Song, H.-H. Wang, X. Xu, Y. Liu, S. Lu, J. You, P. 
Sun, J. McKay, M. S. Goorsky, and Y. Yang, “The optoelectronic role of chlorine in 
CH3NH3PbI3-based perovskite solar cells,” Nat. Commun., vol. 6, pp. 1–9, 2015. 

[195] T. Ng, C. Chan, M. Lo, Q. Guan, and C. Lee, “Formation chemistry of perovskites with mixed 
iodide / chloride content and the implications on charge transport properties,” J. Mater. 
Chem. A Mater. energy Sustain., vol. 3, pp. 1–5, 2014. 

[196] R. A. Sasala and J. R. Sites, “Time dependent voltage in CuInSe/sub 2/ and CdTe solar 
cells,” in Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 
1993 (Cat. No.93CH3283-9), pp. 543–548. 

[197] F. Haug, D. Rudmann, H. Zogg, and A. N. Tiwari, “Light soaking effects in Cu ( In , Ga ) Se 2 
superstrate solar cells,” vol. 432, no. 03, pp. 431–435, 2003. 

[198] C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge 
Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater., vol. 26, 
no. 10, pp. 1584–1589, Mar. 2014. 

[199] K. Zheng, K. Zidek, M. Abdellah, M. E. Messing, M. J. Al-marri, and T. Pullerits, “Trap States 



Bibliography 

 
  
 

99 
 

and Their Dynamics in Organometal Halide Perovskite Nanoparticles and Bulk Crystals 
Trap States and Their Dynamics in Organometal Halide Perovskite Nanoparticles and 
Bulk Crystals,” 2016. 

[200] X. Wu, M. T. Trinh, D. Niesner, H. Zhu, Z. Norman, J. S. Owen, O. Ya, B. J. Kudisch, and X. 
Zhu, “Trap States in Lead Iodide Perovskites,” 2015. 

[201] D. W. DeQuilettes, W. Zhang, V. M. Burlakov, D. J. Graham, T. Leijtens, A. Osherov, V. 
Bulović, H. J. Snaith, D. S. Ginger, and S. D. Stranks, “Photo-induced halide redistribution 
in organic-inorganic perovskite films,” Nat. Commun., vol. 7, no. May, 2016. 

[202] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “SI Electron-hole 
diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science (80-. 
)., vol. 347, no. 6225, pp. 967–970, Jan. 2015. 

[203] Y. Hou, S. Scheiner, X. Tang, N. Gasparini, M. Richter, N. Li, P. Schweizer, S. Chen, H. Chen, 
C. Omar, R. Quiroz, X. Du, G. J. Matt, A. Osvet, E. Spiecker, R. H. Fink, A. Hirsch, M. Halik, C. 
J. Brabec, C. O. R. Quiroz, X. Du, G. J. Matt, A. Osvet, E. Spiecker, R. H. Fink, A. Hirsch, M. 
Halik, and C. J. Brabec, “Suppression of Hysteresis Effects in Organohalide Perovskite 
Solar Cells,” Adv. Mater. Interfaces, vol. 4, no. 1700007, pp. 1–9, 2017. 

[204] H. Zhang, C. Liang, Y. Zhao, M. Sun, H. Liu, J. Liang, D. Li, F. Zhang, and Z. He, “Dynamic 
interface charge governing the current–voltage hysteresis in perovskite solar cells,” Phys. 
Chem. Chem. Phys., vol. 17, no. 15, pp. 9613–9618, 2015. 

[205] E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumuller, M. G. 
Christoforo, and M. D. McGehee, “Hysteresis and transient behavior in current-voltage 
measurements of hybrid-perovskite absorber solar cells,” Energy Environ. Sci., Aug. 2014. 

[206] J. M. Azpiroz, E. Mosconi, J. Bisquert, and F. De Angelis, “Environmental Science and its 
role in perovskite solar cell operation †,” Energy Environ. Sci., vol. 8, pp. 2118–2127, 
2015. 

[207] W. Tress, N. Marinova, T. Moehl, S. M. Zakeeruddin, N. Mohammad K., M. Grätzel, M. K. 
Nazeeruddin, and M. Grätzel, “Understanding the rate-dependent J–V hysteresis, slow 
time component, and aging in CH 3 NH 3 PbI 3 perovskite solar cells: the role of a 
compensated electric field,” Energy Environ. Sci., vol. 8, no. 3, pp. 995–1004, 2015. 

[208] W. Nie, H. Tsai, R. Asadpour, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, 
M. a. Alam, H.-L. H. Wang, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, 
S. Tretiak, M. a. Alam, H.-L. H. Wang, and  a. D. Mohite, “High-efficiency solution-processed 
perovskite solar cells with millimeter-scale grains,” Science, vol. 347, no. 6221, pp. 522–
525, 2015. 

[209] J. Duan, Q. Xiong, B. Feng, Y. Xu, J. Zhang, and H. Wang, “Low-temperature processed SnO2 
compact layer for efficient mesostructure perovskite solar cells,” Appl. Surf. Sci., vol. 391, 
pp. 677–683, 2017. 

[210] E. J. Juarez-Perez, M. Wu, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. 
Jaegermann, and I. Mora-sero, “Role of the Selective Contacts in the Performance of Lead 
Halide Perovskite Solar Cells,” J. Phys. Chem. Lett., vol. 5, pp. 680–685, 2014. 

[211] F. Xu, J. Zhu, R. Cao, S. Ge, W. Wang, H. Xu, R. Xu, Y. Wu, M. Gao, Z. Ma, F. Hong, and Z. Jiang, 
“Elucidating the evolution of the current-voltage characteristics of planar organometal 
halide perovskite solar cells to an S-shape at low temperature,” Sol. Energy Mater. Sol. 



Bibliography 

 

100 
 

Cells, vol. 157, pp. 981–988, 2016. 

[212] M. F. Aygüler, A. G. Hufnagel, P. Rieder, M. Wussler, W. Jaegermann, T. Bein, V. Dyakonov, 
M. L. Petrus, A. Baumann, and P. Docampo, “Influence of Fermi Level Alignment with Tin 
Oxide on the Hysteresis of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces, p. 
acsami.8b00990, 2018. 

[213] T. Gatti, E. Menna, M. Meneghetti, M. Maggini, A. Petrozza, and F. Lamberti, “The 
Renaissance of fullerenes with perovskite solar cells,” Nano Energy, vol. 41, pp. 84–100, 
Nov. 2017. 

[214] P. Pistor, J. Borchert, W. Fränzel, R. Csuk, and R. Scheer, “Monitoring the Phase Formation 
of Coevaporated Lead Halide Perovskite Thin Films by in Situ X-ray Diffraction,” J. Phys. 
Chem. Lett., vol. 5, no. 19, pp. 3308–3312, Oct. 2014. 

[215] L. M. Herz, “Charge Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites,” 
arXiv, no. February, pp. 1–26, 2015. 

[216] P.-W. Liang, C.-Y. Liao, C.-C. Chueh, F. Zuo, S. T. Williams, X.-K. Xin, J. Lin, and A. K.-Y. Jen, 
“Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient 
Planar-Heterojunction Solar Cells.,” Adv. Mater., pp. 1–7, Mar. 2014. 

[217] L. Xiong, Y. Guo, J. Wen, H. Liu, G. Yang, P. Qin, and G. Fang, “Review on the Application of 
SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater., vol. 28, no. 35, pp. 1–18, 2018. 

[218] N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M. S. Islam, and S. A. Haque, “Fast 
oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite 
solar cells,” Nat. Commun., vol. 8, p. 15218, May 2017. 

[219] G. Santarossa, K. Hahn, and A. Baiker, “Free Energy and Electronic Properties of Water 
Adsorption on the SnO 2 (110) Surface,” Langmuir, vol. 29, no. 18, pp. 5487–5499, May 
2013. 

[220] R. Zangi, “Are Buckyballs Hydrophobic?,” J. Phys. Chem. B, vol. 118, p. 37, 2014. 

[221] Q. Chen, H. Zhou, T. Bin Song, S. Luo, Z. Hong, H. S. Duan, L. Dou, Y. Liu, and Y. Yang, 
“Controllable self-induced passivation of hybrid lead iodide perovskites toward high 
performance solar cells,” Nano Lett., vol. 14, no. 7, pp. 4158–4163, 2014. 

[222] D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. C. 
Baena, J. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, 
“Efficient luminescent solar cells based on tailored mixed-cation perovskites,” no. 
January, 2016. 

[223] G. N. Advani, P. Kluge-Weiss, R. L. Longini, and A. G. Jordan, “Oxygen vacancy diffusion in 
SnO2 thin films,” Int. J. Electron. Theor. Exp., vol. 48, no. 5, pp. 403–411, 1980. 

[224] K. Wojciechowski, T. Leijtens, S. Siprova, C. Schlueter, M. T. Ho, J. T. Wang, C. Li, A. K. Jen, 
T. Lee, and H. J. Snaith, “C60 as an E fficient n‑type compact layer in Perovskite Solar 
Cells,” 2015. 

[225] T. Tokimoto, N. Kawasaki, T. Nakamura, J. Akutagawa, and S. Tanada, “Removal of lead 
ions in drinking water by coffee grounds as vegetable biomass,” J. Colloid Interface Sci., 
vol. 281, no. 1, pp. 56–61, 2005. 

[226] Fraunhofer ISE, “PHOTOVOLTAICS REPORT,” 2019. 



 

101 
 

 

List of Figures 

 

Figure 1. Number of publications on Web of Science, using the keywords: a.) Perovskite and b.) 

Perovskite solar cells. Source: Web of Science [10]. ........................................................................... 1 

Figure 2. (a) Schematic diagram of a biased p-i-n junction (b) Band diagram of a p-i-n junction 

under bias voltage[21]. ......................................................................................................................... 6 

Figure 3. Standard solar spectrum in space (AM0) and terrestrial (AM1.5 Global), following the 

standards ASTM E490 and ASTMG 173[25]. In green, the 300-1100 nm range is highlighted. ..... 7 

Figure 4. Crystalline structure of perovskites including a monovalent organic cation (A), a metal 

cation (B) and a halide anion (X). ......................................................................................................... 9 

Figure 5. PSCs Architectures and the schematic of the band diagram. HTM: hole transfer 

material; ETL: electron transfer layer; TCO: transparent conductive oxide .................................. 11 

Figure 6. Schematic diagram of the radiative recombination upon illumination. In yellow circles, 

photo-generated electrons upon incident photons (green arrows) are shown; in white circles, 

holes or positive charges are shown. Eg: energy bandgap; PL: photoluminescence. ..................... 16 

Figure 7. Schematic diagram of the architecture system used for extraction of the diffusion 

length based on the time-resolved photoluminescence: (left) the absorber on an insulating 

substrate and (right) in presence of an electron quencher. Thicknesses of layers in the 

schematic diagram are not in scale. ................................................................................................... 18 

Figure 8. Schematic diagram of the time-resolved photoluminescence setup. The sample is 

placed in the sample holder and excited by the pump laser. In the diagram: (1) dichroic mirror, 

(2) UV filter, (3) neutral density (ND) filters, (4) Green laser filter, (5) Detection optics. ............ 20 

Figure 9. (a) Schematic diagram of the light beams as they pass through a single slab of 

material. (b) Absorption of the incident beam and how it affects the transmitted beam. ............ 21 

Figure 10. (a) Schematic diagram of the transmission and reflection beams for an architecture 

of a film-substrate system in a finite-thickness substrate (classical approach) and (b) with a 

semi-infinite substrate. ....................................................................................................................... 22 

Figure 11. Schematic diagram of the UV-Vis setup. ......................................................................... 24 

Figure 12. Equivalent circuit of a solar cell, including parasitic resistances. ................................ 25 

Figure 13. (a) J-V characteristics of a solar cell under illumination with important parameters 

shown on the plot. In red, the power extracted from the solar cell. (b) J-V characteristic curve of 

a solar cell with hysteresis, measured in backward and forward direction. In the plot: JSC stands 

for short-circuit current density; JMPP, for maximum power current density; VOC, for open-circuit 

voltage; VMPP, voltage at the maximum power point. ........................................................................ 25 

Figure 14. (a-d) Water droplet deposited on C60 layers for measurement of the static contact 

angle. (e) Attempt to measure the roll-off angle on C60 samples. .................................................... 30 

Figure 15. Schematic diagram of the deposition of the C60 layer via spin-coating. ....................... 31 

Figure 16. Schematic diagram of the deposition of perovskite with the one-step solvent-

engineering (toluene) process............................................................................................................ 32 

Figure 17. Schematic diagram  of the deposition of perovskite with lead acetate process ......... 33 



List of Figures 

 

102 
 

Figure 18. Wettability issues in the perovskite layers due to the hydrophobic substrates (a) fast 

dispense on hydrophilic substrates (e.g. SnO2). (b). fast dispense on hydrophobic substrates ... 34 

Figure 19. Schematic diagram of the slow dispense deposition of the perovskite solution on 

hydrophobic substrates. ..................................................................................................................... 35 

Figure 20. (a) Perovskite layers deposited on C60 layers using fast solution dropping. (b) 

Perovskite layers deposited on C60 layers using slow solution dropping. ...................................... 35 

Figure 21. MAPbI3 layers fabricated with the one-step lead iodide method (a) on glass and (b) 

on FTO/TiO2 and using the toluene solvent-engineering step (c) on glass, (d) on FTO/TiO2, with 

visible scratches from the toluene drop. ........................................................................................... 40 

Figure 22. Perovskite layer fabricated with the lead iodide method, with and without solvent-

engineering step (toluene), (a) Absorptance, (b) Absorption coefficient. ...................................... 41 

Figure 23. Schematic diagram of the perovskite layer quality in the: (a) one-step lead iodide 

process (b) one step process with the solvent engineering (toluene) step. ................................... 42 

Figure 24. Steady-state and time-resolved PL for reference device under different fluences. .... 43 

Figure 25. Steady-state and time-resolved PL of lead acetate process on glass, with different 

solid concentration of the precursor powders in the solvent, compared to perovskite layers 

deposited from the one-step lead iodide (with solvent engineering step). .................................... 43 

Figure 26. (a) Steady-state, (b) time-resolved PL and (c) transmittance spectra of perovskite 

layers on glass, deposited with the lead acetate process, with different PbCl2 percentage in the 

perovskite solution. In (c), the transmittance of PbI2 spin-coated on glass is included (in green) 

for comparison. .................................................................................................................................... 44 

Figure 27. (a) Light soaking on perovskite samples during illumination and after 2 cycles of 

darkness. (b.) Normalized values of the PL spectra, showing no degradation of the sample. ...... 45 

Figure 28. Steady-state and time-resolve PL of MAPI on glass before and after LS deposited 

using the one-step solvent-engineering process (a, b) and of MAPbI3-xClx on glass deposited 

using the optimized lead-acetate process (c, d). ............................................................................... 46 

Figure 29. Schematic diagram of the trap filling in the perovskite layer upon light soaking. ..... 47 

Figure 30. ∆k values for perovskite layers deposited from lead acetate two-step process and the 

reference process, under different fluences ...................................................................................... 48 

Figure 31. Perovskite layer quality on hydrophobic substrates deposited on (a) hot substrates, 

(b) cold substrates. (Perovskite solution deposited with slow dispense technique before spin-

coating). ................................................................................................................................................ 49 

Figure 32. Transmittance and absorptance spectra of perovskite layers deposited on (a) warm 

substrates, (b) cold substrates. (Perovskite solution deposited with slow dispense technique 

before spin-coating). ........................................................................................................................... 50 

Figure 33. Statistical distribution of solar cell parameters extracted from J-V measurements in 

PSCs deposited with the optimized lead acetate with warm (a)-(d) and cold (e)-(h) substrates. 

Architecture: ITO/SnO2/C60/MAPbI3-xClx/Spiro/Au with solution-processed C60 interlayers (for 

evaluation of the process on hydrophobic substrates).  In the figure: PCE: power conversion 

efficiency, JSC: short-circuit current, VOC: open circuit voltage and FF: fill factor. ........................... 51 

Figure 34. Statistical distribution of solar cell parameters extracted from J-V measurements in 

PSCs deposited with the optimized lead acetate with 10 and 15 minutes of waiting time.  

Architecture: ITO/SnO2/MAPbI3-xClx/Spiro/Au. (a) Power conversion efficiency, PCE. (b) Short-

circuit current, JSC. (c) Open circuit voltage, VOC. (d) Fill factor, FF. (e) PCE quotient, PCEq, the 

ratio of the backward and forward PCE, and (f) Hysteresis index, HI. ........................................... 52 



List of Figures 

 
  
 

103 
 

Figure 35. (a) Transmittance, (b) reflectance, (c) absorptance spectra and (d) absorption 

coefficient of perovskite layers deposited from the optimized lead acetate with 15 minutes of 

waiting time.  Architecture: Glass/MAPbI3-xClx. Colors denote several samples to confirm 

reproducibility. .................................................................................................................................... 53 

Figure 36. (a) J-V characteristic curve of the reference architecture. (b) Schematic diagram of 

the architecture used for PSCs with C60 interlayers. (c) J-V characteristic of perovskite solar cells 

with solution-process C60 interlayer in different concentrations (reference device in black). (d) 

Evolution of the PCE measured at constant voltage for the PSCs. ................................................... 56 

Figure 37. Statistical distribution of solar cell parameters extracted from J-V measurements in 

devices with C60 interlayer in the architecture: ITO/SnO2/C60/MAPbI3-xClx/Spiro/Au. Reference 

is the control device without C60 interlayer. (a) Power conversion efficiency, PCE. (b) Short-

circuit current, JSC. (c) Open circuit voltage, VOC. (d) Fill factor, FF. (e) PCE quotient, PCEq, the 

ratio of the backward and forward PCE, and (f) Hysteresis index, HI. ........................................... 58 

Figure 38. AFM images of the substrates for the perovskite layer in the reference and with the 

passivating layers. (a) ITO/SnO2 (reference), (b) ITO/SnO2/C60 10 mg/ml, (c) ITO/SnO2/C60 15 

mg/ml, (d) ITO/SnO2/C60 20 mg/ml. ................................................................................................. 59 

Figure 39. SEM images of perovskite layers with different substrates. (a, b): ITO/SnO2. (c, d) 

ITO/SnO2/C60 10 mg/ml. (e, f) ITO/SnO2/C60 15 mg/ml. Images on the left are taken with a 20k x 

magnification and the images on the right with 50k x magnification. ............................................ 60 

Figure 40. X-ray difractogram of perovskite deposited on different substrates, following the 

ITO/SnO2/C60/MAPbI3-xClx architecture. Reference is the control device without C60 interlayer. 

The y-axis is a logarithmic scale. The perovskite peaks are signaled by purple circles, the PbI2 

peaks, with yellow squares. ................................................................................................................ 61 

Figure 41. UV-Vis spectra of the ITO/SnO2/C60/MAPbI3-xClx architecture, with different C60 

layers. (a) Transmittance spectra, (b) Absorptance spectra of MAPbI3-xClx on ITO/SnO2/C60 

(measured from the air side). ............................................................................................................. 62 

Figure 42. (a) EQE of the solar cells following the configuration ITO/SnO2/C60 X/ MAPbI3-

xClx/Spiro/Au. C60 is deposited via spin-coating from solutions. (b) Normalized EQE of the same 

cells. All signals are normalized to the maximum at the reference (at 400 nm). ........................... 62 

Figure 43. (a) Transmission of layers before perovskite deposition. The ITO/SnO2 layer as 

reference and ITO/SnO2 layers with C60 deposited from different concentrations. Black line 

denotes the wavelength for the maximum EQE value in the reference, shown here as a guide to 

the eye. (b) Ratio of the integral current from EQE measurement and the short circuit current 

(JSC, measured in backward and forward direction). ........................................................................ 63 

Figure 44. (a) Steady-state and (b) Time-resolved Photoluminescence of perovskite layers on 

glass, ITO/SnO2 (reference), and ITO/SnO2/C60 in different concentrations. In grey, the 

perovskite layer on glass for comparison. ......................................................................................... 64 

Figure 45. (a) Transient Absorption (TA) spectra of ITO/SnO2/C60 (10 mg/ml)/MAPbI3-xClx. 

Transient Absorption decay and time-resolved photoluminescence data of (b) Reference: 

ITO/SnO2/MAPbI3-xClx and (c) Sample with C60: ITO/SnO2/C60 (10 mg/ml)/MAPbI3-xClx. The TA 

signal is integrated from the 600-700 nm range and inverted for ease of comparison. The blue 

lines serve as a guide to the eye. ........................................................................................................ 66 

Figure 46. Schematic diagram of the energy bands and transport mechanisms in: (a) the 

reference (ITO/SnO2/ MAPbI3-xClx) and in (b) ITO/SnO2/ C60 (10 mg/ml)/ MAPbI3-xClx. ............. 67 



List of Figures 

 

104 
 

Figure 47. Evolution of the PCE at constant voltage for architecture with SnO2 as ETL and C60 as 

interlayer measured: (a) upon fabrication, (b) after 7 days and (c) after 70 days. ....................... 69 

Figure 48. Left: Schematic diagram of the architecture. Right: J-V characteristic curve of solar 

cells with the architecture: ITO/C60/MAPbI3-xClx /Spiro/Au, with different C60 concentrations. . 71 

Figure 49. Statistical parameters extracted from the J-V characteristic curves of solar cells with 

the architecture: ITO/C60/MAPbI3-xClx /Spiro/Au. a.) power conversion efficiency, b.) Open 

circuit voltage, c.) Short-circuit current, d.) Fill factor, e.) PCE quotient f.) Hysteresis index. ...... 71 

Figure 50. SEM images of perovskite layers with different substrates. (a) ITO/ MAPbI3-xClx, (b) 

ITO/C60/MAPbI3-xClx. Images with 50k x Magnification. .................................................................. 72 

Figure 51. (a) X-ray diffraction spectra of MAPbI3-xClx layers on ITO/SnO2 and ITO/C60 (from 

different concentrations). Zoom of the main perovskite peaks, (100) and (200), as evaluated 

from day 6 and day 90 in (b) Reference, (c) C60 10 mg/ml, (d) C60 15 mg/ml. .............................. 73 

Figure 52. (a) EQE of the C60 devices under illumination compared to the Reference (SnO2 as 

ETL). Comparison of the EQE after storage time in (b) the Reference device, (c) device with 10 

mg/ml C60 layer as ETL and (d) the device with 20 mg/ml C60 layer as ETL. ................................. 74 

Figure 53. J-V curve of the reference (a) and the C60 device (b) evaluated in the backward and 

forward direction and throughout a range of days. The samples are stored between 

measurements in a nitrogen glovebox in the dark. .......................................................................... 75 

Figure 54. Average values of the J-V parameters of the reference and C60 devices (10 mg/ml), 

measured in the backward direction through a range of days: (a) PCE, (b) JSC (c) VOC, (d) FF. In 

dotted lines, the forward measurement. ........................................................................................... 76 

Figure 55. Evolution of the PCE of the devices with C60 as ETL measured at constant voltage 

upon fabrication (a), in day 20 (b) and day 75 (c). In black, the reference. The samples are 

stored between measurements in a nitrogen glovebox in the dark. ............................................... 77 

Figure 56. (a) Normalized short-circuit current density in perovskite solar cells with different 

ETLs under a temperature cycle (10 °C-60 °C, in steps of 5 °C, in green). (b) J-V characteristic 

curve of the C60 devices (as interlayer and as ETL) before, after the temperature cycle (3h), and 

after 4.5 and 14h. ................................................................................................................................. 77 

Figure 57. UV-Vis spectra of the ITO/SnO2/C60/MAPbI3-xClx architecture, with different C60 

layers. Transmittance spectra (a), (b) absorptance spectra (c)  of MAPbI3-xClx on ITO/SnO2/C60 

(calculated from the measurements at ITO side). .......................................................................... 111 

Figure 58. UV-Vis spectra of the ITO/SnO2/C60/MAPbI3-xClx architecture, with different C60 

layers (c) Reflection spectra from the air side, (f) Absorbance of MAPbI3-xClx on ITO/SnO2/C60 

(calculated from the measurements at air side). ............................................................................ 111 

Figure 59. Steady-state and time-resolved PL of perovskite layers deposited on FTO/TiO2/C60 in 

different concentrations. C60 is solution processed and the perovskite layers if deposited using 

the lead acetate method.  In gray, the data for the perovskite layer on glass. .............................. 112 

Figure 60. UV-Vis spectra of the ITO/SnO2/C60/MAPbI3-xClx architecture, with different C60 

layers  (c) Reflection spectra from the air side, (f) Absorbance of MAPbI3-xClx on ITO/SnO2/C60 

(calculated from the measurements at air side). .......................... Fehler! Textmarke nicht definiert. 

Figure 61. UV-Vis spectra of the ITO/SnO2/C60/MAPbI3-xClx architecture, with C60 deposited 

through thermal evaporation. (a) Transmittance spectra (b) Absorptance spectra of MAPbI3-xClx 

on ITO/SnO2/C60 (measured from air side). .................................................................................... 112 

Figure 62. (a) Steady-state and (b) Time-resolved Photoluminescence of perovskite layers on 

glass, ITO/ (reference), and ITO/ C60 in different concentrations. In grey, the perovskite layer on 

glass for comparison. ........................................................................................................................ 112 



List of Figures 

 
  
 

105 
 

Figure 63. Statistical parameters extracted from the J-V characteristic curves of solar cells with 

the architecture: ITO/C60/MAPbI3-xClx /Spiro/Au, where C60 is evaporated. a.) power conversion 

efficiency, b.) Open circuit voltage, c.) Short-circuit current, d.) Fill factor, e.) PCE quotient f.) 

Hysteresis index. ............................................................................................................................... 113 

Figure 64. J-V characteristic curve of solar cells with the architecture: ITO/SnO2/C60/MAPbI3-

xClx /Spiro/Au, with C60 evaporated as interlayer in different thickness...................................... 113 

Figure 65. Evolution of the PCE at constant voltage for architecture: ITO/SnO2/C60/MAPbI3-xClx, 

where C60 is evaporated. The data is measured: (a) upon fabrication, (b) after 20 days. ........... 113 

Figure 66. Tranmittance spectra of substrates: ITO, ITO/C60 (10 mg/ml) and ITO/ C60 (20 

mg/ml). .............................................................................................................................................. 114 

Figure 67. (a) Steady-state and (b) Time-resolved Photoluminescence of perovskite layers on 

glass, ITO/ (reference), and ITO/ C60 in different concentrations. In grey, the perovskite layer on 

glass for comparison. ........................................................................................................................ 114 

Figure 68. PL analysis plots of the layer architecture: ITO/C60/MAPbI3-xClx a.): Lifetimes and 

weights obtained from fitting the equation: y(t)=y0+A1*exp(-t/τ1)+A2*exp(-t/τ2)................... 114 

Figure 69. UV-Vis spectra of the ITO/ C60/MAPbI3-xClx architecture, with different C60 layers  (c) 

Transmittance spectra (f) Absorptance spectra. All spectra are measured from the air side. ... 115 

Figure 70. Water droplet on ITO/C60 in different concentrations................................................ 115 

Figure 71. XRD layers with the ITO/ C60 /MAPbI3-xClx architecture, with different C60 solution-

processed ETL. In black, the perovskite layer deposited on ITO. .................................................. 115 

Figure 72. Transmittance and reflectance spectra of perovskite layer fabricated with the lead 

iodide method, with and without solvent-engineering step (toluene). ........................................ 116 

Figure 73. Normalized PL spectra of perovskite layers on glass deposited with the lead acetate 

method, with different HPA concentration (Figure 24) ................................................................. 116 

Figure 74. Normalized steady-state PL of MAPI on glass, with different PbCl2 percentage in the 

perovskite solution (From Figure 26) ............................................................................................. 116 

Figure 75. Transmittance spectra of lead iodide (PbI2) spin-coated on glass. ............................ 117 

 

 

 

 

 

 

 

 

 

 

 



List of Figures 

 

106 
 

 

 

 

 

 



 

107 
 

 

List of Tables  

 

Table 1. Parameters for the Spiro and the Lithium salt solution used. .......................................... 29 

Table 2. Parameters for the perovskite solutions used in the optimized lead acetate method. .. 34 

Table 3. Spin-coating parameters for the layers in the devices for the optimized method. ........ 36 

Table 4. Average parameters for the devices with architecture ITO/SnO2/C60/MAPbI3-

xClx/Spiro/Au, with different C60 concentrations, extracted from the current density-voltage 

curve and power conversion efficiency measured after 300 s at a constant voltage. ................... 57 

Table 5. Lifetimes (τ1 and τ2) obtained from time-resolved photoluminescence measurements. 

For the sample in glass and ITO/SnO2, a single-exponential decay equation is used (Eq. (6.1)). 

For the samples with C60 layers, a two-exponential decay equation (Eq. (6.2)) where A1 and A2 

are the respective weights of τ1 and τ2. The weighted lifetime is calculated from 𝜏𝑤 = 𝜏1 ∗ 𝐴1 +

𝜏2 ∗ 𝐴2𝐴1 + 𝐴2. The CTE is calculated using Eq. (3.11)................................................................... 64 

 

 

 

  



List of Tables 

 

108 
 

 

 



 

109 
 

 

Publication list 

 

Papers 

 D. Rueda-Delgado, I. Hossain, M. Jakoby, J. Schwenzer, I. Howard, U. Lemmer, and U. W. Paetzold. 

Solution-processed and evaporated C60 interlayers in perovskite photovoltaics. Submitted. 

 J. A. Schwenzer, L. Rakocevic, T. Abzieher, D. Rueda-Delgado, S. Moghadamzadeh, S. Gharibzadeh, I. 

Hossain, R. Gehlhaar, B. Richards, U. Lemmer, and U. Paetzold. Towards stable perovskite solar cell 

architectures: Robustness against temperature variations under real world conditions. Submitted. 

 I. Hossain, D. Hudry, F. Mathies, T. Abzieher, S. Moghadamzadeh, D. Rueda-Delgado, F. Schackmar, M. 

Bruns, R. Andriessen, T. Aernouts, F. Giacomo, U. Lemmer, B. Richards, U. Paetzold and A. Hadipour. 

Scalable Processing of Low Temperature TiO2 Nanoparticles for High Efficiency Perovskite Solar Cell. ACS 

Appl. Energy Mater. 2019, 2, 1, 47-58. https://doi.org/10.1021/acsaem.8b01567 

 J. Schwenzer, L. Rakocevic, T. Abzieher, D. Rueda-Delgado, R. Gehlhaar, B. Richards, U. Lemmer, and 

U. Paetzold. Stable Perovskite Solar Cell Architectures: Robustness against Temperature Variations 

Under Real World Conditions. Conference: 2018 IEEE 7th World Conference on Photovoltaic Energy 

Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) 

https://doi.org/10.1109/PVSC.2018.8547781 

 P. Brenner, T. Glöckler, D. Rueda-Delgado, T. Abzieher, M. Jakoby, B. Richards, U. W. Paetzold, I. A. 

Howard, and U. Lemmer. Triple cation mixed-halide perovskites for tunable lasers. Opt. Mater. Express 

2017 7, 4082-4094 https://doi.org/10.1364/OME.7.004082 

 

Conference poster 

 Solution-processed C60 as passivating layer in perovskite solar cells. KSOP Summer School, Bad 

Herrenalb, Germany, 4 – 6.09.18 (Poster) 

 Influence of passivating layers in perovskite-based solar cells. PhD Seminar on Photovoltaics, 

Karlsruhe, Germany, 11.10.17 (Presentation) 

 Optical and electrical studies of charge carrier mechanisms in perovskite solar cell. KSOP Spring 

Seminar, Karlsruhe, Germany, 14.03.17 (Presentation) 

 Light soaking induced enhancement of carrier lifetime in CH3NH3PbI3 layers. Europhotonics Spring 

School 2016, Porquerolles, France, 29 – 31.04.16 (Presentation) 

 Photoluminescence studies on CH3NH3PbI3: light soaking effect on carrier lifetime and influence of 

fabrication parameters. International Conference on Perovskite Solar Cells and Optoelectronics 

(PSCO), Genova, Italy, 26 – 28.09.2016 (Poster) 

 Time-resolved Photoluminescence of Perovskite layers. Europhotonics Spring School 2015, 

Paderborn, Germany, 13 – 16.04.15 (Poster) 

 Hybrid solar cells based on Perovskite Materials. Europhotonics Spring School 2014, Porquerolles, 

France, 31.03- 3.04.14 (Poster) 

 

 

 

https://pubs.acs.org/action/showCitFormats?doi=10.1021%2Facsaem.8b01567
https://pubs.acs.org/action/showCitFormats?doi=10.1021%2Facsaem.8b01567
https://doi.org/10.1109/PVSC.2018.8547781
https://doi.org/10.1364/OME.7.004082


Publication list 

 

110 
 

 



 

111 
 

 

Appendix 

 

A. Solution-processed C60: ITO side  

 

    

 

Figure 57. UV-Vis spectra of the ITO/SnO2/C60/MAPbI3-xClx architecture, with different C60 
layers. Transmittance spectra (a), (b) absorptance spectra (c) of MAPbI3-xClx on 
ITO/SnO2/C60 (calculated from the measurements at ITO side).   

 

   

 

Figure 58. UV-Vis spectra of the ITO/SnO2/C60/MAPbI3-xClx architecture, with different C60 
layers.  Reflection spectra from the (a) air side and from (b) ITO side.    
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Figure 59. (a) Steady-state and (b) time-resolved PL of perovskite layers deposited on 
FTO/TiO2/C60 in different concentrations. C60 is solution processed and the perovskite 
layers if deposited using the lead acetate method.  In gray, the data for the perovskite 
layer on glass. 

 
   
 

B. Evaporated C60 as interlayer. 

 

 

 

Figure 60. UV-Vis spectra of the ITO/SnO2/C60/MAPbI3-xClx architecture, with C60 deposited 
through thermal evaporation. (a) Transmittance spectra (b) Absorptance spectra of 
MAPbI3-xClx on ITO/SnO2/C60 (measured from air side).   

 

 

 

 

Figure 61. (a) Steady-state and (b) Time-resolved Photoluminescence of perovskite layers on 
glass, ITO/ (reference), and ITO/ C60 in different concentrations. In grey, the perovskite 
layer on glass for comparison. 
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Figure 62. Statistical parameters extracted from the J-V characteristic curves of solar cells with 
the architecture: ITO/C60/MAPbI3-xClx /Spiro/Au, where C60 is evaporated. a.) power 
conversion efficiency, b.) Open circuit voltage, c.) Short-circuit current, d.) Fill factor, 
e.) PCE quotient f.) Hysteresis index. 

 

 

 

Figure 63. J-V characteristic curve of solar cells with the architecture: ITO/SnO2/C60/MAPbI3-

xClx /Spiro/Au, with C60 evaporated as interlayer in different thickness. 

 

 

 

Figure 64. Evolution of the PCE at constant voltage for architecture: ITO/SnO2/C60/MAPbI3-xClx, 
where C60 is evaporated. The data is measured: (a) upon fabrication, (b) after 20 days.  
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C. C60 as ETL optical characterization. 

 

 

 

Figure 65. Tranmittance spectra of substrates: ITO, ITO/C60 (10 mg/ml) and ITO/ C60 (20 
mg/ml). 

 

 

 

Figure 66. (a) Steady-state and (b) Time-resolved Photoluminescence of perovskite layers on 
glass, ITO/ (reference), and ITO/ C60 in different concentrations. In grey, the perovskite 
layer on glass for comparison. 

 

 
 

 

Figure 67. PL analysis plots of the layer architecture: ITO/C60/MAPbI3-xClx a.): Lifetimes and 
weights obtained from fitting the equation: y(t)=y0+A1*exp(-t/τ1)+A2*exp(-t/τ2). 
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Figure 68. UV-Vis spectra of the ITO/ C60/MAPbI3-xClx architecture, with different C60 layers  (c) 
Transmittance spectra (f) Absorptance spectra. All spectra are measured from the air 
side.   
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Figure 69. Water droplet on ITO/C60 in different concentrations  

 

 

 

Figure 70. XRD layers with the ITO/ C60 /MAPbI3-xClx architecture, with different C60 solution-
processed ETL. In black, the perovskite layer deposited on ITO.  
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D. Optimization of fabrication parameters (others) 

 

 

 

Figure 71. Transmittance and reflectance spectra of perovskite layer fabricated with the lead 
iodide method, with and without solvent-engineering step (toluene). 

 

 

 

Figure 72. Normalized PL spectra of perovskite layers on glass deposited with the lead acetate 
method, with different HPA concentration (Figure 24) 

 

 

 

Figure 73. Normalized steady-state PL of MAPI on glass, with different PbCl2 percentage in the 
perovskite solution (From Figure 26) 
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Figure 74. Transmittance spectra of lead iodide (PbI2) spin-coated on glass. 

 

E. Detailed preparation steps 

The substrates have to be cleaned with glass cleaning detergent and water before placing them 

in the ultrasonic baths. Two ultrasonic baths are necessary: acetone and isopropanol. Before 

SnO2 deposition, the surface of the samples is plasma cleaned in an O2 plasma for 3 min at 

maximum power. Samples with SnO2 layers can be stored in a glovebox. They however need to 

be completely cooled down before further depositions. 

The C60 solution can be prepared up to 5 days before using, but it needs to be stirred thoroughly. 

Devices built with older C60 solutions show no difference from the reference. Before C60 

deposition, the surface of the samples is plasma cleaned in an O2 plasma for 1 min at 30 % the 

maximum power.  

Before perovskite deposition, the surface of the samples is plasma cleaned in an O2 plasma for 1 

min at 30 % the maximum power. If C60 is the substrate, this step is executed before C60 

deposition and skipped for the perovskite deposition.  

The perovskite solution (optimized lead acetate single step) has to be mixed shortly before 

deposition. (Solutions mixed the day or hours before form layers with a white haze, signal of 

holes in the coverage). 

For the slow dispense deposition technique, care should be taken so the tip of the pipette does 

not touch the substrate below the drop. 
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