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Abstract

Photochemistry has been employed in macromolecular and surface science with great suc-

cess. The usage of light enables the clean, spatially, and temporarily resolved performance

of chemical reactions.

In the first part of the present thesis, the photo triggered nitrile imine-mediated

tetrazole-ene cycloaddition (NITEC) enables for the first time the spatially resolved surface

immobilization of multiple metallopolymers on a single surface. The metallopolymers

are prepared via reversible-addition-fragmentation chain-transfer (RAFT) polymerization

of suitable ligand monomers and subsequent metal loading. In preliminary studies, the

need of capping the RAFT group by hetero-Diels–Alder chemistry, employing photo

generated o-quinodimethanes, is demonstrated as the key point to successfully perform

the NITEC photoligation on the surface. Through this approach of RAFT polymerization

and post-modification steps, α-ω-functionalized metallopolymers based on platinum,

palladium, as well as gold are synthesized. The fabrication of gold metallopolymer

surfaces is feasible through a post- or pre-loading approach, leading to the same surface

structure, which is demonstrated by time-of-flight secondary ion mass spectrometry

(ToF-SIMS), as well as X-ray photoelectron spectroscopy (XPS) mappings. In contrast,

platinum and palladium metallopolymer surfaces are only obtained via the pre-loading

approach. As part of the investigation of the photoligation process, the impact of the

Beer–Lambert law on the surface ligation is investigated. The quantification of this effect

is achieved by the combination of the absorption spectrum of the solution containing the

metallopolymer and the spectral irradiance of the employed irradiation source. In addition

to monofunctional metallopolymer surfaces, the preparation of bi- and even trifunctional

metallopolymer surfaces is demonstrated by consecutive NITEC photoligation chemistry.

The synthesis of new spiropyran-based metal complexes of zinc, nickel, calcium, as

well as lanthanum is the subject of the second part of this thesis. It is shown that the

complex stoichiometries obtained via X-ray crystallography do not necessarily equal

the situation in solution. For this, the solution stoichiometries for the synthesized

complexes were investigated with Job’s method of continuous variations. Subsequently,



Abstract

the photochemistry of spiropyran-metal complexes is investigated by coupling of UV-

Vis, as well as NMR spectroscopy with the in situ irradiation of the complexes with a

high-power UV LED. The LED-NMR method is significantly improved compared to the

setups described in literature regarding the light intensity reaching the analyte solution

inside the NMR spectrometer. The understanding of the photochemistry of the described

spiropyran-metal complexes in this thesis is the first step for the application in functional

materials.

In the last part of the present thesis, the spirothiopyran photoswitch is introduced

for the spatially resolved lithographic encoding of surfaces via photoligation chemistry

with a maleimide species. The application of a functionalized maleimide and subsequent

surface-initiated polymerization enables the lithographic encoding of glass substrates

with polymer brushes. With this approach, line structures feature brush heights between

25–50 nm with a width down to 0.4 µm can be prepared. Importantly, the possibility

to trigger the reaction between the spirothiopyran and the maleimide either at around

365–410 nm or via two photon absorption at 820 nm is a great benefit for the toolbox of

photolithographic protocols. In a second investigation, it is shown that the incorporation

of the spirothiopyran photoswitch into a polymer opens up the possibility to employ the

system in direct laser writing applications. While the photoligation chemistry with a

suitable maleimide photoresist can be used to prepare free-standing 3D structures, the

spirothiopyran photoresist itself can also form stable 3D structures via supramolecular

aggregation. In addition, this new photoresist does enable the laser lithographic writing

with sub-diffraction resolution.

VIII



Zusammenfassung

Photochemie wurde bereits mit großem Erfolg im Gebiet der Polymerchemie als auch

bei der Funktionalisierung von Oberflächen eingesetzt. Der Einsatz von Licht ermöglicht

eine saubere, ortsaufgelöste sowie zeitlich kontrollierte Durchführung von chemischen

Reaktionen.

Im ersten Teil der vorliegenden Dissertation wird die lichtgesteuerte Nitrilimin ver-

mittelte Tetrazol-En Cycloaddition (NITEC) erstmals für die ortsaufgelöste Verankerung

mehrererMetallopolymere auf einer einzigenOberfläche verwendet. DieMetallopolymere

werden durch reversible Additions-Fragmentierungs-Kettenübertragungspolymerisation

(RAFT-Polymerisation) von passenden Ligandenmonomeren und anschließender Metall-

beladung erhalten. In Vorstudien wird gezeigt, dass die Reaktion der RAFT-Gruppe mit or-
tho-Quinodimethanderivaten in einer hetero-Diels–Alder-Reaktion einen Schlüsselschritt

für die darauffolgende NITEC-Reaktion an der Oberfläche darstellt. Durch diesen Ansatz

aus RAFT-Polymerisation und anschließender Modifizierung werden α-ω-funktionelle

Platin-, Palladium- und Goldmetallopolymere hergestellt. Die Herstellung von, mit Gold-

metallopolymeren funktionalisierten, Oberflächen ist dabei entweder durch die Vor- oder

Nachbeladung des Ligandenpolymers mit dem Metallvorläufer zugänglich. Die so er-

haltenen Oberflächen zeigen eine übereinstimmende Oberflächenstruktur, wie durch

Flugzeit-Sekundärionen-Massenspektrometrie (ToF-SIMS) und Röntgen-Photoelektronen-

Spektroskopie (XPS) gezeigt werden konnte. Im Gegensatz dazu sind die entsprechenden

platin- und palladiumbasierten Metallopolymer-Oberflächen nur über die bereits zu-

vor metallbeladenen Polymere zugänglich. Ebenso wurde der Einfluss des Gesetzes von

Lambert-Beer auf die Oberflächenverankerung mittels dieser lichtgesteuerten Kupplungs-

reaktion untersucht. Die Quantifizierung dieses Einflusses ist durch die Kombination

der Absorption der eingesetzten Metallopolymerlösungen und der Lichtintensität der

eingesetzten Strahlungsquelle möglich. Zusätzlich zu den einfach funktionalisierten Ober-

flächen wurden zwei- und dreifach funktionalisierte Metallopolymer-Oberflächen über

die stufenweise Durchführung von NITEC-Reaktionen realisiert.



Zusammenfassung

Die Synthese neuer spiropyranbasierter Metallkomplexe von Zink, Nickel, Calcium und

Lanthan bildet den Kern des zweiten Abschnittes dieser Dissertation. Es wird gezeigt, dass

die durch Röntgenstrukturanalyse erhaltenen Stöchiometrien nicht notwendigerweise

mit der Struktur in Lösung übereinstimmen. Dafür wird die Stöchiometrien in Lösung

über die Jobsche Methode der kontinuierlichen Variation untersucht. Im Folgenden wird

die Photochemie der Metallkomplexe durch die Verwendung von UV-Vis- als auch durch

NMR-Spektroskopie unter gleichzeitiger Bestrahlung mit einer UV-LED untersucht. Die

verwendete LED-NMR-Methode konnte im Vergleich zu in der Literatur beschriebenen

Aufbauten verbessert werden, wobei die im NMR-Probenkopf ankommende Lichtinten-

sität deutlich gesteigert wurde. Das Verständnis der Photochemie der beschriebenen

spiropyranbasierten Metallkomplexe in dieser Arbeit stellt den ersten Schritt für die

Anwendung dieser Molekülklasse in funktionellen Materialien dar.

Im letzten Teil dieser Dissertation wird die Anwendung des Spirothiopyran-Photoschal-

ters in der ortsaufgelösten Verankerung auf Oberflächen durch die Reaktion mit Maleimid-

Molekülen beschrieben. Durch die Verwendung eines funktionalisierten Maleimids und

anschließender oberflächeninitiierter Polymerisation sind Glasoberflächen zugänglich,

welche mit Polymerbürsten funktionalisiert sind. Über diesen Ansatz sind Linienstruktu-

ren mit einer Höhe von 25–50 nm und einer Breite von 0.4 µm zugänglich. Hervorzuheben

ist die Möglichkeit, die Spirothiopyran-Maleimid-Reaktion entweder im Bereich von

365–410 nm oder, mittels Zwei-Photonen-Absorption, bei 820 nm zu steuern. In einer

zweiten Untersuchung wird gezeigt, dass der Einbau des Spirothiopyran-Photoschalters

in einen Photolack den Einsatz im Bereich des Direkten Laserschreibens ermöglicht.

Die Verwendung eines passenden Maleimid-Photolacks ermöglicht die Herstellung von

freistehenden 3D-Strukturen. Zusätzlich wird gezeigt, dass der Spirothiopyran-Photolack

selbst zur Ausbildung stabiler 3D-Strukturen über die Bildung von supramolekularen

Aggregaten verwendet werden kann, wobei die Verwendung dieses neu entwickelten

Photolacks das laserlithographische Schreiben mit einer Auflösung unterhalb der Beu-

gungsgrenze ermöglicht.
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C H A P T E R 1
Introduction

Photochemistry is playing an increasing role in chemistry, as well as in material science.

The development of new light triggered reactions, such as photoligations, or the usage

of light as a stimulus in chemical systems has evolved as an emerging research field in

organic chemistry, including the synthesis of macromolecular architectures. The current

thesis is exploiting photochemistry for different applications in the realm of material sci-

ence, as well as small molecules. In Chapter 3, the light-triggered nitrile imine-mediated

tetrazole-ene cycloaddition (NITEC) is shown to be a versatile photoligation method for

the spatially resolved encoding of multiple metallopolymers on a single functionalized

surface. In fact, additional usage of another photoligation chemistry, namely the photo

induced generation of ortho-quino dimethanes followed by a Diels–Alder reaction, was
necessary for the success of the developed surface encoding protocol. As such, these ver-

satile photoligation methods enabled the preparation of hitherto undescribed functional

surfaces for potential applications in heterogeneous catalysis or small molecule sensing

devices. In contrast, Chapter 4 is investigating the photochemistry of spiropyran-derived

metal complexes. The understanding of these light sensitive complexes is a crucial step

towards the development of functional materials. Therefore, the aim of Chapter 4 is to

gain a deeper understanding of the photochemistry of this material class. However, the

driving force behind these investigations is the application in macromolecular scaffolds

and the creation of unprecedented highly functional metallopolymers with an inherent

light-sensitivity. In Chapter 5, the photoligation chemistry of spirothiopyrans (STPs) and

maleimides is introduced for the spatially resolved encoding of surfaces. While there are

many surface photoligation protocols available, such as the NITEC reaction employed in

Chapter 3, the ability to trigger the photoligation with varying wavelengths is an active

research field. With this respect, the possibility to trigger the STP-maleimide reaction
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in the near-infrared at 750–820 nm via two-photon excitation is a valuable addition for

the toolbox of photoligation protocols. In addition, the incorporation of STPs into a

macromolecular scaffold enables laser lithographic writing with sub-diffraction resolution.

2



C H A P T E R 2
Theoretical background

The following chapter will provide an overview of the chemistry, the methods, and

theoretical concepts employed in the current thesis. An introduction will be given to

polymerization techniques with a particular focus on reversible-deactivation radical

polymerization methods for the controlled fabrication of macromolecular matter. An

additional section is specifically dedicated to the field of metallopolymer chemistry.

Subsequently, the theoretical basis for photochemical transformations is given. The

chemistry of spiropyrans (SPs) will be presented, a prominent class of photochromic

molecules employed in Chapter 4 and 5 of the present thesis. Furthermore, modern photo

triggered ligation techniques will be the subject of Section 2.2.3, which have been used

in Chapter 3 and 5 of the current work. The concepts of 3D laser lithography and ways

to overcome the diffraction limit in resolution will be discussed in Section 2.3 (see also

Chapter 5). Finally, routes towards spatially resolved surface functionalization employed

in Chapter 3 will be the subject of Section 2.4.

2.1 Polymer chemistry

Polymers have ever since played an important role in life on earth, e.g. in the form of DNA,

RNA, proteins, or polysaccharides. While not being recognized as polymers for a long

time, the beginning of today’s polymer science can be dated back into the 19th century.

Thomas Hancock discovered that natural rubber does become more fluid when being

masticated in 1820. Only a few years later, in 1839, Charles Goodyear found that the elastic

properties of natural rubber can be significantly improved by heating with elemental

sulfur, a process nowadays known as vulcanization. This process was subsequently
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patented by his brother Nelson Goodyear in 1851. In 1892, another patent was issued on

the dissolving and following regeneration of cellulose by Charles Cross, Clayton Beadle,

and Edward Bevan. While all of these processes utilize natural based polymers, Leo

Baekeland commercialized the first fully synthetic polymer in 1910, based on phenols and

formaldehyde, with the name Bakelite. During World War I, the production of the first

synthetic rubber from 2,3-dimethylbutadiene started in Germany. The common belief

during that time was that the properties of the polymeric material resulted from strong

physically associated aggregates of small molecules. Hermann Staudinger introduced the

word macromolecule to describe the polymer characteristics in the 1920s, a concept being

highly controversial at that time. Nevertheless, further studies conducted by Wallace

Carothers and others strengthened the picture of polymers as drawn by Staudinger.

With the beginning of the 1930s, the concept of macromolecules and polymers has been

accepted and established the field as a new discipline in science. This results in the Nobel

Prize for Chemistry for Hermann Staudinger in 1953 and for Paul Flory in 1974, who

made a substantial impact in the theoretical description of macromolecules. From then

onwards, advances in polymer chemistry have increased enormously and have led to the

highly specialized fields of polymer chemistry today, both in industry and academia.

2.1.1 Basic concepts in polymer chemistry

Polymers are by definition large molecules (macromolecules or polymers) composed

of repeated structural units (monomers), which are connected by covalent bonds. The

very large amount of polymerizable monomers, which determine the properties of the

polymer, yields a broad range of polymers and possible combinations. As a consequence

of this variety of polymeric materials, it becomes clear that there is not just one single

way to characterize them all.

Polymerization mechanism Polymers can be classified by the reaction mechanism

of formation into step-growth polymerizations and chain-growth polymerizations.

In step-growth polymerizations, the chains grow in stepwise reactions, which can

occur between any of the molecular species being present in the polymerization mixture.

Examples for such a mechanism are polycondensation and polyaddition polymerizations.

In step-growth polymerizations, the degree of polymerization increases only little at low

functional group conversion, to ultimately reach high degrees close to full conversion of

the functional groups. The monomers form oligomers which eventually react to long

polymer chains. As such, a high degree of polymerization, i.e. high conversion of func-
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tional groups, is necessary for the production of long chains. Step-growth polymerizations

are therefore very demanding on clean reactions with high conversions, as well as high

purity of the starting materials. A theoretical correlation between the number-average

degree of polymerization 𝑋n and the extent of the reaction 𝑝 is given by the Carothers’s
equation (see Equation (2.1). Equation (2.1a) is describing the case of an equal number of

functional groups, while a more general representation is given by Equation (2.1b). Here,

𝑟 reflects the reactant ratio between two functional groups 𝑁A and 𝑁B as 𝑟 = 𝑁A/𝑁B.

𝑋n =
1

1 − 𝑝
(2.1a)

𝑋n =
1 + 𝑟

1 + 𝑟 − 2𝑟𝑝
(2.1b)

On the other hand, chain-growth polymerizations feature a polymer chain with a reactive

end-group. Monomers are repeatedly adding to such chain-ends, resulting in a growing

polymer chain. Ionic polymerizations, as well as radical polymerizations belong to this

class of polymerization mechanism. The kinetic aspects of chain-growth polymerizations

will be discussed in Section 2.1.2 in the context of free radical polymerization (FRP).

From all of these mechanisms, free radical polymerization is by far the most important

polymerization technique, especially in industry and large-scale applications.

linear brush ring

star cross-linkedbranched star

Figure 2.1. Different kinds of polymer topologies. (a) linear, (b) brush, (c) ring, (d) star, (e)
cross-linked, and (f) branched star.

Polymer topology An alternative way to characterize polymers is their molecular

topology, of which different possibilities are depicted in Figure 2.1. Polymer topologies

can be described as linear in the case were there is only a single linear chain. Brush

5
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polymers feature a core polymer chain on which several secondary polymer chains

are attached to. These can consist of the same monomer or feature other chemical

functionalities as the core. (a) If the individual polymer chains are connected at both

chain ends, ring polymers are formed. Star polymers feature a central core unit on which

multiple polymer chains are attached to. If the star has additional branching points except

the core, branched star polymer architectures are obtained. Finally, if the polymer chains

are connected via many individual points towards each other, ultimately leading to a

single molecule. The resulting structure is a cross-linked polymer, i.e. a polymer network.

Physical polymer properties Amore physical way of dividing polymers into different

classes is based on their melting properties. Thermoplastics are either amorphous or

semicrystalline polymers. In contrast, elastomers are amorphous polymers which are

weakly cross-linked. They are flexible but cannot be melted and are insoluble. Finally,

thermosets are highly cross-linked polymers, which are also insoluble, cannot be melted,

and cannot be reversibly reshaped without destroying the material.

Polymer composition Another way to classify polymers is based on their molecular

composition as depicted in Figure 2.2. If the polymer chain is composed of a single

monomeric repeating unit, it is referred as a homopolymer. When two or more monomers

are incorporated into the polymer, the general structure is described as a copolymer.
Such a polymer still consists of single linear chains, while the order of the individual

monomeric repeating units dictates the nomenclature. Statistical copolymers exhibit a
random distribution of the monomers inside the polymer chain. On the other hand,

alternating copolymers feature a strict alternation of the different monomers. Finally, if

the different monomers are assembled into blocks consisting of one monomer followed by

another block of a second monomer, block copolymers are obtained. When the copolymer

features a brush-like topology with one monomer building up the core chain and another

one the attached side chains, the polymer is classified as a graft copolymer.

Molarmass distribution The molecular weight (MW) of polymers made synthetically

is in all cases not homogeneous but exhibits a molecular weight distribution (MWD).

As the mechanical properties of the polymers are associated directly with the MW and

MWD, it is important to know as much as possible about the shape of the respective

distribution. The MW and the MWD are described by the number-average molecular
weight 𝑀n, the weight-average molecular weight 𝑀w, and the dispersity index Đ, which

(a) In the latter case, the structure is referred to as a graft polymer, see discussion under Polymer composition.

6
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homo

statistical

alternating

block

gra�

Figure 2.2. Examples of various polymer compositions as described in the text.

are defined by Equation (2.2a), (2.2b), and (2.2c), respectively.[1] In Equation (2.2a), 𝑛𝑖 is
the number of molecules having a MW 𝑀𝑖, and the weight fraction 𝑤𝑖 in Equation (2.2b)

is the mass of molecules with the MW 𝑀𝑖 divided by the total mass of molecules in the

ensemble.

𝑀n =
∑𝑛𝑖𝑀𝑖
∑𝑛𝑖

(2.2a)

𝑀w =
∑𝑤𝑖𝑀𝑖
∑𝑤𝑖

(2.2b)

Đ =
𝑀w

𝑀n
(2.2c)

In addition, the degree of polymerization averages are important for polymer characteri-

zation. The number-average and weight-average degrees of polymerization are given by

Equation (2.3a) and (2.3b), respectively. In both equations, 𝑀0 is the average of the MW

of the repeating units.

𝑋n =
𝑀n

𝑀0
(2.3a)

𝑋w =
𝑀w

𝑀0
(2.3b)

2.1.2 Free radical polymerization

As already mentioned in the introduction of Section 2.1.1, FRP is one of the major

polymerization mechanism that is employed in various polymerization techniques, such

as in bulk, in emulsion, in solution etc. Since a broad range of monomers are available,

FRP represents the mostly used technology in polymer synthesis. FRP also features a

7
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high tolerance of functional groups and mild as well as facile reaction conditions, as for

instance compared to ionic polymerizations.

Mechanism The mechanism of FRP can be divided in four steps, namely initiation,
propagation, chain transfer, and termination (see Scheme 2.1).

1a)
I I 2 I

1b)
I

M

I

R

I

R
n × M

2)

I

R R
n

I

R R
n

T

3)
I

R R
n

T+

I

R R
n

P

4a)
I

R R
n

P

I

R R
n

4b)

I

R R
n

+ I

R R
n

2

M =
R

Scheme 2.1. The four steps in a FRP mechanism. Initiation can be divided in two steps, namely
the formation of radicals by an initiator molecule I2 (1a) and the addition to a double bond of a
monomer M (1b). 2) Propagation of the polymerization, adding more monomers to the propagating
chain. 3) Chain transfer reactions can occur with transfer agents T. Termination via combination of
two radical species (4a) and through a disproportionation process ( 4b).

The initiation process is divided into two steps. First, the employed initiator forms

radicals through either homolytic scission of a single bond, or via a single-electron transfer
process from an ion or molecule. Commonly employed initiators form radicals via the

homolytic scission. This process is often triggered either by heat (thermolysis) or by
irradiation with light (photolysis). Prominent molecules for this class of initiation include

for example peroxides and azo compounds, such as benzoyl peroxide or azobisisobutyro-

nitrile (AIBN). Once the radicals are formed, the second step of the initiation is the

addition of the initiator derived radicals onto a double bond of a monomer (see 1b) in

Scheme 2.1).

During propagation, subsequent addition of additional monomer units to the chain

results in the formation long polymer chains. Chain transfer reactions can occur with

various species present during the polymerization process. Here, the active radical center

from a growing chain is transferred onto another molecule T, which can be either an

initiator, monomer, solvent, or an intentionally added so-called transfer agent molecule.

The new radical species T can again participate in the polymerization process, e.g. re-

initiating via addition to a further monomer unit. If the transfer reaction generates a

8
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radical at the backbone of a previously formed polymer chain, side polymer chains are

generated upon addition of monomer units to yield branched polymer chains.

As depicted in Scheme 2.1, two radicals must react in a bimolecular reaction in ter-
mination processes. This results in an irreversible loss of the active radical center and

termination of the polymerization process, which can occur in two ways. Recombination
involves the coupling of two growing chain ends forming a single polymer chain with

a MW that is the sum of the two chains reacting with each other. On the other hand,

disproportionation refers to a process in which an active polymer chain is abstracting a

hydrogen atom from another chain, thus creating an unsaturated and a saturated polymer

chain, respectively. In principle, both termination processes can occur simultaneously

in a polymerization. However, the extent of each termination mechanism depends on

the monomer and the polymerization conditions. Generally, vinylic monomers, such as

acrylates, tend to terminate via recombination, while in α-methyl vinyl monomers, such

as methacrylates , disproportionation is favored. The reason for this behavior is the steric

hindrance in α-methyl vinyl derived radicals and the additional three β-hydrogen atoms

of the methyl group, from which H-abstraction can occur. In addition, the recombina-
tion has a lower activation energy as compared to the disproportionation process and is

therefore favored at lower temperatures.

Kinetics The kinetic description of the FRP allows the calculation of the polymerization
rate 𝑅p and the number-average degree of polymerization 𝑋n, among other parameters.

The FRP can be divided into three regimes, namely the initiation phase, the steady-state,
and the termination phase. In the initiation phase, the concentration of radicals formed

via the decomposition of the initiator increases, until the formation of radicals equals the

reduction of radicals due to termination processes. At this state, the steady-state regime is

reached. During progression of the polymerization, the increasing viscosity of the system

results in an increased polymerization rate, as a result of reduced diffusion hindering

the termination of radicals. As such, the radical concentration increases, leading to an

auto-acceleration, being referred to as the Trommsdorff–Norrish effect or gel effect. At
this stage, the steady-state assumption fails, and the termination phase starts. If the

heat transfer is insufficient, the reaction temperature will increase drastically, ultimately

resulting in thermal overheating.

As the processes in FRPs are very complex, several assumptions are made in order

to simplify the equations. First, the radical concentration during the polymerization

is to be considered chain-length independent, resulting in a constant 𝑘p. Second, the
decrease of monomer concentration during the initiation phase is neglected, implying the

9
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monomer decrease during polymerization is exclusively caused by the rate of propagation
𝑅p. Finally, the steady-state assumption means that the formation of new radicals R

equals the reduction of radicals M inside the reaction mixture, resulting in Equation (2.4).

M refers to any radical species being present in the reaction mixture.

d[R ]
d𝑡

= −
d[M ]
d𝑡

(2.4)

The rate of initiation 𝑅i can be described via Equation (2.5). In the first line, the initiation

is expressed in terms of the bimolecular reaction with the rate 𝑘i and the concentration

of the radical R and the monomer M. However, the formation of the radicals during

decomposition of the initiator (see 1a) in Scheme 2.1) is the rate determining step in the

initiation. Substitution of this elemental reaction step for a thermally triggered initiator

results in the second line of Equation (2.5), with 𝑓 being the initiator efficiency, i.e. the
fraction of formed radicals actually starting a growing chain.

𝑅i =
d[R ]
d𝑡

= 𝑘i[R ][M]

= 2𝑓 𝑘d[𝐼 ]
(2.5)

The rate of termination 𝑅t is given by the bimolecular reaction between two radical

species M in Equation (2.6). The rate coefficient 𝑘t is the sum of the rate coefficient for

combination and disproportionation.

𝑅t = −
d[M ]
d𝑡

= 2𝑘t[M ][M ] (2.6)

𝑅p = −
d[M]
d𝑡

= 𝑘p[M][M ]

= 𝑘p
√

𝑅i
2𝑘t

[𝑀]

= 𝑘p
√

𝑓 𝑘d
𝑘t

[𝑀]√[𝐼 ]

(2.7)

For the rate of propagation 𝑅p, Equation (2.7) can be written. Making use of the steady-
state assumption for the radical concentration, i.e. Equation (2.4), (2.5), and (2.6), an

expression for the steady-state rate of polymerization can be derived. (a) Based on these

(a) It should be noted that the expression for the rate of initiation is only valid for thermal initiation. Other
forms of Equation (2.5) must be used for photo- or redox-initiated polymerizations, see also [2].
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equations, the number-average degree of polymerization can be calculated via the ratio

between 𝑅p and 𝑅t. The result is presented in Equation (2.8), with 𝑞 being the fraction of

termination reactions occurring through disproportionation. The index 0 in 𝑋n,0 refers to

the fact that no chain transfer is considered here.

𝑋n,0 =
𝑅p
𝑅t

=
𝑘p

(1 + 𝑞)√𝑓 𝑘d𝑘t
[𝑀][𝐼 ]−1/2 (2.8)

As such, two important conclusions can be drawn from the above equations:

𝑅p ∝ [𝑀]√[𝐼 ] and 𝑋n ∝ [𝑀][𝐼 ]−1/2

So far, the equations have excluded chain transfer in the description of the kinetic process.

In doing so, several terms must be added in the denominator of Equation (2.8), with

𝑅tr,I, 𝑅tr,S, and 𝑅tr,M describing the rate of transfer to initiator, solvent, and monomer,

respectively, leading to Equation (2.9).

𝑋n =
𝑅p

𝑅t + 𝑅tr,I + 𝑅tr,S + 𝑅tr,M
(2.9)

In defining a so-called transfer constant 𝐶X towards a species X via

𝐶X =
𝑘tr,X
𝑘p

(2.10)

and by taking the reciprocal of Equation (2.8), Equation (2.11) can be written, which is

known as the Mayo equation. Here, 𝑋n is the number-average degree of polymerization
including the effect of chain transfer.

1
𝑋n

=
1

𝑋n,0
+ 𝐶M + 𝐶I

[𝐼 ]
[𝑀]

+ 𝐶S
[𝑆]
[𝑀]

(2.11)

So-called chain transfer agents (CTAs) having a high 𝐶tr value are intentionally added to

the polymerization mixture in FRP processes to control (decrease) the MW. Compounds

employed as CTAs are for example aliphatic thiols, such as 1-dodecanethiol (see also

Chapter 5). The polymers made via a FRP exhibit a rather broad dispersity index Đ. In
addition, the end group functionality, as well as the molecular architecture cannot be

controlled. In order to improve these shortcomings, more advanced radical polymerization

techniques have been developed, which will be discussed in the following section.
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2.1.3 Reversible-deactivation radical polymerization

Living polymerization, of which anionic polymerization represents the archetype, are

classified by the absence of termination and transfer processes. In addition, controlled

polymerization methods are defined by their capability to gain control over the molec-

ular weight, end group functionality, and by achieving low dispersities, in contrast to

conventional FRP.

Reversible-deactivation radical polymerizations (RDRP), being formerly referred to as

controlled radical polymerizations (CRP) achieve such criteria by drastically reducing the

probability of termination events during polymerization.

The reduction in termination in RDRP protocols is achieved via different approaches.

In atom transfer radical polymerization (ATRP) and nitroxide-mediated polymerization

(NMP), the strong reduction of the active radical concentration favors propagation over

termination, which is second order in terms of the radical concentration (see Equation (2.6).

This is achieved via reversible end-capping of the growing chain radicals. In reversible-

addition-fragmentation chain-transfer (RAFT) polymerization, a CTA is added, which

leads to a rapid exchange of an end-capped radical with a free chain radical.

As the termination is sufficiently suppressed in all of the above mentioned polymeri-

zation techniques, RDRP protocols show some of the characteristic features of true living
polymerizations (e.g. anionic polymerization), such as (I) low Đ values, (II) a linear in-

crease of 𝑋n with conversion, and (III) the polymerization kinetic is pseudo-first-order

with respect to monomer. The RAFT polymerization was employed in all chapters of the

present thesis and will thus be discussed in more detail in the following section.

2.1.3.1 Reversible-addition-fragmentation chain-transfer polymerization

The RAFT polymerization was introduced by theMoad, Thang, and Rizzardo in 1998 at the

Commonwealth Scientific and Industrial Research Organization (CSIRO) in Australia.[3]

At the same time, Charmot and co-workers described a polymerization termed MADIX

(macromolecular design via the interchange of xanthates), which essentially follows the

same mechanism as RAFT, employing xanthates as CTAs.[4] RAFT polymerization is

based on a FRP with the addition of a CTA, which imposes a degenerative transfer system

over the FRP process.[5]

Mechanism The RAFT mechanism is depicted in Scheme 2.2.[5] The initiation (1),
propagation (3), and termination (5) reactions are the same as for the FRP described

in Scheme 2.1. After the initiation, the radical species Pn add to the RAFT agent (the

12
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Scheme 2.2. Mechanism of a RAFT polymerization, starting with the initiation (1). Growing
polymer chains are transformed intomacroRAFT agents in the pre-equilibrium (2a) and the released
R radicals re-initiate upon addition to monomer (2b). Propagation (3) and termination (5) events
are overlaid by the core-equilibrium (4), in which constant addition/fragmentation between active
polymer chains Pn and Pm and dormant CTA bearing polymer chains occurs.

CTA) in the pre-equilibrium (2a). Typical CTAs are thiocarbonylthio group containing

molecules equipped with a Z- and a R-group, refer to the discussion below. Here, it is

important that the rate of the addition/fragmentation of the pre-equilibrium is fast as

compared to the propagation and that the released R radical does efficiently re-initiate

via addition to monomer (2b). As such, all growing chains are effectively transformed

in so-called macroRAFT agents (or macroCTAs), having a CTA as an end-group. The

macroRAFT agents are also called dormant chains, as they do not have active radical

chain ends. In order to ensure that all growing propagating chains are attached to a

RAFT group, the initiator is added in lower amounts than the RAFT agent. In the core-
equilibrium (4), all propagating polymer chains, here Pn and Pm, constantly undergo

reversible addition/transfer with dormant chains. The constant and rapid exchange

results in the simultaneous and steady grow of all polymer chains and a control over the

evolution of the MW. In addition, termination events are still present, but have become

very unlikely due to the rapid and degenerated chain-transfer in the core-equilibrium.

Kinetics A key difference between RAFT and other RDRP protocols, such as ATRP

and NMP, is the use of a radical initiator. As such, the number of termination events
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is directly proportional to the number of radicals introduced into the system via the

initiator. In addition, a termination event in RAFT does not lead to a “dead” chain as in

ATRP or NMP, as it still bears the CTA group, i.e. the number of polymer chains equipped

with a CTA chain end stays the same throughout the polymerization. As a result, the

number of “living” and “dead” chains in RAFT can be predicted a priori by the number of

introduced radicals. Equation (2.12) gives an expression for the “livingness” 𝐿 of a RAFT

polymerization, i.e. the fraction of living chains.[6]

𝐿 =
[CTA]0

[CTA]0 + 2𝑓 [I]0 (1 − 𝑒−𝑘d𝑡) (1 − 𝑞
2
)

(2.12)

Here, [CTA]0 and [I]0 are the initial concentrations of the chain transfer agent and

the initiator, respectively and 𝑞 the termination parameter introduced in Equation (2.8).

The rate of propagation 𝑅p of a RAFT polymerization is the same as in the FRP (see

Equation (2.7), as the number of radicals is also the same.

In a RAFT polymerization, the target degree of polymerization 𝑋n has an impact on the

number of living chains 𝐿. With all other parameters being the same, a higher target

in 𝑋n results in a decrease in 𝐿. As such, RAFT is an ideal technique for the synthesis

of low to medium MW polymers. The 𝑀n in RAFT is given by Equation (2.13), with the

conversion 𝑝 and 𝑀M and 𝑀CTA as the MW of the monomer and CTA, respectively. The

exact expression in Equation (2.13a) including the effect of the initiator, can be simplified,

resulting in Equation (2.13b).[5,6]

𝑀n = 𝑝
[M]0

[CTA]0 + 2𝑓 [I]0 (1 − 𝑒−𝑘d𝑡) (1 − 𝑞
2
)
𝑀M + 𝑀CTA (2.13a)

≈ 𝑝
[M]0

[CTA]0
𝑀M + 𝑀CTA (2.13b)

Monomers and CTA design An advantage of the RAFT process is its ability to cover

a wide range of polymerizable monomers. However, the careful choice of the RAFT

agent is crucial for a successful polymerization and depends on the class of monomers

to be polymerized. These can be divided in “more activated” monomers (MAMs) and

“less activated” monomers (LAMs).[6] MAMs are for example conjugated double bonds,

such as in butadiene or styrene or a carbonyl group next to the vinyl moiety, such as

in (meth)acrylates or (meth)acrylamides. Monomers featuring a hetero atom (such as

oxygen, nitrogen, …) bound to the vinyl group belong to the class of LAMs. Examples

are vinyl acetate or N -vinylpyrrolidone. The majority of RAFT processes are conducted
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with (meth)acrylates, (meth)acrylamides, and styryl derivatives. The most commonly

employed RAFT agents for such monomers are dithioesters, dithiobenzoates, or trithio-

carbonates.

Z-group Ph >> SCH3 > CH3 ~ N >> N

O
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a) Selection guidelines

b) Examples of RAFT agents

Figure 2.3. a) Guidelines for the selection of suitable R- and Z-groups depending on themonomer
structure. For the Z-groups, values of 𝑘α decrease and 𝑘β increase from left to right. For the R-
groups, 𝑘β decrease from left to right. Abbreviations: MMA = methyl methacrylate, Sty = styrene,
MA = methyl acrylate, AM = acrylamide, AN = acrylonitrile, VAc = vinyl acetate, and NVP =
N -vinylpyrrolidone. Adapted with permission from [7]. © 2012 American Chemical Society. b)
Examples of RAFT agents for the monomer classes described below.

The key aspect of a RAFT polymerization is the suitable choice of the R- and Z-

group with respect to the monomer according to the following criteria: 1) the CTA

and macroCTA should have a reactive C S double bond (high 𝑘𝑝𝑟𝑒α and 𝑘α)(a) , 2) the
intermediate radicals should fragment rapidly without side reactions (high 𝑘𝑝𝑟𝑒β and 𝑘β)(a),
and 3) the R radical in the pre-equilibrium efficiently re-initiates the polymerization.[5]

The Z-group is mainly responsible for the activation of the C S double bond and the

stabilization of the intermediate radical. For the R-group, it is important that re-initiation
(a) For a definition of the rate coefficients, see Scheme 2.2.
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of the polymerization after the fragmentation in the pre-equilibrium is efficient. Therefore,

the R-group needs to be a good leaving group compared to the monomer fragment.

Typically, mimics of the employed initiator fragments are good candidates for the R-

group. A guideline for the selection of suitable Z- and R-groups with respect to the

monomers is presented in Figure 2.3a). Different Z- and R-groups are drawn depending

on their ability to control the polymerization of the monomers depicted below. Bold

arrows indicate good control, while dashed lines correspond to poor control.[7]

Examples of CTAs are depicted in Figure 2.3b). 2-Cyano-2-propyl benzodithioate (1)
and 4-cyano-4-((dodecylsulfanylthiocarbonyl)sulfanyl)pentanoic acid (2) are versatile
CTAs for the polymerization of the MAM monomers such as styrenes and methacrylates.

Other MAM monomers, as for example acrylates, need less stabilized CTAs, such as the

trithiocarbonates 4-(((dodecylthio)carbonothioyl)thio)-4-methylpentanoic acid (3) and
cyanomethyl dodecyl carbonotrithioate (4). For the RAFT polymerization of LAMs, such

as vinyl acetates, the dithiocarbamate CTA cyanomethyl methyl(phenyl)carbamodithio-

ate (5) can be employed.

Post-modification The RAFT moiety does not only enable the controlled radical

polymerization but can also be exploited for further post-modification of the polymer.[8]

Given that almost all polymers of a RAFT process are equipped with CTA derived end-

groups, i.e. a R-group on the α-, and a Z-group on the ω-chain end, tailor-made CTAs

are versatile post-modification points. For certain applications, it is of interest to remove

the thiocarbonylthio group, due to stability reasons or the inherent color of the sulfur-

containing moieties. Transformation of the RAFT group into various other functional

groups is also possible via different reagents. Other protocols use the RAFT end-group as a

ligation point for the attachment of small molecules or the formation of block copolymers

via an additional end-functionalized polymer. Figure 2.4 summarizes several approaches

for the post-modification via the RAFT group.[5,6,8]

Transformation into free thiols or the product of a SN2 reaction is possible via addition
of nucleophiles, such as amines,[9] azides,[10] or hydroxides.[11] The thiols can be used in

subsequent thiol-ene[12] or thiol-yne chemistry[13] or oxidized towards disulfide bridges

upon addition of an oxidizing agent.[14] Monteiro and co-workers demonstrated that the

formation of disulfide bridged block copolymers can also be reversible.[15] Radical cleav-

age of the RAFT group in the presence of a radical I and H-donors results in the formation

of a hydrogen terminated polymer chain.[16] Discekici et al. demonstrated the selective

one-pot conversion of a trithiocarbonate CTA to a thiol or hydrogen chain-end, depending

on the reaction conditions.[17] The access to hydroxyl functionalized polymers is possible
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Figure 2.4. Examples for the post-modification of the RAFT group into various other functional
groups as described in the text.

via treatment of the RAFT group with H2O2 and subsequent reduction.[18] Thermolysis

of the polymer eliminates the RAFT group and introduces a terminal alkene, but requires

high temperatures ranging from 150–250 ∘C.[19] Upon treatment with a radical source

I , the generated polymer centered radical can also be trapped with nitroxide molecules

for subsequent NMP polymerizations.[20] Lee et al. showed the direct conversion of the

RAFT group into a bromine functionalized polymer for a second polymerization via an

ATRP protocol.[21] The C S double bond of the RAFT group can undergo Diels–Alder
reactions with dienes in the presence of a catalyst.[22] If the Z-group of the RAFT agent is

sufficiently activating the C S double bond, the Diels–Alder reaction can proceed without
catalyst at room temperature.[23] Photo triggered Diels–Alder reactions as described in

Section 2.2.3.3 allow the capping of the RAFT group with small molecules[24] or the

ligation with other polymers.[25]

2.1.4 Metallopolymers

The field of metallopolymers bridges the gap between organic polymer chemistry and

inorganic coordination chemistry.[26] As such, these materials combine the properties

of the two chemistries, but also feature new properties, which single polymers or metal

complexes have not.

Synthetic hurdles plagued the metallopolymer filed for decades, as it was hard to

prepare high MW metallopolymers.[27] Most metallopolymers prepared from the mid to

late 20th century had a lowMW and were insoluble in common organic solvents. In-depth

characterization via nuclear magnetic resonance (NMR) spectroscopy and size-exclusion
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2 Theoretical background

chromatography (SEC) was therefore not possible. In the 1960s and 1970s, a lot of side-

chain ferrocene-containing polymers from vinyl-, acrylate-, and methacrylate-ferrocene

containingmonomers were described due to the facile preparation of ferrocene derivatives

via SN reactions.[28] Manners and coworkers were the first to synthesize well-defined

high MW metallopolymers through thermal, transition metal-catalyzed, and anionic

ring-opening polymerization (ROP) techniques.[29] With the advent of RDRP techniques,

the preparation of well-defined metallopolymer architectures became possible.[27,30]

Depending on the type of incorporation into the polymer, metallopolymers can be

classified according to Rehan[31] and Wolf,[32] as depicted in Figure 2.5.

a) Rehahn-type classification

type I

b) Wolf-type classification

or type II

type III

linear type I

cross-linked type I

linear type II

cross-linked type II
type III

Figure 2.5. Classifications of metallopolymers according to Rehan (a) and Wolf (b).

Rehan and co-workers were the first, who introduced a structural classification based

on the metal-polymer interactions. Here, metal complexes are either directly attached

to the polymer backbone or via a spacer (type I ). Type II metallopolymers feature metal

complexes as part of the polymer backbone. Finally, type III metallopolymers describe

the binding via physical interactions.

Wolf proposed an updated and generalized classification, as depicted in Figure 2.5b).

Linear metallopolymers are classified into those in which the metal complex directly

attached to the backbone (linear type I ) and those with an additional spacer (linear type
II ). Likewise, this subdivision is also made for cross-linked metallopolymers via the metal
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2.1 Polymer chemistry

complex (refer to cross-linked type I and cross-linked type II in Figure 2.5b). Finally, type
III metallopolymers, initially named coordination polymers, are nowadays known as

metal–organic frameworks (MOFs).[33] In the rest of the current thesis, the classification

according to Wolf will be used.

Due to thewide range of possiblemetallopolymer architectures, this overviewwill focus

on the preparation of linear type I and II metallopolymers via RAFT polymerization. The

complexation with metal ions can either be performed prior of after the polymerization.

Both strategies were followed in Chapter 3 of the current thesis. In Chapter 4, linear
type I ligand polymers have been metal loaded in a subsequent step in order to yield

cross-linked type I metallopolymers with the aim of exclusive intra-chain cross-linking.
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Figure 2.6. Selection of metal complex bearing monomers, which were directly polymerized in
a RAFT process.

Metallopolymers via RAFT polymerization While metallopolymers can be pre-

pared via different RDRP methods,[27] such as ATRP[34] and NMP,[35] this overview will

describe approaches employing the RAFT polymerization. Figure 2.6 shows various metal

complex containing monomers, which were employed in RAFT polymerizations.

Os+II-bis-terpyridine functionalized methacrylate (I) was polymerized with 2-cyano-2-

propyl benzodithioate as RAFT agent. The authors characterized the metallopolymer
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2 Theoretical background

via SEC, electrospray ionization mass spectrometry (ESI-MS), and NMR spectroscopy

and determined the redox potentials in film casting experiments.[36] Schubert and co-

workers prepared Os+II-, as well as Ru+II-containing metallopolymers via the monomer

structure (II).[37] They incorporated additional Ir+III into the ruthenium containing met-

allopolymer and performed hydrogen evolution experiments. The energy transfer was

investigated in the Os+II-metallopolymer via excitation-emission correlation spectroscopy.

Lu and co-workers polymerized a ferrocene-containing styrene derivative (III) in a RAFT
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Figure 2.7. a) Phosphorescent Ir+III emitter containing metallopolymer via a post-loading ap-
proach. The inset shows the polymer structure, as well as the UV-Vis and emission spectra.
Adapted with permission from [38]. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA. b) Polymer
structure of a terpyridine containing copolymer and subsequent metal complexation with cadmium
resulting in network formation with self-healing capabilities. Pictures after scratching (I) and after
annealing at 100 ∘C for 16 h (II). [39] – Adapted by permission of The Royal Society of Chemistry.

process with a narrow Đ of 1.2 and determined the end-group fidelity via desorption-

ionization time-of-flight mass spectroscopy.[40] Zhang et al. made block copolymers of

the cobaltocenium- (IV) and ferrocene-functionalized methacrylate (V). They demon-

strated the reversible redox chemistry for the cobaltocenium units and made spherical

micelles via self-assembly.[41] Tang and co-workers combined RAFT and ATRP protocols

for the corresponding ruthenocene-containing monomer (V) and fabricated amphiphilic
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2.2 Photochemistry

diblock copolymers for self-assembled morphologies.[34f] Happ et al. copolymerized

the luminescent ruthenium monomer (VI) with an organic 1,3-thiazole donor system

and demonstrated the donor-acceptor properties with an energy transfer efficiency of

>70 %.[42]

While these examples were fabricated via direct polymerization of a metal complex

containing monomer, several strategies were described, which incorporated the metal into

a ligand functionalized polymer after the polymerization (see Figure 2.7). Schubert and co-

workers synthesized a phosphorescent Ir+III emitter containing metallopolymer.[38] They

first copolymerized an acetoacetate ligand and performed subsequent metal loading with

an Ir+III precursor complex in solution (see Figure 2.7a). The successful metallopolymer

formation was evidenced by NMR spectroscopy, ultraviolet-visible (UV-Vis) measure-

ments, and emission spectroscopy, as well as SEC. The authors proposed the application

of the material for polymer light-emitting diodes (PLEDs). Bode et al. synthesized a ter-

pyridine functionalized polymer via RAFT polymerization.[39] Subsequent complexation

with a cadmium salt led to the formation of a polymeric network through inter-chain

cross-linking. Scratches in the network vanished after heating at elevated temperature

for several hours (see Figure 2.7b) (I) and (II), respectively).

2.2 Photochemistry

The following section provides basic concepts in photochemistry, covering the pho-

tochemical and -physical principles relevant for the present thesis. After a historical

reflection, a physical description of photochemical processes is presented. Various models

describing the complex photochemical systems are discussed (see Section 2.2.1) and the

chemistry of photochromic molecules employed in the current thesis is explained in

Section 2.2.2. Finally, examples of photo triggered ligation protocols which are employed

in Chapter 3 of the current work are presented in Section 2.2.3.

Long before humans, nature took advantage of the unique opportunities offered by

photochemistry and uses the energy delivered via photons to trigger andmodify a plethora

of reactions, the arguably most well-known being photosynthesis. The first observations

occurred mainly by accident and coincidence. In 1777, Carl W. Scheele observed that

violet light was superior in darkening silver chloride to any other wavelength employed.

In the beginning of the 20th century, the theoretical concepts developed by Einstein,

Planck, Stark, Bodenstein and others opened a new era of photochemistry.[43] A limiting
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2 Theoretical background

factor at that time was the insufficient availability of analytical techniques and light

sources emitting light with defined wavelengths.

Many advantages of photochemistry and the impact on chemical synthesis were already

outlined in that time by Giacomo Luigi Ciamician (1857–1922). His statements made 100

years ago seem today as a prophecy:[44]

“It is thus possible that using the irradiation energy might become inter-

esting in another way. When all of the coal will have been burnt, it may

become necessary to resort to exploiting light energy for the progress of

society.”

One of the first systematic studies in the field of photochemistry was conducted by

Norrish and coworkers in the late 1930s.[45] Since that time, progress in experimental and

analytical techniques stimulated each other and has led to the wide area of photochemistry

existing today. In many cases, photochemistry can achieve what ground-state chemistry

is incapable of and contributes enormously to the chemical reaction toolbox.

2.2.1 Physical description of photochemical processes

Light is electromagnetic radiation, characterized by a wavelength 𝜆, a frequency 𝜈, and a

speed 𝑐, which are related by the relationship given in Equation (2.14).

𝜆𝜈 = 𝑐 (2.14)

The value of 𝑐 is the speed of light, which is a natural constant (2.998×108ms−1 in vacuum).

Einstein proposed that light energy is quantized in small portions called photons. The

photon is the quantum of light and the smallest possible amount of light at a given

frequency 𝜈. The energy 𝐸 of one photon is related to the frequency 𝜈 by the Einstein
equation, with ℎ = 6.63×10−34 Js being the Planck’s constant (see Equation (2.15).

𝐸 = ℎ𝜈 (2.15)

This description of light as an ensemble of individual photons is critical for the under-

standing of photochemistry and is expressed in the two laws of photochemistry:

1) Only absorbed light is effective in photochemical transformations (Grotthuss–Draper
law).
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2.2 Photochemistry

2) Light absorption is a quantum process. Usually, one photon is absorbed by a single

molecule (Stark–Einstein law).

A depiction of the electromagnetic spectrum and the corresponding frequencies 𝜈, wave-
lengths 𝜆, and energies 𝐸 is given in Figure 2.8, with description of the various wavelength
regimes and a zoom-in into the visible light region and the respective perception of colors.

2410 2210 2010 1810 1610 1410 1210 1010 810 610 410 210 010

-710 -510 -310 -110 110 310 510 710 910 1110 1310 1510 1710 1910

ν / Hz

1010 810 610 410 210 010 -210 -410 -610 -810 -1010 -1210 -1410 -1610
E / eV

γ-rays X-rays UV IR microwave radiowave long radiowave

visible spectrum

400 500 600 700   λ / nm

   λ / nm

Figure 2.8. The electromagnetic spectrum with the energy in electron volt (eV), the equivalent
wavelength (nm) and the corresponding frequency (Hz). The spectrum is separated into different
regimes as described in the gray horizontal bar. A zoom-in into of the visible light region is depicted
below with the different perception of colors.

Beer–Lambert’s law describes the absorption of amonochromatic light beam of intensity

𝐼0 by a solution of concentration 𝑐 after a path length 𝑏 through the medium, leading

to the reduced intensity 𝐼. Taking the logarithm of Equation (2.16a) leads to a linear

correlation between 𝐼 and 𝐼0 (see Equation (2.16b). 𝐴 is called the absorbance and 𝜖 the
molar attenuation coefficient. It is important to note, that the Beer–Lambert’s law only

holds true for diluted solutions in which no concentration-dependent aggregation does

occur (see also Section 2.2.2.1).

𝐼 = 𝐼0 ⋅ 10−𝜖𝑏𝑐 (2.16a)

𝐴 = log (
𝐼0
𝐼
) = 𝜖𝑏𝑐 (2.16b)

After the initial absorption of a photon with the energy ℎ𝜈 by a molecule A into the excited

state A∗, several processes can occur. Some general cases are depicted in Figure 2.9, with

the speed of a potential photo reaction defined by the respective rate law constants.

The different rate coefficients in Figure 2.9 such as 𝑘p, 𝑘r, and 𝑘nr are part of the

respective rate laws, defining the rate of product formation P, radiative deactivation, and
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non-radiative deactivation, the latter two leading back to the ground state molecule A.

Note that the term luminescence summarizes fluorescence, phosphorescence, as well as

chemiluminescence.[46] The product P does not necessarily need to be a ground state

molecule but can also be the outcome of a transformation into another excited state,

such as triplet states. Each process in Figure 2.9 is called a primary process for which a

hνA + A*

P

heat

kp

kr

knr

hν´A +

A +

photoreactionphotoreaction

luminescence

heat dissipation

Figure 2.9. Primary steps after the interaction between light with the energy ℎ𝜈 and a molecule
A. A chemical reaction with the rate constant 𝑘p leads to the formation of product P (top). Lumi-
nescence associated with the rate 𝑘r to the ground state A and release of a photon with energy ℎ𝜈
(middle). Non-radiative deactivation can occur via heat dissipation with a rate 𝑘nr (bottom).

quantum yield (𝛷i) can be defined by Equation (2.17a) and Equation (2.17b). As such, 𝛷i
represents the efficiency of a photochemical process.

𝛷i =
Number of molecules undergoing process i

Total number of photons absorbed
(2.17a)

𝛷p =
𝑘p

𝑘p + 𝑘r + 𝑘nr
(2.17b)

Another important quantity is the lifetime 𝜏 (A∗) of the respective excited state A∗, as

given by Equation (2.18). It is the inverse of the sum of all rate deactivation rate constants.

𝜏 (A*) =
1

𝑘p + 𝑘r + 𝑘nr
(2.18)

𝛷i and 𝜏 of the respective primary steps are correlated via 𝑘i (refer to Equation (2.19)).

𝑘i =
𝛷i

𝜏 (A*)
(2.19)

Rigorous treatment of photochemical processes with quantum chemistry results in the

so-called transition dipole moment 𝑀if of an initial state i and a final state f (see first line

of Equation (2.20).[43] 𝑀if answers the question whether a photochemical process is in

principle possible or not. 𝛹i and 𝛹f are the wave functions of the initial and the final
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state, respectively and 𝜇̂ the dipole-moment operator.

𝑀if = ∫𝛹i𝜇̂𝛹fd𝜏

= ∫ 𝜙i𝜇̂𝜙fd𝜏e ∫𝑆i𝑆fd𝜏s ∫ 𝜃i𝜃fd𝜏N
(2.20)

The Born-Oppenheimer approximation enables the separation of the electronic wave

function from the wave function of the nuclei, which is denoted as 𝜃.[47] Further split
of the electronic wave function into a one electron wave function 𝜙 and a spin function

𝑆 leads to the expression given for 𝑀if in the second line of Equation (2.20). The first

integral called the electronic transition moment, the middle one the spin overlap integral,
while the square of the third integral is known as the Franck–Condon factor (FCF).[48]

For a specific transition i → f to occur, the transition dipole moment must be non-zero.

The selection rules for electronic transitions are the result of the electronic transition
moment. The spin overlap integral states that during an electronic transition, the spin

multiplicity must be preserved. In cases where this rule is violated, the transition is called

spin forbidden. This is especially relevant for molecules containing heavy atoms, like some

of the metal complexes used in the present thesis. The intensity of the actual transition

can be estimated via the FCF, which is known as the Franck–Condon principle.[48a,b,49]

When applying the Born–Oppenheimer approximation, it is possible to visualize the en-

ergy of the ground and excited electronic state with respect to the nuclear coordinates.[47]

An example is depicted in Figure 2.10a). The potential energy curves of the ground and

the excited state are visualized by the bold lines in yellow and red, respectively. An

absorption results in a so-called vertical transition, which reflects the fact that the nuclei

are considered at fixed position during electronic excitations in the Born–Oppenheimer
approximation. The nuclei coordinates of the relaxed energies of the ground state differ

from those of the excited state, leading to an intensity pattern of the possible transitions

into various vibrational states as shown on the left side of the energy axis. The intensity

distribution of the various transitions can be calculated by the FCF.

While the picture drawn in Figure 2.10a) may be illustrative for small molecules, it

fails with increasing molecular size. A suitable presentation of such systems is obtained

by the so-called Jablonski diagram.[50] An example is depicted in Figure 2.10b) with the

energy levels of the various excited states relative to the ground state S0 in yellow. The

gray lines represent excited vibrational states.
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Figure 2.10. a) Schematic explanation of vertical electronic transitions from a ground state 𝛹i to
an excited state 𝛹f. 𝐸 is the energy scale and 𝑄 the nuclear coordinates of the respective molecule.
𝐸ab represents the energy of a vibronic transition from 𝛹v=a ← 𝛹v=b. b) Jablonski diagram, depicting
the energy levels of a molecule with the possible intramolecular photo processes as described in
the text. Adapted with permission from [43]. © 2014 Wiley-VCH Verlag GmbH & Co. KGaA.

Excitation from the S0 state into excited singlet states S1 or S2 can occur upon irradia-

tion.(a) The distribution into the respective vibrational levels is dictated by the FCFs. The

combination of an electronic and vibrational transition is referred to as vibronic transition.
Fast vibrational relaxation (VR) brings the excited molecules to the lowest vibrational

level in the respective state. From a here, internal conversion (IC) denotes the isoenergetic

radiationless transition between two electronic states having the same multiplicity, e.g.

from S1 to S0. On the other hand, intersystem crossing (ISC) describes the isoenergetic

radiationless transition between two electronic states of different multiplicity, e.g. from

T1 to S0. The spontaneous emission of a photon from the molecule in the excited state is

termed fluorescence, if the spin multiplicity is retained. The corresponding process in-

volving a change in spin multiplicity is termed phosphorescence, which typically involves

a transition from the first excited triplet state T1. As this transition is spin-forbidden,
phosphorescence occurs on a much longer timescale than fluorescence. Fluorescence, as

well as phosphorescence are following the Kasha–Vavilov rule, which states that quantum

yield of the luminescence is independent of the excitation wavelength, i.e. the process

occurs from the lowest vibrational level of the respective excited state.[51] As in the

case of singlet excited states, ISC can also occur from a triplet state into a singlet state.

(a) Single photon excitations mainly occur into the S1 state, although higher order excitations are possible if
allowed via the selection rules.
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Table 2.1 summarizes the above described photophysical processes together with their

corresponding timescales.

Table 2.1. Summary of the photophysical processes described in the text and their corresponding
time scales. Reproduced with permission from [46]. © 2009 John Wiley & Sons, Ltd.

Process Abbreviation Time scale / s

Absorption – 10−15

Internal conversion IC 10−12–10−6

Intersystem crossing (S → T) ISC 10−12–10−6

Intersystem crossing (T → S) ISC 10−9–101

Vibrational relaxation VR 10−13–10−12

Fluorescence – 10−9–10−7

Phosphorescence – 10−6–10−3

2.2.2 Photochromic molecules

The first reports of the phenomenon later called “photochromism” date bake to the

end of the 19th century, where Fritzsche described a molecular photochromism.[52]

These observations have been termed phototropy and phototropism,[53] while the term

photochromism was suggested by Hirshberg in 1950.[54]

Photochromic molecules respond to light as an external stimulus. Upon irradiation, the

molecule undergoes a reversible transformation in geometry, polarity, as well as charge

distribution.[55] Light as the stimulus has the advantage that it does not contaminate the

system, is orthogonal to most other processes and non-toxic. In addition, light can be

delivered with high spatial and temporal control, precise wavelength, as well as defined

intensity.[56]

The photodynamic system of a photochromic molecule allows the population of a

less stable or metastable state, as compared to the thermal ground state.[57] Figure 2.11

illustrates the differences between thermal and photodynamic equilibrium. In the thermal

case (a), the two energy levels (I) and (II) are populated according to the Boltzmann

distribution and is given by the equilibrium constant𝐾𝛥
𝑒𝑞. Forward and backward reactions

take place via the same transition state on the same potential energy surface (principle

of microscopic reversibility).

In the dark case of the photodynamic system (b), the activation barrier is too high for

thermal transformations. Upon irradiation with a suitable wavelength (c), the molecule

can transit into an excited state, from which it can relax into state (II). The backward
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reaction can either take place spontaneously in the dark, or via irradiation with a different
wavelength (d). As such, the equilibrium involves two different pathways and can involve

a) b) c) d)

thermodynamic
equilibrium

photodynamic
equilibrium

E E

reaction coordinate

thermal equilibrium photostationary state

reaction coordinate

I

II

I

II

excited state

I

II

excited state

I

II

excited state

Figure 2.11. Comparison between thermodynamic (a) and photodynamic (b–d) equilibria. The
Boltzmann distribution dictates the population of the energy levels (I) and (II) in the thermal case
(a) with the equilibrium constant 𝐾𝛥

𝑒𝑞. The difference between the energy levels is given by 𝛥𝐺‡

and 𝛥𝐺⊝. (b) Exclusive population of state (I) in the dark as a result of a high energy barrier. (c)
Transition into an excited state upon irradiation and relaxation into state (II). (d) Depopulation of
state (II) via thermal fading (T-type photochromism) or photo excitation (P-type photochromism).
The photodynamic equilibrium constant 𝐾 𝜆

𝑒𝑞 in this case is depicted below the graph and depends
on the molar extinction coefficients and the quantum yields of the for- and backward reaction.
[57] – Adapted with permission of The Royal Society of Chemistry.

the potential energy surface of an excited state, i.e. the principle of microscopic reversibil-

ity does not apply. The equilibrium constant for the resulting photostationary state (PSS)

in the absence of thermal fading, i.e. the ratio between (I) and (II) under continuous
irradiation with wavelength 𝜆 is given by 𝐾𝜆

𝑒𝑞, which depends on the molar extinction

coefficients 𝜖𝜆𝐼 and 𝜖𝜆𝐼 𝐼, as well as the quantum yields 𝛷𝜆
𝐼→𝐼 𝐼 and 𝛷

𝜆
𝐼 𝐼→𝐼 of the two reactions.

Depending on the energy barrier for the (II) to (I) backward reaction, photochromic

molecules are classified as either P-type or T-type. For P-type molecules, the activation

barrier is too high for a thermal reaction, resulting in a thermally bistable system. In

contrast, T-type molecules are thermally labile, i.e. exhibit thermal depopulation of state

(II).
Figure 2.12 gives an overview over photochromic molecules. Two examples of P-type

photochromic molecules are diarylethenes[58] and fulgides.[59] In these systems, the
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2.2 Photochemistry

transformation in both directions is based on the electrocyclic [2π+2π+2π] rearrange-

ment, i.e. both isomerizations are photochemical reactions. Azobenzene[60] and flavylium

systems[61] exhibit a (E)⇌(Z ) double-bond isomerization and belong to the T-type pho-
tochromic molecules. Finally, SPs and spirooxazins[62] are also T-type photochromes, but

undergo reversible photo activated cyclization/ring-opening reactions.
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Figure 2.12. Most prominent families of molecular photochromic molecules. Diarylethenes (a)
and fulgides (b) are examples of P-type photochromic molecules that isomerize via electrocyclic
rearrangements. T-type photochromic molecules are for example azobenzenes (c) or flavylium mo-
lecules (f), which undergo (E )⇌(Z ) double-bond isomerizations. Spiropyrans (d) and spirooxazins
(e) are also T-type photochromes, but with reversible cyclization/ring-opening isomerizations.

Every class of photochromic molecules described above has its unique set of properties,

which can be tuned to take into account the desired applications. Parameters include the

quantum yields 𝛷, the molar extinction coefficients 𝜖, the spectra shape of the absorption,
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the position of the PSS, the speed of switching and thermal stability of both isomers,

and the resistance towards degradation (fatigue) of the photochrome.[56] The following

section describes the photochemistry of SPs in more detail, which was exploited in

Chapter 4 and 5 of the present thesis.

2.2.2.1 Spiropyrans

Fischer and Hirshberg were the first who described the photochemistry of SPs in the

early 1960s.[63] The general structure of SPs and their photochromism is depicted in

Scheme 2.3. The close-ring isomer is abbreviated as “SP”, while the open-ring isomer is

abbreviated as “MC”, from the analogy to the structure of merocyanines. The MC form

can either be drawn as a zwitterionic or a quinoidal structure, while the real structure is

a hybrid of both.

N

R2

O

UV

Vis or Δ

R

R1

N

R2
R

O

R1

SP

N

R2
R

O

R1

MC

zwitterionic quinoidal

Scheme 2.3. General structure motif of the photochromic SP molecule and its open-ring MC
isomer.

The unique properties of SPs compared to other photochromic molecules arise from

the vastly different properties of the two isomers. First, the charge separation in the MC

form results in a large electric dipole moment compared to the SP isomer.[64] Secondly,

the structural differences between SP and MC geometries results in less occupied volume

of the SP as compared to the MC form.[62c] Thirdly, the SP isomer is mostly transparent

in the visible light region, whereas the MC form exhibits a strong absorption between

450–650 nm. In addition, the MC form shows strong fluorescence, while the SP form

does not show significant emission.[65] Fourthly, the MC isomer is significantly more

basic than the SP isomer and can be protonated at the oxygen atom.[66] Finally, the MC

form also exhibits more affinity to other chemical species, such as metal ions or other

zwitterionic species.[62c]

Synthesis The synthesis of SP molecules is straightforward and has been reviewed

extensively.[53,62b,d,67] The most common methods are the condensation of a N -hetero-

cyclic quaternary ammonium salt with a vicinal alkyl group with respect to the nitrogen
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(a) or the corresponding methylene base (b) with a 2-hydroxyarenealdehydes (c), i.e.
salicylaldehydes, in refluxing ethanol solutions (see Scheme 2.4).[62c]
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Δ, ethanolor

Scheme 2.4. The two most common synthesis strategies towards SP molecules. Condensa-
tion of a cyclic quaternary ammonium salt (a) or the corresponding methylene base (b) with a
salicylaldehyde (c).

Isomerization mechanism The SP⇌MC isomerization can not only be triggered

by light, but also by other stimuli, such as temperature[62d] (thermochromism), pH[68]

(acidochromism), solvent polarity[69] (solvatochromism), metal ions,[70] redox potential[71]

(electrochromism), or mechanical force[62d] (mechanochromism).

The photochromism and acidochromism of SPs is depicted in Scheme 2.5a).[62c] Transfor-

mation of SP (1) to MC (2) occurs via irradiation with UV light, while the reverse reaction

is possible through irradiation with visible light or thermal fading. Upon protonation,

the SP form (1) can be protonated towards SPH+ (3). However, this species is not stable
in solution and quickly ring-opens towards the protonated MCH+ species (4), which is

also indicated by the direct transformation of SP to MCH+ in the middle. MCH+ is also

accessible via the MC form (2) at low pH values.

A comparison between the thermal and photochemical pathway of the SP to MC

interconversion is illustrated in Scheme 2.5b). In the photochemical path on the top,

irradiation with UV light around 365 nm gives rise to the MC isomer in a first-order

process.[72] The heterolytic cleavage of the spiro C O bond forms the cis-MC (5) isomer,

which transforms into the trans-MC species (6) upon rotation about the central C C

bond. Interestingly, this ring-opening can also be achieved via two-photon excitation

using near-infrared (NIR) irradiation,[70b,73] which will be exploited in Chapter 5 of the

current thesis.
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On the bottom half of Scheme 2.5b), the thermal SP to MC interconversion is depicted.

In this case, the mechanism is a 6π electrocyclic ring-opening, which first results in

the formation of the quinoidal form of the cis-MC isomer (7). Rotational isomerization

towards trans-MC species (8) completes the transformation. The final MC structure is a

hybrid of the two resonance structures (6) and (8).
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Scheme 2.5. a) Photochromism and acidochromism of SP molecules. Reversible transformations
between the four states: SP (1), MC (2), protonated SP SPH+ (3), and protonated merocyanine
MCH+ (4). b) Comparison between photochemical (top) and thermal ring-opening (bottom)
mechanism. The resultant MC forms (6) and (8) are resonance structures of each other. [62c] –
Adapted by permission of The Royal Society of Chemistry.

The mechanism and the involved excited species for the photochemical transformation

has been investigated in great detail and can be divided in SP molecules without a nitro-

group in the 6-position of the benzopyrane ring and those without substituents (see
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Scheme 2.6a) and b), respectively).[68b,70a,74] For 6-nitro substituted SPs, excitation of

SP into the singlet state is followed by ISC into 3SP*. From here, ring-opening occurs

towards the triplet state 3MC*perp, which transforms into 3MC*trans through rotation.

Additional ISC and IC results in the MC isomers CTC and TTC (for the description of

the abbreviations, see Scheme 2.7 and discussion thereof). This mechanism is also called

the Görner–Chibisov mechanism.[62a] In contrast, no triplet states are involved for SP

SP
hv 1SP* 3SP*

ISC 3MCperp  = 3CCC**

3MCtrans
* CTC + TTC

a)

b)

SP

1SP*

hv

1CCC*

1CCC CTC + TTC

hv1

Scheme 2.6. a) Görner–Chibisov mechanism of the photo triggered ring-opening of SPs with
a nitro-group in the 6-position of the benzopyran ring, involving triplet states. b) Ring-opening
mechanism for SP molecules without an electron-withdrawing group in the 6-position only occurs
via singlet excited states. Adapted with permission from [62d]. © 2004 American Chemical Society.

molecules without electron withdrawing groups in the 6-position of the benzopyrane

ring (see Scheme 2.6b). Here, the SP can either directly ring-open towards the 1CCC

isomer (thermal way), or, upon irradiation, undergo the ring-opening from the 1SP* state

towards the 1CCC* excited state, from which IC or irradiation with another wavelength

results in the 1CCC isomer. From here, rotational isomerization finally also results in the

CTC and TTC MC isomers.[62a,d]

Scheme 2.7 illustrates the different possible isomers and their interconversion.[62a]

Electrocyclic 6π ring-opening (thermally) or heterolytic C O bond cleavage (photochem-

ically) of (R)-SP in the top line yields a sterically strained intermediate, which rapidly

converts to the nearly planar CTT MC isomer. The abbreviations highlighted in green

are referring to the orientation relative to the two double bonds (cis, trans; C and T)

and the central single bond (s-cis, s-trans; C, T). Only the s-trans isomers are depicted

in Scheme 2.7, because the s-cis conformers are significantly higher in energy.[62b] Con-

secutive rotational isomerizations result in the formation of the CTC, TTC, and TTT

isomers, from which the CTC and TTC are the thermodynamically most stable ones.

Final ring-closure from the TTT form yields the (S)-SP stereoisomer. As depicted in the
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middle of Scheme 2.7, the MC forms can form supramolecular aggregates, which was

exploited in Chapter 5 of the current thesis.
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Scheme 2.7. Various MC isomer structures in solution and their interconversion through bond

rotations. The MC isomers are capable to form supramolecular aggregates. Adapted with permis-

sion from [62d]. © 2004 American Chemical Society.

Aggregation of the MC isomer A result of the molecular structure of the MC isomer

is its tendency to aggregate. The driving force for this aggregation behavior are mainly

dipole–dipole interactions along with π–π stacking, which readily occurs in hydrophobic
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solvents.[75] The two different stacking possibilities are depicted in Scheme 2.7. Parallel

“head-to-tail” arrangements of theMC dipoles are called J-aggregates, whereas antiparallel
“side-by-side” stackings are referred to as H-aggregates.[62c] J-aggregates,[76] as well as
H-aggregates[77] have been observed for SPs, and even exist in parallel.[78]

Krongauz et al. described the formation of SP-MC dimers, as well as charge-transfer

(CT) complexes of small SP molecules resulting in the formation of supramolecular

aggregates with a degree of association >106. The resulting macroscopic structures

were in the micrometer range.[76a] In addition, aggregates of the type SP-MC, MCn, and

SPnMCm were described.[79] The aggregation stabilizes the MC isomers and strongly

retards,[78a,80] or even suppresses[81] the ring-closing reaction.
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Figure 2.13. Illustration of the “zipper crystallization” found in SP-functionalized methacryl-
ate polymers (A). Styrene- (B) or acrylate-based polymers (C) do not show such crystallization
behavior. The X-ray powder diffraction of (A, left) and (B, right) are depicted below the structures.
[62c] – Adapted by permission of The Royal Society of Chemistry.

For SP containing methacrylate copolymers, a mechanism termed “zipper crystalliza-

tion” results in polymer crystals which are stable even at 150 ∘C.[77a,c,82] Interestingly,

the authors demonstrated that styrene- or acrylate-type polymers did not show such

behavior, which was attributed to the more rigid (styrene) or more flexible (acrylate)

nature of the polymer backbone (see Figure 2.13).

Bell and co-workers exploited the strong tendency of SPs towards self-organization

for UV-induced aggregation of colloidal silica particles functionalized with SP-bearing

methacrylate polymers in toluene solution.[83] They showed that the UV-induced floccu-

lation process was fully reversible upon visible light exposure and agitation.
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George et al. combined the aggregation behavior of SP-functionalized colloids with

direct laser writing (DLW, see Section 2.3).[73c] The local control of the aggregation

behavior via a two-photon absorption (TPA) led to stable architectures in solution. The

redispersal of the structures was achieved through ultrasonication in toluene or THF.

Metal complexation The photochemical or thermal SP→MC transformation results

in the drastic alteration of the electron-donor ability of the ring oxygen of the molecule.

The phenolate oxygen of the MC form can serve as a ligation center for various metal

ions.[84] As such, the switching between the two isomers is of interest for applications,

such as metal ion sensing under the influence of external stimuli, i.e. light, which was

investigated in Chapter 4 of the current thesis. In the absence of additional ligation sites
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Figure 2.14. Various metal complexes of the open-ring MC isomer. An additional metal binding
site is installed in all cases for the stabilization of the MC form.

except the phenolate oxygen atom, the complex binding constants are rather weak and

light induced ring-closure results in the expulsion of the metal ion.[62c,85]

First literature reports of SP molecules as photochromic metal sensors date back to the

1960s.[86] Later, Winkler and co-workers studied the metal-complexation of 6-nitro-spiro-

[indolinepyridobenzopyran] (see Figure 2.14a).[87] Different stoichiometries depending
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on the metal and the SP substitution have been described, most of them belonging either

to a MC:Mn+ ratio of 2:1 or 1:1.

Another SP derivative and its metal complexation behavior are depicted in Figure 2.14b).

Here, an additional binding site was provided by a 2-benzothiazolyl substituent in the

ortho-position to the phenolate oxygen. Upon metal ion addition, 1:1 complexes were ob-

tained for Zn+II, Cd+II, and Mn+II, while Co+II, Ni+II, and Cu+II led to 2:1 stoichiometries.[88]

Very selective alkali metal chemosensors were achieved by the combination of SP mole-

cules with crown ethers, which is depicted in Figure 2.14c).[89] While complexation with

the oxygen containing SP occurs spontaneously in the dark, the corresponding spiroben-

zothiopyrane did not form the metal complex under dark conditions (not shown).[90]

Giordani and co-workers have synthesized metal complexes of Zn+II, Mg+II, and Cu+II

ions with SP molecules in a 2:1 ratio (see Figure 2.14d).[91] A methoxy group in ortho-

position to the phenolate oxygen served as an additional binding site. The authors also

proposed the participation of the ester moiety attached to the nitrogen atom of the indole

ring in the metal complexation.

Selvanathan et al. reported the synthesis of Y+III and Dy+III complexes with a bis-

(pyridinemethyl)amine substituted SP molecule.[92] They demonstrated, that the metal

complexes undergo a photo triggered trans⇌cis isomerization of the MC ligand, while

the coordination to metal is retained (see Figure 2.14d).

If attached to a polymeric backbone, selective detection of Cu+II metal ions was demon-

strated in the presence of Zn+II, Ni+II, and Co+II ions.[93] Other reports have utilized SP

end-functionalized poly(methyl methacrylate) (PMMA) for the selective and reversible

dimerization of the polymer chains.[94] Locklin and co-workers demonstrated that the

introduction of an ester moiety in close proximity to the phenolate oxygen can serve as

an additional metal binding site for selective metal sensing in polymers.[95]

2.2.3 Photo triggered ligation techniques

Employing light as a trigger to control intra-, as well as intermolecular chemical reactions

brings several advantages compared to the thermally overcoming of activation barriers.

Not only can the chemist precisely define the light intensity, i.e. the number of photons

reaching the desired target, but he can also tightly focus the light in arbitrary shapes in

2D, as well as in 3D space, and therefore obtain a spatial and temporal control over the

chemical reaction process. The current thesis exploits various photo triggered ligation

techniques for the end-functionalization of polymers and for surface lithography (see

Chapter 3), as well as for 2D and 3D fabrication of microstructures via the use of DLW
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(refer to Chapter 5). The following section will review the literature about other pho-

toligation techniques, before introducing the reactions employed in the present thesis in

more detail.

To motivate why photo induced reactions can be superior to thermally-induced re-

actions, a quote from Balzani, Ceroni, and Juri who nicely visualize the remarkable

difference, when going from thermal towards photochemical activation:[43]

“For example, absorption of a 300 nm photon by naphthalene corresponds

to an energy of 400 kJmol−1, comparable with the energy that would be

taken up by naphthalene … if it were immersed in a heat bath at 3000 K.”

It becomes obvious, that the accessibility of reaction modes corresponding to high tem-

peratures by photochemistry under mild conditions allow the synthesis of a plethora of

molecules. In fact, the photo excited molecule should be regarded as a completely new

species with different properties, as compared to the ground state molecule.[43]
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Figure 2.15. a) Photo activation of an o-nitrobenzyl (o-NB) derivative and reaction with an
aminooxy derivative. b) Diels–Alder adducts of phencyclones release carbon monoxide and molec-
ular hydrogen upon irradiation with 320 nm. Subsequent ring-opening with an amine gives the
ligation product. R, R1 = alkyl.

Photoligation chemistry has received significant attention in recent years and is nowa-

days routinely employed in organic synthesis,[43,46,96] polymer chemistry,[97] surface

lithography,[98] polymer network formation,[99] as well as in 3D fabrication techniques,
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such as DLW.[100] All approaches exploit the inherent advantages of photochemistry,

namely the spatial and temporal control over a reaction, as well as the low energy input

into the reaction system, while simultaneously having the ability to access reaction

manifolds not reachable via thermal activation.

Among the many reactions employed for photoligation chemistry, only the most promi-

nent examples will be given here, ordered by the operating mechanism and the employed

wavelength. This listing is of course far from being complete and the reader is referred to

excellent reviews on the field.[46,101] Emerging research areas in photoligation chemistry
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Figure 2.16. a) UV irradiation of phthaloyl peroxides releases CO2 and forms highly reactive
arynes, which are trapped by azides. b) 2-Napthoquinone-3-methides (o-NQMs) are generated via
irradiation of 3-(hydroxymethyl)-2-naphthols and readily react in a hetero-Diels–Alder reaction
with vinyl ethers. c) Dibenzocyclopropenones release CO upon irradiation, forming ring-strained
dibenzocyclooctynes that react in a catalyst free cycloaddition with azides. d) Ring-opening
of pyrene substituted azirines results in reactive nitrile ylides, which participate in 1,3-dipolar
cycloadditions. EWG = electron withdrawing group; R, R1 = alkyl.

include the search for reactions triggered via visible light[102] and some examples will be

mentioned in the next part.

Phencyclones can react in normal, as well as inverse electron demand Diels–Alder
reactions[103] with dienophiles (refer to Figure 2.15, bottom), which subsequently re-

leases carbon monoxide upon irradiation with a wavelength of 320 nm. The generated

39



2 Theoretical background

triphenylene imide derivatives can be ring-opened by amine nucleophiles in a follow-

ing reaction step.[104] The well-known photochemistry of o-NB derivatives liberates a

nitrosobenzaldehyde species,[105] which can be trapped in a bio-orthogonal fashion with

aminooxy compounds, a reaction sequence referred to as photo triggered oxime ligation

(see Figure 2.15, top).[106] Both reactions generate a reactive species under irradiation,

which is subsequently reacting in a nucleophilic substitution.

Another group of photoligation reactions is generating highly reactive arynes un-

der extrusion of small molecules or intramolecular rearrangements upon irradiation,

which then react in cycloaddition reactions (see Figure 2.16). Phthaloyl peroxides have
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Figure 2.17. Three examples of reversible photoligation chemistry. The [2+2] cycloadditions of
coumarines (a) and styrylpyrenes (b) triggered via irradiation with 350 nm and 405 nm, respectively.
Only one isomer is depicted in each case. The dissociation is feasible with shorter wavelength
in both cases. c) Photochemical [4+4] cycloaddition between two anthrazene molecules and the
reverse reaction via 410 nm and 360 nm, respectively. R = alkyl.

been shown to form highly reactive arynes upon UV irradiation and instantaneously

react with azides in an 1,3-dipolar cycloaddition.[107] Popik and co-workers have uti-

lized o-NQMs (a subclass of o-Quinone methides[108]) for hetero-Diels–Alder reactions
with vinyl ethers.[109] They demonstrated the versatility of these reactive species in the

spatial encoding of surfaces. o-NQMs can be generated via 350 nm irradiation from 3--

(hydroxymethyl)-2-naphthols. They can either be trapped by nucleophiles or undergo an

inverse-electron demand hetero-Diels–Alder reaction with electron-rich dienophiles.[110]
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Irradiation of dibenzocyclopropenones around 350 nm releases carbon monoxide and

forms highly reactive dibenzocyclooctynes which can undergo catalyst-free 1,3-dipolar

cycloadditions with azides.[111] Azirines form highly reactive nitrile ylides, i.e. 1,3-dipoles,

upon irradiation, which undergo 1,3-dipolar cycloadditions with various substrates[112]

and can even be triggered via visible light upon attachment of a pyrene substituent (see

Figure 2.16, bottom).[113]

An emerging research area in photoligation chemistry is the search for photo reversible

ligation techniques triggered with different wavelengths of light.[114] Figure 2.17 gives

three examples, all belonging to the class of photochemically allowed [2+2] and [4+4]

cycloadditions. Coumarines are known to form dimers upon irradiationwith awavelength

of 350 nm. The reverse reaction is feasible with 254 nm and was employed for the cross-

linking of polymers.[115] Recently, styrylpyrenes[116] have attracted new attention, and

their reversible [2+2]-cycloaddition was exploited in polymer chemistry.[117] Again,

attaching a pyrene substituent enabled the reaction to proceed in the visible light regime.

The [4+4] dimerization of anthrazenes[118] has been employed in different fields, such

as formation of single-chain nanoparticles (SCNPs),[119] polymer chemistry,[120] photo

triggered assembly of nanomaterials,[121] and Claus et al. demonstrated their potential

as a surface photoligation tool.[98a]

2.2.3.1 Thioaldehydes

Thioaldehydes are highly reactive compounds that are majorly formed in situ as they are

converted very quickly. One possibility is the stabilization of the carbon-sulfur double

bond with sterically bulky groups, being referred to as thermodynamic stabilization, but
this approach will not be discussed in this introduction.[122] This section introduces the

thioaldehyde chemistry and the possible reactions that can be used for photoligation

chemistry, which was employed in Chapter 3 of the present thesis for surface functional-

ization via photo-lithography.

Thioaldehydes represent a highly unstable species compared to their oxygen analogues

(aldehydes), as the energetic stabilization of the π-double bond decreases strongly when

oxygen is substituted by sulfur (≈30–40 kcalmol−1 difference between oxygen and sulfur,

i.e. from a second- to a third-row element).[122] In literature, several methods for the

generation of thioaldehydes have been described,[123] such as UV irradiation,[124] high

temperatures,[125] flash photolysis,[126] or flash pyrolysis.[127]

One type of in situ generated thioaldehydes can be obtained by the decomposition of

β-keto sulfides upon irradiation with UV light via a Norrish Type II reaction pathway.[128]
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The Norrish Type II is a common photo induced reaction of alkyl ketones and related

substrates. It refers to the elimination forming an enol and alkene after photo excitation

and photo induced intramolecular γ-hydrogen atom abstraction. In contrast, the Norrish
Type I reaction describes the homolytic cleavage of the α-bond of the excited carbonyl,

which is often followed by decarbonylation of the acyl radical intermediate.[45b,129]

The group of Barner-Kowollik has employed phenacyl sulfide, which decomposes

upon irradiation into a highly reactive thioaldehyde and acetophenone as a by-product.

First literature reports utilizing this strategy date back into the late 1960s.[130] The photo

excitation, as well as the subsequent reactions are depicted in Scheme 2.8. After the initial
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excitation of the phenacyl sulfide, γ-hydrogen abstraction (𝑘γ) and fragmentation occurs

(Norrish Type II reaction), yielding the desired thioaldehyde species. As a by-product, the
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enol tautomer of acetophenone is being formed, which undergoes rapid tautomerization

towards acetophenone.

In a mechanistic study, Wagner and co-workers compared the depicted Norrish Type II
reaction with two other possible reaction channels, namely the β-cleavage and CT.[131]

The β-cleavage (𝑘β) results in two radicals, one of them being a sulfur centered radical.

From this stage, either recombination (𝑘𝑟𝑒𝑐𝑜𝑚𝑏.) towards the ground state molecule or

further reactions involving the two radicals can occur (not shown). CT (𝑘𝐶𝑇) from the

excited carbonyl towards a radical anion on the oxygen, as well as a radical cation on the

sulfur represents the third reaction channel, which is subsequently quenched, reforming

the initial phenacyl sulfide molecule. They demonstrated, that by introducing γ-hydrogen

atoms, as well as performing the photoreaction in aprotic solvents considerably favors

the desired Norrish Type II reaction channel.

In the presence of dienes, such as cyclopentadiene or alkoxydienes, the thioaldehyde

can serve as a dienophile in a hetero-Diels–Alder reaction leading to the formation of

cyclic thioethers (products A and B in Scheme 2.8). The regiochemistry of the adduct is

determined by the electronic nature of the substituent R1 on the thioaldehyde, as well as

on the respective diene (R2, and R3). The regioselectivity can be explained by comparison

of the molecular orbital coefficients of the lowest unoccupied molecular orbital (LUMO)

of the dienophile (thioaldehyde) with the highest occupied molecular orbital (HOMO) of

the respective diene.[122]

The highly reactive thioaldehyde can also react with suitable nucleophiles, for example

thiols, alkoxy amines, or amines.[132] The reaction with an alkoxy amine is depicted in

Scheme 2.8 on the lower right side (product C).
Despite their unstable nature, thioaldehydes are versatile intermediates in organic

chemistry. They have been employed in natural product synthesis,[133] synthesis of thiazo-

lines,[134] or complex ring closures.[135] They also have been shown to self-polymerize[136]

and have been used in different cycloaddition reactions, such as [2+2], [3+2], and in the

above mentioned [4+2] hetero-Diels–Alder reaction.[130b,133,137] Recently, Tuten et al.
demonstrated that the substitution of the phenacyl moiety by a pyreneacyl group enables

the red shifting of the photoreaction above 400 nm into the visible light regime.[138] Their

approach utilizes the ability of the pyrene group to achieve visible light absorption of the

corresponding pyreneacyl moiety.

In recent years, the photo triggered phenacyl sulfide ligation has been employed in the

field of polymer chemistry, as well as for the functionalization of various surfaces. Exam-

ples are the ligation of end-functional polymers onto spherical and planar surfaces,[124,139]

polymer end-group modifications,[132] sequence defined macromolecules,[140] cellulose
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functionalization,[141] and formation of SCNPs.[142] The photoligation chemistry was

even extended into 3D in a DLW experiment to obtain dual functional free-standing 3D

structures.[143]
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Figure 2.18. Spatially resolved immobilization of metal complexes (3a-c) onto silica surfaces
employing a phenacyl sulfide functionalized silane (I). Single (a,b), as well as double functional
(c-e) surfaces were characterized via time-of-flight secondary ion mass spectrometry (ToF-SIMS).
The mass fragments used for creating the false-color images are given below each ToF-SIMS image.
The shadow mask and surface holder are shown in f. Adapted with permission from [144]. © 2015
Wiley-VCH Verlag GmbH & Co. KGaA.

The photolithographic encoding of metal complexes onto silica surfaces was demon-

strated employing gold, as well as palladium complexes, as depicted in Figure 2.18.[144] A

phenacyl sulfide silane (I) was used as a surface anchor and metal complexes function-

alized with sorbic alcohol as a diene (3a–c) were tethered onto the surface. Employing

suitable shadow masks, single (Figure 2.18, a and b), as well as double functional metal

complex surfaces (Figure 2.18, c–e) were obtained. The surfaces were characterized via
ToF-SIMS, confirming the spatially resolved immobilization of the metal complexes.

2.2.3.2 Nitrile imine-mediated tetrazole-ene cycloaddition

Another versatile photo triggered ligation is the nitrile imine-mediated tetrazole-ene

cycloaddition (NITEC). Here, a tetrazole releases nitrogen upon irradiation with UV light,

forming a nitrile imine (see Scheme 2.9, 1st reaction). Initially described by Huisgen and

coworkers in 1967 as a thermally triggered reaction,[145] this 1,3-dipolar cycloaddition

has found widespread use in synthetic chemistry.[146] A general reaction scheme is

depicted in Scheme 2.9. Starting from the tetrazol molecule, irradiation via UV light
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triggers the N2 extrusion, forming the 1,3-dipole. From here, several reaction channels are

possible, depending on the reaction partners. This section will introduce the chemistry

behind the NITEC ligation and its variants with an emphasis on their application in

surface patterning, which were employed for the spatially resolved surface patterning of

metallopolymers in Chapter 3 of the current thesis.
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Scheme 2.9. Photo induced nitrile imine formation of a tetrazole and dimerization in the absence
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from left to right: 1,3-dipolar cycloaddition with an electron deficient ene (NITEC), reaction with
a carboxylic acid (NICAL), addition to the triple bond of acetonitrile, reaction with an amine, such
as imidazole, and addition of a thiol. R1, R2 = aryl; R3 = alkyl; EWG = electron withdrawing group.

In the absence of any reaction partner, nitrile imines stabilize via dimerization, forming

tetrazines (see Scheme 2.9, top row). The nitrile imine can also react with electron

deficient dipolarophiles such as maleimides or acrylates,[147] and even with non-activated

double bonds due to its inherent high reactivity (see Scheme 2.9, bottom left).[148] While

the predominant part of reports exploit the tetrazole chemistry for such NITEC reactions,

the nitrile imine can react with various other functional groups. Heiler et al. exploited
the self-dimerization of nitrile imines, which stabilize the reactive 1,3-dipoles in the

absence of suitable reaction partners,[149] as well as the reaction with poly(acrylic acid)

copolymers for the formation of SCNPs and established the term nitrile imine-carboxylic

acid ligation (NICAL, see Scheme 2.9). Li et al. reported the reaction with carboxylic acids,

as well as triple bonds (acetonitrile) and amines, such as imidazoles.[150] The authors made

elegant use of cocktail experiments to compare the relative reactivities of the different
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functional groups. While already mentioned in the beginning of the tetrazole research

area by Huisgen and co-workers in the 1960s,[151] Levkin and co-workers made use of the

reactivity with thiols in solution and showed the capability for surface functionalization

(see Scheme 2.9).[152] Lin and coworkers have published a variety of work based on

NITEC and established the reaction as a bio-compatible ligation technique.[153–156] The

Wagenknecht group published several papers utilizing the NITEC ligation as a tool for

DNA labeling and fluorogenic sensing.[157]
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Figure 2.19. Different substitutions of the aryl group connected to the nitrogen atom of the
tetrazole ring and the wavelengths reported to trigger the 1,3-dipole formation. From left to right:
non-substituted tetrazole, push-pull substituted methoxy and N,N -dimethylamino tetrazoles, and
pyrene functionalized tetrazole. R = alkyl.

In addition, tetrazoles were investigated regarding their activation wavelength by

varying the two substituents of the tetrazole ring (R1 and R2 in Scheme 2.9). It was found

that by careful substitution of the ring bound to the nitrogen atom of the tetrazole, a

bathochromic shift of the activation wavelength could be achieved.[158] Structures of

different tetrazoles together with their respective activation wavelengths are depicted

in Figure 2.19. The core structure with a para-carboxylic acid ester on the carbon tetra-

zole ring atom and a phenyl ring on the nitrogen of the tetrazole ring can be activated

via irradiation with 260 nm. Substitution of the para-position with electron donating

substituents, such as methoxy or N,N -dimethylamino moieties results in push-pull tetra-

zoles, which can be triggered with 320 nm and 360 nm, respectively. Lederhose et al.
substituted the aryl group connected to the nitrogen atom of the tetrazole ring by a

pyrene moiety,[147] a concept also adopted for the thioaldehyde chemistry discussed

in Section 2.2.3.1. They could push the trigger wavelength up to 420 nm and used the

chemistry for small molecule ligation, as well as block copolymer formation. In another

avenue, the same authors combined the pyrene tetrazole with upconverting nanoparticles
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(UCNPs) and triggered the reaction with a 974 nm laser in the near-infrared region.[102a]

They also demonstrated the ability of tissue penetration for possible medical applica-

tions. Lin and co-workers also achieved visible light triggered NITEC chemistry via
oligothiophene-based extension of the tetrazole π-system.[159]

The NITEC ligation was also exploited for the spatially-resolved surface patterning

of various substrates. Rodriguez-Emmenegger et al. investigated the NITEC ligation

for poly(dopamine) (PDA) coated surfaces,[160] which is depicted in Figure 2.20. The

spatially resolved immobilization of ATRP initiator molecules was achieved via NITEC.

Subsequent surface-initiated ATRP (SI-ATRP) resulted in anti-fouling poly(oligoethylene

glycol methyl ether methacrylate) brushes. In another approach, cellulose was used as a

substrate and was functionalized with tetrazoles to enable photoligation capabilities.[161]

Blasco et al. used silicon wafers as substrates and fabricated spatially resolved light-

responsive azobenzene patterns via NITEC chemistry.[162] The NITEC reaction was

also combined with the ligation of biomolecules onto a silicon surface in a reversible

manner.[163] Lederhose et al. combined tetrazoles triggered by different wavelengths on a

single substrate and were able to fabricate spatially resolved multifunctional surfaces.[98b]

Figure 2.20. Example of a PDA coated silicon surface functionalized with tetrazole molecules.
After NITEC ligation of an ATRP initiator, anti-fouling poly(oligoethylene glycol methyl ether
methacrylate) brushes were grown from the surface and inhibited cell adhesion on the irradiated
areas. Adapted with permission from [160]. © 2013 Wiley-VCH Verlag GmbH & Co. KGaA.
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2.2.3.3 ortho-Quino dimethanes

The ability of o-alkyl aromatic ketones and aldehydes to form the corresponding hydroxy-

o-quinodimethanes[164] was first described by Yang and Rivas in 1961.[165] They observed

the photo induced Diels–Alder reaction between o-methylbenzophenone and dimethyl

acetylenedicarboxylate upon ultraviolet irradiation. The photo induced tautomerization

of o-alkyl aromatic ketones and aldehydes has later been termed photoenolization by

Sammes and coworkers.[166] This section will introduce the chemistry of these molecules

with a special emphasis on their photoligation properties, as these are employed for

polymer functionalization in Chapter 3 of the current thesis. For a complete literature

survey of ortho-quino dimethanes in synthetic chemistry, the reader referred to excellent

reviews.[164,167]
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Scheme 2.10. Photoenolization mechanism of 2,4-dimethylbenzophenone with lifetimes of the
different transient species as determined in oxygen free cyclohexane. A detailed description of the
mechanism is given in the text. R1 = methyl, R2 = phenyl.

Porter and Tchir made an in-depth mechanistic study on several o-substituted ben-

zophenones and established a detailed mechanistic description of the steps following the

initial excitation.[168] The complete mechanism for the photo induced tautomerization

of 2,4-dimethylbenzophenone is depicted in Scheme 2.10. The lifetimes of the different

species are determined via laser flash photolysis in air-saturated cyclohexane. Starting

with the excitation from the S0 state A into the short lived S1 state (n→π* transition of

the carbonyl group), IC brings the S1 state back to the ground state S0. Alternatively, ISC
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can occur into the first triplet state (T1). The initially formed (E)-C triplet can isomerize

via rotation into the (Z)-C conformer, both having a lifetime of ≈38 ns. 1,5-Hydrogen
shift leads in both cases to the 1,4-diradical conformers (E)-D and (Z)-D, which are also

connected via a rotational isomerization and feature a lifetime of ≈67 ns. Subsequent
rearrangement affords the two o-quinone species (Z)-E and (E)-E, with a lifetime of 9.5ms

and 20ms, respectively. The lifetimes of the two o-quinone species (also referred to as

(E)- and (Z)-enol) can be considerably increased when employing oxygen free solvent.

In oxygen free cyclohexane, the lifetimes increase to 3.9 s for (Z)-E and 250 s for (E)-E,
respectively. In principle, both o-quinone species can relax back to the ground state

moleculeA. (Z)-E quickly relaxes back to the ground state via a sigmatropic 1,5-hydrogen

shift. For (E)-E however, the reketonization requires an intermolecular proton transfer

and therefore increases the lifetime of this conformer.[167,169b] In addition, the lifetimes

of the o-quinone species can vary considerably when changing substituents or solvent

polarity.[164a,169b]
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Figure 2.21. Left: Collection of photoenol reactivities with different substrates, namely
Diels–Alder-, Michael-, Aldol-, and Mannich-type reactions. Reproduced with permission from
[169b]. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Right: Various photoenols described in
literature. 2,4-Dimethylbenzophenone A as the first literature example, 2-methoxy-6-methylbenz-
aldehyde B as a widely employed photoenol precursor and 2-methyl-6-(methylthio)benzaldehyde
C as a recently published photoenol triggered by visible light. R1,R2 = H, alkyl or phenyl; R3,R4 =
alkyl; PG = protecting group; EWG = electron withdrawing group.

The (E)-enol (also referred to as photoenol or photo-caged diene in literature) can

participate in different reactions depending on the reaction partner (see Figure 2.21, left

side). The most prominent example is a Diels–Alder reaction with various dienophiles

(see Figure 2.21). The photo induced tautomerization followed by a Diels–Alder reaction
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is termed photoenolization/Diels–Alder (PEDA) reaction sequence.[169b] The (Z)-enol
does not show such reactivity, which can be explained by its short lifetime and steric hin-

drance.[164a] In a recent report, Melchiorre and co-workers reported an elegant approach

towards an enantioselective organocatalytic variant of the PEDA reaction.[169] This will

pave the way for employing the PEDA reaction sequence in enantioselective organo-

catalysis.[170] Michael-,[169a] Aldol-,[169a] and Mannich-type[169a] reactions complete the

reaction toolbox offered by photoenols, as depicted in Figure 2.21.

Three examples of photoenol precursors are depicted in the right side of Figure 2.21.

2,4-Dimethylbenzophenone A constitutes the first example described in literature and

detailed mechanistic investigations have been conducted, as described earlier. 2-Methoxy-

6-methylbenzaldehyde B is a widely used motif in synthetic polymer chemistry and was

also used in the current thesis (see Chapter 3). The free electron pair of the methoxy group

in ortho position to the benzaldehyde plays an important role, as it significantly stabilizes

the (Z)-enol via hydrogen bonding.[171] The last example, 2-methyl-6-(methylthio)benz-

aldehyde C, is the sulfur analogue of photoenol (B), which enabled a bathochromic shift

of the activation wavelength into the visible light regime.[172]

In all of these reactions, a careful choice of the reaction conditions need to be made

in order to minimize potential side-reactions, that can occur from the highly energetic

o-quinone species. A collection of reported side-reactions is depicted in Figure 2.22.

The formation of peroxides (I) in non-degassed solvents has been reported by Tchir

and Findlay.[173] Murakami et al. reported the appearance of cyclobutane structures (II)
upon radical combination from the triplet state of the photoenol.[174] Depending on the

concentration of the photoenol precursor and the light intensity, different dimerization

processes can occur. In diluted solution and with reduced light intensities, the photoenol

can undergo a hetero-Diels–Alder reaction with the carbonyl group of a second photoenol

precursor towards hemiacetal (III).[173] In the presence of high light intensities, such as

in continuous-flow chemistry, the dimerization of two photoenol species can result in

the formation of (IV) and (V). While (IV) is stable, (V) undergoes rearrangement towards

the bisaldehyde structure of (VI).[175]

The PEDA reaction has been used for the total synthesis of natural products,[176] as

well as a ligation tool in polymer chemistry. Specifically, the PEDA reaction enabled

the formation of SCNPs,[177] realization of sequence-defined polymers[178,179] or the

light-induced aggregation of nanostructures.[180] In addition, PEDA was also applied

for surface functionalization[171,181] and was translated into the third dimension via 3D

DLW,[182] sub-diffraction laser lithography,[183] and polymer network formation.[175]
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Figure 2.22. Reported side reactions of photoenols in the absence of suitable reaction partners.
In oxygen containing solutions, the formation of peroxides (I) can occur. Cyclobutane formation
towards (II) and hemiacetal formation with the carbonyl moiety of a second o-methyl benzaldehyde
resulting in (III), has also been reported. Another dimerization is shown below, leading to dimers
(IV) and (V). While (IV) is stable, (V) quickly rearranges towards bisaldehyde (VI). R1 = H; R2 =
alkyl.

2.2.3.4 Spirothiopyrans

Spirothiopyrans (STPs) are a special subclass of the well-known SP photoswitch described

in Section 2.2.2.1. This section will introduce this photoswitch and especially explain

how it has been utilized as a photoligation tool. The light triggered chemistry of STPs is

the subject of Chapter 5 of the current thesis.

In STPs, the oxygen atom bound to the spiro carbon atom is replaced by a sulfur atom.

The first description of this molecule and its synthesis was published by Becker and Kolc

in 1968.[184] Only recently, the versatile chemistry of this molecule was rediscovered.[185]

In analogy to the synthesis of SPs described in Section 2.2.2.1, the synthesis of STPs is

feasible via condensation of the indoline base IIIwith the benzopyrane ring system. Here,

the salicyl aldehyde motif employed for SPs is exchanged by a thiosalicyl aldehyde IV, as
depicted in Scheme 2.11, 2nd row. IV is readily obtained via a thermal Newman–Kwart
rearrangement[186] of an O-aryl thiocarbamate I into a S-aryl thiocarbamate II,[187] see
Scheme 2.11 upper row.

The substitution with sulfur has a pronounced effect on the photochemistry of the

molecule. While the absorption of the STP shows only little change compared to its SP

analogue, the ring-opened MC species causes a large bathochromic shift of the long-

wavelength absorption band associated with the MC form up to 100 nm, almost tailing
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Scheme 2.11. General synthesis route for the preparation of STPs. Newman–Kwart rearrange-
ment of O-aryl thiocarbamate I gives access to S-aryl thiocarbamate II. Condensation of an
indoline base III with the in situ deprotected thiosalicyl aldehyde IV results in the formation of
STP.

into the near-infrared region up to 900 nm.[187] This bathochromic shift can be explained

by the lower electronegativity of sulfur compared to oxygen, which increases the effective

charge that oscillates under irradiation with light.[188] It should be noted, that although

the analogous selenopyrans have not been reported until now, selenochromenes, e.g.

2H -selenochromene, were synthesized with photochromic properties. They exhibit an

absorption band of the MC species even beyond 900 nm and thus continue the trend as de-

scribed when going from oxygen to sulfur.[189] The NIR absorption of these chromophores

is beneficial for possible applications in data storage devices.[62d]

In contrast to the SP molecules, the photo coloration efficiency in STPs is considerably

reduced (lower quantum yield) and the thermal fading of the MC form is faster than com-

pared to SP.[190] This behavior has also been attributed to the reduced electronegativity

of sulfur as compared to oxygen, which reduces the possibility to stabilize the negative

charge at the hetero atom in the MC form. This difference is of great importance for

applications, which exploit the rates of SP to MC interconversion. Miyashita and co-

workers succeeded to crystallize the open MC form of a STP molecule under continuous

irradiation. They characterized the MC form via several spectroscopic methods including

NMR spectroscopy and emphasized the highly zwitterionic character of the MC form

with a higher contribution of the thion form compared to the thiolate species in the solid

state.[191]

In a recent study, Hirai and co-workers discovered that the free thiol of the MC form

can effectively bind to gold nanoparticles (AuNPs). They observed a light-induced self-
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assembly of AuNPs in the presence of STP molecules.[185] Upon photo isomerization, the

thiolate moiety of the MC form binds to the AuNPs, neutralizing the negative surface

charge density on the AuNPs used for stabilization. In another study, they demon-

strated that via structural change of the STP molecule, the aggregation can also occur

spontaneously in the dark.[192]
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Scheme 2.12. Photo induced STP to MC isomerization and subsequent thiol-Michael reaction
with a maleimide species as reported by Zhu and co-workers in [193].

After the rediscovery of the STP chemistry, Zhu and co-workers described the ability

of the MC form to participate in a thiol-Michael reaction[194] in the presence of aMichael-
acceptor, i.e. a maleimide.[193] They conducted small molecule studies, characterized

the product via X-ray crystallography and made a mechanistic proposal for the new

reaction, which is depicted in Scheme 2.12. The STP molecule in the dark does not react

in the presence of the maleimide. Upon irradiation with UV light however, ring-opening

towards the MC form occurs, which enables the nucleophilic attack of the thiophenolate

anion on the Michael-acceptor, here a maleimide. Subsequent nucleophilic attack results

in a six-membered heterocycle, which irreversibly leads to the photo adduct as depicted

in Scheme 2.12. The entire reaction sequence can be described as a photo activated

thiol-Michael reaction. In addition, they utilized the reaction between an acrylate based

STP copolymer and a maleimide terminated polyethylene glycol (PEG) for the photo

controlled formation of comb copolymers. Boulatov and co-workers demonstrated that

the reaction can also be triggered via mechanical force, as the STP molecule features the

same mechanochromism as known from SPs.[195] Inherent to a photo triggered process,
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the above described reaction opens up the possibility for temporal, as well as spatial

control of the ligation, which was exploited in Chapter 5 of the current thesis.

2.3 3D laser lithography below the diffraction limit

The principle of stimulated emission depletion (STED) fluorescence microscopy was

initially proposed by Stefan W. Hell in 1994[196] and led to a revolution in optical mi-

croscopy, which resulted in the Noble prize for Chemistry in 2014 together with Eric

Betzig and William Moerner. Soon after these initial reports, a concept was proposed to

adapt the resolution enhancement of STED for laser lithography.[197] This section will

briefly introduce the STED principle for optical microscopy and its transfer to lithog-

raphy, so-called STED-inspired lithography,[198] for which a new chemical system was

developed in Chapter 5 of the current thesis in collaboration with Patrick Müller from

the Wegener group at KIT.

2.3.1 The principle of STED

The concept of STED microscopy is based on the mechanism of conventional laser

scanning confocal microscopy. The underlying principles are depicted in Figure 2.23.

In laser scanning confocal microscopy, the excitation of a fluorophore from the ground
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Figure 2.23. a) The principle of STED visualized by a Jablonski diagram. For a description, refer
to the text. b) 2D intensity representation of the Gaussian shaped UV excitation laser (blue) and
the visible light depletion laser with a point of zero intensity in the center (green). The effectively
resulting fluorescent area is shown on the right (red).

state S0 to a higher vibronic first excited singlet state S∗1 is followed by IC to the lowest

vibronic state S1 (refer to Figure 2.23a). From here, fluorescence brings the fluorophore

back to a vibronic excited S∗0 state, from where IC leads again to the S0 ground state. As

the excitation area of the fluorophore and therefore also the area of fluorescence is a
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2.3 3D laser lithography below the diffraction limit

result of the applied laser focus, the resulting microscopy image is diffraction limited.

The relation between the excitation wavelength 𝜆 in a medium with refractive index 𝑛
and the distance 𝑑 between two objects that can still be resolved is given by the Abbe

criterion[199] in Equation (2.21). NA stands for the numerical aperture of the objective

lens collecting the incident light. The angle 𝜃 in Equation (2.21) is the half-opening

angle of the lens of the microscope. As an example, the Abbe criterion allows a lateral

resolution of ≈200 nm, when working with a green laser with 550 nm and a microscope

with a numerical aperture of NA = 1.4.

𝑑 =
𝜆

2𝑛 sin 𝜃
=

𝜆
2NA

(2.21)

In STED microscopy, a second laser, the so-called depletion laser, is applied in addition

to the excitation laser. The energy of the depletion laser is adapted to the energy gap

between the lowest S1 and vibronic excited S∗0 states and its intensity distribution is

depicted in Figure 2.23b in green color. Irradiation with such a wavelength can induce

stimulated emission (SE) and is therefore able to bring the fluorophore back to the ground

state by a radiationless process (green arrow in Figure 2.23a). After IC, the ground state

S0 is reached again. The light of the fluorophores that are brought back to the ground

state via SE is spectrally filtered and therefore does not contribute to the fluorescence

detected by the microscope.

The key point in achieving a resolution enhancement via SE is the shape of the applied

depletion laser. A visualization for the 2D case is depicted in Figure 2.23b. The Gaussian

shaped excitation laser (blue) with the highest intensity in the center is overlaid by the

depletion laser with a point of zero intensity in the center (green), i.e. a donut shape.

The area of the remaining effective fluorescence (red) is smaller than the value allowed

from the Abbe limit. As such, sub-diffraction microscopy is feasible, being no longer

dependent on the wavelength, but rather on the chromophore of the system as well as the

laser performance. In addition, by increasing the depletion laser intensity, the remaining

fluorescence area can in principle be reduced to an infinitesimal small area, ultimately

ending up in the size of a single fluorescent molecule. A prerequisite of the system is the

reversibility of the fluorophore switching, which needs to occur many times during the

scanning of the picture. Lateral spatial resolutions ranging down to 10 nm were possible

with STED microscopy, which is considerably below the diffraction limit.[200]
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2.3.2 From direct laser writing towards STED-inspired
lithography

After the great success in optical microscopy, the principle of STED was soon transferred

to laser lithography, specifically DLW.[201] The working principle of DLW will be briefly

introduced in this section, followed by the explanation how the STED principle can be

transferred to achieve a resolution enhancement in the fabricated 2D and 3D structures

made by DLW.

2.3.2.1 Direct laser writing

DLW is a laser lithography process for the fabrication of 2D and 3D materials in the

nanometer range.[202] The writing laser is tightly focused into a spot inside the volume of

a photoresist. The laser features high intensities, which results in two photon absorption

(TPA) by the photoinitiator (PI) inside the photoresist.[202c] As such, the writing can

be confined to a small volume element inside the photoresist, the so-called voxel, in
analogy to the pixel element in 2D.[203] The TPA is crucial for the DLW process. Only by

exploiting the non-linearity of the TPA, it is possible to achieve a voxel with a high axial

resolution. In TPA, the absorption occurs via a virtual intermediate state. As a result,

the photon energy of the incident light needs to be half the value of the one photon

absorption (OPA) process. The absorption in TPA therefore scales with the square of the

light intensity. Consequently, very short laser pulses of high energy are employed in DLW

in order to favor the TPA over the OPA. The Abbe criterion needs to be modified for the

TPA case and can be calculated via a modified equation, as shown in Equation (2.22).[203]

𝑑 =
𝜆

2√2 NA
(2.22)

Applying Equation (2.22) for the above-mentioned example, the resolution achievable

with a green laser with 550 nm and a numerical aperture of NA = 1.4 reduces to ≈140 nm.

Therefore, the TPA is not only an essential feature of the DLW process, but also brings a

benefit in terms of resolution.[203]

A DLW photoresist is typically composed of two active species: monomer and PI.

The majority of DLW works via a multiphoton absorption polymerization (MAP) pro-

cess.[202a,c,a,c] TPA of the PI into the first excited singlet state S0 is followed by IC and

ISC into the triplet state T1 (see Figure 2.24a). From here, radical formation of the PI

occurs and the radical species R starts the radical polymerization upon addition to

monomer molecules M. For an efficient DLW process, ISC into the T1 state needs to be
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Figure 2.24. a) Principle of conventional DLW. TPA from S0 into S1 is followed by ISC and
homolytic bond cleavage of the initiator, resulting in radicals R starting the polymerization of
monomer M. b) Three structures of commercially available TPA PIs.

efficient. Otherwise, IC and radiationless deactivation can bring the initiator back to

the S0 ground state (see wavy arrows in Figure 2.24a). Three examples of PIs employed

in DLW, namely Irgacure® 369, Irgacure® 819, and isopropylthioxanthone (ITX), are

depicted in Figure 2.24b.[202b]

With these commercially available systems, microstructures with feature sizes down

to 100 nm are possible.[204] Examples are the fabrication of photonic crystals,[205] cell

scaffold structures,[206] lab-on-chip systems,[207] metamaterials,[208] or optical waveg-

uides.[209]

2.3.2.2 STED-inspired lithography

With the above described DLW process, diffraction still limits the achievable linewidth

and resolution of the fabricated microstructures. The idea behind so-called STED-inspired

lithography is to adopt the principles of STED microscopy described in Section 2.3.1

for the lithographic process.[197] This concept was proposed soon after the invention of

STED microscopy. The groups of Fourkas and McLeod were the first to demonstrate the

feasibility of STED-inspired lithography in experiments.[210] As depicted in Figure 2.24a),

the excitation of the laser in DLW leads to an irreversible reaction. Employing for example

a common negative-tone photoresist, this results in the formation of an insoluble network

upon radical polymerization in the exposed volume.

The idea of STED-inspired DLW is the incorporation of a second mechanism, accessing

the system in some intermediate state and inhibiting the chemical reaction, leading to

the network formation. The depletion channel is triggered by a second laser, operating
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at a different wavelength than the excitation laser. By adopting the spatial intensity

distribution of the excitation and depletion laser in Figure 2.23b), the effectively exposed

volume can be reduced by increasing the intensity of the depletion laser. Certain points

need to be fulfilled for an effective depletion mechanism:

• The inhibition rate must be matched with the lifetime of the accessed intermediate

state.

• The depletion needs to be reversible, i.e. reproduce the unexposed ground state,

otherwise previously depleted regions would be insensitive for subsequent writing.

• The wavelengths of the two lasers must be well separated to avoid any “crosstalk”

between activation and depletion.

While the depletion mechanism in STED microscopy is based on SE, several mechanisms

can accomplish the depletion task in STED-inspired lithography.[203] In principle, any

photo induced mechanism inhibiting the formation or propagation of the network form-

ing radical polymerization can be employed as a depletion channel. Figure 2.25a)–c)

summarizes several employed depletion mechanisms together with an exemplary system

employed for STED lithography depicted in panel d).

The STED lithography mechanism depicted in Figure 2.25a) and directly adapts the

principle of STED microscopy.[211] TPA of initiator molecules results in a S0 to S1 tran-

sition. From here, irradiation with the depletion laser brings the initiator back to the

S0 state via SE. This SE transition inhibits the ISC and subsequent radical formation,

resulting in solid structures. An example following such a mechanism is 7-diethylamino-

3-thenoyl coumarine (DETC). This dye can be excited via TPA at 800 nm and depleted by

SE at 532 nm.[213]

Another dye first believed to follow the same mechanism[212] is depicted Figure 2.25d).

ITX is excited via irradiation with femtosecond pulses centered at around 810 nm wave-

length. The continuous-wave (CW) depletion laser operates at a wavelength of 532 nm

into the fluorescence band of ITX. However, it has been shown that the depletion channel

actually operates via an excited state absorption.[214] Linewidth reductions from 155 nm

(no depletion) down towards 65 nm with the depletion laser switched on have been

demonstrated with ITX.[212]

Figure 2.25b) shows a mechanism called resolution augmentation through photo in-

duced deactivation (RAPID) lithography.[210a] Here, TPA is followed by the transition

into a long-lived intermediate state. The exact nature of this intermediate state is still

under investigation.[215] The molecule in the intermediate state can either relax back to
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Figure 2.25. Different depletion mechanism employed for STED-inspired lithography. a) STED
lithography: PI molecules are excited via TPA from S0 to S1. They relax back to the S0 ground
state via SE before ISC into the T1 state and radical formation can occur. b) RAPID lithography:
after TPA into S1, transition into an intermediate state occurs (𝑘𝑎), from which either radiationless
decay with rate constant 𝑘𝑑 or light excitation into a non-initiating product (𝑘ℎ𝜈) suppresses radical
formation. c) 2PII lithography: initiator (orange), as well as inhibitor molecules (green) get excited
via different wavelengths in an OPA process. d) Example of a photoresist system working through
excited state absorption. PETA is employed as the cross-linking monomer and ITX as the initiator.
The depletion (green), as well as the TPA wavelength (blue) for ITX are highlighted below in the
absorption and fluorescence spectra measured in ethanol. Adapted with permission from [212]. ©
2010 Wiley-VCH Verlag GmbH & Co. KGaA.
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the ground state by a radiationless process with a rate 𝑘𝑑 or via excitation of the depletion

laser into a non-initiating product (green, 𝑘ℎ𝜈). RAPID lithography was successfully

applied to achieve sub-diffraction resolution malachite green carbinol base[210a] and

ITX.[212]

Another mechanism called two-color photoinitiation/inhibition (2PII) lithography is

drawn in Figure 2.25c).[210b,b,216] This mechanism operates via two OPA processes. One

laser triggers the radical formation of an initiator molecule (orange), starting the radical

polymerization of the monomer. The second laser (green) generates radicals from an

inhibitor molecule, which terminates the propagating chain radicals of the polymerization.

An inherent drawback of this mechanism is the irreversible consumption of inhibitor

molecules inside the photoresist.

As all of the above-mentioned depletion mechanisms act via transformation of elec-

tronic states, they must be on the timescale of the fast and efficient dissociation of the

initiator, which usually lies in the nanosecond regime.[217] Another approach to achieve

sub-diffraction resolution is the photo control of the cross-linking chemistry itself, a

mechanism also employed in Chapter 5 of the current thesis. The first example of such

kind exploits the chemistry of photoenols discussed in Section 2.2.3.3 and was introduced

by the groups of Barner-Kowollik and Wegener.[183]
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Scheme 2.13. Proposed mechanism for STED-inspired lithography based on the photo induced
isomerization of photoenols. Starting from the ground state molecule (A), TPA brings the photoenol
into the excited S1 state (B). The three processes discussed in Scheme 2.10 generate the (Z)-C and
(E)-C photoenols. The depletion laser, operating at 440 nm, triggers the (Z)- to (E)-isomerization
of the photoenol and therefore suppresses the irreversible hetero-Diels–Alder reaction with a
maleimide, resulting in the photoadduct (D).

The proposed mechanism is illustrated in Scheme 2.13. Photoenol (A) is excited via
TPA of an 700 nm pulsed femtosecond laser to the S1 state (B). Subsequent ISC, 1,5-
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hydrogen transfer, and again ISC leads to the formation of the two photoenol species

(Z)-C and (E)-C. A detailed mechanistic description of these processes was given in

Scheme 2.10. While (E)-C quickly fades back towards the ground state molecule (A),
(Z)-C can react in a hetero-Diels–Alder reaction with a dienophile, here a maleimide. The

Diels–Alder adduct (D) is shown on the lower ride side. For the depletion channel, the

photo induced isomerization of (Z)-C towards (E)-C is exploited.[218] The depletion laser

diode is operated in CW mode at 440 nm and efficiently reduces the (Z)-C population. As

such, the Diels–Alder reaction is also suppressed, which is necessary for the formation of

a stable structure.
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Figure 2.26. a) Chemical structures of the photoenol-equipped silane (I) and the maleimide
ATRP initiator (II). b) Linewidth reduction experiments visualized via AFM measurements of
SI-ATRP grown polymer brushes. The excitation power is shown in red, while the depletion power
is drawn in blue. c) Determination of the lateral resolution without (top) and with depletion
(bottom) Lines are separated for depletion powers B and C, while E no longer lead to a clear
periodic modulation. Adapted with permission from [183]. © 2017 American Chemical Society.

The authors were able to achieve sub-diffraction linewidth, as well as sub-diffraction

resolution. A photoenol-bearing silanewas attached to a glass substrate, and the employed

maleimide was equipped with a bromine atom. Subsequent generation of polymer brushes

consisting of poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) prepared
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via SI-ATRP, and imaging via atomic-force microscopy (AFM) confirmed the successful

writing. The employed photoenol silane (I)[171] and the maleimide ATRP initiator (II)
are shown in Figure 2.26a).

In panel b), the AFM results of the linewidth reduction are presented. On the left

side, the excitation power (red), as well as the depletion power (blue) are varied. For an

excitation power of 0.8mW, the zoom on the right side shows the decreasing linewidth

when increasing the depletion power. Continuous lines are written for experiments (B-E).
The smallest full width at half maximum (FWHM) is 54 nm for a depletion power of

1.75mW (E).

Panel c) of Figure 2.26 shows the experiments to determine the lateral resolution, i.e.

the smallest distance 𝑎 between two sequentially written lines. Without the depletion

laser switched on (top part), all lines are connected, regardless of the lattice constants.

With the depletion laser turned on, a lateral resolution down to 100 nm (D) was achieved.

While this initial report demonstrated the possibility to exploit a chemical switch

for STED-inspired lithography, the fabrication of free-standing microstructures was not

possible with the employed surface functionalization approach.[183]

2.4 Spatially resolved surface functionalization

The following sections introduce methods for spatially resolved surface functionalization

with a focus on photoligation approaches which has been previously introduced in

Section 2.2.3. These approaches are employed in Chapter 3 of the current thesis for

the spatially resolved immobilization of metallopolymers onto silicon substrates. The

following sections are structured according to the consecutive steps typically undertaken

in a surface functionalization experiment. These consist in the choice of a suitable

substrate (see Section 2.4.1), with a focus on silicon substrates employed in the current

thesis. The activation of the silicon surfaces and the formation of so-called self-assembled

monolayers (SAMs) are discussed in Section 2.4.2.1 and Section 2.4.2.2, respectively.

Different chemical strategies for the post-modification and/or photoligation of molecules

onto the pre-coated surfaces are presented in Section 2.4.2.3. Finally, a literature overview

of the different approaches for metallopolymer immobilization onto silicon substrates

is given in Section 2.4.2.4. Figure 2.27 provides an illustration of the synthetic route in

surface photoligation chemistry, as described in the following sections.
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Figure 2.27. Illustration of a typical surface modification experiment. The individual steps are
discussed in the following sections.

2.4.1 Substrates

First, the choice of substrate for the surface functionalization experiment must be con-

sidered. A plethora of materials has been reported to serve as suitable substrates for

SAM formation and subsequent photoligation.[219] This section will shortly introduce

different employed substrates, before focusing on silicon, which was employed in the

present thesis. The choice of the substrate is dictated by the following chemistry and is

dependent on the following chemical aspects:

• the chemical structure of attached SAMs,

• the specific binding interactions between substrate and coating agent,

• the final application of the surface-attached SAM, and

• the analytical tools available for characterization.

Substrates can be classified into different groups, according to their chemical composition

and physical properties. Figure 2.28 illustrates selected surfaces, which are commonly

employed in photoligation chemistry. The collection is limited to planar and solid

substrates.

The most common substrate employed for surface functionalization is gold due to

several reasons.[219a,b] It is by far the most studied surface material, with the ability to

form very stable SAMs via thiol ligation. In addition, the handling of gold surfaces is facile,
as gold is inert towards oxidation. Finally, many surface characterization techniques are

compatible with gold. Other metals, which have been commonly employed as substrates

in photoligation chemistry are silver,[220] copper,[220a] palladium,[221] platinum,[222]

mercury,[223] or nickel.[224]

An advantage of metal oxides over bare metal substrates is the inherent oxide layer,

which facilitates the SAM formation via chemical anchors attaching to the oxygen
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atoms. Many metal oxides have therefore served as SAM substrates, such as TiO2,
[225]

ZrO2,
[225c,226] Al2O3,

[227] Nb2O5,
[227c] HfO2,

[226] or indium tin oxide (ITO).[228]

The surface functionalization of semiconductors offers the possibility for redox chem-

istry at the interface between the substrate and the SAM. With this respect, GaN,[229]

GaAs,[229,230] or silicon[106,124,132,139a,162,231] have successfully been applied for photoli-

gation chemistry. The surface chemistry of silicon will be discussed in more detail in the

following sections (see also Chapter 3). Finally, other substrates are glass surfaces,[232]

substrates 

metals metal oxides semiconductors others

Au, Ag, Cu, Pd
Pt, Hg, Ni

TiO , ZrO , Al O ,2 2 2 3

Nb O , HfO , ITO2 5 2

Si, GaAs, GaN glass, salts,
superconductors 

Figure 2.28. Overview of different substrates employed in photoligation chemistry. The materi-
als are classified according to their physical properties into metals, metal oxides, semiconductors,
and other substrates.

superconductors[233] or salts.[234] The advantage of glass substrates is the transparency

over a wide range of wavelengths, opening many prospects for physical or chemical

manipulation (see also Chapter 5).

2.4.2 Silicon surfaces

This section presents the use of silicon materials, e.g. silicon wafers, as substrates, which

are employed in Chapter 3 of the current thesis. The same principles discussed for Si

wafers also hold true for glass substrates, which were employed for the STED-inspired

lithography experiments in Chapter 5.

2.4.2.1 Activation strategies

The preparation of good quality SAMs requires a very clean surface and is a crucial step

in the surface preparation. While rigorous cleaning is sufficient for most of the coinage

metal substrates, silicon needs additional activation and cleaning.

The two most often used protocols to clean and activate silicon surfaces are plasma

cleaning[235] or the immersion of the surface into a mixture of concentrated H2SO4

and H2O2 (2/1 vol%, known as piranha solution). Both methods result in the formation
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of a thin oxidized layer on the silicon surface with free hydroxyl moieties, acting as

reactive groups for the SAM formation (see Figure 2.29, top left). The group of Finlayson-

Pitts investigated and compared these two methods in detailed analytic studies.[236] In

summary, they demonstrated that the cleaning with piranha solution results in a rougher

and thicker oxide layer compared to plasma cleaning.

Another approach requires the treatment of the silicon surface with 1–2 vol% aqueous

HF. Such a treatment results in the formation of hydrogen terminated silane at the silicon

surface (see Figure 2.29, top right).[237]

In the current thesis, only piranha solution was used for surface activation (see Sec-

tion 3.1).

2.4.2.2 Formation of self-assembled monolayers

After rigorous cleaning, the choice of suitable molecules for the formation of SAMs

depends on the employed cleaning method. The whole process of activation and SAM

formation is depicted in Figure 2.29.

When treated with 1–2 vol% aqueous HF, the free hydrogen-terminated silanes can

react, for example, with organic peroxides,[231] terminal alkenes,[238] alkynes,[237] or

diazonium salts.[239] In contrast to peroxides and diazonium salts, additional radical initia-

tors are needed when working with alkenes or alkynes.[237] In all of these cases, the SAM

formation follows a radical mechanism.[219b,237] The different chemical connectivities

between substrate and SAM are depicted in the lower right side of Figure 2.29.

When piranha solution or plasma treatment is employed for surface activation, the

free hydroxyl groups can react with either alcohols,[238] chlorosilanes,[219a] or silyl

ethers,[124,162,219a,240] following a SN2 reaction mechanism[219b] (see Figure 2.29, lower

left side).

The driving force for the spontaneous formation of SAMs is the significant reduction in

surface energy. In addition, the formation of the strong Si O bonds further contributes

to the process. Beside these thermodynamic reasons, entropic changes also need to be

considered. As an example, employing alkylalkoxysilanes (R Si(OR’)3), one molecule

binding to the silicon surface releases three small molecules (R’ OH), which results in

an increase in entropy. On the other hand, all molecules attached to the surface loses

some degrees of freedom, which reduces the entropy. Adding up these two contributions,

the net result is an overall increase in entropy. Wang et al. proposed a two-step process

for the SAM formation of alkylchlorosilanes.[241] In the first step, condensation of the

alkylchlorosilane with the surface-attached hydroxyl groups leads to the immobilization
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Figure 2.29. Activation via piranha (top left) or aqueous HF (top right) and subsequent SAM
formation on silicon substrates based on various chemical connectivities.

of the silane. Subsequently, polycondensation of the attached silanes results in the final

SAM.

For alkylalkoxysilanes, McGovern et al. proposed an alternative formation process.[242]

They suggested that initial diffusion of surface moisture into the silane-containing solu-

tion, followed by partial condensation of the silanes and subsequent attachment to the

silicon surface may be the mechanism of the SAM formation.

In both cases, the strict control of water content,[242] temperature,[243] choice of solvent

system,[219b] and reaction time[243,244] is crucial for reproducible results.

2.4.2.3 Post-modification techniques

After successful formation of a SAM on the silicon substrate, several methods have

been developed for further functionalization of the surface. Such post-modifications are

necessary in cases were the desired functional group is not compatible with the SAM

formation process. It is also advantageous to use silanes with low molecular weights for

SAM formation in order to facilitate surface binding interactions of the coating agent.

However, employing the concept of SAM formation on surfaces is not applicable to

surface micro-patterning with spatial resolution. This section therefore summarizes

different approaches for the post-modification of (mainly) silane based SAMs on silicon

surfaces with a focus on spatially resolved techniques, as exploited in Chapter 3 of the

current thesis.

A depiction of different surface modification strategies according to their chemical

mechanism is presented in Figure 2.30.[219a] The post-modification strategies can be

divided in two categories: non-covalent and covalent approaches.

66



2.4 Spatially resolved surface functionalization

S  or relatedN

reactions

exchange
reactions

click
reactions

post-modification

electrostatic

non-covalent covalent

Van-der-Waals

Diels–Alder metathesis

photoreactions

radicals

(Michael)
additions

hydrogen
bonding

Figure 2.30. Common examples of non-covalent (blue), as well as covalent (green) post-
modification strategies.

Non-covalent interactions for post-modification strategies are shown on the left side

of Figure 2.30. These include electrostatic interactions,[245] hydrogen bonding,[246] or

Van-der-Waals interactions.[247]

On the right side of Figure 2.30, various post-modification routes involving covalent

bond formations are summarized, including Diels–Alder-,[124,248] metathesis-,[249] photo-

,[132,139a,250] radical-,[251] click-,[252] SN -,[219a] as well as exchange reactions[219a] and

(Michael) additions.[253]

While all of these approaches open up the opportunity for advanced surface modifica-

tions, only a few of them can be applied for the spatially resolved post-functionalization.

Many examples can be found in the literature, includingmicrocontact printing (μCP). Here,

a microscopic stamp is loaded with the respective material and then directly pressed onto

the surface. However, during μCP, no covalent bonds are formed between the modifying

agent and the surface, which limits a widespread practical use.

Alternatively, many reactions displayed in Figure 2.30 can be triggered using light as an

external stimulus. In combination with shadow masks, tailor-made surface patterns are

accessible. Beside the STP chemistry described in Section 2.2.3.4, thioaldehyde, NITEC, as

well as photoenol chemistry has been successfully applied for spatially resolved surface

modifications, with common examples previously presented in Section 2.2.3.

2.4.2.4 Polymers on surfaces

The fabrication of polymer-functionalized surfaces is of emerging interest in applied

chemistry and material sciences. Common examples include their use in surface wettabil-

ity alteration,[254] opto-electronic devices,[255] heterogeneous catalysis,[256] lab on a chip
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system,[257] self-cleaning surfaces,[258] microfluidic devices,[259] smart membranes,[260]

or thin film sensors.[261]

Hereby, the precise control over the polymer architecture, e.g. chain length, MWD,

or metal content, is highly desirable and common strategies for the manufacturing of

precision materials have been discussed in Section 2.1. Here, the focus is on the control of

polymer surface immobilization, which is another key point in the formation of advanced

functional material interfaces.

The surface decorating/functionalization with polymers can be achieved via three

routes, namely the grafting-to, grafting-from, and grafting-through approaches (see Fig-

ure 2.31). Alternative strategies, such as the physisorption of polymers have been intro-

duced as well. These mechanical patterning approaches include for example nanosphere

lithography (NSL),[262] μCP,[263] or nanoimprint lithography (NIL).[264] While these tech-

niques are attractive due to their high-throughput and low processing cost, they do not

form covalent bonds between the surface and the polymers and therefore will not be

discussed in this section.[265]

gra�ing-from gra�ing-to gra�ing-through

monomer initiator surface ligation point polymer chain

a) b) c) 

surface surface surface

Figure 2.31. Different chemical strategies for the surface functionalization with polymers. a)
Grafting-from polymerization through surface-attached initiator molecules. b) The grafting-to
methodology utilizes pre-formed end-functionalized polymers in a ligation step. c) In the grafting-
through approach, surface bound monomer units get incorporated into the growing polymer chain
during a polymerization process.

When applying the grafting-from polymerization technique, polymer chain propagation

proceeds directly at the substrate interface, which is equipped with surface-immobilized

initiators (refer to Figure 2.31a).[266] Usually, an initiator for the polymerization is attached

to the surface following one of the methods discussed in Section 2.4.2.3. Subsequent

surface-initiated polymerization forms the desired materials. This approach has the

advantage of the formation of densely packed polymer brushes attached to the surface.
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2.4 Spatially resolved surface functionalization

However, it does lack the precise control over the polymer architecture, as the grafting-
from polymerization is ill-defined compared to solution-based methods.

The grafting-to method utilizes end-functionalized polymers, which are tethered onto

the substrate via various ligation protocols (see Figure 2.31b).[267] The surface is deco-

rated with suitable moieties for the ligation, following the methods which have been

previously discussed in Section 2.4.2.2 and Section 2.4.2.3. Instead of growing the polymer

chains from the substrate, the pre-formed end-functionalized polymer is attached onto

the surface. The advantage of this approach is the possibility to exploit the versatile

toolbox of common RDRP techniques (e.g. RAFT, ATRP, …) for the preparation of highly

defined polymer architectures. The prepared polymers can be characterized with stan-

dard solution-based techniques, such as SEC or NMR spectroscopy, before attaching

the polymer strands to the surface. However, it is reported that the surface coverage is

typically lower compared to the grafting-from approach, due to the steric hindrance of

already attached polymer chains.[268] In addition, the polymer composition determined

in solution might differ from the actual distribution grafted onto the surface.[269]

a) b) c) 

pancake
surface

mushroom
surface

brush
surface

Figure 2.32. Classification of surface-immobilized polymers according to their grafting densities.
a) The pancake regime in low grafting densities and bad solvents. b) The combination of good
solvents and low grafting densities results in themushroom regime. c) The brush regime is obtained
with high grafting densities.

Finally, monomers, instead of initiators, are tethered onto the substrate following the

grafting-through approach (refer to Figure 2.31c). Performing a bulk polymerization

in presence of such surfaces, the growing polymer chains get chemically linked to the

surface via incorporation of the surface-immobilized monomers.[270]

In all of the above-described approaches, the surface bound polymers are referred to as

polymer brushes, i.e. as thin films, which are linked to the surface by one chain end of the

respective polymer.[267a,271] Depending on the surface characteristics, such as covering

density, MWD, etc., the surface-immobilized polymers can be classified according to

their different conformations. These range from the so-called pancake (bad solvents)

and mushroom regime (good solvents) at low grafting densities to the brush regime at

high grafting densities (refer to Figure 2.32).[272] As previously discussed, the brush
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regime is usually obtained via the grafting-from approach, while the grafting-to and

grafting-through approaches result in lower grafting densities.

2.4.2.5 Surface-immobilized metallopolymers

This section gives a brief summary on the preparation of metallopolymers on surfaces

following the grafting-to method, as only via this route, precise control over the polymer

architecture in solution, as well as the subsequent surface coverage is possible. Especially

the possibility to characterize the polymers in solution is a big advantage on the way to

tailor-made surfaces, as compared to the grafting-from approach. Surprisingly, reports

on the surface functionalization with metallopolymers via the grafting-to approach are

very rare compared to the grafting-from technique, which is intensively employed in

surface-initiated metallopolymer formation.[273] In addition, the grafting-to method was

applied in Chapter 3 of the present thesis, exploiting the above described advantages of

the grafting-to approach.

While there are reports for the homogeneous coverage of silicon surfaces with end-

functionalized metallopolymers, the spatially resolved immobilization of metallopolymers

has not been reported yet. Therefore, two examples for the homogeneous surface fixation

of metallopolymers via end-group ligation points is presented.

Fe
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Si(OEt)3

m n p
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Si
n-Bu O

O
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n

SiO2

OH

OH

OH
OH

HO

HO

HO

OH
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OH OH OH OH OH

a)

b)

Figure 2.33. a) Homogeneous immobilization of a Si(OEt)3-terminated ferrocene metallopoly-
mer synthesized via ring-opening metathesis polymerization (ROMP) onto a silicon wafer.[274]

b) Controlled anionic polymerization of vinylferrocene-terminated by a triethoxysilane moiety.
Upon immobilization onto spherical silicon particles, redox-responsive surfaces are obtained.[275]

Schrock and coworkers were the first who reported the successful surface ligation of

a ferrocene-containing metallopolymer in the early 1990s. The polymer was prepared

by ROMP of a norbornene monomer. They introduced functional Si(OEt)3 end groups,

which enabled the surface ligation onto platinum, ITO, and n-doped silicon electrode
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2.4 Spatially resolved surface functionalization

surfaces through siloxane bond formation.[274] One of the employed metallopolymers is

depicted in Figure 2.33a) together with the hydroxyl-terminated silicon surface.

Elbert et al. synthesized redox-responsive poly(vinylferrocene)-grafted silica nanopar-

ticles via anionic polymerization and termination with a triethoxysilane moiety.[275] After

immobilization of the metallopolymer in a grafting-to approach onto spherical silicon par-

ticles (see Figure 2.33b), the authors demonstrated the activity control of surface-attached

Grubbs second generation type catalysts for ROMP polymerizations.

In conclusion, the spatially resolved immobilization of intact metallopolymers prepared

through controlled polymerization techniques onto surfaces via the grafting-to method

is attractive, as precise control of the polymer, as well as the surface structure is possible.

Future applications are for example magnetic responsive materials, novel surface-coated

electrodes, heterogeneous catalytic devices, stimuli-responsive surfaces, or bio-, as well

as small molecule sensing devices.[27] In fact, the surface attachment of metallopolymers

prepared via RDRP techniques has not been described so far. Despite these interesting

application fields, the spatially resolved ligation of metallopolymers remains unexplored,

which is the central point of Chapter 3 of the current thesis.
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C H A P T E R 3
Spatially resolved multiple
metallopolymer surfaces by

photolithography

Spatially resolved functional interfaces are of specific interest for various technological

fields.[276] Examples include heterogeneous catalysis, were precise control over the spatial

distribution of catalytically active metal centers is desired.[277] Here, the spatial control

is achieved through the control over the crystal lattice of the underlying substrate, in

which the metal centers are embedded. However, the spatially controlled attachment

of homogenous catalysts onto a surface requires additional chemical strategies, such as

photolithographic approaches. In addition, the performance of many organometallic

catalysts attached onto solid substrates is inferior as compared to the homogeneous

catalysis in solution.[278] The incorporation of such homogeneous catalysts into a surface

anchored polymer chain can improve the performance, as more catalytic centers can be

tethered onto a defined surface area, i.e. the metal loading per surface area is increased.

In addition, the swelling behavior of the polymer chain is beneficial for the catalytic

performance, as the catalytic centers are brought into a solution-like environment. As

such, surface effects deteriorating the performance are reduced, while still taking ad-

vantage of the heterogeneous setup, such as the facile catalyst recovery. Ultimately,

the utilization of RDRP protocols for the preparation of the metallopolymers enables

additional control in the vertical dimension, e.g. via the 𝑋n of the polymer or the local

concentration of the catalyst through the functionalization degree. The use of a polymeric



3 Spatially resolved multiple metallopolymer surfaces by photolithography

system additionally simplifies the synthetic strategy, as small organometallic complexes

suffer from the necessity to synthesize each ligand-surface anchor system separately.

While there are several methods available for the spatially resolved anchoring of small

molecules, as well as polymers on solid substrates (refer to Section 2.2.3 and 2.4.2.4), none

of these techniques has been employed for the surface-ligation of metallopolymers, yet.

The utilization of metallopolymers unifies the benefits of heterogeneous catalysis, surface

photoligation and the simple preparation of polymers through RDRP techniques.

This chapter will introduce an approach for the spatially resolved immobilization

of multiple metallopolymers onto silicon substrates via photolithographic techniques.

For this purpose, surfaces are uniformly covered with a SAM of a photo active linker

molecule (refer to Section 2.2.3), which is subsequently activated by light and reacts

with the end-functionalized metallopolymers. Different lithographic masks enable the

fabrication of arbitrary surface patterns with minimal equipment and on short timescales

over large surface areas. (a)

3.1 Development of a surface ligation protocol

The first step of the method development was the choice of suitable photoligation proto-

cols and their combination with a RDRP method. RAFT polymerization was chosen as the

RDRP method, due to its versatility and the facile synthesis of functional RAFT agents for

subsequent photoligation chemistry. A methacrylate-based polymer system was targeted,

as functional methacrylate monomers feature a higher stability in comparison to their

corresponding acrylates, while still featuring good solubility in polar organic solvents

compared to styrene-based systems. ATRP was disregarded due to possible interference

of the copper ions with ligand monomers, as well as metal ions of the metallopolymer

backbone. NMP does not enable good control over methacrylates(b) and was therefore

also not suitable for the chosen system. Two photoligation approaches were followed

in the current thesis, namely phenacyl sulfide and tetrazole ligation chemistry. The sur-

(a) Parts of this chapter are reproduced or adapted from R. Müller, T. J. Feuerstein, V. Trouillet, S. Bestgen,
P. W. Roesky, C. Barner-Kowollik, Spatially Resolved Multiple Metallopolymer Surfaces by Photolithography,
Chem. Eur. J. 2018, 24, 18933–18943, with permission from Wiley-VCH Verlag GmbH & Co. KGaA © 2018.
R. Müller designed and conducted all experiments unless otherwise stated. T. J. Feuerstein synthesized the
phosphine ligand, parts of the bipyridine ligand, the metal complexes, and performed the metal-loading of the
copolymers. V. Trouillet performed the ToF-SIMS and XPS measurements. S. Bestgen contributed to scientific
discussions. P. W. Roesky, and C. Barner-Kowollik motivated and supervised the project and contributed to
scientific discussions.

(b) The challenge for the NMP of methacrylates is the disproportionation reaction between the nitroxide and
the growing radical, resulting in an alkene chain-end along with a hydroxylamine, which dominates over the
reversible combination with the nitroxide, see also [279].
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3.1 Development of a surface ligation protocol

face anchor molecules are equipped with the photo active sites and the complementary

groups are incorporated into the RAFT CTA R-group, which is depicted in Figure 3.1.

The phenacyl sulfide photoligation on the left side (refer to Section 2.2.3.1) comprises a
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Figure 3.1. Two approaches for the photoligation of metallopolymers synthesized via RAFT
polymerization onto silicon surfaces. Left side: phenacyl sulfide-functionalized silane 3 is coupled
with RAFT agents 1 and 2, bearing a hexadiene functionality in the R-group. Right side: a furan-
protected maleimide on the R-group of CTA 4 enables the photoligation with the surface-attached
tetrazole 5.

phenacyl sulfide silane 3 and either a dithiobenzoate 1 or trithiocarbonate 2 RAFT agent

with a hexadiene-functionalized R-group. The utilization of the NITEC photoligation

(refer to Section 2.2.3.2) is shown on the right hand consisting of a dithiobenzoate RAFT

agent 4 with a furan-protected maleimide as the R-group and a tetrazole-functionalized

silane 5 for the SAM formation onto the silicon surface.

3.1.1 Phenacylsulfide approach

The first route followed was the phenacyl sulfide approach on the left side of Figure 3.1.

This chemistry was successfully applied in the authors group for the photolithographic

encoding of metal complexes (refer to Figure 2.18)[144] and was therefore chosen as the

initial methodology.
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3 Spatially resolved multiple metallopolymer surfaces by photolithography

While the phenacyl sulfide silane 3 was synthesized according to literature,[124] the

synthesis route for the RAFT agents 1 and 2 for subsequent photoligation is depicted in

Figure 3.2a) and b), respectively.
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Figure 3.2. a) Unsuccessful attempted experiments to obtain CTA 1: 1) EDC⋅HCl, DMAP,
DCM; 2) DCC, DMAP, DCM; 3) DCC, PFP, DMAP, DCM; 4) EDC⋅HCl, OxymaPure®, NaHCO3,
MeCN/H2O; 5) see 2) without (2E,4E) -hexadienol; 6) oxalyl chloride, DMF (cat.), DCM. b) Successful
Steglich esterification of CDSTSP and (2E,4E) -hexadienol towards CTA 2. c) 1H NMR zoom in the
spectrum of 2 with corresponding assignment, confirming the intact diene functionality (protons
21–25), as well as the Z-group via proton 13.

CTA synthesis CTA 1 was the first choice, as dithiobenzoate CTAs are very effective

for the controlled polymerization of methacrylates. However, several attempts to esterify

CPADB with (2E,4E)-hexadienol failed and resulted in the degradation of the dithioben-

zoate moiety (see Figure 3.2a). Steglich esterification protocols with EDC or DCC resulted

in degradation of the pink dithiobenzoate moiety and formation of a yellowish residual.

Similar results were observed upon stabilizing the active ester in situ with pentafluo-

rophenol (PFP) or OxymaPure®. Likewise, attempts to isolate the PFP active ester or

activation of CPADB with oxalyl chloride were not successful.

The trithiocarbonate moiety features a higher stability compared to the dithiobenzoate

group, while still being capable to control the polymerization of methacrylates. Starting

from commercially available 4-cyano-4-((dodecylsulfanylthiocarbonyl)sulfanyl)pentan-
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3.1 Development of a surface ligation protocol

oic acid (CDSTSP), esterification with (2E,4E)-hexadienol employing DCC with catalytic

amounts of DMAP led to successful formation of the target CTA 2 with a yield of 71 %

(see Figure 3.2b). In the 1H NMR spectrum of 2, all proton resonances can be assigned, in

particular the resonances associated with the Z-group (13), as well as the R-group (21–25)

(see panel c).

Polymerization With the diene-functional CTA 2 at hand, the RAFT polymerization

was first tested with methyl methacrylate in a homopolymerization (see Figure 3.3). A

controlled polymerization was obtained in toluene solution with AIBN as the initiator at

60 ∘C. The SEC chromatograms of polymers P1–P4 show a narrow andmonomodal MWD

with 𝑀n,SEC ranging from 3300–6500 gmol−1 and Đ < 1.21. For P3, the 𝑀n determined

from 1H NMR spectroscopy via integration of RAFT group protons 21 and the methoxy

protons of the polymer backbone at 3.6 ppm affords a value of
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Figure 3.3. Results of the MMA homopolymerization with CTA 2. The SEC traces of polymers

P1–P4 are shown on the left. The 1H NMR spectra of 2 and P3 on the right side confirm the intact

diene functionality of the R-group, as well as the Z-group via protons 21–25 and 13, respectively.

𝑀n,NMR = 4800 gmol−1, which is in good correlation to the SEC value of 𝑀n,SEC =
5100 gmol−1. Importantly, the proton resonances 21–25 of the diene moiety stay un-

changed during the radical polymerization, i.e. the conjugated double bonds are not
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reactive towards a radical attack, which is a prerequisite for the subsequent photoligation

(see 1H NMR spectra of 2 and P3 in Figure 3.3).

Photoligation in solution With the end-functionalized homopolymers P1–P4 at

hand, the reactivity of the terminal diene moiety was first tested in solution, employing a

phenacyl sulfide-terminated PEG P5 (𝑀n,SEC = 2900 gmol−1, Đ = 1.04). The SEC traces

of the photoreaction between P5 and P1, P2, and P4 are depicted in Figure 3.4, together

with the product traces P6–P8. The expected block copolymer formation between the

end-functionalized polymers should result in a MW which is the sum of the two starting

materials.(a) The calculated values for the photo induced hetero-Diels–Alder reaction are

highlighted with Photo-DA in the graphs.
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Figure 3.4. Photoligation reaction between phenacyl sulfide functionalized PEG P5 and the

diene equipped PMMA polymers P1, P2, and P4. The SEC traces for each reaction product P6–P8,
as well as the starting materials, are depicted below the reaction scheme. Calculated MWs for the

expected Photo-DA product and the dimer side-product are indicated with arrows.

(a) It should be noted that this calculation can only be regarded as a rough estimate, because the error from
the SEC calibration must be considered as well.
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A shift of the MW due to the formation of the block copolymers is observed in all cases.

In the reaction between P4 and P5, traces of residual PEG starting material are present

due to stoichiometric imbalances. For the reactions of P1 and P2 with P5, a shoulder is
observed in the product trace in addition to residual P5, with a MW that is twice the

value of P5 (indicated as dimer ). This can be attributed to a possible side-reaction of the

reactive thioaldehyde species that can dimerize (see also Scheme 2.8). As an example, the

calculated MWs of the dimer and the Photo-DA products in the reaction between P2 and

P5 are 𝑀 = 5800 gmol−1 and 𝑀 = 7700 gmol−1, respectively. The determined SEC peak

values in the trace of P8 are 𝑀 = 5900 gmol−1 and 𝑀 = 7300 gmol−1 , which is in good

correlation to the theoretical expectation.

Despite the observed side reaction, i.e. the formation of dimer PEG polymers, the

reactivity of the diene functionalized PMMA polymers in the photochemical ligation

was demonstrated in solution. It should be noted, that the side-reaction observed in

solution should not interfere with the surface photoligation, since the phenacyl sulfide

is covalently bound to the silicon surface and should therefore be hindered to form

dimerization products. Accordingly, the photoligation was attempted on surfaces.

Photoligation on surfaces For the surface photoligation, silicon wafers were acti-

vated and covered with a SAM of the phenacyl sulfide silane 3 (refer to the experimental

part on Page 184). In a typical surface experiment, a sample holder with or without

shadow mask is assembled with the silicon wafer carrying the photo active SAM (see Fig-

ure 3.5a) and b). The assembled wafer is placed into a photo vial containing the polymer

solution and irradiated from the side in a custom-build photo reactor (see Figure 3.5c)

and d), for the spectral irradiances of the employed UV lamps refer to Figure A.24 and

Figure A.25).

If no photo mask is used, the shape of the photo mask holder results in a rectangular

irradiated area, whereas the residual surface area is not irradiated. Such a setup enables

the characterization of the irradiated, as well as the dark areas of the surface in high-

resolution X-ray photoelectron spectroscopy (XPS) measurements. In addition, the border

of the irradiated area, i.e. the dark, as well as the irradiated part, can be characterized via
ToF-SIMS. The setup without photo mask was employed for all screening experiments,

before advancing to write particular patterns onto the surfaces with smaller feature sizes.

The photoreaction was conducted with polymer P3 and no shadow mask (setup A, see

Table A.2), as depicted in Figure 3.5e) (for experimental details, see Section 7.5). Surfaces

S1a–S1c were analyzed via high-resolution XPS measurements. An additional reference

surface S1d was prepared through immersion of surface S1b into polymer solution P3
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3 Spatially resolved multiple metallopolymer surfaces by photolithography

without irradiation. The results of the XPS measurements are summarized in Table 3.1.

For S1c, S1c-ir. refers to the irradiated part, while S1c-dark describes the dark part of

the surface (see grey and green parts in Figure 3.5e), respectively).

Starting with the activated surface S1a, only the underlying silicon substrate including

the SiO2 surface layer is detected.

a)

b)

d)c)

e)

1) silanization

S1c

P3

S1bS1a

Figure 3.5. a) Picture of the photo mask holder next to the employed dotted and KIT-logo

shadow masks. b) Illustration of the silicon wafer, photo mask holder, and a photo mask assembled

for the reaction. If no photo mask is used, the shape of the c) Setup of the assembled photo mask

holder in the photo vial containing the solution with the end-functionalized polymer. d) Scheme

of the custom-build photo reactor equipped with an UV lamp. e) The activated silicon wafer S1a
is uniformly covered with silane 3 (surface S1b) and irradiated with a rectangle shadow mask in

the presence of polymer P3 to obtain surface S1c. Adapted with permission from [280]. © 2018

Wiley-VCH Verlag GmbH & Co. KGaA.

The small C 1s value of 3.9 at% is the result of minor contamination. After the silaniza-

tion, the N 1s and S 2p3/2 signals and the increase in the C 1s value in surface S1b cor-

respond to the formed SAM of silane 3. In addition, a decrease of the detected silicon

substrate is an indirect measure of the successful SAM formation, since the penetration

depth of the X-ray irradiation is constant, i.e. the formation of additional surface coverage
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attenuates the silicon substrate signal. The successful immobilization of polymer P3
during irradiation should be detected through an increase in the C 1s value coming from

the polymer backbone. Simultaneously, the silicon signal should be further reduced, as a

consequence of the thicker surface layer. However, comparison of these values in the

irradiated and dark parts of surface S1c does not show the expected trend. Instead, no

significant change is observed and the N 1s and S 2p3/2 values of S1c-ir. do not vary

either, when compared to S1c-dark or S1b. In combination with the values from the

reference sample S1d, which are in a similar range than S1c, no evidence can be found

for a successful immobilization of polymer P3 on the surface.

Table 3.1. XPS analysis of the surface photoligation experiments employing polymer P3 and
silane 3. All values are in atomic percent (at%).

surface Si 2p3/2 C1s O 1s N 1s S 2p3/2

S1a 49.8 3.9 33.5 – –
S1b 35.4 16.3 29.8 2.1 0.2

S1c-dark 34.4 14.6 30.3 2.2 0.2
S1c-ir. 34.0 17.4 29.6 2.2 0.2
S1d 35.5 13.2 31.0 2.0 0.2

Since the surface characterization cannot provide sufficient information about the

chemical bonds in the surface layer, the reason for the failed photoligation remains

unclear. Possible explanations might include the observed dimerization side-reaction

observed in solution. If polymer P3 is not in close proximity to the surface bound silane

3, the photo generated thioaldehyde can undergo dimerization reactions with adjacent

silane molecules and therefore reduce the surface activity towards ligation. Another

point could arise from side-reactions of the trithiocarbonate moiety upon UV irradiation.

Such groups are known to form reactive radicals under UV irradiation,[281] which can

result in detrimental side-reactions.

In view of these results, the route towards surface immobilized metallopolymers

employing the phenacyl sulfide photoligation chemistry was abandoned at this point and

an alternative strategy via the use of NITEC photoligation chemistry was followed (see

also right side of Figure 3.1).

3.1.2 NITEC approach

For the NITEC strategy outlined in Figure 3.1, a RAFT agent with an activated double

bond needs to be synthesized. In order to circumvent the participation of the activated
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double bond in the radical polymerization, a furan-protected maleimide moiety was

chosen. The structure of CTA 4 features a dithiobenzoate moiety with R-group that

mimics the employed AIBN initiator.

CTA synthesis and polymerization In contrast to the difficulties in the esterification

of CPADB with (2E,4E)-hexadienol in the synthesis towards CTA 1, the esterification of

CPADB with 2-(2-hydroxyethyl)-3a,4,7,7a-tetrahydro-1H -4,7-epoxyisoindole-1,3(2H )-

dione (Mal-OH) using OxymaPure® as an active ester provided CTA 4 with an overall

yield of 73 %.
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Scheme 3.14. RAFT polymerization of MMA with CTA 4 yields polymer P9-FM and P10-FM.
Refluxing of P9-FM in toluene removes the furan protecting group towards polymer P9-non-
capped. Capping of the dithiobenzoate moiety of P10-FM with photoenol precursor 6 delivers
polymer P10-FM-cap, which is subsequently deprotected towards polymer P10.

The RAFT polymerization protocol of MMAwith CTA 4 is depicted in Scheme 3.14. Ho-

mopolymers P9-FM and P10-FM were obtained as pink powders with narrow dispersity

and a monomodal MWD (𝑀n,SEC = 2700 gmol−1, Đ = 1.18, and 𝑀n,SEC = 5500 gmol−1,

Đ = 1.21, respectively). First attempts to directly deprotect P9-FM in refluxing toluene

and use the maleimide end-functionalized polymer P9-non-capped in the NITEC reac-

tion were not successful. The expected immobilization of polymer P9-non-capped on
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3.1 Development of a surface ligation protocol

surface S2-non-capped cannot be confirmed by the ToF-SIMS analysis, observing the

specific PMMA fragments (C3H3O
– and C4H5O

–
2 , see Figure 3.7a). The dotted green line

in the ToF-SIMS ion mappings divides the irradiated (top) from the dark part (bottom) of

the surface. Similar to the results obtained by employing the phenacyl sulfide photoliga-

tion, the intact RAFT moiety does interfere with the NITEC reaction. This observation

is attributed to radical formation and resulting undesired side-reactions of RAFT CTAs

under UV light irradiation.[281]

Therefore, the dithiobenzoate group of P10-FM was reacted with 2-methoxy-6-meth-

ylbenzaldehyde (6) in a light-triggered hetero-Diels–Alder reaction towards polymer

P10-FM-cap.(a) Subsequently, the capped polymer is deprotected, removing the furan, to

yield the maleimide-functional polymer P10 (refer to Scheme 3.14). This route was chosen
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Figure 3.6. 1H NMR spectra of the PMMA homopolymers P10-FM (top), P10-FM-cap (middle),
and P10 (bottom) recorded in CDCl3. Representative protons described in the text are highlighted
with colored circles in the structures (left side) and the spectra (right side). Adapted with permission
from [280]. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA.

over other possibilities to remove the RAFT group, as the reaction can be performed with

an excess of 6without the risk of side reactions, as for example polymer-polymer coupling

in the case of radical CTA cleavage, see also Figure 2.4. The successful transformation

(a) Unfortunately, the trithiocarbonate functionality in RAFT CTA 2 is not sufficiently activated to react in a
similar hetero-Diels–Alder with 6, while the corresponding dithiobenzoate CTA 1 was not accessible. Therefore,
the capping protocol through photoreaction with 6 cannot be applied in the phenacyl sulfide approach.
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3 Spatially resolved multiple metallopolymer surfaces by photolithography

of polymer P10-FM into P10-FM-cap and P10 was followed by 1H NMR spectroscopy

and SEC (see Figure 3.6 and Figure A.33, respectively). In the 1H NMR of P10-FM, the

aromatic resonances from the dithiobenzoate group between 8–7.3 ppm (green) and the

resonances of the furan-protected maleimide at 6.52, 5.26, and 2.87 ppm (red) prove the

intact structure of the RAFT polymer (𝑀n,SEC = 5500 gmol−1, Đ = 1.21).
In the first reaction step, the aromatic dithiobenzoate resonances in P10-FM-cap shift

upon reaction with 6, while the resonances associated with the furan protected maleimide

remain unchanged. The SEC chromatogram of P10-FM-cap proves the structural in-

tegrity of the polymer during the reaction, as no significant change in the MW and

dispersity is observed (𝑀n,SEC = 5700 gmol−1, Đ = 1.20).
Finally, refluxing of P10-FM-cap in toluene removes the furan protecting group,

yielding maleimide-functional polymer P10 (𝑀n,SEC = 5700 gmol−1, Đ = 1.19). In P10,
the resonances arising from the furan protecting group vanish and a new resonance

associated with the maleimide double bond appears at 6.75 ppm (yellow), while no change

in the capped RAFT group is observed (green).

The employed synthetic strategy yields the maleimide end-functionalized polymer P10
in a straightforward combination of the polymerization with two post-modification steps,

in which the transformation of the dithiobenzoate moiety into a non-reactive species is

the crucial step to obtain a successful surface photoligation.

Photoligation on surfaces Tetrazole-functionalized silane 5 was synthesized, for the

photoligation of maleimide-terminated polymer P10 onto silicon surfaces via NITEC

chemistry.(a) Starting from (4-(2-(4-methoxyphenyl)-2H -tetrazol-5-yl)benzoic acid (Tet-

acid), activation with 1,1-́carbonyldiimidazole (CDI) and addition of (3-aminopropyl)tri-

ethoxysilane (APTES) as the nucleophile without intermediate workup provides silane

5 in 73 % yield (for the structure of 5 see Figure 3.1). The SAM formation of 5 onto

silicon wafers was conducted as described for the phenacyl sulfide silane 3. Irradiation
with the setup depicted in Figure 3.7b) (setup A) in the presence of polymer P10 yields

surface S2. In the ToF-SIMS mapping, the specific fragments C3H3O
– and C4H5O

–
2 of

the PMMA backbone are clearly visible in the irradiated area, while the dark part does

not show any polymer attachment (for a summary of the specific fragments used for

structure elucidation in the ToF-SIMS mappings see Table A.1). Beside the PMMA related

fragments, ions arising from the photo capped RAFT end-group of polymer S2 are

(a) The maleimide terminus on the R-group of polymer P10 does also allow the photoligation via a surface
bound photoenol (refer to Section 2.2.3.3). However, the synthesis of a silane-functional photoenol is a 5-step
procedure,[171] while the tetrazole-bearing silane 5 can be prepared in 3 steps in high yield and was therefore
preferred.

84



3.1 Development of a surface ligation protocol

detected in the irradiated areas (refer to Figure A.42). In combination with the molecular

information about the polymer structure from the SEC and NMR measurements in

solution, this constitutes additional evidence of the intact nature of the surface-ligated

polymer. Furthermore, ion fragments from the tetrazole SAM are detected in the dark

parts, which opens up the possibility for multi-step photoligation experiments, see

discussion below. The C 1s XPS spectra of the dark part of S2 does only show carbon
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Figure 3.7. a) Reaction scheme and ToF-SIMS image of non-capped, furan deprotected P9-non-
capped leading to surface S2-non-capped. The area above the dashed green line was irradiated.
b) Successful surface attachment of capped, furan deprotected P10 on surface S2. ToF-SIMS image
(middle) and XPS analysis of C 1s (right) of the dark and irradiated areas. c) Photoligation of P10
with a KIT logo mask yields surface S2-KIT. The ToF-SIMS analysis of the PMMA and tetrazole
fragments is shown on the right. For ToF-SIMS fragments description refer to Table A.1. Adapted
with permission from [280]. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA.

species from the surface bound tetrazole silane 5, i.e. C C and C H at 285.0 eV, C O

and C N at 286.4 eV, N C O and N C N at 287.9 eV (filled in violet), and a small

signal of the ester bond of silane 5 at 289.1 eV.[282] In contrast, the irradiated part of the

surface shows a large increase of ester bonds on the surface at 289.1 eV (filled in orange)

compared to the non-illuminated area. The absence of polymer related signals in the

ToF-SIMS and XPS analysis of the dark parts confirm the exclusive covalent attachment of

the polymer onto the surface without any physisorbed material. To further demonstrate

the capabilities of the spatially resolved immobilization protocol, a KIT logo mask was

employed for the preparation of surface S2-KIT with polymer P10 (setup A-KIT, see
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3 Spatially resolved multiple metallopolymer surfaces by photolithography

Figure 3.7c) and Table A.2). The ToF-SIMS mappings on the right side demonstrate the

immobilization of P10 according to the logo mask, while the dark area shows fragments

arising from the SAM of tetrazole 5.
The achievable lateral resolution in surface S2-KIT is limited through the lateral

dimensions of the photo mask, since the size of the polymer molecules is far below the

theoretical resolution, which is given by the Abbe criterion (see Equation (2.21). The

smallest feature sizes of the KIT logo mask are width of the wedges with 160 µm.

The vertical resolution is physically governed by the size of the respective polymer. As

the photoligation takes place at one polymer end-group, the size of the swollen polymer

chain in solution and the orientation with respect to the surface interface dictates the

vertical dimension. As the polymer is bound to the surface via a grafting-to approach, the
conformation of the polymer chain results in a pancake or mushroom conformation (see

Figure 2.32). Here, in contrast to the brush morphologies achievable via the grafting-from
method, the polymer chain features a higher flexibility, which also impacts the vertical

extent of the chain from the surface. In addition, the uniformity of the polymer surface

layer is governed by the homogeneity of the underlying silicon substrate. As such, the

preparation of the surface (here the treatment with piranha solution) has also an impact

of the achievable surface homogeneity (see also discussion in Section 2.4.2.1).

In conclusion, the successful development of the polymer surface photoligation protocol

via the NITEC chemistry was achieved with the PMMA homopolymer P10. In-depth
ToF-SIMS and XPS characterization of the surface demonstrates the intact structure of the

polymer on the surface via detection of all structural motifs also found in solution. The

following sections will focus on the preparation of the metallopolymers, before utilizing

the developed surface ligation protocol.

3.2 Metallopolymer synthesis

Ligand monomer synthesis For the ligand systems, triphenylphosphine and bipyri-

dine functionalized MMA monomers were selected. Both ligands are widely used in

coordination chemistry and ensure a broad range of applications for the prepared sur-

faces.[283]

The synthesis routes towards the triphenylphosphine 7 and bipyridine 9 functionalized
MMA monomers are outlined in Scheme 3.15. (a) Ligand monomer 2-(methacryloyl-

oxy)ethyl 4-(diphenylphosphaneyl) benzoate 7 was synthesized from 4-(diphenylphos-

(a) The synthesis and characterization of 7, 9 and steps 6)–7) of 9, 9-Pt, and 9-Pd were performed by T.
Feuerstein, see [280, 284].
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3.2 Metallopolymer synthesis

phino)benzoic acid in a Steglich esterification employing N,N ,́-diisopropylcarbodiimide

(DIC) and catalytic 4-dimethylaminopyridine (DMAP) with 2-hydroxyethyl methacrylate

(HEMA) as the nucleophile. 7 was obtained as a colorless oil in 94 % overall yield. The
31P{1H} NMR spectrum of 7 shows a single resonance at −5.1 ppm, indicating the high

purity and absence of oxidized phosphorous species (see Figure 3.8, top left).

Bipyridine-functionalized methacrylate 9 was synthesized from 4,4-́dimethyl-2,2-́bi-

pyridine in four steps, whereby the first three steps were conducted without intermediate

purification.[285] After initial in situ lithiation, substitution with 3-bromopropoxy-tert-
butyl-dimethylsilane (Br(CH2)3OTBDMS) and deprotection of the TBDMS protecting

group with tetrabutylammonium fluoride (TBAF) afforded 4-(4-́methyl-(2,2-́bipyridin)-4-

yl)butan-1-ol 8 as a yellow oil. Subsequent esterification with methacryloyl chloride led

to 9 (see Scheme 3.15b).
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Scheme 3.15. a) Synthesis of triphenylphosphine monomer 7 and metal complexation towards
7-Au. b) Bipyridine monomer synthesis 9 and metal complexation with platinum 9-Pt or palladium
9-Pd. Reagents and conditions: 1) HEMA, DIC, DMAP, DCM, r.t., 24 h; 2) [AuCl(tht)], DCM, r.t.,
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r.t., 24 h. Adapted with permission from [280]. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA.

Before conducting the polymerization with ligand monomers 7 and 9, the metal com-

plexation was tested with the monomers to establish a spectroscopic reference for the
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3 Spatially resolved multiple metallopolymer surfaces by photolithography

subsequent characterization of the metallopolymers. The reaction of 7 with a [AuCl(tht)]

(tht = tetrahydrothiophene) solution in DCM yielded the metal complex 7-Au as a pale-

yellow powder. The phosphorous resonance in the 31P{1H} NMR spectrum of 7-Au
exhibits a shift from −5.1 ppm to 33.1 ppm compared to the free ligand 7 (see Figure 3.8a),

which is in accordance to literature values.[286] The single resonance also confirms the

high purity of the metal complex.

Bipyridine ligand monomer 9 was reacted with platinum and palladium precursor

complexes to obtain the bis-chloro metal complexes. For platinum, reaction of 9 with
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Figure 3.8. a) 31P{1H} NMR spectra of the ligandmonomer 7 and the metal complex 7-Au, next to
the corresponding ligand copolymer P11 and the metallopolymer P11-Au (b). c) 1H NMR spectra
of the ligand monomer 9 and the metal complexes 9-Pt and 9-Pd, next to the corresponding ligand
copolymer P12 and the metallopolymers P12-Pt and P12-Pd (d). For the resonance assignment
refer to the schematic molecular structure. Adapted with permission from [280]. © 2018Wiley-VCH
Verlag GmbH & Co. KGaA.

[PtCl2(DMSO)2] in refluxing CHCl3 resulted in the formation of complex 9-Pt. The

corresponding palladium complex 9-Pd was obtained via addition of 9 to a solution of

[PdCl2(COD)] in DCM (COD = 1,5-cyclooctadiene). The 1H NMR spectra of the free

ligand 9 and the both metal complexes 9-Pt and 9-Pd is shown in Figure 3.8c). Both

complexes exhibit characteristic chemical shifts for the aromatic proton resonances of the

bipyridine ligand moiety, when being bound to the metal atoms. Despite the flexibility of
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3.2 Metallopolymer synthesis

the alkyl spacer between the bipyridine and the methacrylate unit, single crystals were

obtained for 9-Pt and 9-Pd by recrystallization from methanol and characterized via
X-ray diffraction (for the crystallographic description, see [284]). In summary, the results

from X-ray crystallography confirm the structure determined by NMR spectroscopy.

Copolymerization and metal pre-loading In analogy to the preparation of ho-

mopolymer P10, the copolymerization of ligand monomers 7 and 9 was performed by

RAFT polymerization with AIBN and CTA 4. The polymerization and post-modification

steps for both ligand copolymers is depicted in Scheme 3.16.

The comonomer feed ratio of the ligand monomers 7 and 9 was set to 15mol% and

10mol%, respectively. This resulted in an incorporation ratio of 13mol% in the phosphine

copolymer P11-FM and 10mol% in the bipyridine copolymer P12-FM. These values are

very similar to the feed ratios, which is a result of the similar molecular structure of the

both ligand monomers compared to MMA.

P11-FM was obtained from the RAFT copolymerization of MMA and 7 (𝑀n,SEC =
10 200 gmol−1, Đ = 1.27). In the subsequent reaction step, the RAFT group of the

purified polymer was reacted with 6 in a photo induced hetero-Diels–Alder reaction,
yielding polymerP11-FM-cap (𝑀n,SEC = 10 400 gmol−1,Đ = 1.28, see Scheme 3.16). The

excess of 6 was removed via precipitation of the polymer. Refluxing in toluene liberated

furan and resulted in the maleimide end-functionalized ligand copolymer P11 (𝑀n,SEC =
10 700 gmol−1, Đ = 1.35). Finally, polymer P11 was purified through precipitation after

the removal of the protecting group.

In the SEC traces of P11-FM and P11-FM-cap, a small high MW shoulder is detected,

which might be attributed to a certain amount of transesterification in the diester of

monomer 7 during the polymerization. The shoulder could also be the result of unwanted

termination events during the polymerization at 60 ∘C. However, this interpretation is

unlikely, as the detected shoulder keeps unchanged during the second photochemical

reaction step but increases slightly during the heating step of the furan removal at 110 ∘C

(see Figure A.34). This observation supports the transesterification as the reason for the

high MW shoulder, as such an increase cannot be explained if the shoulder is a result of

termination events during the polymerization. A possible solution to circumvent such

transesterification events is to change the linker between the triphenylphosphine group

and the methacrylate moiety of monomer 7. However, the amount of transesterification

is in an acceptable extent, as the synthetic effort to synthesize the corresponding para-
alkyl substituted triphenylphosphine monomer is significantly higher, compared to the

employed triphenylphosphine acid.
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3 Spatially resolved multiple metallopolymer surfaces by photolithography

P12-FM, P12-FM-cap, and P12 were obtained via a similar procedure as the phos-

phine copolymers through copolymerization of MMA with 9. First, P12-FM (𝑀n,SEC =
5900 gmol−1, Đ = 1.22) was end-group capped with 6 towards P12-FM-cap (𝑀n,SEC =
6100 gmol−1, Đ = 1.22) and finally deprotected, yielding P12 (𝑀n,SEC = 6400 gmol−1,

Đ = 1.25).
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Scheme 3.16. Copolymerization of ligand monomers 7 and 9 with CTA 4. The RAFT moiety of

the obtained copolymers P11-FM and P12-FM is capped in a photo induced hetero-Diels–Alder

reaction with 6, yielding P11-FM-cap and P12-FM-cap, respectively. Refluxing in toluene affords

the maleimide-functional ligand copolymers P11 and P12. The graphical description of the

polymers, as well as the end-groups, is employed for the rest of this thesis.
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In contrast to P11-FM, P11-FM-cap, and P11, no transesterification events are ob-

served in the SEC traces (see Figure A.35), as a result of the molecular structure of

monomer 9, which does not possess two ester moieties in close proximity. The small

increase in the determined MW from P12-FM to P12 is attributed to the removal of small

oligomeric chains during each precipitation step during the post-modifications.

The metal complexation of ligand polymers P11 and P12 is depicted in Scheme 3.17.

Table 3.2 summarizes the characterization of the ligand polymers P11 and P12 together

with the respective metallopolymers P11-Au, P12-Pt, and P12-Pd.
P11 was treated with a solution of [AuCl(tht)] in DCM at room temperature to yield

metallopolymer P11-Au. (a) The successful formation of the P Au Cl motif is evidenced

through the shift of the phosphine resonance in the 31P{1H} NMR spectra of P11 from

−5.1 ppm to 33.1 ppm in P11-Au (see Figure 3.8b). Minor oxidized phosphine species

(a) Metal complexation of P11 and purification of P11-Au via precipitation were performed by T. J. Feuerstein.
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3 Spatially resolved multiple metallopolymer surfaces by photolithography

in P11 are completely removed after precipitation of P11-Au. The observed shifts

are in excellent alignment with the values determined for the free ligand 7 and the

corresponding metal complex 7-Au (see Figure 3.8a). In addition, the single phosphine

resonance observed for P11-Au is a strong indicator for the exclusive formation of

mono-ligated phosphorous atoms, as depicted in Scheme 3.17. Another indicator for the

successful metal complexation are the different absorption spectra of P11 and P11-Au
(see Figure A.18). The determined MW of P11-Au increases from 10 700 gmol−1 (P11)
to 13 100 gmol−1, while the dispersity of Đ = 1.28 is slightly lower(a) as compared to the

value of 1.35 for P11 (for the SEC traces, see Figure A.36).

Table 3.2. Summary of ligand copolymers and metallopolymers for spatially resolved surface
functionalization. Adapted with permission from [280]. © 2018 Wiley-VCH Verlag GmbH & Co.
KGaA.

polymer 𝑀n
(a) / gmol−1 Đ (a) ratio of incorporated

comonomer(b) / mol%

P11(c) 10 700 1.35 13
P11-Au 13 100 1.28 13

P12(d) 7400 1.19 10
P12-Pt 7000 1.17 10
P12-Pd 6100 1.19 10

(a) Estimated by SEC using THF as eluent and PMMA standards.
(b)Determined via 1H NMR using characteristic resonances for MMA (𝛿 =
3.59 ppm, 3H), 7 (𝛿 = 4.65–4.06 ppm, 4H) and 9 (𝛿 = 8.24 ppm, 2H), respectively.
(c) [MMA] : [7] : [4] : [AIBN] = 51 : 9 : 1 : 0.1. (d) [MMA] : [9] : [4] : [AIBN]
= 54 : 6 : 1 : 0.1.

Two metallopolymers(b) were synthesized starting from bipyridine ligand copoly-

mer P12. Stirring of P12 in a solution of [PtCl2(DMSO)2] in CHCl3 yielded metal-

lopolymer P12-Pt (𝑀n,SEC = 7000 gmol−1, Đ = 1.17). For the palladium complexa-

tion, reaction of P12 with [PdCl2(COD)] in DCM resulted in metallopolymer P12-Pd
(𝑀n,SEC = 6100 gmol−1, Đ = 1.19; for SEC traces of P12-Pt and P12-Pd, see Figure A.37).
The successful metal complexation is verified via 1H NMR spectroscopy. The resonances

of the bipyridine moiety in P12-Pt and P12-Pd shift in accordance with the model com-

plexes 9-Pt and 9-Pd (see Figure 3.8c) and d). A line-broadening of the resonances in the

polymer spectra is observed compared to the monomer complexes, which is a common

(a) The lower value for the dispersity after several post-modification steps results most likely from the removal
of low-MW material due to multiple precipitation steps.

(b) Metal complexation of P12 and purification of P12-Pt and P12-Pd via precipitation were performed by T.
J. Feuerstein.
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observation in the 1H NMR spectra of such metallopolymers.[287] The determined MWs

of P12-Pt and P12-Pd differ slightly compared to P12, which is explained by a differ-

ent hydrodynamic diameter of the metallopolymers in solution. The UV-Vis spectra of

both metallopolymers differ significantly from the parent ligand copolymer P12, which
supports the formation of the metal complexes (see Figure A.19). Importantly, similar

to P11-Au, the MWD P12-Pt and P12-Pd remains monomodal, proving the absence of

any cross-linking events during the complex formation.

Photostability When using the prepared metallopolymers in the photoligation experi-

ments, the stability towards UV irradiation needs to be guaranteed. UV-Vis spectroscopy

was therefore employed to probe the photostability of P11-Au, P12-Pt, and P12-Pd
under UV exposure. Figure 3.9 shows the UV-Vis spectra before and after irradiation with

the Arimed B6 lamp for 3 h, which is the time scale employed for the surface photoligation

experiments. In all three cases, no significant spectral changes are observed after irradia-

tion, evidencing the excellent UV stability of the metallopolymers. The slight increase

of the absorption value in all cases after irradiation is attributed to a small amount of

solvent evaporation during the photoreaction.
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Figure 3.9. From left to right: UV-Vis spectra of the metallopolymers P11-Au, P12-Pt, and
P12-Pdmeasured in 1,4-dioxane (1mgmL−1) before and after irradiation with the Arimed B6 lamp
for 3 h.

The characterized ligand copolymers P11 and P12, as well as the metallopolymers

P11-Au, P12-Pt, and P12-Pd were subsequently employed in the surface photoliga-

tion protocol established in Section 3.1.2. Giving the stability of all metallopolymers

towards UV irradiation, the spatially resolved surface-patterning can be achieved via
two strategies: 1) photoligation of the ligand copolymers and subsequent metal loading
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3 Spatially resolved multiple metallopolymer surfaces by photolithography

of the attached polymer in analogy to the complexation in solution, or 2) direct photo

patterning of the pre-loaded metallopolymers. Both strategies were investigated and

compared in the present thesis. Starting with the immobilization of a single species onto

the silicon wafer, setup A was employed for all experiments. The irradiated, as well as the

dark parts of the rectangular shadow mask are sufficiently large to be characterized via
high-resolution XPS measurements. In addition, the spatial resolution can be observed

through ToF-SIMS mapping of the sharp line between the dark and the irradiated area.

3.3 Surface attachment

3.3.1 Post-loading approach

For the post-loading of ligand copolymers functionalized surfaces, the spatially resolved

photoligation of polymers P11 and P12 was conducted employing setup A, as described

for the preparation of the homopolymer surface S2 (see Figure 3.10, top). The photoliga-

tion of P11 delivered surface S3, while surface S4was prepared through immobilization of

P12. The ToF-SIMS and XPS analysis of surfaces S3 and S4 is depicted in Figure 3.10. For

the ToF-SIMS ion maps, the analyzed area is indicated by the rectangle in the schematic

surface drawing with the dashed green line, separating the irradiated from the dark part

of the surface.

For S3, the intact tetrazole silane 5 is visible in the dark area of the surface through

the specific mass fragments C4H2NO
+, C6H4NO

+, C7H7NO
+, and C7H8NO

+, respectively.

In addition, the underlying silicon substrate features an intense signal, as the penetration

depth of the ion beam reaches through the SAM of the silane (see Figure A.45). In contrast,

the irradiated area shows characteristic fragments arising from the PMMA backbone

(C3H3O
– and C4H5O

–
2 ), as well as from the phosphine comonomer 7 (C6P

–, C6H5P
–,

and C6H4P
–). The C 1s XPS spectra of S3 additionally supports the successful spatial

immobilization of P11 through the increase of the ester bonds on the surface at 289.1 eV.

The reduction of the N C O and N C N bounded carbon species at 288.2 eV,[288]

stemming from the SAM of 5 in the irradiated area compared to the dark area also

confirms the layer increase due to the polymer immobilization.

Surface S4 gives nearly identical results, except that specific ions arising from the

bipyridine ligand (C6H6N
+, C11N2H

+
9 , and C10H6N

+
2 ) are detected in the ToF-SIMS instead

of the phosphine species in S3. The N 1s XPS spectra of S4 additionally confirms the

immobilization of the bipyridine containing copolymer P12 in the irradiated area (see

Figure A.51). The dark area of S4 is dominated by the signals at 402.7 eV and 400.2 eV
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3.3 Surface attachment

arising from the surface bound tetrazole 5.[162,289] In contrast, attachment of P12 in the

irradiated area results in a significant shift of the main nitrogen signal towards 398.9 eV.

This value is assigned to the nitrogen in the bipyridine motif and matches the reported

literature value of 399.0(1) eV for 2,2-́bipyridine.[290]
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Figure 3.10. Surface photoligation of the free ligand copolymers P11 and P12, yielding surfaces
S3 and S4, respectively. The rectangle in the schematic visualization represents the area analyzed
via ToF-SIMS. The ToF-SIMS and XPS analysis of the phosphine copolymer surface S3 (left) and
S4 (right) are depicted below. The dotted green line in the ToF-SIMS images indicates the line
separating the dark from the irradiated area.

Upon confirmation of the successful spatial immobilization of the ligand copolymers

P11 and P12, the metal complexation of the ligand sites on the surface was attempted.

The reaction setup is depicted in Figure 3.11 for the gold complexation of S3 towards

surface S3-Au (a) and the platinum complexation of S4, leading to surface S4-Pt (b).
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3 Spatially resolved multiple metallopolymer surfaces by photolithography

For S3-Au, the post-loading was conducted in a similar manner as the complexation of

P11 in solution. The entire silicon wafer S3 was immersed in solution of [AuCl(tht)] in

DCM. In a first experiment, a qualitative investigation of the required incubation time for

optimal complexation was performed. The surfaces were immersed in the gold solution

for different time intervals, rinsed with DCM, and analyzed via ToF-SIMS (see Figure A.47).

Already after 20 s, specific gold ions can be detected. After 30min, a strong gold signal is
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Figure 3.11. a) Post-loading with gold of surface S3 towards surface S3-Au. b) Post-loading
with platinum of surface S4 towards surface S4-Pt. The ToF-SIMS analysis of the PMMA and
metal characteristic ions is depicted below the surface drawings. The XPS spectra of Au 4f and
Pt 4f in command of S3-Au and S4-Pt are shown on the right for the irradiated and dark areas of
the surfaces. Adapted with permission from [280]. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA.

observed in the previously irradiated area of S3. As can be seen in Figure 3.11a), the area

covered with polymer P11 in S3 perfectly overlaps with the detected PMMA and gold

fragments of S3-Au. This confirms that the complexation takes place exclusively in areas
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3.3 Surface attachment

that are covered with P11. Additional molecular information about the surface structure

of S3-Au can be gained from the inspection of further ion fragments in the ToF-SIMS

analysis (see Figure A.48). Specific signals associated with ligand 7 and also from the

capped RAFT polymer end-group are detected in the initially irradiated area.

An intense Au+I signal at 85.4 eV for Au 4f7/2[291] correlates with the ToF-SIMS findings,

while it is completely absent in the dark area of the surface (see right side of Figure 3.11a).

Small amounts of Au0 (84.0 eV for Au 4f7/2)[292] are attributed to a certain amount of

metal precursor reduction during the experiment. The C 1s spectra are not altered as

compared to S3, with a strong ester bond signal at 289.1 eV, stemming from the polymer

backbone in the irradiated area and nitrogen bonded carbon arising from the surface

bound tetrazole in the dark area (see Figure A.49). Unfortunately, a quantitative estimation

of the complexation efficiency on the surface in analogy to the NMR characterization

in solution cannot be made. For this, the P 2p doublet at ≈132 eV in the XPS spectra

must be compared to the Au+I signal at 85.4 eV. However, the phosphor signal overlaps

with a plasmon loss peak of the underlying silicon substrate, which results in a very

inaccurate determination of the phosphine content and thus the phosphine–gold ratio on

the surface.

In contrast to the successful post-loading of S3 towards S3-Au, the post-loading of

S4 employing the platinum precursor [PtCl2(DMSO)2] in CHCl3 was not successful.

Figure 3.11b) shows the ToF-SIMS and XPS analysis of the surface S4-Pt. While surface

S4 shows the spatially resolved immobilization of P12 via the PMMA fragments in the

ToF-SIMS, the specific platinum fragments in S4-Pt are detected in the whole analyzed

area. The Pt 4f and Cl 2p (see Figure A.53) XPS spectra are matching to the ToF-SIMS

results, as Pt+II and Pt Cl bound Cl−I are detected in the irradiated, as well as the dark

areas of surface S4-Pt. Although the amount of Pt+II and Cl−I is lower in the dark area,

these results clearly indicate a non-selective surface immobilization of platinum. The

same results are obtained for the palladium complexation of S3 in analogy to P12-Pd
(not shown).

In conclusion, the complexation of pre-functionalized surfaces with metal complex

precursors was successfully applied for gold on surface S3-Au, while the complexation

of platinum or palladium on bipyridine-containing surface P12 was non-selective.

3.3.2 Pre-loading approach

The photoligation of the metallopolymers P11-Au, P12-Pt, and P12-Pd should lead to a

similar final surface structure as for the surfaces obtained via the post-loading approach.
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3 Spatially resolved multiple metallopolymer surfaces by photolithography

The advantage in performing the complexation of the ligand copolymers in solution is

the possibility of an in-depth molecular characterization of the metallopolymers without

being restricted to ToF-SIMS and XPS surface analysis only.

Figure 3.12 shows the results for the direct photoligation of P12-Pt through setup A in

analogy to the corresponding free ligand copolymer P12 (see Figure 3.10). Notably, while

the experimental setup was effective for P12, the immobilization of P12-Pt on surface

S5-long was not successful. The ToF-SIMS analysis of S5-long does not show species

related to metallopolymer P12-Pt (here PMMA, bipyridine, and platinum fragments). In

S5-long

PMMA

1.00 mm

platinum

1.00 mm

0 a.u.

1 a.u.

bipyridine

1.00 mm

P12-Pt

Figure 3.12. Unsuccessful photoligation of metallopolymer P12-Pt on surface S5-long with the
ToF-SIMS analysis of S5-long showing no immobilized polymer with 6 cm distance between glass
vial and irradiation source and 10mm pathway through the P12-Pt metallopolymer solution.

addition, also the borderline between the irradiated and the dark area is not visible in

the total ion count ToF-SIMS images, which is normally detectable even for unsuccessful

ligations due to altered ionization probabilities of the irradiated area (see Figure A.54).

These observations can be explained by revisiting the Beer–Lambert law regarding

the employed photoligation setup. As the UV light of the irradiation source needs to

penetrate the solution of the respective metallopolymer in order to trigger the NITEC

reaction on the surface, the absorption inside the solution has a pronounced effect on the

light intensity reaching the tetrazole SAM.

In comparison to the free ligand copolymer P12, an increased absorption for the

metallopolymer P12-Pt is observed in the region between of 300–400 nm in which the

NITEC reaction is triggered (see Figure A.19). Through combination of the measured

spectral irradiance of the light source with the UV-Vis spectrum of metallopolymer P12-
Pt, the effect of the absorption on the initially available irradiance is possible. A MATLAB

script was utilized for calculating the spectral irradiance at any given penetration depth

through an absorbing solution. (a) For the calculation of the individual molar extinction

coefficients 𝜖𝜆 of the P12-Pt solution, the molar concentration of P12-Pt was calculated

(a) The MATLAB script was developed with the help of Patrick Müller from the group of Prof. Wegener, KIT.
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3.3 Surface attachment

via the MW as determined by SEC (see Table 3.2). The capabilities of this approach are

visualized in Figure 3.13.

In panel a), the absorption spectra of P12-Pt and the spectral irradiance measurement

of the Arimed B6 lamp are depicted. By visual inspection, the P12-Pt solution has a

notable absorption in the spectral range of 300–400 nm. Figure 3.13b) quantifies this

observation on the irradiance for various penetration depths inside the P12-Pt solution.
As an example, the initial irradiance at 320 nm is 𝐸 = 459mWm−2 nm−1. Already after

1mm inside the solution, this value is reduced by 62%, whereas only 0.7‰ of the initial

irradiance is available after 10mm. A complete visualization of the 250–420 nm range is

presented in Figure 3.13c) through a 3D surface plot. The complete spectral range 3D
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Figure 3.13. a) Overlay of the absorption spectrum of metallopolymer P12-Pt and the spectral
irradiance of the Arimed B6 lamp. b) Effect of the P12-Pt solution absorption on the spectral
irradiance after different penetration depths into the solution. c) 3D visualization of the decrease
in available surface irradiance with a pronounced effect in the wavelength region around 320 nm.
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3 Spatially resolved multiple metallopolymer surfaces by photolithography

surface plots of the spectral irradiances versus penetration depth for P11-Au, P12-Pt,
and P12-Pd is given in Figure A.28, A.29, and A.30, respectively. Accordingly, the initially

employed experimental setup was modified and the distance between the silicon surface

and the wall of the glass vial was reduced from 10 to 2mm (see Figure 3.14).

b) Improved irradiation setupa) Initial irradiation setup

Figure 3.14. Visualization of the initial (a) and improved (b) experimental setup for surface
photoligation. Compared to the initial setup, the distance between the irradiation source and the
photo vial, as well as the distance between the silicon surface and the wall of the glass vial was
shortened (red arrows). Adapted with permission from [280]. © 2018 Wiley-VCH Verlag GmbH &
Co. KGaA.

In addition, the distance between the UV lamp and the photo vial was also reduced,

which further increases the irradiance at the wafer surface. The dependency is illustrated

in Figure 3.15. In panel a), the damping effect of the photo vial on the spectral irradiance is

given. As the employed photo vial is made of standard laboratory glass ware, the cut-off is

already starting to affect the range between 280–340 nm. Figure 3.15b) demonstrates the

effect of the distance between the UV lamp and the photo vial, by reducing the distance

from 6 to 2.5 cm. The red line only serves to guide the eye, as the inverse square law of

the relationship between the irradiance from a point light source and the distance cannot

be applied in this case because the Arimed B6 lamp is an elongated light source and the

wall of the photo reactor also reflects incoming light.

Taking together these two changes of the experimental setup, a significant increase

in the surface irradiance for all metallopolymers is achieved. Table 3.3 summarizes the

effect for the initial and the improved irradiation setup. Polymer P11-Au only poorly

absorbs light in the UV range and therefore exhibits only minor improvement upon

adjustment. However, the absolute value of the irradiance is significantly higher as

compared to the P12-Pt and P12-Pd metallopolymers. Here, the setup change results in
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3.3 Surface attachment

an impressive increase in surface irradiance with a factor of 149 and 73 for P12-Pt and
P12-Pd, respectively.
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Figure 3.15. a) Spectral irradiance of the Arimed B6 UV lamp at 2.5 cm distance (dotted, black)
and with a glass vial employed for the photoreactions placed between the lamp and the radiometric
sensor (blue). b) Relationship between peak irradiance of the Arimed B6 lamp and the distance of
the reaction vial towards the lamp. The red line only serves to guide the eye.

Table 3.3. Comparison of the initial and improved irradiation setup and the absolute gain in
irradiance intensity at the wafer surface. Adapted with permission from [280]. © 2018 Wiley-VCH
Verlag GmbH & Co. KGaA.

initial setup(a) improved setup(b)

polymer irradiance280–400 nm at irradiance280–400 nm at factor of
wafer surface / mWm−2 wafer surface / mWm−2 improvement

P11-Au 8000 24 600 1.23
P12-Pt 45 6700 149
P12-Pd 85 6200 73

(a) 6 cm distance between glass vial and irradiation source and 10mm pathway through the metallopoly-
mer solution. (b) 2.5 cm distance between glass vial and irradiation source and 2mm pathway through
the metallopolymer solution.

Monofunctional patterning With the increased surface irradiance of the improved

setup, the spatially resolved immobilization was successful for all metallopolymers, i.e.

P12-Pt, P12-Pd, as well as P11-Au (see Figure 3.16). For the surface S5, the ToF-SIMS

analysis clearly confirms the spatially resolved immobilization of the metallopolymer

P12-Pt by the strong signal intensity of the PMMA, as well as the metal specific mass
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3 Spatially resolved multiple metallopolymer surfaces by photolithography

fragments in the irradiated area (see Figure 3.16a); for the PMMA and other fragments,

refer to Figure A.55). Signals associated with the bipyridine ligand (C6H6N
+, C11N2H

+
9 ,

C10H6N
+
2 ), as well as the capped RAFT group (S2O2C9H

+
9 , S2O2C16H

+
17, and S2O2C10H

+
12)

are also detectable in the irradiated area, indicating the intact nature of themetallopolymer

after the photoligation step. In contrast, the non-irradiated area of the surface remains

Au(0)

irradiated
Au(I)

Au 4f
in

te
n

si
ty

 /
 a

.u
. 

dark

90 88 86 84 82
binding energy / eV

S7

c)

Pd(I)

irradiated Pd(II) Pd 3d

345 342 339 336
binding energy / eV

in
te

n
si

ty
 /

 a
.u

. 

dark

S6

b)

platinum

1 a.u.

0 a.u.

0.50 mm

palladium

1 a.u.

0 a.u.

0.50 mm

gold

1 a.u.

0 a.u.

0.50 mm

80 78 76 74 72 70

Pt(I)

irradiated Pt(II) Pt 4f

binding energy / eV

in
te

n
si

ty
 /

 a
.u

. 

dark

S5

a)

P12-Pt

P11-Au

P12-Pd

Figure 3.16. Spatially resolved surface immobilization of metallopolymers P12-Pt (a), P12-Pd
(b), and P11-Au (c) via setup A. The ToF-SIMS and XPS analysis of the respective metal species
are shown on the right. Adapted with permission from [280]. © 2018 Wiley-VCH Verlag GmbH &
Co. KGaA.

unchanged. ToF-SIMS fragments of the remaining surface bound tetrazole, as well as

a strong signal of the underlying silicon substrate are detectable in the dark area of

S5. The XPS analysis of S5 supports these findings by the increase of ester bonds in

the irradiated area at 289.1 eV in the C 1s spectra compared to the dark area, where no

ester bonds are detectable (see Figure A.56). In addition, the Pt 4f spectrum shows no

metal complex in the non-irradiated area, whereas it is clearly visible through the Pt+II
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doublet at 73.1 eV (for Pt 4f7/2)[293] in the irradiated area (see Figure 3.16a). Traces of

Pt+I are detected as a small doublet at 71.9 eV (for Pt 4f7/2) and are probably due to a

certain amount of photo reduction of the platinum complex during the irradiation step.

Nevertheless, the predominant part of the surface bound platinum atoms are bound to

the bipyridine ligand in the form of Pt+II. The N 1s spectrum of the irradiated area does

also differ significantly from the dark area. The signals in the non-irradiated area at

402.7 and 400.2 eV are assigned to the surface bound tetrazole species and are comparable

to the free ligand surface S4 (refer to Figure A.51). In contrast, the irradiated area is

dominated by the nitrogen atoms of the platinum metal complex centered at 400.2 eV,

which is attributed to the C N Pt binding motif. The N 1s spectrum shows an additional

weak peak at 398.9 eV belonging to the nitrogen atoms in the aromatic rings of P12-Pt,
whereas the tetrazole-assigned peak at 402.7 eV is absent. While non-irradiated area of

the surface does not feature any chlorine species, the platinum-attached chlorine atoms

are clearly visible at 198.1 eV (for Cl 2p3/2) in the Cl 2p spectra of the irradiated area.

The results of the ToF-SIMS and XPS analysis of the palladium containing surface S6
are comparable to the results obtained from S5. Here, instead of the platinum signals,

specific ions from the palladium-bipyridine complex are detected in the irradiated area in

the ToF-SIMS analysis (see Figure 3.16b). All other ion species of S6 detected in the ToF-

SIMS exhibit a similar spatial distribution as observed for S5 (see Figure A.57). The XPS

spectra of S6 shows Pd+II species through the Pd 3d doublet at 338.3 eV (for Pd 3d5/2).[294]

Similar to S5, a small amount of Pd+I species is detected as a small doublet at 336.9 eV (for

Pd 3d5/2). The C N Pd binding motif, as well as the palladium-bound chlorine atoms are

detected exclusively in the irradiated area in the N 1s and Cl 2p spectra, respectively (see

Figure A.58). In addition, the dark area of surface S6 shows also an intact tetrazole species

in the ToF-SIMS, as well as in the XPS spectrum (see Figure A.57 and A.58, respectively).

For surface S7, the ToF-SIMS and XPS measurements of the gold species are depicted in

Figure 3.16c). In the ToF-SIMS, the surface-immobilized gold complex is detected through

the Au– ion. The additional detected AuCl– ion was not included in the evaluation,

because its isotopic pattern overlaps with the PtCl– and PtCl –2 ions, which are employed

for the detection of metallopolymer P12-Pt. Instead of the bipyridine ligand observed
for S5 and S6, the phosphine ligand is detected in the irradiated area via the C6P

–,

C6H5P
–, and C6H4P

– ions, in combination with the fragment of the capped RAFT group

(see Figure A.59). The non-irradiated area in the XPS spectrum is completely free of

gold, whereas the irradiated area shows a strong signal for the Au+I complex of the

metallopolymerP11-Au at 85.4 eV (for Au 4f7/2), excellentlymatching the results obtained

by the post-loading approach presented in Figure 3.11. However, the amount of detected
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Au0 species in the XPS spectrum is increased compared to the post-loading approach.

Despite the UV-stability test of metallopolymer P11-Au (see Figure 3.9), this observation

is indicating an increased photo reduction[295] in the photoligation step. An explanation

for the exclusive occurrence of the Au0 species in the irradiated area can be the formation

of ligand-supported gold nanoclusters, for which the triphenylphosphine moieties of the

polymer are literature known stabilizers.[292,296]

Bifunctional patterning As already discussed for themonofunctionalmetallopolymer

surfaces, the tetrazole molecules in the non-irradiated surface areas are still intact for

further functionalization, which opens up the unique possibility for multifunctional

surface patterning. Having established the experimental setup for the monofunctional

patterning, this section will describe the preparation of bifunctional surfaces employing

two different metallopolymers.

The strategy for bifunctional surfaces is outlined in Scheme 3.18 for the preparation of

surface S8, as an example of one combination. The procedure involves two consecutive

photoligation experiments on the same silicon wafer. Here, the first photoligation of

metallopolymer P12-Pd is conducted with point mask (I) (refer to Table A.2 for the

description of the different shadow masks). Thereafter, the surface is thoroughly washed

to remove all potentially physiosorbed metallopolymer on the surface. In the second

P12-Pd P12-Pt

S8

Scheme 3.18. Reaction sequence for the preparation of the bifunctional metallopolymer surface
S8. The palladium metallopolymer P12-Pd is photochemically immobilized onto the surface with
point mask (I) in the first reaction step, followed by platinummetallopolymer P12-Pt in the second
surface reaction, employing point mask (II).

irradiation step, metallopolymer P12-Pt was attached onto different areas of the surface

by employing point mask (II). Again, the surface was carefully rinsed before analyzing it

via ToF-SIMS and XPS. A condensed representation of the ToF-SIMS and XPS surface

mappings is obtained by the overlay of the individual fragments/elements in a false color

representation (see Figure 3.17a). The complete ToF-SIMS images and XPS elemental

mappings can be found in Figure A.61 and A.62, respectively. A summary of all prepared

104



3.3 Surface attachment

bifunctional surfaces is given Table 3.4 with the reaction sequence of the employed

metallopolymers, as well as the references to the ToF-SIMS and XPS analysis.

Table 3.4. Summary of all bifunctional surfaces prepared via reaction setup B, i.e. point mask
(I) in the first and point mask (II) in the second reaction step. The reaction sequence describes
the order in which the two metallopolymers are tethered onto the silicon wafer. The detailed
ToF-SIMS and XPS analytic can be found in the respective figures.

surface reaction sequence ToF-SIMS XPS

S8 P12-Pd→P12-Pt Figure A.61 Figure A.62
S8-rev P12-Pt→P12-Pd Figure A.63 Figure A.64

S9 P12-Pd→P11-Au Figure A.65 Figure A.66
S9-rev P11-Au→P12-Pd Figure A.67 Figure A.68

S10 P12-Pt→P11-Au Figure A.69 Figure A.70
S10-rev P11-Au→P12-Pt Figure A.71 Figure A.72

For surface S8, the analysis of the ToF-SIMS images clearly proves the bifunctional

surface structure. The PMMA backbone signals (C3H3O
–, C4H5O

–
2 ), as well as the

bipyridine and capped RAFT group fragments, are detected in all irradiated areas, as

the metallopolymers P12-Pd and P12-Pt are both prepared from the same bipyridine

functionalized ligand copolymer P12. In contrast, fragments associated with palladium

are exclusively present in the area irradiated with point mask (I), while the platinum

signals are only detected in the area of point mask (II).

Importantly, ions arising from the surface-bound tetrazole molecules are still observed

in the non-irradiated areas on the final wafer S8, which implies the possibility for even

further functionalization. It should be noted that the ion fragments from tetrazole 5
are solely not included in the false color overlays in Figure 3.17 because of software

limitations, preventing the simultaneous overlay of the negative and positive ion modes.

The sharp contrast between the dark and the irradiated areas further supports the spatially

resolved nature of the photoligation process. (a)

The XPS chemical mapping of surface S8 is depicted on the right side of Figure 3.17a).

While the information on the oxidation state of the respective elements is accessible

through the high-resolution XPS measurements discussed in the previous section, the

snap map option of the spectrometer visualizes the spatial distribution of the various

atoms present on the surface by rapid displacement of the sample stage, combined with

a fast measurement (refer to the experimental section on Page 170). This technique

(a) For the achievable spatial resolution, the reader is referred to the discussion of the monofunctional surface
of S2-KIT on Page 86.
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ToF-SIMS XPSrepresentation

Pd (blue), Pt (magenta), Si (green)

1.00 mm

Pd (blue), Pt (magenta)

1.00 mm

S8

Pt (magenta), Au (yellow), Si (green)

1.00 mm

Pt (magenta), Au (yellow)

1.00 mm

S10

Pd (blue), Au (yellow), Si (green)

1.00 mm

Pd (blue), Au (yellow)

1.00 mm

S9

a)

b)

c)

Figure 3.17. Three different combinations of the metallopolymers on a single surface for the
fabrication of bifunctional metallopolymer surfaces S8 (a), S9 (b), and S10 (c). A schematic
overview of the surface patterning is given in the middle. The respective ToF-SIMS images are
depicted on the left side, while the XPS chemical mappings are displayed in the right column. The
color code is given below each picture.
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enables the direct comparison of the surface structure with the results obtained from

ToF-SIMS. In addition, it delivers information on the chemical oxidation state of every

mapped element by a subsequent high-resolution XPS measurement at a defined location

on the surface. Clearly, both analytical techniques condensed in the images given in

Figure 3.17a) confirm the successful spatially resolved surface immobilization of P12-Pd
and P12-Pt on different areas of surface S8.
In contrast to the ToF-SIMS imaging of the tetrazole ion fragments, the spatially re-

solved imaging of tetrazole 5 is not feasible with the XPS chemical mapping. The nitrogen

atoms of 5 cannot be distinguished from the nitrogen atoms of the bipyridine ligand

9 in P12-Pd and P12-Pt, thus preventing the spatially resolved imaging. Instead, the

underlying silicon substrate is visualized in the area in between the two metallopolymers

as an indirect measurement of the tetrazole SAM due to the thinner surface coverage in

the area only covered with 5.
In order to investigate whether the order of the metallopolymer photoligation has an

impact on the analytical outcome, the experiment was also conducted in reverse order, that

is, employing first P12-Pt, and then P12-Pd in the second photoligation step, resulting

in surface S8-rev. The results collated in Figure A.63 and Figure A.64 unambiguously

confirm the versatility of the presented photoligation protocol. Both surfaces show

identical analytical results, except for the location of the respective metallopolymers,

proving that the reaction sequence has no impact on the final surface structure. A

comparison between the ToF-SIMS images of S8 and S8-rev is presented in Figure 3.18.

As discussed for surface S8 above, both surfaces show a similar spatial distribution of

the tetrazole, PMMA, as well as the bipyridine ion fragments, while the palladium and

platinum species are orthogonal to each other, as indicated by the arrows.

In addition to surfaces S8 and S8-rev, all other possible combinations of the metal-

lopolymers prepared in this thesis have been performed. Surface S9was prepared through
the photoligation of P12-Pd followed by P11-Au, while the combination of P12-Pt and
P11-Au was realized on surface S10 (see Figure 3.17b) and c), respectively). Again, not

only the different combinations, but also the order of the metallopolymer immobilization

was varied, leading to surfaces S9-rev and S10-rev.
The gold metallopolymer P11-Au allows the detection of the phosphine and gold

ion fragments in the respective areas in the ToF-SIMS mappings. Accordingly, the XPS

mappings confirm the spatially resolved immobilization of P11-Au via the visualization

of the Au 4f signals. It should be noted that the fast measurement in the snapmap

mode does not allow a discrimination between Au+I and Au0 species, as observed for the

monofunctional surface S7 (see Figure 3.16c). As such, it can only be assumed that the
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S8
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platinum
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Figure 3.18. Comparison of the surfaces S8 (1st row) and S8-rev (2nd row). The ToF-SIMS
mappings of the tetrazole, PMMA, and bipyridine fragments are similar for both surfaces. In
contrast, the palladium and platinum species swapped places.

observation made for S7 can also be translated to the bifunctional surfaces S9 and S10.
Similar to the findings of S8-rev, the reverse order of metallopolymer immobilization in

S9-rev and S10-rev does not influence the analytical findings, see Table 3.4 and analytical
references therein.

Trifunctional patterning Two different strategies are followed for the fabrication of

trifunctional surfaces, as outlined in Scheme 3.19. Surface setup C is depicted in panel

a) and comprises three different shadow masks in consecutive reaction steps, namely

point masks (III–V). Through this strategy, areas of the surface already covered with a

metallopolymer attached in a previous reaction will not experience a second irradiation

cycle. Consequently, the potential crosstalk between areas irradiated with multiple

metallopolymers is prevented.

Surface S11 is obtained after consecutive irradiation cycles of P12-Pd (point mask (III),

1st step), P12-Pt (point mask (IV), 2nd step), and P11-Au (point mask (V), 3rd step) on

the same silicon wafer pre-functionalized with tetrazole 5. The results of the ToF-SIMS,

as well as the XPS measurements are shown in the Figure 3.19 (1st row). The two false

color overlays of the individual ToF-SIMS (left) and XPS (right) images unambiguously

confirm the successful spatially resolved immobilization of all three metallopolymers.

Signals from the PMMA backbone and the capped RAFT end group are detected in all

areas covered with polymer, independent of the kind of metallopolymer (see Figure A.73).

In contrast, the bipyridine ligand of P12 is only detectable in the spots covered with

either P12-Pd or P12-Pd, whereas the phosphine ligand of P11 is solely found in the
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P12-Pd

S11

P11-AuP12-Pt

b)

P12-Pd

S12 

P11-AuP12-Pt

a)

Scheme 3.19. The two different strategies for trifunctional surface patterning employed in this
thesis. a) Immobilization of P12-Pd (point mask (III), 1st step), P12-Pt (point mask (IV), 2nd step),
and P11-Au (point mask (V), 3rd step) towards surface S11 via surface setup C. b) Immobilization
of P12-Pt (point mask (I), 1st step), P12-Pd (point mask (II), 2nd step), and P11-Au (no mask, 3rd

step) towards surface S12 via surface setup D.

ToF-SIMS XPSrepresentation

Pd (blue), Pt (magenta), Au (yellow)Pd (blue), Pt (magenta), Au (yellow) S11

Pd (blue), Pt (magenta), Au (yellow)

1.00 mm

S12

1.00 mm1.00 mm

Pd (blue), Pt (magenta), Au (yellow)

1.00 mm

Figure 3.19. ToF-SIMS and XPS analytics of the trifunctional metallopolymer surfaces S11 (1st

row) and S12 (2nd row). A schematic overview of the surface patterning is given in the middle. The
respective ToF-SIMS images are depicted on the left side, while the XPS chemical mappings are
displayed in the right column. The color code is given below each picture. The green circle in the
ToF-SIMS image of S11 indicates an area of the 3rd reaction step, which is partially functionalized
with P12-Pt from the 2nd reaction.
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area where P11-Au was immobilized. Importantly, the tetrazole moiety is still intact on

the non-irradiated area, unaffected by even three irradiation cycles (including extensive

washing steps and ultrasonication of the wafer). Hence, these results allow for even

further functionalization of the silicon wafer with no general restriction on the number

of different photoligation steps. Ultimately, the chemical XPS mappings fit well to the

insights obtained from the ToF-SIMS analysis.

The green circle in the ToF-SIMS image of surface S11 in Figure 3.19 indicates a small

area in which P12-Pt was partially attached by accident in the second reaction step.

Interestingly, no Au– fragment stemming from the P11-Au metallopolymer is detected

at this spot, which is already covered with P12-Pt from the previous step.

Interestingly, no Au– fragment is observed at this spot in the detection of the P11-
Au metallopolymer in this area already covered with P12-Pt from the previous step.

This observation implicates that the surface coverage during the photoligation step is

sufficiently dense to prevent further metallopolymer attachment in subsequent reaction

steps.

Therefore, a second threefold experiment was performed in which the two point masks

(I) and (II) were used in the first and second reaction step, while no shadow mask was

used in the last reaction. In the last irradiation step, the entire surface is irradiated, which

is already partially covered with two different metallopolymers (see Scheme 3.19b).

The results of the obtained surface S12 are depicted in Figure 3.19 (2nd row). Again,

all specific mass fragments in the ToF-SIMS analysis and the elemental XPS mappings

support the immobilization of the metallopolymers in the targeted areas (see Figure A.77

and Figure A.78).

Importantly, no gold metallopolymer is detected in the area covered with P12-Pt and
P12-Pd from the first and second reaction step, supporting the observation from surface

S11 that the surface coverage in each reaction step is sufficiently dense to prevent further

attachment of another metallopolymer, here P11-Au, in the last step.

This robustness further simplifies the experimental setup for the fabrication of surfaces

with multiple functionality. In addition, fully coated multifunctional metallopolymer

surfaces can be readily obtained by employing one final irradiation step without any

shadow mask, to fill up the interstitial space between the already functionalized areas.

In analogy to the bifunctional surface pattering, the order of the metallopolymer

attachment was also varied for the trifunctional surfaces, see surfaces S11-rev and S12-
rev in Table 3.5. A comparison between the ToF-SIMS analysis of the metal ion fragments

of surface S11 and S11-rev is depicted in Figure 3.20. While point mask (V) was used for

the patterning of metallopolymer P11-Au in both cases, point mask (III) and (IV) were

110



3.3 Surface attachment

interchanged between S11 and S11-rev. Clearly, the change in the reaction sequence of

the palladium and platinum metallopolymer did not affect the successful pattering of all

three metallopolymers, which is in good agreement with the observation made with the

bifunctional surface patterns.

Table 3.5. Summary of all trifunctional metallopolymer surfaces fabricated in this thesis. For
a description of the reaction setup, refer to Table A.2. The reaction sequence gives the order in
which the three metallopolymers are tethered onto the silicon wafer. The detailed ToF-SIMS and
XPS analytic can be found in the respective figures.

surface setup reaction sequence ToF-SIMS XPS

S11 C P12-Pd→P12-Pt→P11-Au Figure A.73 Figure A.74
S11-rev C P12-Pt→P12-Pd→P11-Au Figure A.75 Figure A.76

S12 D P12-Pt→P12-Pd→P11-Au Figure A.77 Figure A.78
S12-rev D P12-Pd→P12-Pt→P11-Au Figure A.79 Figure A.80

S1
1

gold

S1
1-
re
v

1 a.u.

0 a.u.

platinumpalladium
0.50 mm 0.50 mm 0.50 mm

0.50 mm0.50 mm 0.50 mm
1 a.u.

0 a.u.

Figure 3.20. Comparison of the surfaces S11 (1st row) and S11-rev (2nd row). The ToF-SIMS
mappings of the palladium and platinum fragments swapped places, while the gold fragments are
found on the same spots.

Layer thickness The information from the XPS and ToF-SIMS measurements were

additionally used to assess an estimation of the thickness of the photoligated metal-

lopolymers. In the employed ToF-SIMS analytical setup, and Regarding the operation

mode of the bismuth ion source (Bi +3 , 25 keV) in the employed ToF-SIMS instrument, the

information withdrawn from the measurement equals a depth of 1 nm.[297]
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3 Spatially resolved multiple metallopolymer surfaces by photolithography

As no silicon can be detected in areas covered with metallopolymers, the thickness must

be above 1 nm in all studied cases (see for example Figure A.73). The information depth

of the XPS analysis is related to the inelastic mean free path at a given X-ray photon

energy. Consequently, the sampling depth has a value in the range of 8–10 nm.[298]

The underlying silicon substrate is detected in all areas covered with metallopolymer,

which therefore sets an upper limit for the layer thickness of the metallopolymer surface

coverage (see entry for S11-rev and S12 in Table 3.6). Hence, the thickness of the attached
metallopolymers is in the range of 3–7 nm.

Interestingly, we observe differences between the three employed metallopolymers

(see entry for S11-rev in Table 3.6). Here, the attenuation of the silicon signal in the XPS

is between 50–60% in the case of the palladium and platinum metallopolymers, whereas

the gold metallopolymer only shows a decrease slightly below 40% of the Si signal. These

values suggest a higher layer thickness for the P12-Pd and P12-Pt metallopolymers as

compared to the P11-Au metallopolymer. One possible explanation is the higher 𝑋n of

P11-Au compared to the two P12 based metallopolymers (see Table 3.2). Therefore, the

occupied volume of P11-Au also exceeds that of the two bipyridine metallopolymers,

which results in a lower grafting density of the former through an increased interstitial

space of the individual polymer chains on the surface (see also the discussion of the

grafting regimes in Section 2.4.2.4).

Table 3.6. Concentration of silicon metal on different locations of the triple modified surfaces
S11-rev and S12. For S11-rev, the decrease of the silicon signal with respect to the non-irradiated
area is calculated. Adapted with permission from [280]. © 2018 Wiley-VCH Verlag GmbH & Co.
KGaA.

surface measured spot Si0 / at% Si decrease / %

S11-rev

non-irradiated 43.1 –
P12-Pt 16.5 62
P12-Pd 21.5 50
P11-Au 37.7 13

S12
P12-Pt 19.7 –
P12-Pd 19.0 –
P11-Au 32.5 –
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3.4 Conclusion

In this chapter, the first method for the spatially resolved surface immobilization of

different metallopolymers on a single surface, employing the versatile NITEC photochem-

istry for chemical bond formation was developed. The initially strategy via the use of

photo generated thioaldehydes through phenacyl sulfides was also successfully applied

in solution. However, the surface photoligation was not successful employing phenacyl

sulfide functionalized silane 3 in combination with PMMA, which was end-functionalized

with a diene moiety. The strategy, which was successful for the surface pattering of small

organometallic complexes, was therefore abandoned for the photoligation of metallopoly-

mers. Through the NITEC approach, mono-, bi- and even trifunctional metallopolymer

surfaces with different metal combinations are fabricated. Preliminary studies on the

PMMA homopolymer P10 unraveled the need of capping the RAFT group by hetero-

Diels–Alder chemistry, employing photochemically generated o-quinodimethanes from

6 as a key point to successfully perform the NITEC photoligation on the surface. The

synthesis and characterization of various α-ω-functionalized metallopolymers capable

of surface attachment, namely P12-Pt, P12-Pd and P11-Au, was established through

RAFT polymerization in combination with the photochemical post-modification step.

The fabrication of gold metallopolymer surfaces is feasible through a post- or pre-

loading approach, leading to the same surface structure. In contrast, the post-loading

approach was not successful for the bipyridine based metallopolymers P12-Pt and P12-
Pd. With in-depth surface characterization techniques, namely ToF-SIMS and spatially

resolved XPS, unambiguous experimental support for the preserved chemical composition

of the fabricated metallopolymer surfaces could be provided. In addition, the impact of

the Beer–Lambert law on the photochemical surface ligation has been investigated. This

effect is quantified through the correction of the spectral irradiance with the solution

absorption. The developed MATLAB script in combination with the absorption spectrum

of the solution containing the photo active molecules and the spectral irradiance of the

employed irradiation source readily quantifies the key parameters for a successful surface

photo-ligation. The herein introduced photoligation technique for spatially resolved mul-

tiple metallopolymer surface ligation can be transferred to other related surface ligation

techniques, as the described interplay between solution absorption and successful immo-

bilization can be universally applied for all photoligation systems. The spatial resolution

employing this approach is in general only limited by the dimensions of the employed

photo mask. The fabrication of bi- and even trifunctional metallopolymer surfaces is

enabled by consecutive NITEC photoligation chemistry, ultimately leading to surfaces
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carrying three metallopolymers in close proximity. These multiple metallopolymer-

decorated surfaces are potential candidates for the design of heterogeneous catalysis

devices.
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C H A P T E R 4
Light-sensitive

spiropyran-metal complexes

In the development of the spatially resolved surface photolithography protocol in Chap-

ter 3, the photo triggered NITEC reaction was combined with the material class of

metallopolymers. There, the photo triggered NITEC chemistry and the metal com-

plexes in the metallopolymers do not interact with each other, despite being part of the

same (macro)molecules. In contrast, this chapter will explore the photochemistry of

organometallic complexes itself, for the potential creation of light-sensitive metallopoly-

mers. Light-responsive metallopolymers are attractive for various technological fields,

e.g. stimuli responsive materials, sensor applications, or the light-triggered control of

catalysis activity. While the metallopolymers in Chapter 3 are prepared by the poly-

merization of widely used triphenylphosphine- and bipyridine-based ligand monomers,

the creation of light-sensitive metallopolymers requires special ligands and monomers.

The synthesized metal complexes in the current chapter are based on the chemistry

of SPs, introduced in Section 2.2.2.1. In order to take advantage of the full toolbox of

solution-based characterization methods, e.g. UV-Vis or NMR spectroscopy, the materials

prepared in this chapter are not employed for surface ligation experiments, yet. This

chapter will rather focus on the development and understanding of the photochemistry

of SP-derived metal complexes for later usage as functional ligands in light-responsive

metallopolymers. Nevertheless, the utilization of such light responsive materials with

the surface photoligation chemistry of Chapter 3 will ultimately enable the prepara-

tion of light-responsive surfaces. While there are few reports on the combination of

light-responsive SP-based molecules[62c,299] or organic polymers[69,75b,300] with surface
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chemistry, no reports on the fabrication of surfaces decorated with light-responsive SP

metallopolymers can be found in literature.

The results in this chapter were obtained in close collaboration with M. Sc. T. J.

Feuerstein from the group of Prof. P. W. Roesky (Institute for Inorganic Chemistry,

Karlsruhe Institute of Technology). Parts of the synthesis and characterization performed

by M. Sc. T. J. Feuerstein are included for consistency and are referenced at the respective

places. First, the synthesis of new SP-based metal complexes will be discussed, followed

by the investigation of their photochemical behavior. As a part of this investigation,

the recently developed combination of light-emitting diode (LED) irradiation with NMR

spectroscopy by Gschwind et al.[301] was significantly improved. The aim of this chapter
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Figure 4.1. Proposal of a light-responsive SCNP based on the reversible intramolecular cross-
linking of a SP-functionalized polymer with metal centers as cross-linking points.

is to synthesize suitable SP-based metal complexes and understand their photochemistry.

After the insights gained from the small molecule studies, future work will aim to incor-

porate the SP-metal complexes into a polymer scaffold for potential applications in the

realm of SCNP chemistry. In Figure 4.1, the motivation for the access to a light-responsive

SP-metal complex SCNP system is shown. Through smart functionalization of the SP

moiety, the polymer is non-reactive towards metal complexation in the dark. In contrast,

the light-triggered SP→MC ring-opening in the presence of suitable metal precursors

under dilute conditions results in an intramolecular chain collapse, i.e. the formation of

a metal-containing SCNP. The metal extrusion and reformation of the polymer chain
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4.1 Synthesis of spiropyran-metal complexes

is afterwards enabled by the light-triggered MC→SP isomerization through irradiation

with visible light. The realization of the proposed properties of such a SP-based metal-

lopolymer will be the driving force behind the investigations presented in the current

chapter.

4.1 Synthesis of spiropyran-metal complexes

In all of the described metal complexes featuring SPs in their MC form as ligand sites, an

additional binding site is necessary to sufficiently stabilize the metal complex and prevent

a spontaneous thermal MC→SP ring-closure and therefore breakup of the metal complex

(refer to the introduction on Page 36 and the complexes depicted in Figure 2.14). With

this respect, a methoxy-group in ortho-position to the oxygen bound to the spiro-carbon

atom serves as a readily available ligand site and was chosen for the synthesis of SP 10
according to Raston and co-workers[302] (see Scheme 4.20a). A related SP structure was

also successfully employed by Giordani and co-workers[91] for the formation of SP-metal

complexes (refer to Figure 2.14d).
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Scheme 4.20. a) Synthesis of 8-methoxy functionalized SP 10 as reported by Raston and co-
workers.[302] b) Synthesis of the analogous STP 12 through in situ deprotection of 11b towards the
free thiophenol and subsequent condensation with 1,3,3-trimethyl-2-methyleneindoline.

SP 10 was obtained by refluxing an equimolar solution of 1,3,3-trimethyl-2-methyl-

eneindoline and 3-methoxy-5-nitrosalicylaldehyde in ethanol. Concentration of the

resulting solution and cooling yields 10 as green crystals in 83 % yield. In the top row

of Figure 4.2, the 1H NMR (left) and absorption spectra (right) of 10 are shown. The

typical splitting of the two methyl group resonances 9 and 10 is visible, due to the fixed

geometry of the spiro-center, resulting in their magnetic inequivalence, which is an
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Figure 4.2. Left side: 1H NMR spectra of 10 (top) and 12 (bottom) with the resonance assign-
ments according to the labeling in Scheme 4.20. Right side: Corresponding absorption spectra
of 10 (top) and 12 (bottom) in the dark. For 12, the spectra of the PSS upon irradiation with a
390 nm LED and subsequent thermal relaxation in the dark are depicted as well. Measured in
MeCN (30 µM, 1 cm cuvette).

indication for the closed SP structure. In addition, the vicinal coupling between the

vinylic protons 12 and 13 with 3𝐽c = 10.4Hz is typical for the cis-configuration in the

closed SP structure. For the metal complexation to occur solely upon light-triggered

SP→MC conversion (refer to Figure 4.1), the thermal equilibrium between the SP and

the MC form must be located far on the SP side. However, an absorption band associated

with the intensely colored MC form of 10 is visible in the absorption spectra centered

at 580 nm. Given the large extinction coefficient of the MC form, which is significantly

higher than the one from the SP form, the ratio of the SP:MC equilibrium cannot be

determined via UV-Vis spectroscopy. However, upon closer inspection of the 1H NMR

spectra, the single resonance at 1.74 ppm can be assigned to the 6 magnetic equivalent

geminal methyl proton resonances 9 and 10 of the MC form.[191,303] From the 1H NMR

integral ratios, the thermal equilibrium concentration of the MC form in CD3CN is

1.9mol%. The non-zero thermal equilibrium concentration of the MC form of 10 is

likely to result in spontaneous metal complexation without the possibility to trigger the

metal complexation via photochemistry. Various strategies for reducing the thermal MC
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equilibrium concentration have been proposed in literature, such as the substitution of

the indol, as well as the chromene part of the molecule.[62d] Another possibility is to

employ the analogous STP structure (see also Chapter 5), as these derivatives are known

for their small thermal equilibrium concentration of the MC form.[184,187,188,190,191]

Therefore, STP 12 was synthesized through condensation of 1,3,3-trimethyl-2-meth-

yleneindoline with the masked thiophenol 11b, which was deprotected in situ under

basic conditions (see Scheme 4.20b). 11b was synthesized through reaction of 2-hydroxy-

3-methoxy-5-nitrobenzaldehyde with N,N -dimethylthiocarbamoyl chloride and subse-

quent Newman–Kwart rearrangement (see also the synthesis of 14b in Scheme 5.23b).

Similar to the synthesis of 10, 12 was obtained upon concentration and crystallization

from ethanol in 72 % yield. In the bottom row of Figure 4.2, the 1H NMR (left) and absorp-

tion spectra (right) of 12 are shown. Similar to the 1H NMR spectrum of 10, a splitting of
the proton resonances 9 and 10 of the geminal methyl groups is observed, in addition

to the vicinal coupling constant of 3𝐽c=10.9Hz between protons 12 and 13, fitting to the

cis-configuration of the STP double bond. In contrast to 10, no resonances associated

with the MC isomer of 12 can be detected in the 1H NMR spectrum. Accordingly, the

absorption spectra of 12 does not show any absorption in the region of 500–800 nm,

where an absorption band stemming from the MC form of STP molecules is expected

(refer to the absorption spectrum in Figure 5.1). To examine, whether the photo triggered

STP→MC isomerization is feasible with 12, an irradiation experiment inside the UV-Vis

cuvette was performed under simultaneous absorption measurement (for a description

of the experimental setup, see Figure A.1). Upon irradiation with a 390 nm LED for 60 s,

a broad absorption band rises at 650 nm, which is attributed to the PSS concentration

of the MC isomer, together with a second absorption band at 470 nm. The small bump

at 390 nm in the spectrum of the PSS is an artifact from the simultaneous irradiation

with the 390 nm LED. Turning off the irradiation source results in the thermal fading of

the MC absorption band after 3min, while the absorption at 470 nm remains, indicating

that this absorption band is most likely the result of an irreversible photo degradation

product of 12. Nevertheless, the absence of the MC form of 12 in the dark, together with

its accessibility upon irradiation, renders STP 12 a good candidate for the application

outlined in Figure 4.1.

Complexation studies with STP 12 The metal complexation studies of 12 were

performed in the presence of metal salts, with the LED-UV-Vis setup employed for the PSS

measurement of 12 (refer to Figure A.1). The strategy is outlined in Figure 4.3, in addition

with the corresponding absorption measurements. Zinc and nickel perchlorate salts were
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4 Light-sensitive spiropyran-metal complexes
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Figure 4.3. Non-successful experiments towards the formation of zinc and nickel complexes
with 12 under irradiation with UV light. The absorption spectra of 12 and the mixture with
0.8 eq. of the zinc (top) and nickel (bottom) salts are shown, together with the PSS spectra upon
irradiation with a 390 nm LED and the spectra after thermal relaxation in the dark.

employed for the test reactions, namely [Zn(ClO4)2(H2O)6] and [Ni(ClO4)2(H2O)6]. A

solution of 12 (2.1mL, 30 µM inMeCN)was added into a quartz cuvette for the spectrum in

the dark, serving as a reference. Thereafter, 0.8 eq. of the respective metal salt was added

(0.1mL, 540 µM in MeCN). The utilization of concentrated metal salt solution minimizes

the influence of the dilution on the absorption spectra upon addition. Nevertheless, a

small dilution effect is evident, when comparing the spectra of pure 12 with the two

metal salt mixtures in Figure 4.3. More importantly, though, is the absence of metal

complex associated absorption bands, confirms the inactivity of 12 to serve as a metal

binding site in the dark. While the expected ration of MC/metal in the complexes equals

2 in both cases, a slight excess of 0.3 eq. is added to ensure a sufficiently large metal salt

concentration for the anticipated complexation. However, upon irradiation of the mixed

solutions with the 390 nm LED, no change in the absorption spectra is observed in both

cases. In the experiment with zinc, the PSS spectrum, as well as the spectrum after 50 s

relaxation in the dark, are similar to the spectrum of the mixture before irradiation. In

the case of nickel, photo degradation of 12 is observed in analogy to the experiment for

the irradiation of pure 12 in Figure 4.2. The expected metal complex formation should

manifest itself in the rise of a broad absorption band in the region of 500–650 nm in

analogy to comparable metal complexes.[91] In conclusion, while forming the MC isomer
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4.1 Synthesis of spiropyran-metal complexes

upon irradiation, STP 12 is not capable to form stable zinc or nickel complexes in solution.

Therefore, further experiments will focus on the utilization of the oxygen SP analog 10
for the formation of metal complexes.

Complexation studies with SP 10 In contrast to the results obtained from the com-

plexation experiments with STP 12, SP 10was successfully employed for the formation of

zinc-, nickel-, calcium-, as well as lanthanum-SP metal complexes. However, the non-zero

equilibrium concentration of the MC form of 10 in the dark leads to the spontaneous for-

mation of the respective metal complexes, without the ability to trigger the complexation

via light.(a) The formation and stoichiometry (from X-ray analysis) of the new SP-metal

complexes is shown in Scheme 4.21.
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Scheme 4.21. Synthesis of SP-metal complexes with SP 10. Reaction with [Zn(ClO4)2(H2O)6]
and [Ni(ClO4)2(H2O)6] leads to the bischelated metal complexes 10-Zn and 10-Ni, respectively.
The tetrachelated SP-calcium complex 10-Ca is obtained through reaction with [Ca(ClO4)2(H2O)4],
while the reaction with [La(NO3)3(H2O)6] leads to the bischelated lanthanum complex 10-La, with
3 additional nitrate ions complementing the ligand sphere.

(a) The metal complexation, including the NMR spectroscopic characterization and the crystallization of
single crystals suitable for X-ray analysis presented in this section were performed by M. Sc. T. J. Feuerstein.
For the detailed experimental and spectroscopic description, see [284].
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4 Light-sensitive spiropyran-metal complexes

While the reaction with [Zn(ClO4)2(H2O)6] and [Ni(ClO4)2(H2O)6] results in bischelated

metal complexes 10-Zn and 10-Ni with two MeCN molecules complementing the ligand

sphere (not shown in Scheme 4.21), calcium is coordinated by 4 10 molecules upon

reaction with [Ca(ClO4)2(H2O)4] in the complex 10-Ca. In all of these cases, charged

complexes are obtained with ClO –
4 as the counter ion. In contrast, the reaction with

[La(NO3)3(H2O)6] results in the non-charged complex 10-La, in which the lanthanum is

coordinated by two 10 molecules and three nitrate ions. The detailed NMR spectroscopic

characterization of all complexes can be found in [284].

In Figure 4.4, the crystal structures of all prepared metal complexes of 10 are depicted.

Hydrogen atoms are omitted for better visualization. In all cases, 10 is coordinated via
the oxygen of the phenolate and the methoxy moiety of the MC form. Interestingly, while

10 in 10-Zn, 10-Ni, and 10-La is coordinated as the TTC MC isomer, the coordination

in 10-Ca is realized via the TTT isomer (refer to Scheme 2.7).

a) b)

c) d)

Figure 4.4. Crystal structures of 10-Zn (a), 10-Ni (b), 10-Ca (c), and 10-La (d). Hydrogen atoms
are omitted for clarity. Adapted with permission from [284].
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4.1 Synthesis of spiropyran-metal complexes

Recapitulating the anticipated application of the SP-metal complexes as cross-linking

points for the formations of SCNPs (refer to Figure 4.1), the binding of at least two SP

molecules to a single metal ion is crucial. While this condition is fulfilled in all synthesized

metal complexes of 10 in Figure 4.4 in the solid state, the configuration of the complexes in

solution might be different to the results obtained from X-ray crystallography. Therefore,

the complex stoichiometries in solution were investigated via Job’s method of continuous

variations.[304]

The absorption spectra and the corresponding Job plot of 10-Zn are depicted in Fig-

ure 4.5a) and b), respectively. In panel a), the spectrum of pure 10 (𝑋Zn = 0.0) does
show the characteristic absorption band of the thermal equilibrium concentration of the

MC form at 580 nm. In all other spectra, the formation of 10-Zn is evident through the

absorption band at 480 nm, which is used for the Job plot in panel b). The maximum

a) b)
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Figure 4.5. a) UV-Vis spectra of 10-Zn for the determination of the complex stoichiometry using
Job’s method of continuous variations. The wavelength at 480 nm used for the Job’s plot analysis
is indicated with the dashed blue line. [10]+[Zn] = 95 µM in MeCN, measured in a 10mm cuvette.
b) Job’s plot analysis of the spectra in a), with the maximum of the interpolated dashed blue line
at 𝑋Zn = 0.37.

of the absorption in the Job plot is directly correlated with the complex stoichiometry.

Therefore, the maximum was determined via interpolation of the experimental points.

Different methods have been proposed in literature for the interpolation equations in Job

plot analysis, ranging from linear[305] to sophisticated models, involving several coupled

equilibria.[306] Recent studies investigated the impact of coupled equilibria and associ-

ation constants on the shape of the corresponding Job plot and pointed out the failure

of simple linear models for weakly associated complexes.[307] The interpolation of the
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4 Light-sensitive spiropyran-metal complexes

Job’s plot presented in the current thesis were performed using a polynomial equation of

degree five, which is capable to represent all experimental values in sufficiently accurate

manner. The determined maximum of 𝑋Zn = 0.37 in Figure 4.5b) nicely correlates with

the theoretical value of 𝑋Zn = 0.33 for a [(SP)2M] complex with the 2:1 stoichiometry,

thereby confirming the value for 10-Zn in the crystalline state .

a) b)

c) d)
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Figure 4.6. a)–c) UV-Vis spectra of 10-Ni at different total concentrations of [10]+[Ni] = 95 µM
(a), 0.55mM (b), and 2.8mM (c) in MeCN, measured in a 10, 5, and 1mm cuvette, respectively.
The absorption values at 460 nm in c) are used for the Job’s plot analysis in d), which gives an
interpolated maximum value at 𝑋Ni = 0.40.

While the stoichiometry in solution equals the result from X-ray crystallography for 10-
Zn, a different result is obtained for 10-Ni (see Figure 4.6). Using the same concentration

also employed for the Job plot analysis of 10-Zn, no clear determination of the complex
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4.1 Synthesis of spiropyran-metal complexes

stoichiometry via a Job plot is feasible (see Figure 4.6a). The spectra show multiple

overlapping absorption bands stemming from the MC form of 10, as well as 10-derived
nickel complexes of unknown stoichiometry. Increasing the concentration to 0.55mM

in panel b), the coexistence of the free MC form, as well as multiple absorption bands

stemming from complexation products with nickel, is even more evident in the region

of 450–650 nm. Finally, at a concentration of 2.8mM, a single strong absorption band

at 490 nm allows the determination of the corresponding complex stoichiometry. As

the absorption values at 490 nm are already at the saturation threshold of the employed

UV-Vis spectrometer, the absorption values in the shoulder at 460 nm are used for the

determination of the stoichiometry. The Job plot is shown in panel d), with a determined

maximum at 𝑋Ni = 0.40, which lies between the theoretical value of 𝑋Ni = 0.33 and 𝑋Ni =
0.50 of [(SP)2M] and [(SP)M] stoichiometries, respectively. According to the available data

and in contrast to complex 10-Zn, 10-Ni features a rather weak association constant,

resulting in a complex mixture of multiple species at low concentrations. However,

the [(SP)2M] stoichiometry determined in the crystalline state seems to dominate at

sufficiently high concentrations.

Similar observations have been made for the complexes 10-Ca and 10-La at low

concentrations. However, as in the case of 10-Ni, the predominant stoichiometry at higher

concentrations equals the values determined from X-ray crystallography. The absorption

spectra, including the Job plots for 10-Ca and 10-La can be found in Figure A.20–A.23.

In Table 4.1, the theoretical values from the stoichiometries determined via X-ray

crystallography are listed next to the values determined through Job plot analysis in

solution. Except for 10-Ni, the determined values confirm the stoichiometry found

in the crystalline state, rendering all prepared SP-metal complexes capable to serve as

cross-linking points in the formation of SCNPs according to Figure 4.1.

Table 4.1. Comparison of the complex stoichiometries in the solid state (X-ray) with the values
in solution determined via Job plot analysis.

complex
[M]

[M]+[10]

X-ray Job’s plot

10-Zn 0.33 0.37
10-Ni 0.33 0.40
10-Ca 0.20 0.23
10-La 0.33 0.32
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4 Light-sensitive spiropyran-metal complexes

4.2 Photochemistry of spiropyran-metal complexes

After the elucidation of the complex stoichiometries, the photochemistry of the prepared

metal complexes was investigated. For comparable SP-metal complexes, literature reports

describe the photo induced dissociation of SP-metal complexes,[91] as well as photo

triggered isomerizations in theMC ligand itself,[308] specifically a cis⇌trans isomerization

of the central MC double bond. Therefore, the influence of light on the spectral behavior

of the prepared metal complexes was first qualitatively investigated with the LED-UV-Vis

setup described in Figure A.1.

4.2.1 LED-UV-Vis investigations

To assess the initial absorption spectra of the complex configuration in the crystalline

state, the absorption spectra denoted as “after dissolving” in Figure 4.7 were measured

directly after dissolving a small amount of crystalline material in the UV-Vis cuvette

under vigorous stirring, which was filled with MeCN in advance. Due to the insolubility

of crystalline 10-La in MeCN, only the results for 10-Zn, 10-Ni, and 10-Ca are shown

in Figure 4.7a)–c), respectively.

For 10-Zn, the initially strong absorption band at 480 nm shows a reduced intensity

upon thermal equilibration after 6 h. This reduction is attributed to the non-zero concen-

tration of uncomplexed 10 in solution, see also the discussion in Section 4.2.2. As such,

the initial absorption spectrum measured directly after dissolution does correspond to

the spectrum of 10-Zn, while the spectrum after 6 h is in fact a mixture of 10-Zn and 10.
Irradiating the obtained solution with a 390 nm LED for 30 s does result in a rapid fading

of the absorption band at 480 nm, which is subsequently re-established in the dark after

1 h. This reversible photo induced transformation is repeated three times without any

evidence of photo degradation and exhibits an isosbestic point at 304 nm. The presence of

an isosbestic point is a strong indication of a reversible equilibrium between two species.

However, UV-Vis spectroscopy is not capable to elucidate the structure of the second

species, which is generated upon irradiation.

The investigation of 10-Ni in Figure 4.7b) does not show a significant change of the

initial absorption spectrum “after dissolution” and the thermally equilibrated spectrum

after 1min. This observation is not expected, as the results from the Job plot analysis in

Figure 4.6 suggest a weaker association constant compared to 10-Zn. As such, the initial
absorption spectra of crystalline 10-Ni should significantly differ from the thermally

equilibrated spectrum. A possible explanation could be different kinetics of the complex

126



4.2 Photochemistry of spiropyran-metal complexes

dissociation. While the process is sufficiently slow for 10-Zn to enable spectroscopic

tracing via UV-Vis spectroscopy, the UV-Vis measurements might not be fast enough to

capture the corresponding process in the case of 10-Ni. Interestingly, a strong absorption
band at 575 nm is rising upon subsequent irradiation with the 390 nm LED and reaches a

PSS after 15 s. Similar to the observation of 10-Zn, the thermally equilibrated spectrum of

10-Ni is also re-established in the dark after 8min. Recapitulating the specific wavelength

for 10-Ni at 490 nm and for the MC form of 10 at 580 nm (see Figure 4.6c) and Figure 4.2,

respectively), the rising absorption band at 575 nm in Figure 4.7b) is attributed to the

photo induced SP→MC transformation of uncomplexed 10 in solution.
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Figure 4.7. Absorption measurements of 10-Zn (a), 10-Ni (b), and 10-Ca (c) under simultaneous
irradiation with a 390 nm LED employing the setup described in Figure A.1. For 10-Ca, a 590 nm
LED was used in addition to the UV LED.
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For 10-Ca, an absorption band at 560 nm with a shoulder at ≈510 nm is visible in the

spectrum after dissolution. Interestingly, irradiation of the broad absorptionwith a 590 nm

LED results in a rapid decrease in the intensity of this band, which remains stable in the

dark. Similar to 10-Ni, a strong absorption at 560 nm is rising upon irradiation with the

390 nm LED. Again, thermal relaxation in the dark does re-establish the former spectrum,

a process that was repeated two times. Regarding the absorption band at 510 nm of 10-Ca
in the concentrated solutions employed for the Job plot analysis (see Figure A.20), the

shoulder at 510 nm in Figure 4.7c) is assigned to the tetracoordinated complex 10-Ca,
while the absorption band at 560 nm is related to the MC form of uncomplexed 10 in

analogy to the results obtained for 10-Ni. As such, the changes in the absorption spectra

during irradiation with the 590 and 390 nm LED is dominated by the photo triggered

SP⇌MC equilibrium of uncomplexed 10. Therefore, the potential photochemistry of

10-Ca cannot be investigated via this approach.

In summary, first indications of the photochemistry of the prepared SP-metal complexes

could be assessed in the case of 10-Zn, while the investigations of 10-Ni and 10-Ca are

hampered by the significant impact of the SP⇌MC equilibrium of uncomplexed 10. For
this reason, and to gain a more precise molecular picture of the photochemistry of the

prepared complexes, a recently introduced setup for the in situ irradiation of an NMR

tube during the NMR measurement[301] was adapted for the investigation of the SP-metal

complexes.

4.2.2 LED-NMR spectroscopy

The in situ irradiation of an NMR sample during the measurement inside the probe head

of the NMR spectrometer was introduced by Gschwind and co-workers in 2013,[301]

which is referred to as “LED-NMR spectroscopy” in the present thesis. Later, in 2018,

Reibarkh and co-workers described methods for the measurement of quantum yields via
LED-NMR spectroscopy though the use of various chemical actinometers to determine

the light intensity inside the NMR tube.[309] LED-NMR spectroscopy has been employed

for the elucidation of photochemical reaction mechanisms[310] and the investigation of

photochromic azobenzene molecules.[311]

The LED-NMR setup of the present thesis is shown in Figure 4.8. The setup comprises

an outer and inner NMR tube, which are fixed with spacers on the bottom and top of the

outer tube. While the volume in between the outer and inner tube is filled with the analyte

solution, the optical fiber is inserted into the inner tube. In the region that is filled with

the analyte solution, the optical fiber is stripped and roughened to ensure a homogeneous
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4.2 Photochemistry of spiropyran-metal complexes

emission of the light over the whole surface area. Instead of the roughening procedure

through sand blasting published in the initial report by Gschwind and co-workers, it

was found that the etching of the fiber tip with glass etching cream results in a very

homogeneous surface wrinkling. In addition, the ability to monitor the etching process in
situ further simplifies the roughening procedure (see Figure A.2 for detailed information).

The employed 365 nm high-power LED is mounted on a custom-build metal adapter (see

Figure 4.8b). A Peltier element below the adapter is actively cooling the LED and the heat

dissipation is realized via attached cooling fins including a small fan. A commercially

available cage plate is holding the LED fiber directly over the LED, thus ensuring an

efficient coupling of the light inside the optical fiber.

The NMR measurements in this section were conducted together with M. Sc. T. J.

Feuerstein from the group of Prof. P. W. Roesky (Institute for Inorganic Chemistry, Karl-

sruhe Institute of Technology), while the analysis of the obtained kinetic measurements

and the interpretation of the results were performed by the author of the present thesis.

a) b)

spinner

outer tube

inner tube

spacer

optical fiber

LED
power supply

Peltier
power supply cooling fan

power supply

cooling fins

Figure 4.8. a) Schematic drawing of the setup for LED-NMR experiments including pictures of
the real experimental setup. b) Picture of the cage plate with the inserted terminated fiber adapter,
holding the optical fiber exactly centered over the LED (top left). Picture from the top (top right)
and side (bottom) of the mounted LED inside the custom-build adapter with the cable channels
and 4 rods to hold the cage plate on top of the LED.
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Calibration of the LED-NMR setup through chemical actinometry Following

the procedure described by Reibarkh and co-workers, the LED-NMR setup was calibrated

directly inside the NMR probe head via the use of a chemical actinometer, namely

o-nitrobenzaldehyde (o-NBA). Upon irradiation with 365 nm, o-NBA reacts towards o-
nitrosobenzoic acid with a known quantum yield of 𝛷365 = 0.5[312] (refer to Scheme 4.22).

Solutions with different concentrations of o-NBA in CD2Cl2 were irradiated inside the

365 nm

CD2Cl2, rt

O

NO2

Φ365 = 0.5

O

NO

OH

Scheme 4.22. Transformation of o-NBA towards o-nitrosobenzoic acid upon irradiation with
365 nm UV light.

NMR and the product formation of o-nitrosobenzoic acid was determined over time via
integration of the proton resonance at 6.58 ppm. An adapted zg2d-Bruker pulse sequence

with 33° flip angle was used for the kinetic measurements (the employed pulse sequence

is given in Section A.1). The steady-state approach ensures the accuracy of the NMR

quantitation (for a detailed description, see Page 168). In Figure 4.9a), the 99mM sample of

o-NBA is shown as an example for the determination of the initial product formation rate

of o-nitrosobenzoic acid. The linear region in the beginning of the reaction is fitted, and

the extracted reaction rates are plotted against the o-NBA concentration in Figure 4.9b).

The relation between the rate and the concentration of the unknown light intensity 𝐼0
is given by Equation (4.1),

−
d[o-NBA]

d𝑡
= 𝐼0𝛷 (1 − 10−𝜖𝑙 [o-NBA]) (4.1)

𝑓 (𝑥) = 𝐴 (1 − 𝑒− ln(10)𝑧𝑥) (4.2)

while Equation (4.2) was employed for the fitting with 𝐴 = 𝐼0𝛷 and 𝑧 = 𝜖𝑙. 𝛷 is the known

quantum yield of the reaction of 𝛷 = 0.5 and 𝜖 = 260m−1 cm−1 the molar attenuation

coefficient of o-NBA.[309] With the specifications of the NMR tubes, the light path length

𝑙 is calculated as 𝑙 = 0.84mm, resulting in a value of 𝑧 = 0.021 84mm−1.

From the fitting, 𝐴 is determined as 𝐴 = 2.57(6)mmmin−1, from which the light inten-

sity 𝐼0 is calculated to 𝐼0 = 2 ⋅ 2.57(6)meinstein L−1min−1 = 5.14(6)meinstein L−1min−1.

Comparing this value with the one for the setup described by Reibarkh and co-workers

of 𝐼0 = 1.41meinstein L−1min−1,[309] the light intensity reaching the sample in the setup

developed in the current thesis could be improved by 366%. In addition, the coupling
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Figure 4.9. a) Concentration increase of o-nitrosobenzoic acid and linear fit for the determina-
tion of the initial product formation rate for the 99mM sample of o-NBA. b) Experimental and
fitted initial rates of product formation according to Scheme 4.22 for different concentrations of
o-NBA using Equation (4.2).

efficiency of the employed setup was estimated by measuring the irradiance of the LED

without the optical fiber at a distance of 1 cm with a spectroradiometer (see Figure A.26

and Figure A.27, respectively)(a) and comparison with the value determined from chemical

actinometry. The irradiance 𝐹0 measured with the spectroradiometer is given in units

of watts per square meter (Wm−2) with a value of 𝐹0 = 3167Wm−2 (see Figure A.27).

Therefore, the light intensity 𝐼0 = 5.14meinstein L−1min−1 determined via chemical

actinometry is converted according to:[312]

𝐹0 = 𝐼0 ⋅ 𝑙 ⋅ 𝑁A ⋅
ℎ𝑐
𝜆

= 5.14meinstein L−1min−1 ⋅ 0.84mm ⋅ 6.022×1023mol−1 dm−3

⋅
6.63×10−34 J s ⋅ 2.998×108ms−1

365 nm
= 6.44Wm−2

(4.3)

In Equation (4.3), 𝑙 is the light path in the NMR tube, 𝑁A the Avogadro constant, and 𝜆
the irradiation wavelength,(b) resulting in a coupling efficiency of ≈0.7 %. This low value

is not surprising, because the coupling into the fiber is done without any focusing lenses.

(a) The measurement of the irradiance directly at the position of the fiber tip was not possible, as the power
of the LED was too high, resulting in the saturation of the employed spectroradiometer.

(b) For simplicity, only the photon energy of the peak wavelength at 365 nm is used as an average in the
calculation, see also [312].
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4 Light-sensitive spiropyran-metal complexes

LED-NMR spectroscopy with SP 10 With the calibrated LED-NMR setup, the SP-

metal complexes are investigated in the NMR with simultaneous irradiation of the 365 nm

LED. However, SP 10was first investigated without any metal salt present to get a spectral

reference system and work out the capabilities of the developed setup.
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Figure 4.10. a) SP⇌MC equilibrium of 10 with highlighted proton resonances used for the
integration of the LED-NMR kinetic experiment. b) Zoom into the 1H NMR spectra before turning
on the LED (bottom) and at the maximum 10-MC concentration in the PSS under irradiation (top).
c) Plot of the 10-MC concentration vs. time with the on- and off-switching of the UV LED. The
violet circles indicate the spectra, which are plotted in panel b).

In Figure 4.10a), the SP⇌MC equilibrium of 10 is shown with highlighted proton

resonances used for the integration of the photo kinetic experiment, for which a zoom in

is depicted in panel b). The spectrum at 2.7min (bottom) is recorded in the dark, right

before switching on the UV LED, while the spectrum after 5.3min (top) is recorded in the

PSS, i.e. at the maximum concentration of 10-MC upon irradiation. Clearly, the resonance

132



4.2 Photochemistry of spiropyran-metal complexes

at 1.77 ppm stemming from the two CH3-groups of 10-MC is increasing after irradiation

with UV light (violet, top), while the corresponding resonances of 10 decrease accordingly
(green, bottom). In panel c), the integral of the labeled 10-MC proton resonances is plotted

against time and the on- and off-switching of the UV LED is indicated. Unfortunately,

the determination of the quantum yield for the photo induced SP→MC transformation,

as well as the rate coefficient for the thermal MC→SP reaction is not accessible with

the available data, despite the known light intensity from the calibration via chemical

actinometry. The reason is the presence of at least four coupled photo-, as well as thermal

equilibria of the SP⇌MC system. Therefore, the dotted green mono exponential fits

of the increase and decrease of the 10-MC concentration vs. time are only included to

guide the eye.

For the experiment shown in Figure 4.10, a 14.2mM solution of 10 was prepared in

CD3CN and the equilibrium concentrations of 10 and 10-MC were determined with

quantitative NMR measurements prior to the start of the kinetic experiment (see the

experimental section on Page 168 for a detailed description). The ratio between 10 and

10-MC in the thermal equilibrium is 59/1. When switching on the LED, the concentration

of 10-MC increases rapidly from 0.23mM to 0.69mM, corresponding to a 10/10-MC
ratio of 20/1, i.e. an increase of the 10-MC concentration of 300 %. After turning off the

LED after 5.3min, the thermal MC→SP reaction re-establishes the concentration value

of 10-MC found prior to irradiation. This sequence is repeated two more times, and a

slight fatigue of 10 is visible, comparing the peak integral values of the three PSS spectra

in Figure 4.10c). This first experiment with 10 serves as a valuable benchmark for the

investigation of the 10-derived metal complexes and demonstrates that the LED-NMR

method can be used to monitor the SP⇌MC equilibrium of 10 in situ with the possibility

to quantify the concentrations of 10, as well as 10-MC, which is not possible in the

UV-Vis spectra in Figure 4.2, due to the unknown molar attenuation coefficient 𝜖 of
10-MC.

LED-NMR spectroscopywith SP-metal complexes The results for the kinetic LED-

NMR experiments with 10-Zn, 10-Ca, and 10-La are shown in Figure 4.11, Figure 4.12,

and Figure 4.13, respectively. The figures are structured in a similar manner than the

results provided in Figure 4.10 for the investigation of pure 10. For 10-Zn and 10-Ca,
0.62 and 0.61mM solutions were prepared in CD3CN by the dissolution of crystalline

material. While the given concentrations refer to the theoretical values for 100 % SP-metal

complex, the concentrations present at the start of the kinetic experiments correspond

to the values of the thermal equilibrium, which were determined in quantitative NMR
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4 Light-sensitive spiropyran-metal complexes

measurements before the kinetic run. Due to the insolubility of crystalline 10-La (refer to
the discussion of Figure 4.7), the solution for the experiment in Figure 4.13 was prepared

by mixing of 10 and [La(NO3)3(H2O)6] solutions in CD3CN in a molar ratio of 2/1 with

an effective concentration of 20.6mM for 10-La. The prepared 10-La solution remained

stable at room temperature for the time of the LED-NMR investigation, i.e. the formation

of precipitate during the measurements was not observed.
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Figure 4.11. a) 10-Zn⇌10 equilibrium of 10-Zn with highlighted proton resonances used for

the integration of the LED-NMR kinetic experiment. b) Zoom into the 1H NMR spectra before

turning on the LED (bottom) and at the in the PSS under irradiation (top). c) Plot of the 10-Zn
and 10 concentration vs. time with the on- and off-switching of the UV LED. The experiment was

performed with a 0.62mM solution of 10-Zn in CD3CN. The violet circles indicate the spectra,

which are plotted in panel b).
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4.2 Photochemistry of spiropyran-metal complexes

Attempts to investigate 10-Niwere not successful, because the paramagnetic properties

of the nickel center resulted in line broadening of the proton resonances, rendering the

evaluation of the kinetic measurements impossible.

The concentrations for 10-Zn and uncomplexed 10 in Figure 4.11 of 0.52 and 0.21mM

yield a 10-Zn to 10 ratio of 2.4/1 for the thermal equilibrium. Upon irradiation with the

365 nm LED, the concentration of 10-Zn decreases to 0.22mM, while the concentration

of uncomplexed 10 increases to 0.65mM, until the PSS is reached after 17.6min. This

change corresponds to a 10-Zn to 10 ratio of 1/3 in the PSS, i.e. the concentration of

10-Zn is reduced by 58% upon irradiation. It should be noted at this stage that the

equilibrium shown in Figure 4.11a) does only include the bischelated 10-Zn complex

and the uncomplexed SP 10. However, the presence of monochelated 10-Zn species

cannot be ruled out with the available data. The same statement does also hold true for

the equilibria of 10-Ca and 10-La shown in Figure 4.12a) and Figure 4.13a), respectively.

After turning off the UV LED, the system thermally relaxes back to a 10-Zn to 10 ratio

of 3.6/1, i.e. a concentration of 0.50 and 0.14mM for 10-Zn and 10, respectively. The
difference in the concentration of 10 compared to the start of the kinetic run is attributed

to a superimposed photo degradation of 10 during the irradiation cycle. However, the

ratio of 10-Zn to 10 should not be influenced by a loss of 10 and might be due to an

insufficient relaxation time of the system. Combining these results with the picture

obtained from the LED-UV-Vis experiment in Figure 4.7a), are more detailed description

of the photochemistry of 10-Zn is possible. Upon dissolution of crystalline 10-Zn in

MeCN, the thermal equilibrium between 10-Zn and uncomplexed 10 is established,

which corresponds to the decrease in the UV-Vis absorption at 480 nm and the proton

resonances for 10 in the 1H NMR spectrum. During irradiation with UV light, the

equilibrium concentration of 10-Zn is reduced, which is related to the decrease in the

480 nm absorption band and the increase in the 10 integral in the 1H NMR spectrum,

a process that is reversible in the dark. Interestingly, the SP→MC transition of 10 is

also triggered with the employed UV LED, although no MC-specific absorption band is

visible in the absorption spectrum. Apparently, the PSS concentration of uncomplexed

10-MC due to the rapid re-complexation with zinc is too low to be detected with UV-Vis

spectroscopy.

A different picture is obtained for 10-Ca in Figure 4.12 with a 10-Ca to 10 ratio of

1/2.1 for the thermal equilibrium. Here, the irradiation with UV light leads to an increase

in the concentration of the 10-Ca complex from 0.40 to 0.48mM of 20 % in the PSS. On

the same time, the concentration of uncomplexed 10 is reduced from 0.84 to 0.58mM,

according to the stoichiometry in the equilibrium in Figure 4.12a). Similar to 10-Zn, the
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4 Light-sensitive spiropyran-metal complexes

photo induced shift of the equilibrium is reversible in the dark. Therefore, the increasing

absorption band in the UV-Vis spectrum in Figure 4.7c) between 450–700 nm is not only

caused by the SP→MC transition of uncomplexed 10, but also a result of the higher

10-Ca concentration in the PSS.
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Figure 4.12. a) 10-Ca⇌10 equilibrium of 10-Ca with highlighted proton resonances used for
the integration of the LED-NMR kinetic experiment. b) Zoom into the 1H NMR spectra before
turning on the LED (bottom) and at the in the PSS under irradiation (top). c) Plot of the 10-Ca
and 10 concentration vs. time with the on- and off-switching of the UV LED. The experiment was
performed with a 0.61mM solution of 10-Ca in CD3CN. The violet circles indicate the spectra,
which are plotted in panel b).

Finally, the photochemical properties of 10-La are shown in Figure 4.13. The results

are comparable to the observations made for 10-Zn, that is, irradiation with the UV

LED results in a shift of the 10-La⇌10 equilibrium towards the uncomplexed SP and

the free metal salt, see panel a). Here, the 10-La to 10 ratio is changed from 11.8/1
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4.2 Photochemistry of spiropyran-metal complexes

(thermal equilibrium) to 3/1 (PSS), i.e. the concentration of 10-La is reduced by 10% upon

irradiation. Similar to the previous two SP-metal complexes, the photo induced changes

of the 10-La⇌10 equilibrium are reversible in the dark.
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Figure 4.13. a) 10-La⇌10 equilibrium of 10-La with highlighted proton resonances used for

the integration of the LED-NMR kinetic experiment. b) Zoom into the 1H NMR spectra before

turning on the LED (bottom) and at the in the PSS under irradiation (top). c) Plot of the 10-La
and 10 concentration vs. time with the on- and off-switching of the UV LED. The experiment was

performed with a 20.6mM solution of 10-La in CD3CN. The violet circles indicate the spectra,

which are plotted in panel b).
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4 Light-sensitive spiropyran-metal complexes

4.3 Conclusion

In this chapter, the synthesis of new SP-based metal complexes of zinc, nickel, calcium, as

well as lanthanum was described. While complexation studies with the STP-based ligand

12 did not result in the formation of stable metal complexes, SP 10 served as a valuable

ligand for all employed metal salts. The complex stoichiometries obtained via X-ray

crystallography could be confirmed for the state in solution for all discussed complexes

with the help of Job’s method of continuous variations. It was found that values obtained

from the Job plots differ for varying concentrations and approach the results from X-ray

crystallography for concentrated solutions. Subsequently, the photochemistry of SP-

metal complexes was investigated by means of LED-UV-Vis and LED-NMR spectroscopy.

While only qualitative results can be obtained from the LED-UV-Vis measurements,

the versatility of LED-NMR spectroscopy was exploited for the determination of the

concentrations of the 12-metal complexes, as well as uncomplexed 12 in the thermal

equilibrium and the PSS. With this respect, the herein described LED-NMR setup was

significantly improved compared to the setups described in literature regarding the

light intensity reaching the analyte solution inside the NMR spectrometer. The gained

understanding of the photochemistry of the described SP-metal complexes will pave the

way for further experiments towards the application of such light-sensitive complexes in

material science, as for example the formation of stimuli-responsive SCNPs shown in the

motivation of this chapter (see Figure 4.1). With this application in mind, the controlled

polymerization of 20 in analogy to copolymer P15 developed in Chapter 5 of the current

thesis can be a first starting point towards the realization of these materials.
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C H A P T E R 5
Photocaged ligation via

spirothiopyrans

In the surface photoligation experiments in Chapter 3, challenges arise from the light

absorption of the metallopolymer solution in the wavelength regime used to trigger the

NITEC reaction on the surface. Such hurdles in tethering chromophores via light triggered
ligation protocols are not limited to the photoligation of metallopolymers. It is therefore

desirable to have the possibility to change the trigger wavelength of the photoligation

chemistry into a wavelength regime were the substrates in solution are not absorbing

the irradiation light to an extent, which compromises the successful photoligation on the

surface.

This chapter will explore the chemistry of spirothiopyrans (STPs) for the photoli-

gation on surfaces, including the possibility for STED-inspired lithography, as well as

writing 3D structures via DLW. (a) While the photo triggered reaction between a ring-

opened STP and a maleimide has first been described by Zhu and co-workers,[193] their

report only exploits the photoligation chemistry in solution for the formation of comb

copolymers (see Section 2.2.3.4 for the introduction of the reaction). Another report

(a) Parts of this chapter are reproduced or adapted from P. Müller, R. Müller, L. Hammer, C. Barner-Kowollik,
M. Wegener, E. Blasco, STED-inspired Laser Lithography Based on Photoswitchable Spirothiopyran Moieties,
Chem. Mater. 2019, 31, 1966–1972, with permission from [313] © 2019 American Chemical Society. P. Müller
prepared the photoresist mixtures, conducted the lithography experiments, and the imaging of the surfaces. R.
Müller synthesized all molecules and polymers and recorded the UV-Vis spectra unless stated otherwise. L.
Hammer contributed to the synthesis and the solvent studies in the course of her master thesis under supervision
of R. Müller, P. Müller, and E. Blasco.[314] C. Barner-Kowollik, M. Wegener, and E. Blasco participated in planning
of experiments and discussion of experimental results.

https://pubs.acs.org/doi/10.1021/acs.chemmater.8b04696
https://pubs.acs.org/doi/10.1021/acs.chemmater.8b04696
https://pubs.acs.org/doi/10.1021/acs.chemmater.8b04696
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Figure 5.1. Top: photo triggered equilibrium between STP and MC. The MC form can react
with a maleimide in a thiol-Michael reaction, resulting in an irreversible covalent connection.
R = CH2CH2OH; R1 = alkyl. DMSO solutions of STP and the PSS of MC are shown below the
chemical structures. The UV-Vis spectrum shows a DMSO solution of STP in the dark (yellow),
after irradiation with a 385 nm LED (green), and after subsequent irradiation with a 625 nm LED
(dotted orange). The arrows indicate the wavelengths of the UV, as well as the visible light LED.
The red arrow at 820 nm indicates the wavelength used to trigger the STP→MC transition via a
TPA process.

by Zhang et al. demonstrated the possibility to trigger the thiol-Michael reaction via
mechanochemistry.[195]

Another advantage of the STP molecules, so far unexplored, lies in the possibility

to suppress the thiol-Michael reaction between the MC form and a maleimide through

irradiation with visible light. As such, the photochemistry of STPs is well-suited for the

STED-inspired lithography introduced in Section 2.3.2.2.

An adaption of the STED-inspired lithography concept to the photochemistry of STPs

is depicted in Figure 5.1. DMSO solutions of the STP and the PST of the MC form are

depicted below the chemical structures. The STP→MC transition can either be triggered

by irradiation with UV light, or by a TPA process employing a strong NIR irradiation

source. The possibility to trigger the isomerization through such a TPA process is

one prerequisite for a successful application in STED-inspired lithography (refer to the

discussion in Section 2.3.2.1). The wavelength of the NIR laser employed in this work is

indicated with the red arrow at 820 nm in the UV-Vis spectrum in Figure 5.1. Another

important feature of the system is the possibility to trigger the MC→STP ring-closure
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Figure 5.2. Surface functionalization approach utilizing the STP-maleimide reaction. A glass
surface is covered with STP-functionalized silane 17. The areas irradiated with the excitation, as
well as the inhibition laser are highlighted in red and green, respectively. In the area where only
the excitation laser is applied, the generated MC form reacts with the maleimide ATRP-initiator 21.
The reaction is suppressed in areas also irradiated with the inhibition laser. Subsequent SI-ATRP
results in the formation of poly(ethylene glycol) methyl ether methacrylate brushes (blue lines),
which are characterized via light microscopy or AFM.

with visible light. This opens up the possibility to photochemically prepare the system in

analogy to the photoenol system described in Scheme 2.13 in Section 2.3.2.2.

During the work on this thesis, Vijayamohanan and co-workers proposed the idea to

employ the STP system for super-resolution lithography.[315] They demonstrated the inhi-

bition of the thiol-Michael reaction with green light in a macroscopic STP-functionalized

PEG copolymer and a 4-arm PEG maleimide polymer and supported the proposed appli-

cation in super-resolution lithography through photo kinetic modeling. However, they

were not able to show an experimental microscopic proof of the proposed resolution

increase.

5.1 Surface photoligation

The first approach employing the STP-maleimide reaction in surface photoligation ex-

periments is outlined in Figure 5.2. Glass substrates are homogeneously covered with

the STP-functionalized silane 17 in the first reaction step (not shown). Subsequently, the

STP-covered glass surface is immersed in a solution containing the maleimide functional-
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5 Photocaged ligation via spirothiopyrans

ized ATRP-initiator 21. In the writing process, a pulsed femtosecond laser with a center

wavelength of 750 nm(a) is used to trigger the STP→MC transition via a TPA only in the

irradiated areas. A second CW laser diode at 640 nm is employed to trigger the MC→STP

transition and therefore inhibit the thiol-Michael reaction. The inhibition laser is overlaid

with the excitation laser, but only switched on in defined regions in order to suppress

the covalent bond formation between the maleimide and the surface immobilized STP

molecules. The established MC form on the surface reacts with the maleimide molecules

present in the solution, resulting in the covalent linkage of the maleimide molecules

onto the surface. In order to gain a visual feedback of the successful writing process,

poly(ethylene glycol) methyl ether methacrylate brushes are grown from the surface

through a SI-ATRP process and analyzed by AFM measurements. Such a protocol was

also successfully applied for the writing on surfaces via the photoenol chemistry,[183] as

depicted in Figure 2.26.

Synthesis While the synthesis of the maleimide-functionalized ATRP initiator 21 was

performed following a literature procedure,[160] the synthetic strategy towards STP-

functionalized silane 17 is outlined in Scheme 5.23.

The indol derivative 13 is readily obtained through an SN2 reaction of 2,3,3-trimethyl-

indoleine with 2-iodoethanole and subsequent grinding of the iodine salt with potassium

hydroxide in 92 % overall yield (see panel a). For the chromene part of the STP molecule,

a salicylaldehyde is transformed into the corresponding O-aryl thiocarbamate 14a under

basic conditions with N,N -dimethylthiocarbamoyl chloride. Upon refluxing of 14a in

toluene, the Newman–Kwart rearrangement results in the formation of the S-aryl thio-
carbamate 14b in 87 % overall yield. 14b represents a bench stable protected thiophenol

and the reaction can be easily scaled up for multigram synthesis. (b) For the synthesis of

the hydroxy-functionalized STP 15, 14b is deprotected under basic conditions, acidified

to obtain the free thiophenol, and reacted in situ with 13 in a condensation reaction, ob-

taining 15 in 76 % yield. Attempts to isolate and characterize the intermediate thiophenol

were not successful. The transformation of 15 into the acid-functionalized STP 16 is

accomplished via nucleophilic ring-opening of succinic anhydride under basic conditions

in 60 % yield.

(a) A 750 nm pulsed femtosecond laser was used in the first experiments of the surface functionalization.
Later, it was found that shifting the excitation laser to the 820 nm also indicated in Figure 5.1 results in a better
spectral separation of the MC absorption band and the excitation laser.

(b) This reaction sequence is often employed to transform commercially available phenol derivatives into
their corresponding thiophenol analogues, see [186c].
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The direct synthesis of the acid analogue of 15 has been described in literature,[193]

but several attempts to reproduce the synthesis route resulted either in low yields or

degradation of the starting materials (not shown). Therefore, the synthesis of 15 as an

intermediate towards the free acid 16 was chosen, as both reactions can be easily scaled

up and proceed in high yields. In the final step, the target silane functionalized STP 17
is obtained through activation of 16 with CDI and esterification with APTES in 64 %

yield. This esterification protocol was already successfully employed for the synthesis

of tetrazole-functionalized silane 5 in Section 3.1.2. Attempts to react 16 with APTES

in standard Steglich esterification protocols employing DCC or EDC⋅HCl as activating
agents were not successful and resulted in degradation of the STP moiety (not shown).

The 1H NMR spectrum of 17 is depicted in Figure 5.3. The resonances of the STP part

of the molecule are highlighted in red. The triethoxy silane moiety is represented through

proton resonances 17 and 18, where the splitting of 17 into two parts is most probably

caused by a partially hindered rotation of one of the ethoxy groups, which results in a

slightly altered chemical shift. All other resonances are associated with the linker part

between the STP and the silane group. The identity of 17 was additionally confirmed via
13C NMR spectroscopy and HR-ESI-MS.

Photolithographic experiments on surface Initial studies of the photoswitching

behavior of the STP chromophore, as well as the reaction of theMC formwith a maleimide

species were performed by L. Hammer in the course of her master thesis.[314] Employing

STP derivative 15, Hammer conducted UV-Vis studies under simultaneous irradiation

with 385 nm and 590 nm LEDs for photochemical trigger of the STP⇌MC equilibrium.

As the DLW process requires high boiling solvents to account for the thermal heating

during the writing process, MeCN, DMSO, DMF, DMF/water, and anisole were chosen

for the screening experiments with a concentration of 0.2mM. While STP 15 was not

stable under irradiation in anisole, MeCN, or DMF solutions, DMSO showed superior

performance compared to the DMF/water mixture in the writing and development steps

and was therefore chosen as the solvent of choice for the DLW experiments. (a)

With the STP-silane 17 and the maleimide-functionalized ATRP initiator 21 at hand,

writing experiments as described in Figure 5.2 were conducted. Figure 5.4a) shows a

light microscope image of a series of lines written with increasing excitation powers. In

addition, the vertical position of the voxel is varied with respect to the surface interface.

(a) For detailed information about the photochemical switching behavior in various solvents, including the
comparison between photo induced and thermal fading of the MC species, together with solution experiments
demonstrating the ability to retard the reaction between the MC species of 15 and maleimide 21, the reader is
referred to [314].
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5.1 Surface photoligation

The polymer brushes prepared through SI-ATRP after the DLW process are also analyzed

via AFM, which is depicted in Figure 5.4b). The linewidth, as well as the height of the

polymer brushes are increasing with the excitation power and show a saturation effect

from ≈1mW onwards (for an in-depth discussion of the saturation behavior, see [316]).

While the depletion laser was not employed in this first writing experiment, the results

confirm the applicability of the STP-maleimide chemistry for spatially resolved surface

functionalization. Importantly, the employed DLW setup allows the fabrication of small

feature sizes below 1 µm, even without the enhancements of STED-inspired DLW (see

the line written with 0.26mW in Figure 5.4b).
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Figure 5.4. Lines of polymer brushes grown from the surface functionalized with silane 17 after
photolithographic patterning of ATRP initiator 21 using only the excitation laser. a) Dark field light
microscope image of the polymer brushes. The excitation energy is increased from bottom to top.
b) False color AFM image of several lines written with varying excitation powers. The linewidth,
as well as the height of the polymer brushes increases with the excitation energy. Adapted with
permission from [316].

Having established the DLW process for the STP-maleimide system on the surface

interface, an experiment shown in Figure 5.5 was conducted to investigate the expected

depletion effect when employing a second laser beam at 640 nm. Panel a) shows the ex-

pected writing behavior for a STED-inspired lithographic experiment with the excitation

and depletion powers increasing in the directions according to the inset. Starting with

zero depletion laser power, the writing process begins at a certain threshold value of the

excitation laser (point A). When increasing the depletion power, higher excitation powers

to compensate the depletion effect are necessary to overcome the writing threshold (point

B). The resulting envelope of such a writing experiment for a successful STED-inspired
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5 Photocaged ligation via spirothiopyrans

DLW process is indicated with the black dotted line. The experimentally observed line

pattern is depicted in the dark field light microscope image in Figure 5.5b). Clearly, the

experiment does not follow the expected trend. Instead, the writing threshold decreases

with increasing depletion powers for a fixed excitation power (dashed area C). This

observation indicates an insufficient MC→STP conversion through the depletion laser.

In addition, further increase of the depletion power results in the formation of structures

even with no excitation laser switched on (dashed area D). This behavior is attributed to

residual absorption of the STP molecule at the depletion laser wavelength, a phenomenon

called parasitic writing in literature.[217] Different approaches were followed to reproduce

the depletion effect present in solution[314] in surface writing experiments. However,

none of the parameter changes, such as change of solvent, decreasing the depletion laser

wavelength down to 532 nm, variation of the maleimide concentration, or lowering the

grafting density of STP silane 17 through a co-grafting(a) with triethoxy(octyl)silane

resulted in a successful depletion mechanism.
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Figure 5.5. a) Expected depletion pattern when increasing the excitation and depletion laser
powers according to the inset. b) Dark field light microscope image of a depletion test pattern.
The depletion laser is fixed at a constant power in each line, while the excitation laser is switched
on at the positions indicated on top and is varied in strength from left to right. Increasing the
depletion power leads to a reduced excitation power needed to start the writing process (area C). If
the depletion energy is too high, parasitic writing occurs even without switching on the excitation
laser (area D). Adapted with permission from [316].

In conclusion, the surface photoligation approach was successfully applied for the

immobilization of maleimide 21. As such, these experiments are the first time the STP-

maleimide reaction was employed for surface patterning and subsequent formation of

polymer brushes via a SI-ATRP protocol. However, the expected reduction/inhibition

(a) An effect on the switching behavior of sterically hindered SP molecules on surfaces compared to the
properties in solution has been reported by Rosario et al. in [69].
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5.2 Fabrication of 3D microstructures

of the reaction, when employing an additional depletion laser, could not be verified

in this surface photoligation approach. Therefore, another strategy using STP-based

negative-tone photoresists was followed.

5.2 Fabrication of 3D microstructures

Photoresist synthesis For the application of the STP-maleimide reaction in a pho-

toresist, copolymers equipped with STP units, as well as maleimide functionalities were

synthesized. The synthesis of a suitable STP monomer 18 is outlined in Scheme 5.24.

(15)

(18)

N S NO2

OH

+

OHO

PPh3, DEAD

THF

N S NO2

O

O

Scheme 5.24. Mitsunobu reaction between hydroxy-functionalized STP 15 and MAA, yielding
STP monomer 18.

For the synthesis of 18, hydroxy-functionalized STP 15 was reacted with methacrylic

acid (MAA) in a Mitsunobu reaction employing triphenylphosphine and diethyl azodi-

carboxylate (DEAD) in 50 % yield. Initial attempts to acetylate 15 with methacryloyl

chloride were not successful and resulted in a complex product mixture. The diacetylated

MC form 18a of 15was identified as the major side-product, which could not be separated

from 18 via column chromatography (refer to Figure 5.6b). This observation is attributed

to the thermal equilibrium concentration of the MC-form of 15 in solution and is in

accordance to literature reports by Beshenko et al.,[317] who observed a similar behavior

for the corresponding oxygen analogue of 15 (see structure A-SP in Figure 5.6a). Here,

the desired acetylation product A-SP1 is formed in addition to the side-product A-MC2,
which is the acetylation product of the phenolate oxygen of the MC form of A-SP. Once
the thermal equilibrium between A-SP and A-MC is established, further stabilization

through back-biting of the hydroxyethyl moiety leads to the structure A-MC1, which is

transformed into A-MC2 upon acetylation (see Figure 5.6a).

For the reaction of 15 with methacryloyl chloride, the desired reaction product 18 is

detected in the crude reaction mixture, but the diacetylated derivative 18a is also present

in the HR-ESI-MS spectrum with a significant amount (see Figure 5.6b).
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Figure 5.6. a) Formation of side-product A-MC2 in the acetylation of 19 with methacryloyl

chloride towards A-SP1 via the A-MC and A-MC1 merocyanine forms of A-SP, as described by

Cherkashin and co-workers.[317] b) HR-ESI-MS spectrum of the crude reaction mixture of the

reaction between 15 and methacryloyl chloride. Beside the desired STP monomer 18, the main

product of the reaction is the diacetylated derivative 18a. The inset shows the experimental, as

well as the simulated isotopic pattern of the [18a+Na]+ ion.

Derivative 18a is the product of the desired acetylation at the hydroxyethyl terminus of

the indol fragment and an additional acetylation of the thiophenolate anion after SP→MC

transformation of 15. The charge compensation in the merocyanine structure is achieved

through the addition of Cl– at the former spiro-C atom, a reaction reported for halogen

anions, as well as pseudohalogens.[318] Despite the small equilibrium concentration of

the MC form of 15 in solution, which cannot be detected in UV-Vis or NMR spectroscopy,

the fade of the MC form due to the acetylation reaction at the sulfur of the thiophenolate

shifts the dynamic SP⇌MC equilibrium towards the product side, resulting in an non-
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5.2 Fabrication of 3D microstructures

selective reaction. In addition, the acidic environment in the reaction with methacryloyl

chloride further contributes to the shift towards the protonated MC form of 15 in solution

(refer to the acidochromism described in Scheme 2.5a). As such, the undesired outcome

of this reaction procedure points out an important characteristic of spiro(thio)pyran

functionalization chemistry. Although the concentration of the MC form is fairly small

for many SP and STP molecules in solution, derivatization strategies always need to

consider the chemical reactivity of the MC form as well, as the SP⇌MC equilibrium will

re-establish the MC concentration during the reaction (Le Châtelier’s principle).

With the STP monomer 18 at hand, a free radical copolymerization with MMA was

conducted, yielding copolymers P13a–d (see Scheme 5.25a) and Figure A.38). For P13a–c,
1-dodecanethiol was used as a CT agent to adjust the MW of the final copolymer and the

feed ratio of 18 was increased from P13a to P13c (see Table 5.1). P13d was synthesized

without the CT agent, resulting in a higher MW of 𝑀n,SEC = 44 000 gmol−1.
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Scheme 5.25. a) FRP of MMA and 18 towards copolymers P13a–d with 1-dodecanethiol as
CT agent. For P13d, no CT was added. b) ATRP of MMA and a furan-protected MMA monomer
towards polymer P14a, which is deprotected towards maleimide-functionalized copolymer P14.

The synthesis of furan-protected methacrylate-based copolymer P14a (𝑀n,SEC =
6400 gmol−1, Đ = 1.34, 17mol% maleimide content) via ATRP using CuBr/CuBr2 with

N,N,N ,́N ʹ,́N ʹ-́pentamethyldiethylenetriamine (PMDETA) as the ligand and subsequent

deprotection towards maleimide-functionalized copolymer P14 were conducted by L.
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5 Photocaged ligation via spirothiopyrans

Hammer in the course of her master thesis (see Scheme 5.25b) and Figure A.39).[314] A

summary of the synthesized STP copolymers P13a–d and the maleimide-functionalized

copolymer P14 is given in Table 5.1.

Table 5.1. Summary of the STP- and maleimide-functionalized PMMA copolymers.

polymer 𝑀n
(a) / gmol−1 Đ (a) ratio of incorporated

comonomer(b) / mol%

P13a 6100 1.97 14
P13b 7600 1.55 27
P13c 8600 1.78 56
P13d 44 000 2.10 7
P14 6700 1.31 16

(a) Estimated by SEC using THF as eluent and PMMA standards.
(b)Determined via 1H NMR using characteristic resonances for MMA (𝛿 =
3.59 ppm, 3H), 18 (𝛿 = 6.10–5.90 ppm, 1H), and the maleimide-MMA monomer
(𝛿 = 6.90–6.73 ppm, 2H), respectively.

Photoresist based on the STP-maleimide reaction With the STP- and maleimide-

functionalized copolymers, photoresists for 3D writing experiments according to the

procedure depicted in Figure 5.7a) were prepared.(a) For this particular DLW experiment,

the photoresist consists of a mixture of P13d and P14 (maleimide/STP units, 3/2) in an

acetophenone-DMSO mixture with a total concentration of 25wt%. The ability of the

STP-functionalized polymers to transform into their corresponding MC structures was

tested in acetophenone solution.

As an example, the UV-Vis spectrum of P13a (1mgmL−1 in acetophenone) is shown

in Figure 5.7b). No absorption in the wavelength region around 650 nm is detected (refer

to the spectrum of the MC form of 15 in Figure 5.1). Upon continuous irradiation with a

365 nm LED, the PSS is established, and a broad absorption band centered at 700 nm is

visible, which confirms the photoreactivity of the STP copolymer, here P13a.
The results of the 3D writing experiments are shown in the scanning electron mi-

croscopy (SEM) image in Figure 5.7c). The bridge structures feature free-standing ele-

ments, but show a pronounced shrinkage effect, when comparing the exposed volume

element with the obtained 3D structure. The low structural quality of the STP-maleimide

photoresist mixture is attributed to insufficient cross-linking. However, an increase in the

concentration of STP, as well as maleimide functionalities per volume element was not

(a) For a detailed description of the writing procedure, as well as the experimental setup, including the
preparation of the samples for AFM, SEM, and light microscopy, see [316].
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5.2 Fabrication of 3D microstructures

possible, as the above described photoresist mixture was already at the upper solubility

limit.

In order assess the suppression of the cross-linking reaction via STED-inspired lithog-

raphy, the excitation and depletion laser were overlaid according to the scheme in Fig-

ure 5.7d). While the 820 nm excitation laser was turned on the whole time, the depletion

laser at 640 nm was only switched on in the right part of the line structure, which should

result in a linewidth reduction. In the SEM image, a clear indication of an operating

depletion mechanism is visible. However, the reduced linewidth in the right half of the

written structure is accompanied with discontinuities and deteriorations, which renders

the determination of the linewidth reduction impossible.
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Figure 5.7. a) Schematic description of the processing steps towards 3D structures. A glass slide
is covered with the photoresist mixture and the voxel of the DLW laser is scanned through the
photoresist during the writing step. Free standing 3D structures are obtained after the removal
of residual photoresist in the development step. b) Absorption spectra of P13a in the dark and
under continuous irradiation with a 365 nm LED in the PSS. Spectra are recorded in 1mgmL−1

acetophenone solution in a 1mm cuvette. c) SEM image of two free-standing bridges suffering
from pronounced shrinkage. d) SEM image of a depletion test experiment with the excitation
and depletion laser foci according to the scheme above the image. c) and d) are adapted with
permission from [316].

In summary, the photoresist mixture between STP and maleimide functional copoly-

mers enabled the writing of free-standing 3D structures but suffered in terms of structure

quality. In addition, a clear linewidth reduction through depletion of the MC form in
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5 Photocaged ligation via spirothiopyrans

defined areas is evidenced, but it was not possible to quantify the resolution enhancement

due to the discontinuities in the written line structures.

Photoresist based on supramolecular aggregation Interestingly, an unexpected

observation during the preparation of the above described experiments led to the de-

velopment of a new photoresist, featuring a non-covalent interaction between STP-

functionalized polymer chains. In Figure 5.8, a free-standing bridge (a) and pyramid

structures (b) are fabricated with P13a in a 40wt% acetophenone solution without any

maleimide functionality being present in the photoresist mixture. Obviously, the forma-

tion of stable 3D structures cannot be explained by the above described photo triggered

thiol-Michael reaction between a MC form and a maleimide species.

Instead, the formation of stable 3D structures is most likely the result of intra- and

intramolecular aggregation of the formed MC species with other STPs, as well as MC

moieties. Such a physical cross-linking has been extensively described for the oxygen

SP analogue of the STP-MMA copolymers P13a–d. While Krongauz et al. were the first
who reported such supramolecular aggregation for small SP molecules,[76a] different

groups reported the aggregation of methacrylate-based polymers,[77a,c,82a,b] for which a

mechanism called “zipper crystallization” describes the formation of aggregates between

different polymer chains (see also discussion on Page 34 and references therein).

To further validate this interpretation of the structure-building mechanism in the

STP-polymer structures in Figure 5.8, an analogous SP-functionalized copolymer was

synthesized. Therefore, 13 was first reacted with 3-methoxy-5-nitrosalicylaldehyde in

a condensation reaction towards the hydroxy-functionalized SP molecule 19 in 79 %

yield. The Mitsunobu esterification of 19 with MAA yields the SP-monomer 20 in the

second reaction step with a yield of 61 % (see Figure 5.9a). Subsequently, SP-containing

5 µm 5 µm

a) b)

Figure 5.8. SEM images of a free-standing bridge structure (a) and two pyramidal structures
(b), written with copolymer P13a in acetophenone (40wt%). Adapted with permission from [313].
© 2019 American Chemical Society.
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Figure 5.9. a) Synthesis of hydroxy-functionalized SP 19 through condensation of 13 with 3-
methoxy-5-nitrosalicylaldehyde. Subsequent Mitsunobu reaction between 19 and MAA yields
SP-monomer 20. b) Synthesis of an SP-MMA copolymer P15 in analogy to the STP-copolymers
P13a–c with SP-monomer 20. c) Absorption spectrum of P15 in the dark and after irradiation
with a 365 nm LED in the PSS. The MC form is detected through the absorption band centered at
605 nm (A). During thermal relaxation in the dark, two absorption bands with a hypsochromic
shift build up at 544 nm (B) and 502 nm (C), which remain stable in solution. Spectra are recorded
in 1mgmL−1 acetophenone solution in a 1mm cuvette. d) Absorption spectrum of thermally
equilibrated solutions of a comparable SP-MMA copolymer in 2-methyltetrahydrofuran at different
concentrations per monomer unit in a 2mm cuvette: 0.2 m (1); 0.135 m (2); 0.1 m (3); 0.05 m (4).
Adapted with permission from [319]. © 1981 American Chemical Society.
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copolymer P15 was synthesized in analogy to the STP-copolymers P13a–c via free

radical copolymerization of 20 with MMA (see Figure 5.9b). Again, 1-dodecanethiol

was employed as a CT agent, yielding copolymer P15 (𝑀n,SEC = 7300 gmol−1, Đ = 1.58,
16mol% SP content). If the formation of stable structures upon DLW with P13a is

due to supramolecular aggregation, a similar behavior is excepted, when employing

SP-copolymer P15.
In Figure 5.9c), the absorption spectra of polymer P15 in the dark does not show the

absorption band associated with the MC form at around 600 nm. Upon irradiation with

a 365 nm LED for 9min, the PSS is reached, and a strong MC-absorption band centered

at 605 nm (A) is visible. Upon thermal relaxation in the dark, the absorption band (A)

associated with free MC-forms in solution vanishes completely after 19min. Interestingly,

two new absorption bands with a hypsochromic shift build up at 544 nm (B) and 502 nm

(C) and remain stable in solution even after prolonged time. These are attributed to

supramolecular H-aggregates of the type MCn (B) and SP-MC aggregates (C) in P15.
As a comparison, the absorption spectra of an almost identical SP-MMA copolymer

described by Goldburt et al. is depicted in Figure 5.9d).[319] Instead of monomer 20, the
authors used the corresponding monomer without the 8-methoxy moiety in the chromene

part of the molecule. The thermally equilibrated solutions at different concentrations

show the same distinct absorption bands with a hypsochromic shift with respect to the

free MC-form at 500 and 560 nm, respectively. The authors attribute the absorption band

at 500 nm to supramolecular complexes of the type SP-MC,[76a,79d] while the absorption

band at 560 nm is assigned to H-aggregates of the type MCn.[77a–c]

Unfortunately, the small equilibrium constant of the STP⇌MC system in P13a–d and

therefore the low concentration of the MC form in the PSS under continuous irradiation

in analogy to the experiment shown in Figure 5.9c) did not allow a similar observation for

the STP copolymers (see for example the PSS absorption spectrum of P13a in Figure 5.7b).

Nevertheless, the analogy between the supramolecular aggregates reported in literature

and the observations made with P15, together with the structural similarities between

P15 and P13a–d, strongly suggests a similar behavior for the STP-polymer system.

To gain additional evidence for this interpretation, polymer P15 was employed in

writing experiments similar to the ones for P13a in Figure 5.8. In fact, a stable 3D bridge

structure is obtained with a comparable writing performance, structure quality, and

shrinkage behavior as experienced for the STP polymer P13a (see Figure 5.10a). In

Figure 5.10b), a depletion test pattern was written with varying excitation and depletion

powers for each line in analogy to the pattern in Figure 5.5b). In principle, the application

of polymer P15 in STED-inspired lithography should also be possible, as the SP⇌MC
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Figure 5.10. a) SEM image of a free-standing bridge structure written with a photoresist con-
sisting of P15 in acetophenone (40wt%). Adapted with permission from [313]. © 2019 American
Chemical Society. b) SEM image of a depletion test pattern employing the SP photoresist P15.
Each line is written with a different excitation and depletion power. Parasitic writing in regime A
is followed by the destructive regime B. Adapted with permission from [316].

equilibrium can be triggered with the same wavelengths as employed for the STP polymer.

Unfortunately, the experiment in Figure 5.5b) does not follow the theoretical expectation.

In regime A, the writing threshold decreases with increasing depletion powers, indicating

parasitic writing right from the beginning, leaving no processing window for depletion.

After further increase of the depletion power, a destruction of the written lines is observed

(regime B).

It remains unclear, why the observed photo triggered MC→SP conversion cannot

be translated to the STED-inspired lithography approach for the SP copolymer P15 in

contrast to the results of the STP copolymerP13a in combination withmaleimide polymer

P14 in Figure 5.7d). Possible explanations can rely on the SP⇌MC equilibrium constant,

which is far more shifted towards the MC form, with respect to the STP system. This

becomes evident when comparing the PSS spectra between P13a and P15 in Figure 5.7b)

and Figure 5.9c), respectively. As such, the adjustment of the excitation, as well as the

depletion laser powers might be outside the range for an effective structure formation.

Therefore, despite the possibility to write stable 3D structures, polymer P15 was not

employed in further experiments towards STED-inspired lithography but represents a

valuable system to validate the model of supramolecular aggregation as the course of

stable structure formation in the STP polymer system.
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5.3 Linewidth reduction through STED-inspired
lithography

After the investigation of the cross-linking mechanism of the STP polymer structures in

Figure 5.8, the possibility for STED-inspired lithography employing the STP copolymers

P13a–dwas tested. In Figure 5.11a), the SEM image of a depletion line pattern experiment

in analogy to the one for the SP copolymer P15 in Figure 5.10b) is depicted. Again, two

different regimes can be identified. In contrast to the observation with P15, the threshold
power first increases with higher depletion power (regime A), evidencing the successful

depletion mechanism for the STP-based photoresist system. After raising the depletion
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Figure 5.11. a) SEM image of a depletion test pattern employing the STP photoresist P13a. Each
line is written with a different excitation and depletion power. Depletion regime A is followed by
parasitic writing in regime B. b) Reversibility test of the depletion effect by writing a loop pattern.
Previously written lines are not altered by the depletion laser (area C) and areas already irradiated
with the depletion laser are still active in subsequent writing (area D). Adapted with permission
from [313]. © 2019 American Chemical Society.

power above 0.3mW, the threshold power decreases again, which is an indication for

the contribution of parasitic writing (regime B). However, a strong depletion effect is

observed up to depletion powers of 0.3mW in contrast to the SP photoresist, which can

be exploited for STED-inspired lithography.

The reversibility of the depletion mechanism is investigated via the loop pattern

depicted in Figure 5.11b). Following the writing direction, the depletion laser is only

switched on in the central part that crosses the previously written vertical line (area

C). This proves that the depletion laser does not damage previously written lines, i.e.

the supramolecular aggregates are strong enough to withstand the depletion beam. In
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5.3 Linewidth reduction through STED-inspired lithography

area D, the vertical line is written through a region already irradiated with the depletion

laser, which is another key point, as the depletion laser does not lead to inactive polymer,

i.e. the depletion laser does regenerate the STP form. In addition, the fact that stable

structures are only possible in regions enriched which the MC form is further support

for the cross-linking via supramolecular aggregates between the MC form and other MC,

as well as STP molecules.

The bridge structure employing only polymer P13a shows a reduced shrinking be-

havior compared to the STP-maleimide photoresist mixture (compare Figure 5.7c) with

Figure 5.8a), but the pillars of the bridge are still tilted inwards. Therefore, experiments

employing all of the STP copolymers P13a–d listed in Table 5.1 were performed in satu-

rated acetophenone solutions. The copolymers P13a–c are of comparable MW, while

the STP monomer content increases from 14 (P13a) to 56mol% (P13c). Polymer P13d
features a higher MW at a reduced STP content of 7mol%. In summary, the best writing

results are obtained with polymer P13a, which is employed for all further writing exper-

iments. Polymers P13b and P13c should in principle result in a more rigid structure due

to the increased number of STP units, i.e. cross-linking points. However, the increased

incorporation of STP monomer 18 into the copolymers reduces the solubility of the

copolymers, which results in an overall lower STP density despite the higher STP-content

per polymer chain. In contrast, increasing the MW of the copolymer in P13d should

reduce the number of cross-linking points needed to overcome the gelation point, i.e.

to form solid 3D structures. However, photoresist P13d shows an increased shrinkage

behavior and lower structure quality compared to P13a, which can therefore be regarded

as the sweet spot between MW of the copolymer and STP content. The photoresist

mixture employed for all further experiments consists of P13a in a 40wt% acetophenone

solution.

As described in Figure 5.7d) for the STP-maleimide photoresist, a depletion line test

was performed for polymer P13a to assess the achievable linewidth reduction through

the depletion laser. In Figure 5.12a), a series of lines was written with fixed excitation

powers and increasing depletion powers in the right part of the lines with the spatial

intensity distribution of both lasers according to the scheme above the SEM image.

The linewidth with the depletion laser being on is reduced with increasing depletion

power, until the line is not continuous anymore. Figure 5.12b) shows the determination

of the FWHM for the highlighted area in panel a), with a FWHM linewidth of 31.2 nm. In

addition, the FHWM of lines written at various depletion powers scales with the inverse

square root of the depletion power, which is depicted in panel c). Such a scaling law

is predicted for a STED-inspired lithographic process.[320] In the depletion experiment,
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of the lines for different depletion powers. The linewidth is decreasing with increasing depletion
power until the lines become unstable and disconnected. b) Evaluation of the FWHM in the
dashed area of a). c) The FWHM of lines written at different depletion powers is proportional
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American Chemical Society.
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ment. a) Clearly separated lines are obtained for lattice constants greater than the diffraction
limit of 207 nm (for the actual setup). For a lattice constant of 175 nm, using only the excitation
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5.4 Conclusion

the thinnest achievable line without the depletion laser is 104 nm wide, employing an

excitation power of 0.69mW. In reducing the excitation power to 0.46mW, the linewidth

without depletion can also be reduced down to 55 nm, but the written lines are not

continuous anymore. In summary, the linewidth employing the depletion laser is almost

a factor 2 smaller than compared to the writing with only the excitation laser. It should be

noted at this stage, that the observed linewidth reduction down to 31 nm constitutes the

thinnest line written with STED-inspired lithography to date. As a comparison, Wollhofen

et al. were able to achieve a FWHM linewidth of 34 nm employing an acrylate-based

photoresist with DETC as the PI (for the mechanism in this case, see Figure 2.25a).[321]

Another important performance benchmark of a photoresist for STED-inspired lithog-

raphy is the achievable resolution, i.e. the minimal distance between two elements. For

the employed lithographic setup with a numerical aperture of NA = 1.4 and the excitation
wavelength for the TPA of 𝜆 = 820 nm, the Abbe criterion predicts a minimal resolution of

𝑑 = 207 nm (refer to Equation (2.22). In Figure 5.13a), a series of line gratings was written

with a lattice constant of 400 nm. As the lattice constant is above the Abbe limit, the

lines are well separated. In contrast, panel b) depicts a similar experiment with only the

excitation laser being switched on. Here, the distance between adjacent lines is 175 nm,

which is considerably smaller than the theoretical limit. Accordingly, the resulting struc-

ture consists of a single polymer block, i.e. the lines are not resolved anymore. When

using the depletion laser to decrease the linewidth of the individual lines in panel c), the

line pattern is again visible. However, the lines are not perfectly separated from each

other. Such micro-bridge formation is observed for many negative-tone photoresist[322]

and is attributed to swelling effects during the development of the written structures.

Nevertheless, the STP photoresist shows a superior performance compared systems based

on the FRP of acrylate monomers and allows for higher resolutions.[203]

5.4 Conclusion

This chapter has introduced the STP photoswitch for spatially resolved lithographic encod-

ing of surfaces, as well as for the preparation of a photoresist based on the supramolecular

aggregation of the MC form including the application in STED-inspired lithography.

The photo triggered reaction with the maleimide-functionalized ATRP initiator 21 and

subsequent SI-ATRP enabled the lithographic encoding of glass substrates with polymer

brushes (refer to Figure 5.2). The fabricated line structures feature brush heights between

25–50 nm with a width down to 0.4 µm. While the expected linewidth reduction through
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5 Photocaged ligation via spirothiopyrans

a depletion laser could not be translated from solution experiments onto surfaces with

this approach, the possibility to fabricate spatially resolved structures employing the

widely used maleimide anchoring moiety is a versatile new method for the fabrication of

tailor-made surfaces. Importantly, the possibility to trigger the STP→MC conversion

and therefore the reaction with the maleimide either at around 365–410 nm through OPA

or via TPA at 820 nm is a great advance in the search for new trigger wavelengths in

the toolbox of photolithographic protocols. As such, the adaption of the STP-maleimide

reaction in the course of surface functionalization chemistry established in the current

work is expected to enable new lithographic protocols in the near future.(a) Recapitulating

the typical trigger wavelengths of molecules for other photolithographic processes, e.g.

photoenols (≈320 nm), phenacyl sulfides (≈350 nm), or tetrazoles (320–410 nm), especially

the possibility to trigger the STP at 820 nm should enable the adaption of chromatic
orthogonality(b) for surface chemistry. To date, only few examples of such a selective

bifunctional surface patterning via chromatic orthogonality have been reported.[98b,102a]

The synthesis of STP monomer 18 and copolymerization with MMA enabled the

fabrication of a photoresist for DLW applications. In the first approach, the adaption of

the STP-maleimide reaction for the cross-linking mechanism through blending of P13d
with maleimide copolymer P14 did not lead to a good quality of the written structures.

However, it has been found that the STP copolymer itself is capable to form stable 3D

structures in a DLW process through the formation of supramolecular aggregates of the

MC form. This mechanism is supported by the similar behavior of the SP P15 photoresist.
The photo triggered STP⇌MC equilibrium enables the application of this one-component

photoresist for STED-inspired lithography. In this regard, the TPA of an excitation laser

at 820 nm for the STP→MC transformation and a depletion laser via an OPA process to

trigger the MC→STP backward reaction at 640 nm was employed. The reversibility of

the depletion reaction was demonstrated and a linewidth reduction of a factor 2 down to

31 nm has been achieved. This linewidth currently constitutes the thinnest lines written

in STED-inspired lithography. In addition, the achievable resolution of the photoresist

could also be pushed below the diffraction limit for this particular case, but the line

gratings still exhibit swelling-induced deteriorations.

(a) In fact, during the writing up of the current thesis, Vijayamohanan and co-workers have published a
report, in which they utilize the STP-maleimide in the same manner as described in the presented thesis for the
immobilization of maleimide-functionalized fluorophores onto STP-silanized silicon surfaces, see [323].

(b) Chromatic orthogonality refers to the selective photoreaction of one chromophore among different chro-
mophores. Other concepts in this context include state selectivity or chromoselectivity. For a detailed discussion
of these different classes including a literature overview, the reader is referred to an excellent review from
Fagnoni and co-workers.[324]
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5.4 Conclusion

In conclusion, the STP chromophore has been introduced as a versatile photochromic

molecule for the photoligation on surfaces, as well as the application in STED-inspired

lithography, with superior performance compared to other reported photoresist formula-

tions for sub-diffraction lithography.
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C H A P T E R 6
Concluding remarks

In the course of the present thesis, the first method for the spatially resolved surface

immobilization of various metallopolymers on a single surface was developed, employing

the versatile NITEC photochemistry . The in-depth analysis of the photoligation process

identified crucial parameters for the successful immobilization of the metallopolymers,

which are also valid for all other photo triggered surface ligation protocols. ToF-SIMS

and spatially resolved XPS analysis of the prepared surfaces have demonstrated the pre-

served chemical composition of the fabricated metallopolymer surfaces. The introduced

surface-ligation method is of high value for all related surface ligation techniques, as the

described interplay between solution absorption and successful immobilization can be

universally applied for all photoligation systems. The application of these functional

metallopolymer surfaces in the realm of heterogeneous catalysis will be the next research

step in this area. In the second part of the thesis, the photochemistry of spiro(thio)pyrans

was investigated for the formation of light-sensitive SP-metal complexes, as well as the

creation of a photoresist for the application in STED-inspired lithography. The irradiation

of an NMR tube inside the NMR spectrometer in so-called LED-NMR experiments was

introduced for the investigation of the prepared SP-metal complexes. It has been demon-

strated that in combination with LED-UV-Vis experiments, a deeper understanding of

the photo triggered processes is possible. Finally, the photo triggered reaction of the STP

photoswitch with an electron deficient maleimide was used for the spatial encoding of

surfaces for the first time. In addition, the preparation of a STP-based photoresist enabled

the writing of structures below the diffraction limit, with the thinnest lines written with

STED-inspired lithography to date.





C H A P T E R 7
Experimental section

7.1 Materials

All starting materials and reagents were of analytic grade and used without further

purification, if not declared otherwise. Acetic acid (100 %, p.a., VWR), acetonitrile

(MeCN, p.a., VWR), (3-aminopropyl)triethoxysilane (APTES, 99 %, Acros Organics), am-

monium chloride (99.5 %, Acros Organics), basic aluminum oxide (activity (I), Merck),

benzene (99.8 %, anhydrous, Sigma Aldrich), 3-bromopropoxy-tert-butyldimethylsilane

(Br(CH2)3OTBDMS, 97 %, abcr), n-butyllithium (1.6 m in n-hexane, Sigma Aldrich), 1,1-́

carbonyldiimidazole (CDI, 97 %, Alfa Aesar), chloroform (VWR, p.a.), 4-cyano-4-((do-

decylsulfanylthiocarbonyl)sulfanyl)pentanoic acid (CDSTSP, 97 %, Sigma Aldrich), cy-

clohexane (cC6H12, >97 %, VWR), dichloro(1,5-cyclooctadiene)palladium(II) (Pd 36.7 %,

Alfa Aeser), dichloromethane (DCM, stabilized with ethanol, 99.8 %, VWR), N,N -́di-

cyclohexylcarbodiimid (DCC, 99 %, Sigma Aldrich), diethyl azodicarboxylate (DEAD,

97 %, Alfa Aesar), diethyl ether (>99 %, VWR), diisopropyl azodicarboxylate (DIAD, 98 %,

Sigma Aldrich), N,N -́diisopropylcarbodiimide (DIC, 99 %, abcr), 4-dimethylaminopyr-

idine (DMAP, 98 %, Acros Organics), 4,4-́dimethyl-2,2-́bipyridine (99 %, Acros Organics),

N,N -dimethylformamide (DMF, p.a., Fisher Chemical), DMF (anhydrous, Acros Organics),

N,N -dimethylthiocarbamoyl chloride (>97.0 %, TCI), 1,4-dioxane (>99 %, Acros), 4-(di-
phenylphosphino)benzoic acid (97 %, Acros Organics), ethanol (EtOH, 96 %, VWR), ethyl

cyano(hydroxyimino)acetate (OxymaPure®, 99 %, Merck Millipore), 1-ethyl-3-(3-dimeth-

ylaminopropyl)carbodiimide hydrochloride (EDC⋅HCl, 99 %, Carl Roth), ethyl acetate
(EtOAc, >99.5 %, VWR), (2E,4E)-hexadienol (97 %, Sigma Aldrich), hydrochloric acid

(37 %, Carl Roth), hydrobromic acid (48 % aq., Sigma Aldrich), hydrogen peroxide (35 %,
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Carl Roth), hydroquinone (≥99 %, Sigma Aldrich), 2-hydroxy-3-methoxybenzaldehyde

(>99.0 %, TCI), 2-hydroxy-3-methoxy-5-nitrobenzaldehyde (>99.0 %, TCI), 2-iodoethanole
(99 %, stab. with copper, abcr), magnesium sulfate (dried, Carl Roth), methacrylic acid

(MAA, 99.5 %, stabilized, Acros Organics), methacryloyl chloride (stabilized with 400 ppm

4-methoxyphenol, 97 %, Alfa Aesar), methanol (MeOH, p.a., VWR), 3-methyl-2-butanone

(>99 %, TCI), methyl iodide (99 %, stab. with copper, Sigma-Aldrich), neutral aluminum

oxide (activity (I), Merck), 4-nitrophenylhydrazine (96 %, 30 % in H2O, Sigma-Aldrich), 5-

nitrosalicylaldehyde (>97.0 %, TCI), oxalyl chloride (99 %, abcr), pentafluorophenol (PFP,
99 %, abcr), petroleum ether (40–60 ∘C, VWR), phosphorus pentoxide (≥99 %, powdered,
Carl Roth), potassium hydroxide (≥85 %, in flakes, Carl Roth), n-propanol (≥99.5 %, VWR),

tetrabutylammonium fluoride (TBAF, 1 m in THF, Sigma-Aldrich), tetrahydrofuran (THF,

p.a., VWR), tetrahydrofuran (THF, anhydrous, Acros Organics), toluene (≥99.5 %, VWR),

2,3,3-trimethylindoleine (>97.0 %, TCI), 1,3,3-trimethyl-2-methyleneindoline (>96.0 %,
TCI), triphenylphosphine (≥99.0 %, Merck Millipore), sodium hydrogen carbonate (99.5 %,

Carl Roth), sodium hydroxide (99 %, Carl Roth), sodium sulfate (99 %, Carl Roth), sodium

chloride (Carl Roth), sulfuric acid (96 %, Carl Roth), and 1,3,5-trioxane (Merck) were used

as received. Methyl methacrylate (MMA, >99.5 %, Fisher Scientific), 2-hydroxyethyl
methacrylate (HEMA, stabilized with <50 ppm monomethyl ether hydroquinone, >99 %,
Sigma-Aldrich), and 1,4-dioxane (>99 %, Acros) were passed through a short column

of basic alumina prior to use. Azobisisobutyronitrile (AIBN, Sigma-Aldrich) was re-

crystallized three times from methanol prior to use. Succinic anhydride was purified

through sublimation and stored over P2O10 in an exsiccator. For the surface reactions,

acetone (electronics (MOS) grade, Fischer), Milli-Q® water Type 1, toluene (extra dry,

Acros), 1,4-dioxane (99.5 %, extra dry, over molecular sieves, AcroSeal®, Acros Organics),

MeCN (99.9 %, extra dry, over molecular sieves, AcroSeal®, Acros Organics), toluene

(HPLC grade, Alfa Aesar), and DCM (synthesis grade, Fischer) were used. Triethylamine

(TEA, 99.5 %, Sigma Aldrich) and diisopropylamine (Acros Organics) were distilled under

reduced pressure. Deuterated solvents were obtained from Carl Roth GmbH (99.5 at% D).

Siliconwafers were purchased from Si-Mat SiliconMaterials (1 cm2; type/dopant, P/boron;

orientation <100>; resistivity, 1-30Ω cm; thickness, 525(25) µm; TTV,<5 µm; front surface

polished, back surface etched). Wafers were stored and transported in coin style single

wafer shipper from SPS-EUROPE GmbH (25 mm, Art.-Nr. eCT1-25-ASSY-2-eM-01-BL,

conductive polypropylene). The nitrogen stream was filtered by an activated char-

coal filter (Supelco 24518). UV-Filter foil SFG10 (Art.-Nr. 100831) was purchased from

METOLIGHT®. Arimed B6 UV lamp was purchased from Cosmedico® (36W, Art.-Nr.

100-536-0060). Philips Cleo Compact PL-L 36W/09 2G11 UV lamp was purchased from
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Philips® (36W, EAN: 8711500642646). Light-emitting diodes (LEDs) were purchased from

LUMITRONIX® and AVONEC®: 365 nm (Nichia® Art.-Nr. NVSU233B), 590 nm (Cree®

Art.-Nr. XP-E2), 410–420 nm (AVONEC® Art.-Nr. 3W410420m), 380–390 nm (AVONEC®

Art.-Nr. 10W380390m), 585–595 nm (AVONEC® Art.-Nr. 10W585595m), and 620–630 nm

(AVONEC® Art.-Nr. 10W620630m). A power supply from EA Elektro-Automatik (EA-PS

2084-03B) was used for the LEDs and the Peltier cooling element. Fiber stripping tool

(M44S63), multimode fiber (FP1000URT), and optical cage components (CP02T/M, ER1-

P4, SM1LCM) were purchased from THORLABS®. Glass etching cream was purchased

from Armour Etch® (Art.-Nr. 15-0150). NMR sample tubes for in situ irradiation were

purchased from Rototec-Spintec GmbH (519-OUTER, 519-SPACER, 519-INNER). Glass

photo vials (20mL, clear glass, rounded bottom, long neck; VWR international, Art.-Nr.

548-0891) and aluminum caps with septa (central hole 10mm; VWR international, Art. Nr.

548-0060) were purchased from VWR. Phenacyl sulfide-terminated PEG (P5) was kindly
provided by Dr. Christiane Lang (𝑀n,SEC = 2900 gmol−1, Đ = 1.04).[144] Maleimide-MMA

copolymers P14a (𝑀n,SEC = 6400 gmol−1, Đ = 1.34, 17mol% maleimide content) and

P14 (𝑀n,SEC = 6700 gmol−1, Đ = 1.31, 16mol% maleimide content) were synthesized by

L. Hammer in the course of her master thesis.[314] 2-Methoxy-6-methylbenzaldehyde

(6),[325] 4-cyanopentanoic acid dithiobenzoate (CPADB),[326] 2-(2-hydroxyethyl)-3a,4,7,7a-
tetrahydro-1H -4,7-epoxyisoindole-1,3(2H )-dione (Mal-OH),[327] 2-((2-oxo-2-phenyleth-

yl)thio)-N -(3-(triethoxysilyl)propyl)acetamide (3),[124] 4-(2-(4-methoxyphenyl)-2H -tetra-

zol-5-yl)benzoic acid (Tet-acid),[160] and 2-(2,5-dioxo-2,5-dihydro-1H -pyrrol-1-yl)ethyl

2-bromo-2-methylpropanoate (21)[160] were synthesized according to the literature.

7.2 Analysis

Nuclear magnetic resonance spectroscopy

NMR spectra were recorded on a Bruker AM400 spectrometer at 298.0 K (400.3MHz for
1H and 100.7MHz for 13C, respectively). All NMR experiments were acquired employing

standard pulse sequences from the Bruker library, if not stated otherwise. Chemical

shifts are expressed in parts per million (ppm) and referenced on characteristic solvent

resonances as internal standards for 1HNMR and 13C{1H} NMR [CDCl3: 7.26 ppm (1H) and

77.16 ppm (13C); CD2Cl2: 5.32 ppm (1H) and 54.00 ppm (13C); DMSO-d6: 2.50 ppm (1H)

and 39.52 ppm (13C); CD3CN: 1.94 ppm (1H) and 1.32 ppm (13C); acetone-d6: 2.05 ppm
(1H) and 29.84 ppm (13C)]. 85 % Phosphoric acid was used as an external reference for
31P{1H} NMR. 1H NMR are reported as follows: chemical shift (𝛿 in ppm), multiplicity (s
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for singlet, bs for broad singlet, d for doublet, t for triplet, q for quartet, m for multiplet),

coupling constant(s) (Hz), number of protons (concluded from the integrals), specific

assignment. 13C{1H} NMR and 31P{1H} NMR spectra are reported in terms of chemical

shift and specific assignment. NMR data processing was done using TopSpin (Bruker,

version 3.2 pl7) and MestReNova (Mestrelab Research S.L., version 12.0) software. NMR

assignments were made using a combination of 1D and 2D techniques, namely 1H–1H

COSY (cosygpppqf), 1H–13C HMQC (hmqcgpqf), and 1H–13C HMBC (hmbcgpndqf).

In situ irradiation of NMR samples NMR measurements with in situ irradiation

with UV light was performed after a modified literature protocol.[309] The employed

365 nm LED was operated with a constant current of 1000mA for all experiments.

For the chemical actinometry, solutions of o-NBA in CD2Cl2 (3.31, 5.29, 7.94, 13.2, 23.2,

33.1, 46.3, 66.2, 99.3, and 165mM) were prepared with a total volume of 1mL. 250 µL

of the stock solutions were transferred into the assembled LED-NMR tube and directly

placed inside the NMR spectrometer. For the metal complexes in Section 4.2.2, a similar

volume of 250 µL was used with the concentrations given in the respective sections.

Samples were equilibrated for 5–10min at 298.0 K and shimmed with the Bruker

topshim au program. No spinningwas used in all LED-NMR experiments. For quantitation

of the NMR measurements, the steady-state approach was employed.[309] For all kinetic

experiments, an adapted pseudo-2D experiment with the zg2d-pulse sequence from the

standard Bruker library was used (the pulse sequence is given in Section A.1). As a

compromise between sufficient signal-to-noise ratio and measurement speed, the flip

angle was changed to 33°.

For the chemical actinometry, 32k complex data points were sampled within 2.93 s

over a sweep width of 14 ppm. The transmitter frequency offset was set to 6 ppm. Other

parameters were DS = 0 (dummy scans), NS = 4 (number of scans), d1 = 1.06 s (relaxation
delay), and d20 = 16 s (delay between start of different 1D spectra). With these parameters,

the delay between the individual 4 scans of every single 1D experiment equals the delay

between different 1D experiments, i.e. the steady-state is maintained throughout the

whole experiment. To ensure the steady-state condition in the beginning of the kinetic

analysis, 10 dummy experiments were measured before the LED was switched on. Prior

to Fourier transformation, the FIDs were zero filled to 128k data points and apodized with

an exponential window function (LB = 1.0Hz). Spectra were integrated in MestReNova

with the “Concentration Graph” macro, in which the integral of o-nitrosobenzoic acid
at 6.58 ppm was set to zero for the spectrum after the 10 dummy experiments. Plotting
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and fitting of the obtained concentrations was done with the OriginPro 2019 software

package.

For the investigations of the SP-metal complexes, the number of scans added in every

single 1D experiment was increased to NS = 8, the transmitter frequency offset to 5 ppm,

and the delay between the individual 1D experiments to d20 = 32 s, keeping all other

parameters unchanged. The initial 1D experiments for the determination of the thermal

equilibrium concentrations of metal-complexes and free SP were conducted with a 33°

pulse flip angle sampling 32k complex data points, DS = 4, NS = 32, 12 ppm sweep width,

3.41 s acquisition time, and d1 = 20 s to ensure sufficient relaxation for the quantitative

analysis and the referencing of the kinetic measurements.

Size-exclusion chromatography

SEC measurements were performed on a Polymer Laboratories/Varian PL-SEC 50 Plus

System and an Agilent 1200 system. The Polymer Laboratories/Varian PL-SEC 50 Plus

Systemwith an autosampler, a PLgel 5.0 µm bead-size guard column (50×7.5mm) followed

by one PLgel 5.0 µm Mixed E column (300×7.5mm), one PLgel 5.0 µm Mixed C column

(300×7.5mm) and a differential refractive index (RI) detector using THF as the eluent

at 35 ∘C with a flow rate of 1mLmin−1. The Agilent 1200 system with an autosampler,

a PLgel 5.0 µm bead size guard column (50×7.5mm), one PLgel 5.0 µm Mixed E column

(300×7.5mm), three PLgel 5.0 µm Mixed C columns (300×7.5mm) and a differential re-

fractive index detector, as well as an UV detector using THF as eluent at 35 ∘C with a flow

rate of 1mLmin−1. The SEC systems were calibrated using linear polystyrene standards

ranging from 380 gmol−1 to 2×106 gmol−1 (PSS ReadyCal) with the Mark-Houwink re-

lationship for polystyrene (𝐾 = 14.1×103mLg−1, 𝛼 = 0.7)[328] and linear poly(methyl

methacrylate) standards ranging from 800 gmol−1 to 2×106 gmol−1 (PSS ReadyCal) with

the Mark-Houwink relationship for poly(methyl methacrylate) (𝐾 = 12.8×103mLg−1,

𝛼 = 0.69).[329] All samples were passed over 0.22 µm PTFE membrane filters prior to

analysis.

Electrospray ionization mass spectrometry

ESI-MS spectra were recorded on a Q Exactive (Orbitrap) mass spectrometer (Ther-

moFisher Scientific, San Jose, CA, USA) equipped with a HESI II probe. The instrument

was calibrated in the m/z range 74–1822 using a standard containing caffeine, Met-Arg-

Phe-Ala acetate (MRFA) and a mixture of fluorinated phosphazenes (Ultramark 1621) (all

from Sigma-Aldrich). A spray voltage of between 3.6 and 4.6 kV was used and nitrogen
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at a dimensionless sweep gas flow rate of 2 (approximately 3 Lmin−1), as well as a dimen-

sionless sheath gas flow rate of 5 to 10 were applied. The capillary temperature and the

S-lens RF level were set to 320 ∘C and 62.0, respectively. The samples were dissolved with

a concentration of 0.1mgmL−1 in a mixture of THF and methanol (3/2 vol%) containing

100 µmol sodium trifluoroacetate or in pure DCM and infused with a flow of 5 µLmin−1.

All samples were passed over 0.22 µm polytetrafluoroethylene (PTFE) membrane filters

prior to analysis.

Ultraviolet-visible spectroscopy

All UV-Vis spectra were recorded on an USB4000 spectrometer together with a USB-ISS-

UV-Vis device from Ocean Optics. The dissolved samples were measured using a 1mm

path length cell if not stated otherwise. Measurements were conducted in single strobe

mode, the hold off time and pulse width were both set to 25 µs, the integration time was

26 µs, and electric dark correction was turned on. At least 20 scans were averaged and

smoothed employing a boxcar smoothing value of 6. Both light sources were turned on

with the UV lamp adjusted to 100 % and the visible lamp to 74 %, respectively. Spectra

were collected from 200–800 nm and baseline corrected with respect to the pure solvent.

Spectral irradiance measurements

Spectral irradiance measurements were performed with a spectroradiometer SR600

equipped with a radiometric sensor with built-in diffuser for cosine correction from

Opsytec Dr. Gröbel. The radiometric sensor was placed at the appropriate distance in an

orthogonal manner towards the light source and the spectral irradiance was measured

from 200–800 nm with active dark measurement and an offset factor of 1.15 in the range

of 200–240 nm to account for scattering artifacts. The integration time was set between

2–2000ms to ensure sufficient data quality above 80 %. Spectral corrections and raw data

export were done using the USBSpec spectral software from Opsytec Dr. Gröbel.

X-ray photoelectron spectroscopy

XPS measurements were performed using a K-Alpha+ XPS spectrometer (ThermoFisher

Scientific, East Grinstead, UK). All samples were analyzed using a micro-focused, mono-

chromatic Al Kα X-ray source (400 µm spot size). The kinetic energy of the electrons

was measured by a 180° hemispherical energy analyzer operated in the constant analyzer

energy mode at 50 eV pass energy for elemental spectra. Data acquisition and processing
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using the Thermo Avantage software is described elsewhere.[330] The spectra were fitted

with one or more Voigt profiles (binding energy uncertainty: ±0.2 eV). The analyzer

transmission function, Scofield sensitivity factors,[331] and effective attenuation lengths

(EALs) for photoelectrons were applied for quantification. EALs were calculated using

the standard TPP-2M formalism.[332] All spectra were referenced to the C 1s peak of

hydrocarbon at 285.0 eV binding energy controlled by means of the well-known photo-

electron peaks of metallic Cu, Ag, and Au, respectively. The K-Alpha+ snapmap option

was used to image the different structures with a spot of 100 µm. 7 Iterations were run to

reach a better statistic. The obtained spectra were collapsed over the iterations and fitted

either like described above or with the help of a principal component analysis routine to

get better element mapping.

Time-of-flight secondary ion mass spectrometry

ToF-SIMS was performed on a TOF.SIMS5 instrument (ION-TOF GmbH, Münster, Ger-

many). This spectrometer is equipped with a bismuth cluster primary ion source and

a reflectron type time-of-flight analyzer. Ultra-high vacuum (UHV) base pressure was

<5×10−9mbar. For high mass resolution the Bi source was operated in the “high current

bunched” mode providing short Bi +3 primary ion pulses at 25 keV energy and a lateral res-

olution of approx. 4 µm. The short pulse length of 1 ns allowed for high mass resolution.

For imaging large fields of view the sample stage and the primary beam were scanned.

Usually for 2–4mm2 fields of view 400×400 individual data points were recorded with 1

scan and 25 frames. 4 Adjacent points were binned to increase the dynamic range. Under

these conditions, primary ion doses were kept below 1011ions cm−2 (static SIMS limit)

for all measurements. Spectra were calibrated on the omnipresent C–, CH–, C –
2 , C

–
3 ,

C –
4 or on the C+, CH+, CH +

2 , CH
+
3 , and Si+ peaks. Based on these data sets, the chemical

assignments for characteristic fragments were determined.
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7.3 Synthesis of small molecules

All manipulations of air-sensitive materials were performed under rigorous exclusion

of oxygen and moisture in Schlenk-type glassware on a dual manifold Schlenk line,

interfaced to a high vacuum line (1×10−3 torr), or in an argon-filled glove box.

4-Cyano-4-(dodecylsulfanylthiocarbonyl) sulfanyl pentanoic acid 2,4-hexadi-
enyl ester – (2)
CDSTSP (1.036 g, 2.57mmol), (2E,4E)-hexadienol (0.761 g, 7.75mmol), and DMAP (0.062 g,

0.507mmol) were dissolved in 2.2mL dry DCM and cooled to 0 ∘C. A solution of DCC

(0.542 g, 2.63mmol) in 2mL dry DCM was added dropwise over 15min. The reaction

was stirred and brought to room temperature overnight (22 h). The white precipitate

was filtered, 50mL DCM was added, and the organic phase was washed with 0.5 m HCl

(2×20mL), saturated NaHCO3 (40mL), brine (20mL), dried (MgSO4), and purified via
column chromatography [silica, cC6H12:EtOAc 15:1 (v:v)] yielding 2 as a yellow oil (0.88 g,

71 %). 1H NMR (400.3MHz, CDCl3): 𝛿 (ppm) = 6.35–6.19 (m, 1H, H23), 6.13–5.99 (m, 1H,

H24), 5.87–5.70 (m, 1H, H25), 5.70–5.53 (m, 1H, H22), 4.60 (d,
3𝐽=6.7Hz, 1H, H21), 3.32 (t,

3𝐽=7.5Hz, 1H, H13), 2.74–2.58 (m, 2H, H19), 2.58–2.47 (m, 1H, H18), 2.44–2.32 (m, 1H, H18),

1.87 (s, 3H, H16), 1.77 (d,
3𝐽 = 6.8Hz, 3H, H26), 1.73–1.64 (m, 2H, H11), 1.41–1.20 (m, 18

H, H2–10), 0.88 (t,
3𝐽=6.7Hz, 3H, H1).

13C{1H} NMR (100.7MHz, CDCl3): 𝛿 (ppm) = 217.1

(C14), 171.4 (C20), 135.6 (C23), 131.8 (C25), 130.4 (C24), 123.2 (C22), 119.1 (C17), 65.7 (C21),

46.5 (C15), 37.2 (C13), 34.0 (C18), 32.1, 30.0, 29.8, 29.7, 29.6, 29.5, 29.2, 29.1 (C2–10, C19), 27.8

(C11), 25.0 (C16), 18.3 (C26), 14.3 (C1). HR-ESI-MS (m/z): [M+Na]+ calc. for C25H41NO2S3:

506.2192, found 506.2197.

2-(1,3-Dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-epoxyisoindol-2-yl)ethyl 4-cyano-
4-((phenylcarbonothioyl)thio)pentanoate – (4)
The synthesis of 4 was conducted using a modified literature procedure.[333] In a flame

dried 50mL Schlenk flask, CPADB (1.00 g, 3.58mmol), Mal-OH (1.12 g, 5.37mmol), DMAP

(0.044 g, 0.36mmol), and OxymaPure® (0.76 g, 5.37mmol), were dissolved in acetonitrile

(15mL) and stirred for 5min. The solution was cooled to 0 ∘C and EDC⋅HCl (1.03 g,
5.37mmol) was added at once. The mixture was stirred at 0 ∘C for 1 h and at room tem-

perature for 17 h. The solvent was removed under reduced pressure and the residue was

redissolved in ethyl acetate (50mL). The solution was washed (3×30mL H2O, 3×30mL 1m

HCl, 30mL brine), dried (MgSO4), and the solvent was removed under reduced pressure.

The raw product was purified via column chromatography [silica, cC6H12:EtOAc, 2:1
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to 1:1 (v:v)] to obtain a pink oil (1.24 g, 2.63mmol, 73 %). 1H NMR (400.3MHz, CDCl3):

𝛿 (ppm) = 7.94–7.86 (m, 2H, H3), 7.60–7.52 (m, 1H, H1), 7.44–7.35 (m, 2H, H2), 6.53–6.46 (m,

2H, H17), 5.30–5.22 (m, 2H, H16), 4.32–4.22 (m, 2H, H12), 3.79–3.73 (m, 2H, H13), 2.90–2.83

(m, 2H, H15), 2.68–2.37 (m, 4H, H9,10), 1.93 (s, 3H, H7).
13C{1H} NMR (100.7MHz, CDCl3):

𝛿 (ppm) = 222.5 (C5), 176.2 (C14), 171.4 (C11), 144.7 (C4), 136.7 (C17), 133.1 (C1), 128.7 (C2),

126.8 (C3), 118.6 (C8), 81.1 (C16), 61.3 (C12), 47.6 (C15), 45.9 (C6), 37.9 (C13), 33.3 (C10), 29.8

(C9), 24.2 (C7). HR-ESI-MS (m/z): [M+Na]+ calc. for C23H22N2O5S2: 493.0862, found

493.0866.

4-(2-(4-Methoxyphenyl)-2H-tetrazol-5-yl)-N-(3-(triethoxyilyl)propyl)benz-
amide – (5)
5 was synthesized using a modified literature procedure.[98b] Tet-acid (0.50 g, 1.7mmol)

and CDI (0.28 g, 1.7mmol) were dispersed in 60mL dry THF and stirred under argon

at ambient temperature for 19 h. APTES (0.40mL, 1.7mmol) was added via syringe

and the mixture was stirred under argon for 25 h. The solvent was removed at room

temperature and the crude product was dissolved in DCM and purified via column

chromatography [silica, cC6H12:EtOAc 1:2 (v:v)]. 5 was obtained as a white powder

(0.62 g, 73 %). 1H NMR (400.3MHz, DMSO-d6): 𝛿 (ppm) = 8.65 (t, 3𝐽 = 5.6Hz, 1H, H6),

8.27–8.19 (m, 2H, H9), 8.12–8.01 (m, 4H, H10,14), 7.28–7.18 (m, 2H, H15), 3.87 (s, 3H, H17),

3.75 (q, 3𝐽=7.0Hz, 6H, H2), 3.27 (td,
3𝐽=7.0, 5.7Hz, 2H, H5), 1.66–1.55 (m, 2H, H4), 3.75 (t,

3𝐽=7.0Hz, 9H, H1), 0.65–0.57 (m, 2H, H3).
13C{1H} NMR (100.7MHz, DMSO-d6): 𝛿 (ppm)

= 165.3 (C7), 163.7 (C12), 160.5 (C16), 136.6 (C11), 129.5 (C8), 128.7 (C13), 128.2 (C10), 126.4

(C9), 121.7 (C14), 115.1 (C15), 57.7 (C2), 55.7 (C17), 42.1 (C5), 22.7 (C4), 18.2 (C1), 7.5 (C3).

HR-ESI-MS (m/z): [M+MeOH+Na]+ calc. for C24H33N5O5Si: 522.2143, found 522.2120.

4-(4-́Methyl-[2,2-́bipyridin]-4-yl)butan-1-ol – (8)
A solution of freshly distilled diisopropylamine (1.67mL, 11.9mmol) in THF (10mL)

was cooled to −78 ∘C and slowly treated with n-butyllithium (1.6 m in n-hexane, 7.5mL,

12mmol). The resulting pale-yellow solution was stirred for 20min and 4,4-́dimethyl-

2,2-́bipyridine (2.0 g, 11mmol) in THF (100mL) was added dropwise. The mixture was

stirred for 1.5 h at −78 ∘C, and Br(CH2)3OTBDMS (2.77mL, 11.9mmol) in THF (20mL) was

added within 10min. The reaction mixture was brought to room temperature overnight

and was subsequently quenched by slow addition of water (10mL). The solvent was

removed under reduced pressure and the residue dissolved in DCM (50mL), washed with

water (3×20mL), and dried (MgSO4). The crude product was stirred for 4 h in a TBAF

solution (1 m in THF, 16mL) and diluted with Et2O (50mL). The resulting solution was
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washed with water (4×10mL), concentrated NaHCO3 solution (10mL), brine (10mL),

and dried (MgSO4). The crude product was puried by column chromatography [Alox N

(III), cC6H12:EtOAc, 2:3 (v:v)]. 8 was obtained as a colorless oil (0.96 g, 37 %). 1H NMR

(400.3MHz, CDCl3): 𝛿 (ppm) = 8.53 (d, 3𝐽 = 5.0Hz, 1H, H6ʹ), 8.50 (d,
3𝐽 = 4.9Hz, 1H, H6),

8.20 (d, 4𝐽=1.7Hz, 2H, H3,3ʹ), 7.11 (dd,
3𝐽=4.9Hz, 4𝐽=1.7Hz, 2H, H5,5ʹ), 3.64 (t,

3𝐽=6.4Hz,
2H, H10), 2.70 (dd, 3𝐽 = 4.9Hz, 4𝐽 = 1.7Hz, 2H, H7), 2.41 (s, 3H, H7ʹ), 2.10 (bs, 1H, H11),

1.82–1.70 (m, 2H, H8), 1.66–1.54 (m, 2H, H9).
13C{1H} NMR (100.7MHz, CDCl3): 𝛿 (ppm)

= 156.2 (C2ʹ), 156.1 (C2), 152.5 (C4), 149.1 (C6ʹ), 149.0 (C6), 148.3 (C4ʹ), 124.8 (C5ʹ), 124.0

(C5), 122.2 (C3ʹ), 121.4 (C3), 62.5 (C10), 35.3 (C7), 32.3 (C9), 26.7 (C8), 21.3 (C7ʹ). HR-ESI-MS

(m/z): [M+Na]+ calc. for C15H18N2O: 265.1311, found 265.1310.

8-Methoxy-1,́3,́3-́trimethyl-6-nitrospiro[chromene-2,2-́indoline] – (10)
10 was synthesized following a modified literature protocol.[302] 2-Hydroxy-3-methoxy-

5-nitrobenzaldehyde (1.00 g, 5.08mmol) and 1,3,3-trimethyl-2-methyleneindoline (0.88 g,

5.1mmol) were dissolved in EtOH (120mL) and heated to reflux for 5 h. The solvent

was removed under reduced pressure and the raw product was recrystallized in EtOH

(30mL), filtered, washed (EtOH, water) and dried under high vacuum. 10 was obtained

as yellow-green crystals (1.49 g, 83 %). 1H NMR (400.3MHz, CD3CN): 𝛿 (ppm) = 7.77

(d, 4𝐽 = 2.6Hz, 1H, H15), 7.66 (d, 4𝐽 = 2.6Hz, 1H, H17), 7.17 (td, 3𝐽 = 7.7Hz, 4𝐽 = 1.3Hz, 1
H, H4), 7.11 (ddd, 3𝐽 = 7.3Hz, 4𝐽 = 1.3Hz, 5𝐽 = 0.6Hz, 1H, H5), 7.02 (d, 3𝐽c = 10.4Hz, 1H,
H13), 6.85 (td,

3𝐽=7.4Hz, 4𝐽=1.0Hz, 1H, H4), 6.59 (dt,
3𝐽=7.8Hz, 4𝐽=0.7Hz, 1H, H2), 5.93

(d, 3𝐽c = 10.4Hz, 1H, H12), 3.76 (s, 3H, H20), 2.73 (s, 3H, H7), 1.24 (s, 3H, H9), 1.14 (s, 3H,

H10).
13C{1H} NMR (100.7MHz, CD3CN): 𝛿 (ppm) = 150.1 (C16), 148.8 (C6), 148.1 (C19),

141.5 (C18), 137.2 (C1), 129.3 (C13), 128.8 (C4), 122.7 (C5), 122.6 (C12), 120.5 (C3), 119.9 (C14),

116.3 (C15), 108.4 (C17), 107.9 (C2), 107.7 (C11), 57.0 (C20), 53.1 (C8), 29.1 (C7), 26.2 (C10),

19.9 (C9). HR-ESI-MS (m/z): [M+H]+ calc. for C20H20N2O4: 353.1496, found 353.1490.

O-(2-Formyl-4-nitro-6-methoxyphenyl) dimethylcarbamothioate – (11b)
11b was synthesized following a modified literature protocol.[334] 2-Hydroxy-3-methoxy-

5-nitrobenzaldehyde (3.00 g, 15.2mmol), N,N -dimethylthiocarbamoyl chloride (2.83 g,

22.9mmol), and triethylamine (4.22mL, 30.4mmol) were dissolved in dry DMF (90mL)

at room temperature and stirred overnight. The salt was removed by filtration the

solvent was removed under reduced pressure. The residual was redissolved in EtOAc

(50mL), washed (water, 3×100mL; brine, 50mL), dried (MgSO4), and the solvent was

removed under reduced pressure to obtain O-(2-formyl-6-methoxy-4-nitrophenyl) di-

methylcarbamothioate (11a), which was used without purification. 11a was dissolved in
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toluene (200mL) and refluxed for 20 h. The solvent was removed under reduced pressure

and the raw product was purified by recrystallization (toluene/petroleum ether). 11b
was obtained as yellow crystals (2.26 g, 52 %). 1H NMR (400.3MHz, CDCl3): 𝛿 (ppm) =

10.37 (s, 1H, H10), 8.43 (d, 4𝐽 = 2.4Hz, 1H, H6), 7.94 (d, 4𝐽 = 2.3Hz, 1H, H4), 4.02 (s, 3H,

H7), 3.22 (s, 3H, H9), 3.03 (s, 3H, H9ʹ).
13C{1H} NMR (100.7MHz, CDCl3): 𝛿 (ppm) = 189.2

(C10), 163.2 (C8), 161.0 (C3), 149.8 (C5), 140.0 (C1), 128.7 (C2), 115.1 (C6), 109.4 (C4), 57.3

(C7), 37.5 (C9,9ʹ). HR-ESI-MS (m/z): 11b was not ionizable.

8-́Methoxy-1,3,3-trimethyl-6-́nitrospiro[indoline-2,2-́thiochromene] – (12)
11b (0.42 g, 1.47mmol) was dissolved in MeOH (52mL). NaOH solution (1 m, 9.6mL)

was added at once to the stirred yellowish mixture, which instantly turned red. The

solution was stirred at room temperature until the formation of precipitate (5min) and

HCl solution (15mL, 1 m) was added at once. The solvent was removed under reduced

pressure and the residual was extracted with EtOAc (50mL), washed (3×50mL brine/HCl),

dried (MgSO4), and the solvent was removed under reduced pressure. EtOH (100mL) and

1,3,3-trimethyl-2-methyleneindoline (0.26 g, 1.5mmol) were added and the mixture was

refluxed for 6 h. The resultant was recovered by filtration and recrystallized from EtOH,

yielding 12 as yellow needles (0.39 g, 72 %). 1H NMR (400.3MHz, CDCl3): 𝛿 (ppm) = 7.77

(d, 4𝐽 = 2.2Hz, 1H, H15), 7.54 (d,
4𝐽 = 2.2Hz, 1H, H17), 7.14 (td,

3𝐽 = 7.7Hz, 4𝐽 = 1.3Hz, 1H,
H4), 7.06 (ddd,

3𝐽 = 7.3Hz, 4𝐽 = 1.3Hz, 5𝐽 = 0.5Hz, 1H, H5), 6.89 (d,
3𝐽c = 11.0Hz, 1H, H13),

6.83 (td, 3𝐽 = 7.4Hz, 4𝐽 = 1.0Hz, 1H, H3), 6.48 (dt,
3𝐽 = 7.7Hz, 4𝐽 = 0.7Hz, 1H, H2), 5.96 (d,

3𝐽c=10.9Hz, 1H, H12), 3.93 (s, 3H, H20), 2.67 (s, 3H, H7), 1.42 (s, 3H, H9), 1.25 (s, 3H, H10).
13C{1H} NMR (100.7MHz, CDCl3): 𝛿 (ppm) = 155.0 (C18), 147.7 (C6), 144.6 (C19), 136.4 (C1),

132.5 (C16), 130.8 (C13), 129.4 (C14), 128.0 (C4), 123.8 (C12), 122.1 (C15), 119.9 (C3), 116.7

(C15), 107.6 (C2), 103.8 (C17), 88.4 (C11), 56.5 (C20), 52.5 (C8), 30.7 (C7), 24.6 (C10), 22.4 (C9).

HR-ESI-MS (m/z): [M+Na]+ calc. for C20H20N2O3S: 391.1087, found 391.1089.

9,9,9a-Trimethyl-2,3,9,9a-tetrahydrooxazolo[3,2-a]indole – (13)
13 was synthesized following a modified literature protocol.[335] A mixture of 2,3,3-

trimethylindoleine (3.6mL, 22mmol) and 2-iodoethanole (2.3mL, 29mmol) in MeCN

(35mL) were refluxed under N2 atmosphere for 4 h. The solvent was removed under

reduced pressure and the violet solid was grinded with KOH (2.1 g, 37mmol) until the

color changed from violet to orange. Benzene (40mL) and water (10mL) were added

and the aqueous phase was discarded. The organic phase was washed (3×10mL water,

20mL brine), dried (MgSO4), and the solvent was removed under reduced pressure. 13
was obtained as a red oil (4.19 g, 92 %). 1H NMR (400.3MHz, CDCl3): 𝛿 (ppm) = 7.14
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(td, 3𝐽 = 7.6Hz, 4𝐽 = 1.3Hz, 1H, H3), 7.08 (ddd,
3𝐽 = 7.4Hz, 4𝐽 = 1.4Hz, 5𝐽 = 0.5Hz, 1H, H2),

6.93 (td, 3𝐽=7.4Hz, 4𝐽=1.0Hz, 1H, H4), 6.76 (dt,
3𝐽=7.8Hz, 4𝐽=0.7Hz, 1H, H5), 3.84 (ddd,

3𝐽=7.8, 6.6Hz, 2𝐽=3.0Hz, 1H, H8), 3.73 (ddd,
3𝐽=9.8, 6.8Hz, 2𝐽=3.0Hz, 1H, H7), 3.63–3.47

(m, 2H, H7,8), 1.43 (s, 3H, H10), 1.39 (s, 3H, H13), 1.19 (s, 3H, H11).
13C{1H} NMR (100.7MHz,

CDCl3): 𝛿 (ppm) = 150.7 (C6), 140.1 (C1), 127.6 (C3), 122.5 (C2), 121.8 (C4), 112.1 (C5), 109.1

(C12), 63.1 (C8), 50.2 (C7), 47.1 (C9), 28.2 (C11), 20.9 (C10), 17.7 (C13). HR-ESI-MS (m/z):
[M+H]+ calc. for C13H17NO: 204.1383, found 204.1384.

(S)-(2-Acetyl-4-nitrophenyl) dimethylcarbamothioate – (14b)
14b was synthesized following a modified literature protocol.[185,334] 5-Nitrosalicylalde-

hyde (5.00 g, 29.9mmol), N,N -dimethylthiocarbamoyl chloride (5.69 g, 46.9mmol), and

DABCO (6.71 g, 59.8mmol) were dissolved in dry DMF (160mL) at 0 ∘C under inert

atmosphere. The solution was stirred at 0 ∘C for 15min. and at ambient temperature for

22 h. The salt was removed by filtration the solvent was removed under reduced pressure.

Brine (100mL) was added and the solution was extracted with EtOAc (2×100mL), washed

(3×100mL water/brine), dried (MgSO4), and the solvent was removed under reduced

pressure to obtain O-(2-formyl-4-nitrophenyl) dimethylcarbamothioate (14a), which was

used without purification. 14a was dissolved in toluene (500mL) and refluxed for 22 h.

The solvent was removed under reduced pressure and the raw product was purified by

recrystallization (toluene/petroleum ether). 14b was obtained as beige crystals (6.64 g,

87 %). 1H NMR (400.3MHz, CDCl3): 𝛿 (ppm) = 10.27 (s, 1H, H7), 8.81 (d,
4𝐽 =2.6Hz, 1H,

H2), 8.37 (dd,
3𝐽 =8.5Hz, 4𝐽 =2.6Hz, 1H, H4), 7.78 (d,

3𝐽 =8.5Hz, 1H, H5), 3.19 (s, 3H, H9),

3.05 (s, 3H, H9).
13C{1H} NMR (100.7MHz, CDCl3): 𝛿 (ppm) = 188.7 (C6), 163.4 (C1), 148.9

(C3), 139.7 (C2), 138.3 (C4), 127.2 (C5), 123.6 (C12), 37.6 (C8), 37.3 (C7). HR-ESI-MS (m/z):
[M+Na]+ calc. for C10H10N2O4S: 277.0254, found 277.0253.

1-(2-Hydroxyethyl),3,3-trimethyl-6-́nitrospiro[indoline-2,2-́thiochromene] – (15)

14b (1.00 g, 3.93mmol) was dissolved in methanol (140mL). NaOH solution (1 m, 26mL)

was added at once under vigorous stirring. The pale-yellow solution turned instantly red

and was stirred until the formation of precipitate (4min). HCl solution (1 m, 40mL) was

added at once and the solvent was removed under reduced pressure. Diethyl ether (50mL)

and water (30mL) were added to the residue and the aqueous phase was discarded. The

organic phase was washed (3×50mL brine/HCl), dried (MgSO4) and the solvent was re-

moved. 13 (0.86 g, 3.9mmol) and EtOH (92mL) were added and the mixture was refluxed

for 4 h, cooled to ambient temperature and stored in the freezer. The precipitate was
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collected via filtration, washed with cold EtOH and dried under high vacuum. 15 was

obtained as yellow crystals (1.11 g, 76 %). 1HNMR (400.3MHz, DMSO-d6): 𝛿 (ppm) = 8.24

(d, 4𝐽 = 2.5Hz, 1H, H17), 7.94 (dd,
3𝐽 = 8.7Hz, 4𝐽 = 2.6Hz, 1H, H19), 7.42 (d,

3𝐽 = 8.7Hz, 1H,
H15), 7.13–7.06 (m, 2H, H4,5), 6.78 (td,

3𝐽=7.4Hz, 4𝐽=0.9Hz, 1H, H3), 6.61 (dd,
3𝐽=8.1Hz,

4𝐽 = 0.9Hz, 1H, H2), 6.16 (d,
3𝐽c= 11.0Hz, 1H, H14), 4.79 (t,

3𝐽 = 5.6Hz, 1H, H9), 3.64–3.49

(m, 2H, H8), 3.34–3.24 (m, 1H, H7), 3.10–3.00 (m, 1H, H7), 1.31 (s, 3H, H11), 1.14 (s, 3H,

H12).
13C{1H} NMR (100.7MHz, DMSO-d6): 𝛿 (ppm) = 147.0 (C6), 144.3 (C16), 143.1 (C18),

135.6 (C1), 130.3 (C15), 129.4 (C21), 127.6 (C4), 126.6 (C20), 125.0 (C14), 123.2 (C17), 122.6

(C19), 122.1 (C5), 119.2 (C3), 106.9 (C2), 89.9 (C13), 59.2 (C8), 52.9 (C10), 47.7 (C7), 24.2 (C12),

21.5 (C11). HR-ESI-MS (m/z): [M+Na]+ calc. for C20H20N2O3S: 391.1087, found 391.1088.

4-(2-(3,3-Dimethyl-6-́nitrospiro[indoline-2,2-́thiochromen]-1-yl)ethoxy)-4-oxo-
butanoic acid – (16)
In a flame dried Schlenk flask, 15 (0.20 g, 0.54mmol), DMAP (9.2mg, 75 µmol), and suc-

cinic anhydride (66.2mg, 0.66mmol) were dissolved in anhydrous 1,4-dioxane (4.6mL).

TEA (0.09mL, 0.7mmol) was added and the solution was stirred at 50 ∘C for 14 h. Addi-

tional succinic anhydride (64mg, 0.64mmol) was added and the solution was heated at

60 ∘C for 29 h. The mixture was diluted with EtOAc (5mL), washed (4×2mL H2O/HCl,

2mL brine), dried (MgSO4), and the solvent was removed under reduced pressure. The

raw product was recrystallized from EtOH, yielding 16 as a yellow powder (154mg, 60 %).

In the 1H NMR spectrum, protons 11 and 12 are overlapping with the residual solvent

peak in DMSO-d6 but can be resolved in acetone-d6. However, the carbon resonances

of 11 and 12 overlap with the residual solvent signal in the 13C{1H} NMR spectrum in

acetone-d6. Only the spectral assignments in DMSO-d6 are presented here, while both

deuterated solvents were employed for the resonance assignment. 1H NMR (400.3MHz,

DMSO-d6): 𝛿 (ppm) = 12.22 (s, 1H, H12), 8.24 (d,
4𝐽=2.5Hz, 1H, H20), 7.95 (dd,

3𝐽=8.7Hz,
4𝐽=2.5Hz, 1H, H22), 7.42 (d,

3𝐽=8.7Hz, 1H, H23), 7.19 (d,
3𝐽c=11.0Hz, 1H, H18), 7.13–7.06

(m, 2H, H3,5), 6.82 (td, 3𝐽 = 7.4Hz, 4𝐽 = 0.9Hz, 1H, H4), 6.69 (dd, 3𝐽 = 8.1Hz, 4𝐽 = 0.9Hz,
1H, H2), 6.12 (d, 3𝐽c = 11.0Hz, 1H, H17), 4.30–4.14 (m, 2H, H8), 3.45 (ddd, 2𝐽 = 14.9Hz,
3𝐽=7.7, 5.5Hz, 1H, H7), 3.23 (dt,

2𝐽=14.8Hz, 3𝐽=5.0Hz, 1H, H7), 2.56–2.43 (m, 4H, H10,11),

1.31 (s, 3H, H14), 1.13 (s, 3H, H15).
13C{1H} NMR (100.7MHz, DMSO-d6): 𝛿 (ppm) = 173.3

(C12), 172.1 (C9), 146.5 (C21), 144.4 (C6), 142.6 (C24), 135.7 (C19), 130.8 (C18), 129.1 (C1),

127.7 (C5), 126.7 (C23), 124.2 (C17), 123.3 (C20), 122.7 (C22), 122.2 (C3), 119.7 (C4), 107.0

(C2), 89.7 (C16), 61.9 (C8), 52.8 (C13), 44.0 (C7), 28.7 (C11), 28.6 (C10), 24.1 (C15), 21.5 (C14).

HR-ESI-MS (m/z): [M+Na]+ calc. for C24H24N2O6S: 491.1247, found 491.1251.
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2-(3,3-Dimethyl-6-́nitrospiro[indoline-2,2-́thiochromen]-1-yl)ethyl 4-oxo-4-((3-
(triethoxysilyl)propyl)amino)butanoate – (17)
In a flame dried Schlenk flask, 16 (0.33 g, 0.71mmol) and CDI (0.12mg, 0.71mmol) were

dissolved in anhydrous THF (5mL) and the mixture was stirred at room temperature

for 21 h. APTES (0.17mL, 0.73mmol) was added dropwise and the reaction mixture was

stirred at ambient temperature for 23 h. The solvent was removed under reduced pressure

and the crude product was purified via column chromatography [silica, cC6H12:EtOAc,

2:1→1:1 (v:v)]. 17 was obtained as a yellow oil (0.30 g, 64 %). 1H NMR (400.3MHz,

CDCl3): 𝛿 (ppm) = 8.02 (d, 4𝐽 =2.4Hz, 1H, H26), 7.92 (dd,
3𝐽 =8.6Hz, 4𝐽 =2.5Hz, 1H, H28),

7.23 (d, 3𝐽 = 8.6Hz, 1H, H29), 7.16 (td,
3𝐽 = 7.7Hz, 4𝐽 = 1.3Hz, 1H, H4), 7.07 (dd,

3𝐽 = 7.2Hz,
4𝐽=1.3Hz, 1H, H5), 6.89 (d,

3𝐽c=11.0Hz, 1H, H24), 6.87 (td,
3𝐽=7.7Hz, 4𝐽=1.3Hz, 1H, H3),

6.60 (d, 3𝐽=7.8Hz, 1H, H2), 6.02 (d,
3𝐽c=11.0Hz, 1H, H23), 5.81 (bs, 1H, H13), 4.36–4.17 (m,

2H, H8), 3.81 (q,
3𝐽 =7.0Hz, 4H, H17), 3.72 (q,

3𝐽 =7.1Hz, 2H, H17), 3.56 (ddd,
2𝐽 =14.9Hz,

3𝐽 = 7.0, 6.2Hz, 1H, H7), 3.34–3.17 (m, 3H, H7,14), 2.71–2.59 (m, 2H, H10), 2.47–2.35 (m,

2H, H11), 1.68–1.53 (m, 2H, H15), 1.39 (s, 3H, H20), 1.24 (t, 3𝐽 = 7.1Hz, 3H, H18), 1.22 (t,
3𝐽 =7.1Hz, 6H, H18), 1.21 (s, 3H, H21), 0.69–0.55 (m, 2H, H16).

13C{1H} NMR (100.7MHz,

CDCl3): 𝛿 (ppm) = 173.0 (C9), 171.1 (C12), 146.9 (C6), 144.9 (C30), 143.4 (C27), 136.0 (C1),

130.9 (C24), 129.1 (C25), 128.1 (C4), 126.5 (C29), 124.6 (C23), 123.5 (C26), 122.9 (C28), 122.4

(C5), 120.3 (C3), 107.2 (C2), 89.8 (C22), 62.8 (C8), 58.6 (C17), 58.6 (C17), 53.2 (C19), 44.5 (C7),

42.1 (C14), 31.0 (C11), 29.6 (C10), 24.4 (C20), 23.0 (C15), 22.2 (C21), 18.6 (C18), 18.4 (C18), 7.9

(C16). HR-ESI-MS (m/z): [M+Na]+ calc. for C33H45N3O8SSi: 694.2589, found 694.2599.

2-(3,3-Dimethyl-6-́nitrospiro[indoline-2,2-́thiochromen]-1-yl)ethyl methacryl-
ate – (18)
15 (500mg, 1.36mmol) and triphenylphosphine (641mg, 2.44mmol) were dissolved in

dry THF (6mL). The solution was cooled to 0 ∘C and MAA (0.21mL, 2.4mmol) was

added dropwise. The mixture was stirred at 0 ∘C for 5min and a solution of DEAD

(0.39mL, 2.4mmol) in dry THF (4.5mL) was added dropwise. The solution was stirred

at 0 ∘C for 30min and at ambient temperature for 22 h. The solvent was evaporated at

ambient temperature and the crude product was purified via column chromatography

[silica, cC6H12:EtOAc, 10:1 (v:v)]. 18 was obtained as a yellow powder (298mg, 50 %).
1H NMR (400.3MHz, CDCl3): 𝛿 (ppm) = 8.02 (d, 4𝐽=2.4Hz, 1H, H20), 7.93 (dd,

3𝐽=8.6Hz,
4𝐽 =2.5Hz, 1H, H22), 7.24 (d,

3𝐽 =8.7Hz, 1H, H23), 7.17 (td,
3𝐽 =7.7Hz, 4𝐽 =1.3Hz, 1H, H4),

7.08 (dd, 3𝐽 = 7.3Hz, 4𝐽 = 1.2Hz, 1H, H5), 6.88 (td, 3𝐽 = 7.5Hz, 4𝐽 = 1.0Hz, 1H, H3), 6.87

(d, 3𝐽c = 10.9Hz, 1H, H17), 5.59 (t,
4𝐽 = 1.6Hz, 1H, H11), 4.42–4.26 (m, 2H, H8), 3.62 (ddd,

2𝐽 = 15.0Hz, 3𝐽 = 7.1, 6.1Hz, 1H, H7), 3.33 (dt, 2𝐽 = 14.9Hz, 3𝐽 = 5.6Hz, 1H, H7), 1.94 (dd,
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4𝐽 = 1.6, 1.0Hz, 3H, H12), 1.40 (s, 3H, H14), 1.22 (s, 3H, H15).
13C{1H} NMR (100.7MHz,

CDCl3): 𝛿 (ppm) = 167.3 (C9), 146.9 (C6), 144.9 (C19), 143.5 (C21), 136.2 (C10), 136.0 (C1),

130.8 (C18), 129.1 (C24), 128.1 (C4), 126.6 (C23), 126.1 (C11), 124.6 (C17), 123.5 (C20), 122.9

(C22), 122.4 (C5), 120.3 (C3), 107.3 (C2), 90.0 (C16), 62.8 (C8), 53.2 (C13), 44.6 (C7), 24.3 (C15),

22.2 (C14), 18.5 (C12). HR-ESI-MS (m/z): [M+Na]+ calc. for C24H24N2O4S: 459.1349, found

459.1348.

2-(8-Methoxy-3,́3-́dimethyl-6-nitrospiro[chromene-2,2-́indolin]-1-́yl)ethan-1-
ol – (19)
19 was synthesized following a modified literature protocol.[336] 13 (7.26 g, 35.7mmol)

and 3-methoxy-5-nitrosalicylaldehyde (7.04 g, 35.7mmol) were dissolved in EtOH

(280mL) and heated to reflux for 8 h. The solvent was removed under reduced pressure

and the raw product was recrystallized from EtOH, filtered, washed (EtOH, petroleum

ether) and dried under high vacuum. 19 was obtained as green-golden crystals (10.8 g,

79 %). 1H NMR (400.3MHz, CD3CN): 𝛿 (ppm) = 7.77 (d, 4𝐽 = 2.6Hz, 1H, H17), 7.66

(d, 4𝐽 = 2.6Hz, 1H, H19), 7.15 (td, 3𝐽 = 7.7Hz, 4𝐽 = 1.3Hz, 1H, H4), 7.11 (dd, 3𝐽 = 7.4Hz,
4𝐽 = 1.0Hz, 1H, H5), 6.98 (d, 3𝐽c = 10.4Hz, 1H, H15), 6.84 (td, 3𝐽 = 7.4Hz, 4𝐽 = 1.0Hz, 1H,
H3), 6.66 (d, 3𝐽 = 7.8Hz, 1H, H2), 5.97 (d, 3𝐽c = 10.4Hz, 1H, H14), 3.77 (s, 3H, H22), 3.66

(dq, 2𝐽 = 12.4Hz, 3𝐽 = 6.3Hz, 1H, H8), 3.56 (dq, 2𝐽 = 11.5Hz, 3𝐽 = 5.9Hz, 1H, H8), 3.37

(dt, 2𝐽 = 14.8Hz, 3𝐽 = 6.8Hz, 1H, H7), 3.23 (dt, 2𝐽 = 14.8Hz, 3𝐽 = 5.6Hz, 1H, H7), 2.79 (t,
3𝐽=6.0Hz, 1H, H9), 1.23 (s, 3H, H11), 1.14 (s, 3H, H12).

13C{1H} NMR (100.7MHz, CD3CN):

𝛿 (ppm) = 150.0 (C18), 148.3 (C6), 148.1 (C20), 141.6 (C21), 136.9 (C1), 128.9 (C15), 128.7 (C4),

123.3 (C14), 122.8 (C5), 120.3 (C3), 119.8 (C16), 116.3 (C17), 108.4 (C19), 108.1 (C13), 107.7

(C2), 60.8 (C8), 57.0 (C22), 53.6 (C10), 46.8 (C7), 26.2 (C12), 19.8 (C11). HR-ESI-MS (m/z):
[M+Na]+ calc. for C21H22N2O5: 405.1421, found 405.1420.

2-(8-Methoxy-3,́3-́dimethyl-6-nitrospiro[chromene-2,2-́indolin]-1-́yl)ethyl
methacrylate – (20)
Triphenylphosphine (688mg, 2.62mmol) and 19 (1.00 g, 2.62mmol) were dissolved in dry

THF (17mL). The solution was cooled to 0 ∘C and MAA (0.23mL, 2.6mmol) was added

dropwise. The mixture was stirred at 0 ∘C for 5min and a solution of DIAD (0.55mL,

2.8mmol) in dry THF (3mL) was added dropwise over 15min. The solution was stirred

at 0 ∘C for 30min and at ambient temperature for 22 h. The solvent was evaporated at

ambient temperature and the crude product was purified via column chromatography

[Alox N (I), cC6H12:EtOAc gradient]. 20 was obtained as a blue solid (722mg, 61 %).
1H NMR (400.3MHz, CDCl3): 𝛿 (ppm) = 7.69 (d, 4𝐽 = 2.6Hz, 1H, H20), 7.62 (d,

4𝐽 = 2.5Hz,
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1H, H22), 7.19 (td, 3𝐽 = 7.7Hz, 4𝐽 = 1.2Hz, 1H, H4), 7.08 (dd, 3𝐽 = 7.3Hz, 4𝐽 = 1.2Hz, 1H,
H5), 6.88 (td,

3𝐽 =7.4Hz, 4𝐽 =0.9Hz, 1H, H3), 6.84 (td,
3𝐽 =7.4Hz, 4𝐽 =1.0Hz, 1H, H3), 6.86

(d, 3𝐽c = 10.3Hz, 1H, H18), 6.70 (d,
3𝐽 = 7.8Hz, 1H, H2), 6.06 (t,

4𝐽 = 1.3Hz, 1H, H11), 5.85

(d, 3𝐽c = 10.3Hz, 1H, H17), 5.55 (t,
4𝐽 = 1.7Hz, 1H, H11), 4.29 (t,

3𝐽 = 6.3Hz, 2H, H8), 3.75

(s, 3H, H25), 3.60 (dt,
2𝐽 = 15.2Hz, 3𝐽 = 6.7Hz, 1H, H7), 3.47 (dt,

2𝐽 = 15.2Hz, 3𝐽 = 6.0Hz, 1
H, H7), 1.91 (d, 4𝐽 = 1.2Hz, 3H, H12), 1.27 (s, 3H, H14), 1.16 (s, 3H, H15).

13C{1H} NMR

(100.7MHz, CDCl3): 𝛿 (ppm) = 167.4 (C9), 149.3 (C24), 147.5 (C23), 146.8 (C6), 140.7 (C21),

136.2 (C10), 135.9 (C1), 128.4 (C18), 127.8 (C4), 126.0 (C11), 122.0 (C17), 121.9 (C5), 119.8

(C3), 118.4 (C19), 115.5 (C20), 108.0 (C22), 106.8 (C2), 106.6 (C16), 62.8 (C8), 56.4 (C25), 52.9

(C13), 42.4 (C7), 26.1 (C15), 19.1 (C14), 18.5 (C12). HR-ESI-MS (m/z): [M+Na]+ calc. for

C25H26N2O6: 473.1683, found 473.1685.

7.4 Polymerizations

Diene-functional PMMA polymers (P1–P4)
MMA (0.941mg, 9.40mmol), 2 (45.3 µg, 94 µmol) and AIBN (1.7 µg, 10 µmol) were dis-

solved in toluene (1.50mL). The solution was divided in half and transferred into two

10mL Schlenk flasks. The mixtures were deoxygenated by four consecutive freeze-pump-

thaw cycles and the flasks were subsequently placed in a pre-heated oil bath at 60 ∘C for 3 h

(P1) and 5 h (P2). The polymerizations were stopped through freezing in liquid nitrogen

and exposure to air. Residual monomer and solvent were removed under reduced pressure

and the polymers were purified by precipitating three times from DCM in an excess of

cold cC6H12:Et2O [8:2 (v:v)] and dried under high vacuum. P1 and P2 were obtained

as yellow powders. P1: 𝑀n,SEC = 3300 gmol−1, Đ = 1.14; P2: 𝑀n,SEC = 4000 gmol−1,

Đ = 1.18.

In a 25mL Schlenk flask, MMA (1.859mg, 18.57mmol), 2 (91.6 µg, 189 µmol) and AIBN

(3.4 µg, 21 µmol) were dissolved in toluene (3.0mL). The mixture was deoxygenated by

three consecutive freeze-pump-thaw cycles and the flask was subsequently placed in a

pre-heated oil bath at 60 ∘C for 5.5 h. The polymerization was stopped through freezing

in liquid nitrogen and exposure to air. Residual monomer and solvent were removed

under reduced pressure and the polymer was purified by precipitating three times from

DCM in an excess of cold cC6H12:Et2O [1:1 (v:v)] and dried under high vacuum. P3 was

obtained as a yellow powder: 𝑀n,SEC = 5100 gmol−1, Đ = 1.18.

In a 10mL Schlenk flask, MMA (0.937mg, 9.35mmol), 2 (48.2 µg, 100 µmol) and AIBN

(1.6 µg, 10 µmol) were dissolved in toluene (4.0mL). The mixture was deoxygenated by
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three consecutive freeze-pump-thaw cycles and the flask was subsequently placed in a

pre-heated oil bath at 60 ∘C for 22.5 h. The polymerization was stopped through freezing

in liquid nitrogen and exposure to air. Residual monomer and solvent were removed

under reduced pressure and the polymer was purified by precipitating three times from

DCM in an excess of cold MeOH and dried under high vacuum. P4 was obtained as a

yellow powder: 𝑀n,SEC = 6500 gmol−1, Đ = 1.21.

Maleimide functional PMMA polymers (P9-FM, P9-non-capped, P10-FM, P10-
FM-cap, and P10)
In a 50mL round bottom flask, MMA (2.13ml, 20.0mmol), 4 (157mg, 0.333mmol) and

AIBN (5.6mg, 0.033mmol) were dissolved in 1,4-dioxane (7.87mL). The mixture was

deoxygenated by three consecutive freeze-pump-thaw cycles and the flask was subse-

quently placed in a pre-heated oil bath at 60 ∘C for 24 h. The polymerization was stopped

through freezing in liquid nitrogen and exposure to air. Residual monomer and solvent

were removed under reduced pressure and the polymer was purified by precipitating

three times from DCM in an excess of cold cC6H12:Et2O [8:2 (v:v)] and dried under high

vacuum. P10-FM was obtained as a pink powder: 𝑀n,SEC = 5500 gmol−1, Đ = 1.21. For
P9-FM, the same procedure as for P10-FM was applied, but the polymerization was

stopped after 3.5 h. P9-FM: 𝑀n,SEC = 2900 gmol−1, Đ = 1.17.
For P9-non-capped, P9-FM (831mg) was dissolved in dry toluene (80mL) and per-

colated with nitrogen for 1 h. The solution was refluxed for 3 h and the solvent was

removed under reduced pressure. The polymer was purified by precipitating two times

from DCM in an excess of cold cC6H12 and dried under high vacuum. P9-non-capped
was obtained as an off-white powder: 𝑀n,SEC = 2700 gmol−1, Đ = 1.18.

For P10-FM-cap, P10-FM was dissolved in MeCN (15mgmL−1) and 6 (5 eq.) was

added. The solution was percolated with nitrogen for 30min and the flask was irradiated

in a custom-made photoreactor at room temperature under constant stirring with an

Arimed B6 lamp from 2.5 cm distance. After 2 h, the solvent was removed under reduced

pressure and the polymer was purified by precipitating three times from DCM in an

excess of cold cC6H12:Et2O [8:2 (v:v)] and dried under high vacuum. P10-FM-cap was

obtained as a white powder: 𝑀n,SEC = 5700 gmol−1, Đ = 1.20.
P10-FM-cap was dissolved in toluene (10mgmL−1) and heated under reflux for 4 h.

The solvent was removed under reduced pressure and the polymer was purified by

precipitating three times from DCM in an excess of cold cC6H12:Et2O [8:2 (v:v)] and

dried under high vacuum. P10 was obtained as a white powder: 𝑀n,SEC = 5700 gmol−1,

Đ = 1.19.
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Phosphine ligand copolymers
In a 50mL round bottom flask, 4 (89.2mg, 190 µmol), AIBN (3.0mg, 18 µmol), MMA

(1.00ml, 9.39mmol) and 7 (703mg, 1.68mmol) were dissolved in 1,4-dioxane (4.6mL).

The mixture was deoxygenated by three consecutive freeze-pump-thaw cycles and the

flaskwas subsequently placed in a pre-heated oil bath at 60 ∘C for 24 h. The polymerization

was stopped through freezing in liquid nitrogen and exposure to air. Residual monomer

and solvent were removed under reduced pressure and the polymer was purified by

precipitating three times from DCM in an excess of cC6H12:Et2O [8:2 (v:v)] and dried

under high vacuum. P11-FM was obtained as a pink powder: 𝑀n,SEC = 10 200 gmol−1,

Đ = 1.27.
A solution of P11-FM was prepared in MeCN (16mgmL−1). To this, 6 (5 eq.) was

added and the solution was percolated with nitrogen for 30min. The flask was placed

in a custom-made photoreactor and irradiated at room temperature with an Arimed B6

lamp from 2.5 cm distance while being stirred. After 2.5 h, the solvent was removed under

vacuum and the residue was redissolved in a minimum amount of DCM, precipitated two

times in an excess of cC6H12:Et2O [8:2 (v:v)] and dried under high vacuum. P11-FM-cap
was obtained as a white powder: 𝑀n,SEC = 10 400 gmol−1, Đ = 1.28.

A solution of P11-FM-cap in toluene (21mgmL−1) was heated under reflux for 4 h.

The solvent was removed under vacuum and the residue was re-dissolved in a minimum

amount of DCM, precipitated two times in an excess of n-hexane/Et2O [8:2 (v:v)] and

dried under high vacuum. P11was obtained as a white powder: 𝑀n,SEC = 10 700 gmol−1,

Đ = 1.35.

Bipyridine ligand copolymers
In a 50mL round bottom flask, 4 (178mg, 378 µmol), AIBN (6.7mg, 41 µmol), MMA

(2.19ml, 20.6mmol), and 9 (708mg, 2.28mmol) were dissolved in 1,4-dioxane (9.2mL).

The mixture was deoxygenated by three consecutive freeze-pump-thaw cycles and the

flaskwas subsequently placed in a pre-heated oil bath at 60 ∘C for 24 h. The polymerization

was stopped through freezing in liquid nitrogen and exposure to air. The solvent was

removed under vacuum and the residue was re-dissolved in a minimum amount of DCM,

precipitated three times in an excess of n-hexane/Et2O [8:2 (v:v)] and dried under high

vacuum. P12-FM was obtained as a pink powder: 𝑀n,SEC = 5900 gmol−1, Đ = 1.22.
A solution of P12-FMwas prepared in MeCN (34mgmL−1). To this, 6 (5 eq.) was added

and the solution was percolated with nitrogen for 30min. The flask was then placed in a

custom-made photoreactor and irradiated at room temperature while being stirred with an

Arimed B6 lamp from 2.5 cm distance. After 2.5 h, the solvent was removed under vacuum
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and the residue was redissolved in a minimum amount of DCM and precipitated two times

in an excess of n-hexane/Et2O [8:2 (v:v)] and dried under high vacuum. P12-FM-cap
was obtained as a white powder: 𝑀n,SEC = 6100 gmol−1, Đ = 1.22.

A solution of P12-FM-cap in toluene (20mgmL−1) was heated under reflux for 4 h.

The solvent was removed under vacuum and the residue was re-dissolved in a minimum

amount of DCM, precipitated two times in an excess of n-hexane/Et2O [8:2 (v:v)] and

dried under high vacuum. P12 was obtained as a white powder: 𝑀n,SEC = 6400 gmol−1,

Đ = 1.25.

Spirothiopyran-MMA copolymers (P13a–d)
In a 10mL Schlenk flask, MMA (147mg, 1.46mmol), 18 (161mg, 0.369mmol), 1-dodecane-

thiol (8.9mg, 44 µmol), and AIBN (6.7mg, 41 µmol) were dissolved in toluene (2.84mL).

The mixture was deoxygenated by three consecutive freeze-pump-thaw cycles and the

flask was subsequently placed in a pre-heated oil bath at 65 ∘C for 17.5 h. The polymeri-

zation was stopped through freezing in liquid nitrogen and exposure to air. Residual

monomer and solvent were removed under reduced pressure and the polymer was pu-

rified by precipitating three times from DCM in an excess of cold methanol and dried

under high vacuum. P13a was obtained as a yellow powder: 𝑀n,SEC = 6100 gmol−1,

Đ = 1.97, 14mol% SPT content (NMR).

In a 10mL Schlenk flask, MMA (42.6mg, 0.425mmol), 18 (80.3mg, 0.184mmol), 1-

dodecanethiol (2.5mg, 12 µmol), and AIBN (2.1mg, 13 µmol) were dissolved in toluene

(0.96mL). The mixture was deoxygenated by three consecutive freeze-pump-thaw cycles

and the flask was subsequently placed in a pre-heated oil bath at 65 ∘C for 17 h. The

polymerization was stopped through freezing in liquid nitrogen and exposure to air.

Residual monomer and solvent were removed under reduced pressure and the polymer

was purified by precipitating three times from DCM in an excess of cold methanol and

dried under high vacuum. P13bwas obtained as a yellow powder: 𝑀n,SEC = 7600 gmol−1,

Đ = 1.55, 27mol% SPT content (NMR).

In a 10mL Schlenk flask, MMA (9.6mg, 96 µmol), 18 (92.8mg, 0.213mmol), 1-dodecane-

thiol (1.4mg, 6.9 µmol), and AIBN (1.0mg, 6.1 µmol) were dissolved in toluene (0.99mL).

The mixture was deoxygenated by three consecutive freeze-pump-thaw cycles and the

flaskwas subsequently placed in a pre-heated oil bath at 65 ∘C for 17 h. The polymerization

was stopped through freezing in liquid nitrogen and exposure to air. Residual monomer

and solvent were removed under reduced pressure and the polymer was purified by

precipitating three times from DCM in an excess of cold methanol and dried under high
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vacuum. P13c was obtained as a yellow powder: 𝑀n,SEC = 8600 gmol−1, Đ = 1.78,
56mol% STP content (NMR).

In a 10mL Schlenk flask, MMA (0.75mL, 7.0mmol), 18 (300mg, 0.687mmol), and AIBN

(2.4mg, 15 µmol) were dissolved in 1,4-dioxane (5mL). The mixture was deoxygenated

by three consecutive freeze-pump-thaw cycles and the flask was subsequently placed in

a pre-heated oil bath at 65 ∘C for 23 h. The polymerization was stopped through freezing

in liquid nitrogen and exposure to air. Residual monomer and solvent were removed

under reduced pressure and the polymer was purified by precipitating two times from

DCM in an excess of cold methanol and dried under high vacuum. P13d was obtained as

a yellow powder: 𝑀n,SEC = 44 000 gmol−1, Đ = 2.10, 7mol% STP content (NMR).

SP-MMA copolymer (P15)
In a 10mL Schlenk flask, MMA (98.0mg, 0.976mmol), 20 (109mg, 0.242mmol), 1-dode-

canethiol (6.1mg, 37 µmol), andAIBN (4.1mg, 25 µmol) were dissolved in toluene (1.89mL).

The mixture was deoxygenated by three consecutive freeze-pump-thaw cycles and the

flask was subsequently placed in a pre-heated oil bath at 70 ∘C for 13.5 h. The polymeri-

zation was stopped through freezing in liquid nitrogen and exposure to air. Residual

monomer and solvent were removed under reduced pressure and the polymer was puri-

fied by precipitating three times from DCM in an excess of cold methanol and dried under

high vacuum. P15 was obtained as a blue powder: 𝑀n,SEC = 7300 gmol−1, Đ = 1.58,
16mol% SP content (NMR).

7.5 Surface reactions

All silicon wafer manipulations were carried out with gloves and surgical masks em-

ploying ceramic tweezers. A continuous solvent film on the polished side of the wafers

was maintained during all experimental steps until the final drying step in a stream of

nitrogen.

Activation of silicon wafers Silicon wafers were separately placed in 10ml glass

vials with the polished surface pointing upwards, 4ml freshly prepared piranha solution

[H2O2:H2SO4, 1:2 (v:v)] was added, the glass vials were sealed with a plastic lid and placed

on a pre-heated metal plate at 80 ∘C for 1 h. The wafers were rinsed with water, dried in

a stream of nitrogen, and placed with the polished surface pointing upwards into head

space vials (Pyrex, 20mm diameter), which were crimped airtight using styrene/butadiene
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7.5 Surface reactions

rubber seals with PTFE inner liner and degassed for 10min with nitrogen. The activated,

dried, and sealed wafers were immediately used for subsequent silanization.

Silanization of silicon wafers The respective silane was dissolved in dry toluene

(4mM) and percolated with nitrogen for 10min. To each activated silicon wafer, 1ml

of silane solution was added and the sealed glass vials were placed on a pre-heated

metal plate at 50 ∘C for 4 h and stored at ambient temperature until usage (8–24 h) under

exclusion from light. The wafers were rinsed with an excess of toluene and DCM, dried

under a stream of nitrogen and either used directly for the surface encoding steps or

stored in single wafer shippers until usage at ambient temperature (maximum 1 week).

Photoreactions employing shadowmasks The wafers were assembled in the photo

mask holder with or without shadowmask (see Figure 3.5a–c) and placed upright in a head

space vial (Pyrex, 20mm diameter). The vials were crimped airtight using styrene/bu-

tadiene rubber seals with PTFE inner liner and percolated with nitrogen for 10min. A

solution of the respective reaction partner was prepared in a separate vial (1mgmL−1 in

anhydrous 1,4-dioxane, 5mL total volume), percolated with nitrogen for 10min, passed

through a 0.22 µm PTFE membrane filter and transferred into the vial containing the

assembled wafer. The vial was irradiated with UV light (Philips Cleo Compact PL-L for

phenacyl sulfide and Arimed B6 for NITEC reactions) in a custom-build photoreactor

from 2.5 cm distance (see Figure 3.5d). The distance between the inner glass wall of the

vial and the wafer surface was 2mm unless stated otherwise. The solution was diluted

with DCM and the photo mask holder was disassembled while being immersed in a head

space vial with DCM. All metal parts were sonicated in DCM for 15min, washed with

DCM, dried under a stream of nitrogen, and stored in a dry and dust free environment

for further experiments. The functionalized silicon wafers were washed with DCM,

sonicated for 2min in acetone, washed with DCM, sonicated for 2min in toluene, washed

with DCM and finally dried in a stream of nitrogen and stored in single wafer shippers.

For the metal post-loading of phosphine and bipyridine functionalized surfaces, the sili-

con wafers containing the ligand polymer P11 or P12 on the irradiated areas were placed

in head space vials (Pyrex, 20mm diameter), crimped airtight using styrene/butadiene

rubber seals with PTFE inner liner and percolated with nitrogen for 10min.

For P11, a stock solution of chloro(tetrahydrothiophene)gold(I) was prepared (4mM

in DCM). DCM was transferred into the wafer-containing vial via syringe (1mL) and left

at ambient temperature for 5min after which 1mL of the gold stock solution was added
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7 Experimental section

via syringe and left at ambient temperature for another 30min (if not stated otherwise)

under exclusion from light and gentle shaking.

For P12, a stock solution of cis-dichlorobis(dimethyl sulfoxide)platinum(II) was pre-

pared (4mM in chloroform). Chloroform was transferred into the wafer-containing vial

via syringe (1mL) and left at 65 ∘C for 5min after which 1mL of the platinum stock

solution was added via syringe and left at 65 ∘C for another 30min under exclusion from

light and gentle shaking.

The functionalized silicon wafers were washed with DCM, sonicated for 2min in

acetone, washed with DCM, sonicated for 2min in toluene, washed with DCM, dried in a

stream of nitrogen and stored in single wafer shippers.
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Appendix

A.1 Pulse sequence for LED-NMR kinetic experiments

1 ;zg2d_30
2 ;avance-version (12/01/11)
3 ;pseudo 2D sequence
4 ;
5 ;$$CLASS=HighRes
6 ;$$DIM=2D
7 ;$$TYPE=
8 ;$$SUBTYPE=
9 ;$$COMMENT=Modified by Rouven Müller to use 30 degree flip angle instead of 90
10

11 #include <Avance.incl>
12 #include <Delay.incl>
13

14 ”DELTA=d20-((d1+aq)*(ns+ds))-30m”
15

16 ”acqt0=-p1*0.66/3.1416”
17

18 1 ze
19 30m
20 2 DELTA
21 3 d1
22 p1*0.33 ph1
23 go=3 ph31
24 30m wr #0 if #0 ze
25 lo to 2 times td1
26 exit
27

28 ph1=0 2 2 0 1 3 3 1
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29 ph31=0 2 2 0 1 3 3 1
30

31 ;pl1 : f1 channel - power level for pulse (default)
32 ;p1 : f1 channel - 90 degree high power pulse
33 ;d1 : relaxation delay; 1-5 * T1
34 ;d20: delay between start of different 1D spectra
35 ;ns: 1 * n
36 ;td1: number of experiments
37

38 ;$Id: zg2d,v 1.6.8.1 2012/01/31 17:56:41 ber Exp $

A.2 Setup for LED-UV-Vis measurements

passive cooling element

LED

towards power supply

UV-Vis spectrometer

magnetic stirrer

cuvette with stirring bar

Figure A.1. Setup for the irradiation of a solution in a quartz cuvette with simultaneous absorp-

tion measurement. The cuvette is equipped with a magnetic stirring bar and inserted into the

UV-Vis spectrometer, which is placed above a magnetic stirrer. The LED is attached onto a passive

cooling element and placed upside down on top of the cuvette. The potential interference of the

LED irradiation and the UV-Vis measurement is minimized through the 90° angle between the

LED light beam and the light path of the spectrometer.
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A.3 Setup for LED-NMR measurements

A.3 Setup for LED-NMR measurements

1 × etching 3–4 × etching 

Figure A.2. Images of the etching procedure of the stripped optical fiber with glass etching

cream. a) After the 1st etching, most of the light is still leaking from the tip of the fiber. b)

Illumination of the fiber during the etching procedure enables real-time monitoring of the surface

wrinkling. c) After several etching iterations, the optical fiber is homogeneously emitting the light

over the whole surface area.

A.4 MATLAB Script for absorption corrected spectral
intensity

The MATLAB script for absorption corrected spectral intensity calculations needs two

input files. First, the UV-Vis spectra as a .txt-file in the format as exported from the

OceanOptics software, for which an example including the header is given below:

1 Data from UVVis-filename.txt Node
2

3 Date: Thu Nov 23 09:51:24 CET 2018
4 User: username
5 Spectrometer: USB4J01072
6 Trigger mode: 0
7 Integration Time (sec): 3,020000E-2
8 Scans to average: 100
9 Electric dark correction enabled: true
10 Nonlinearity correction enabled: false
11 Boxcar width: 6
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12 XAxis mode: Wavelengths
13 Number of Pixels in Spectrum: 3648
14 >>>>>Begin Spectral Data<<<<<
15 176,59012 0,15318592
16 176,8105137 0,16792531
17 177,03089514 0,17661932
18 ⋮

The 2nd input file is the spectral intensity measurement of the light source in the .dat-

format as exported from the USBSpec spectral software, for which also an example

including the header is given below:

1 [Common]
2 DecimalSep=,
3 DateSep=.
4 DateFormat=dd/MM/yyyy
5 TimeSep=:
6 TimeFormat=hh:mm:ss
7

8 [Measurement Info]
9 Integration time [ms]=1301,24795436859
10 Spectra start [nm]=200
11 Spectra end [nm]=800
12 Spectra Resolution [nm]=0,6
13 Dark measurement=YES
14 Averaging=200
15 Measurement date=21.11.2017
16 Measurement time=12:51:17
17 File name=Photometer-filename.dat
18 Spectral correction=absolut
19 Calibration file=69DIF20160222.SpecCal
20

21 [Manipulation]
22 Mathematical manipulation[1]=
23

24 [Memo]
25 Memo[1]=
26

27 [Measurement Setup]
28 Auto integration time=NO
29 continuous measurement=NO
30 Transmission measurement=NO
31 Dynamic measurement=NO
32 Flash active=NO
33 Output active=NO
34 Trigger input active=NO
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35

36 [Offset Info]
37 Offset active=YES
38

39 [Hardware Info]
40 Serial number=#840 320 0069
41 Start Pixel=13
42 Dispersion=0,6047
43 Device DLL=$0499
44 CPU Version=$0082
45

46 [Calculations]
47 UV-C [mW/m²]=-18,8722101724828
48 UV-B [mW/m²]=2038,26866111501
49 UV-A [mW/m²]=8169,02761508168
50 Lux [Lux]=1114,70201075884
51 Erythema [mW/m²]=501,827074298747
52 Pigment [mW/m²]=8389,27927931011
53

54 [Spectra]
55 Name=Opsytec Dr. Groebel Spectra
56 Unit=mW/m²/nm
57 Dose Unit=mW/m²
58 LUX kor=0,001
59 CAL kor=1
60 UU=4
61 Amax=82,9272755016403
62 Lines=1001
63 Data: Photometer-filename
64 200,00 -5,1202858E-01
65 200,60 2,3112685E+00
66 201,20 -1,5222480E+00
67 ⋮

With these two input files, theMATLAB script given below calculates the spectral intensity

of the light source at arbitrary penetration depths through the absorbing solution:

1 function PlotIntensityDepth()
2

3 % Absorption calculator
4 % first adapt these values, then execute script
5

6 filename_UVVis = ’UVVis-filename.txt’;
7 filename_Photometer = ’Photometer-filename.dat’;
8

9 % UV-Vis measurement
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10 c_UVVis = 0.25; % mmol/l - concentration of solution in UV Vis
11 d_UVVis = 1; % mm - width of UV-Vis solution/vial
12 UVVis_spectrum_normalized = 0; % 0 or 1 - normalize spectrum to 1 (instead of physical

units)
13

14 % Photometer
15 lamp_spectrum_normalized = 0; % 0 or 1 - normalize spectrum to 1 (instead of physical

units)
16

17 % target solution
18 c_solution = 0.25; % mmol/l - concentration of target solution
19

20 % plot parameters
21 lambda_min = 200; % nm - lower end of spectrum
22 lambda_max = 800; % nm - upper end of spectrum
23 lambda_step = 1; % nm - step size of spectrum
24 depth = 10; % mm - maximum depth for simulation
25 depth_step = 0.01; % mm - depth step size
26

27 % read in data files
28 fid1 = fopen(filename_UVVis);
29 data_UVVis = textscan(fid1,’%s\t%s’,’HeaderLines’,14);
30 fclose(fid1);
31 data_UVVis = str2double(strrep([data_UVVis{1} data_UVVis{2}],’,’,’.’));
32

33 fid2 = fopen(filename_Photometer);
34 data_Photometer = textscan(fid2,’%s\t%s’,’HeaderLines’,63);
35 fclose(fid2);
36 data_Photometer = str2double(strrep([data_Photometer{1} data_Photometer{2}],’,’,’.’));
37

38 %grid
39 z = 0:depth_step:depth;
40 nm = lambda_min:lambda_step:lambda_max;
41

42 %interpolate data
43 data_interp_UVVis = interp1(data_UVVis(:,1),data_UVVis(:,2),nm);
44 data_interp_Photometer = interp1(data_Photometer(:,1),data_Photometer(:,2),nm);
45

46 %data cosmetics
47 data_interp_UVVis(data_interp_UVVis<0) = 0;
48 data_interp_Photometer(data_interp_Photometer<0) = 0;
49

50 % calculate epsilon and intensity
51 epsilon = data_interp_UVVis / c_UVVis / d_UVVis; % unit: l/mmol / mm
52 intensity = data_interp_Photometer; % unit: mW/m²
53

54 %normalize
55 if UVVis_spectrum_normalized
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56 epsilon = epsilon./max(epsilon);
57 end
58 if lamp_spectrum_normalized
59 intensity = intensity./max(intensity);
60 end
61

62 %create calculation matrices
63 [~,Z] = meshgrid(nm,z);
64 Eps = repmat(epsilon,size(Z,1),1);
65 Int = repmat(intensity,size(Z,1),1);
66

67 % the actual calculation
68 result = Int .* 10.^(-Z .* Eps * c_solution);
69

70 % plotting everything
71 f = figure(’Units’, ’normal’, ’Position’, [0.05 0.05 .8 .8 ]);
72

73 % spectra plot
74 subgroup1 = uipanel(’Parent’,f ,’Units’,’normal’,’Position’,[0 .5 .5

.5],’BorderType’,’none’);
75 subgroup1_axes = axes(’Parent’,subgroup1,’Units’,’normal’,’Position’,[0.1 0.2 .8 .7]);
76 yyaxis left
77 plot(nm,epsilon,’Parent’,subgroup1_axes)
78 if UVVis_spectrum_normalized
79 ylabel(’epsilon (norm.)’)
80 else
81 ylabel(’epsilon (l/mmol/mm)’)
82 end
83 yyaxis right
84 plot(nm,intensity)
85 xlabel(’wavelength (nm)’)
86 if lamp_spectrum_normalized
87 ylabel(’intensity (norm.)’)
88 else
89 ylabel(’intensity (mW/m²)’)
90 end
91

92 % false color plot
93 subgroup2 = uipanel(’Parent’,f ,’Units’,’normal’,’Position’,[.5 0 .5

1],’BorderType’,’none’);
94 subgroup2_axes = axes(’Parent’,subgroup2,’Units’,’normal’,’Position’,[0.1 0.1 .8 .8]);
95 imagesc(nm,z,result,’Parent’,subgroup2_axes)
96 c = colorbar;
97 if lamp_spectrum_normalized
98 c.Label.String = ’intensity (norm.)’;
99 else
100 c.Label.String = ’intensity (mW/m²)’;
101 end
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102 xlabel(’wavelength (nm)’)
103 ylabel(’depth (mm)’)
104

105 current_line = 1;
106

107 % slice plot
108 subgroup3 = uipanel(’Parent’,f ,’Units’,’normal’,’Position’,[0 0 .5

.5],’BorderType’,’none’);
109 subgroup3_axes = axes(’Parent’,subgroup3,’Units’,’normal’,’Position’,[0.1 0.25 .8 .7]);
110 subgroup3_controls = uipanel(’Parent’,subgroup3,’Units’, ’normal’, ’Position’, [0 0 1

.1],’BorderType’,’none’);
111 h = plot(nm,result(current_line,:),’Parent’,subgroup3_axes);
112 xlabel(’wavelength (nm)’)
113 title(’intensity spectrum at selected depth’)
114 if lamp_spectrum_normalized
115 ylabel(’intensity (norm.)’)
116 ylim([0 1]);
117 else
118 ylabel(’intensity (mW/m²)’)
119 tmp = ylim;
120 ylim(tmp);
121 end
122

123 % save data into file
124 save(’filename.mat’,’result’)
125

126 % interactive controls
127 uicontrol(’Style’, ’text’,’Parent’,subgroup3_controls,’Position’, [20 10 100

20],’String’,’depth (mm)’);
128 sld = uicontrol(’Style’,

’slider’,’Min’,z(1),’Max’,z(end),’Value’,z(current_line),’Parent’,
129 subgroup3_controls,’Position’, [120 10 320 20],’Callback’, @sliderchange);
130 edt = uicontrol(’Style’,

’edit’,’String’,num2str(z(current_line)),’Parent’,subgroup3_controls,’Position’,
[460 10 100 20],’Callback’, @editchange);

131 button = uicontrol(’Style’, ’pushbutton’,’String’,’Save
spectrum’,’Parent’,subgroup3_controls,’Position’, [580 10 100 20],’Callback’,
@savedata);

132

133 function sliderchange(source,event)
134 current_line = find(source.Value<=z,1);
135 h.YData = result(current_line,:);
136 edt.String = num2str(z(current_line));
137 end
138

139 function editchange(source,event)
140 value = str2double(source.String);
141 if value >= 0 && value <= z(end)
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142 current_line = find(value<=z,1);
143 end
144 h.YData = result(current_line,:);
145 sld.Value = z(current_line);
146 end
147

148 function savedata(source,event)
149 savefile = uiputfile(’*.*’);
150 if savefile ~= 0
151 dlmwrite(savefile,[h.XData’ h.YData’]);
152 end
153 end
154

155 end
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A.5 NMR spectra
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Figure A.3. 1H NMR (top) and 13C NMR (bottom) spectrum of 2 recorded in CDCl3. For reso-

nance assignment refer to the schematic molecular structure.
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Figure A.8. 1H NMR (top) and 13C NMR (bottom) spectrum of 11b recorded in CDCl3. For

resonance assignment refer to the schematic molecular structure. X = H2O.
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Figure A.9. 1H NMR (top) and 13C NMR (bottom) spectrum of 12 recorded in CDCl3. For

resonance assignment refer to the schematic molecular structure.
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Figure A.10. 1H NMR (top) and 13C NMR (bottom) spectrum of 13 recorded in CDCl3. For

resonance assignment refer to the schematic molecular structure.
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Figure A.11. 1H NMR (top) and 13C NMR (bottom) spectrum of 14b recorded in CDCl3. For

resonance assignment refer to the schematic molecular structure. X = toluene.
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Figure A.12. 1H NMR (top) and 13C NMR (bottom) spectrum of 15 recorded in DMSO-d 6. For

resonance assignment refer to the schematic molecular structure. X = EtOH, H2O.
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Figure A.13. 1H NMR (top) and 13C NMR (bottom) spectrum of 16 recorded in DMSO-d 6. For

resonance assignment refer to the schematic molecular structure.
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Figure A.14. 1H NMR (top) and 13C NMR (bottom) spectrum of 17 recorded in CDCl3. For

resonance assignment refer to the schematic molecular structure. X = EtOAc.
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Figure A.15. 1H NMR (top) and 13C NMR (bottom) spectrum of 18 recorded in CDCl3. For

resonance assignment refer to the schematic molecular structure. X = cC6H12.
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Figure A.16. 1H NMR (top) and 13C NMR (bottom) spectrum of 19 recorded in CD3CN. For

resonance assignment refer to the schematic molecular structure. X = H2O.
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Figure A.17. 1H NMR (top) and 13C NMR (bottom) spectrum of 20 recorded in CDCl3. For

resonance assignment refer to the schematic molecular structure. X = cC6H12, H2O, grease.
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Figure A.18. UV-Vis spectra of copolymer P11 and the metallopolymer P11-Au measured in

1,4-dioxane (1mgmL−1).
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Figure A.19. UV-Vis spectra of copolymer P12 and the metallopolymers P12-Pt and P12-Pd
measured in 1,4-dioxane (1mgmL−1).
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Figure A.20. UV-Vis spectra of 10-Ca for the determination of the complex stoichiometry using

Job’s method of continuous variations. The wavelength at 580 nm used for the Job’s plot analysis

is indicated with the dashed blue line. [10]+[Ca] = 2.8mM in MeCN, measured in a 1mm cuvette.
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Figure A.21. Job’s plot analysis of the spectra in Figure A.20. The maximum of the interpolated

dashed blue line lies at 𝑋Ca = 0.23.
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Figure A.22. UV-Vis spectra of 10-La for the determination of the complex stoichiometry using

Job’s method of continuous variations. The wavelength at 530 nm used for the Job’s plot analysis

is indicated with the dashed blue line. [10]+[La] = 2.8mM in MeCN, measured in a 1mm cuvette.
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Figure A.23. Job’s plot analysis of the spectra in Figure A.20. The maximum of the interpolated

dashed blue line lies at 𝑋La = 0.32.
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A.7 Emission spectra
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Figure A.24. Spectral irradiance of the Philips Cleo Compact PL-L UV lamp employed for the

phenacyl sulfide photoreactions. Measured at a distance of 6 cm in the custom-build photoreactor.
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Figure A.25. Spectral irradiance of the Arimed B6 UV lamp employed for the NITEC and

photoenol photoreactions. Measured at a distance of 2.5 cm in the custom-build photoreactor.
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Figure A.26. Spectral irradiance of the 365 nm LED employed for the LED-NMR experiments.

Measured at a distance of 1 cm for various LED currents.
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Figure A.27. Irradiance of the 365 nm LED employed for the LED-NMR experiments integrated

from 330–420 nm, plotted against the applied LED current, and fitted to a cubic polynomial

function. The operation mode for the LED-NMR experiments is indicated.
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Figure A.28. 3D Surface plot of the relationship between the spectral irradiance of the light

source after passing through the reaction solution of P11-Au (1mgmL−1 in 1,4-dioxane) at arbitrary

distances.
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Figure A.29. 3D Surface plot of the relationship between the spectral irradiance of the light

source after passing through the reaction solution of P12-Pt (1mgmL−1 in 1,4-dioxane) at arbitrary

distances.
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Figure A.30. 3D Surface plot of the relationship between the spectral irradiance of the light

source after passing through the reaction solution of P12-Pd (1mgmL−1 in 1,4-dioxane) at arbitrary

distances.
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A.8 SEC chromatograms
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Figure A.31. SEC traces of the PMMA homopolymers P1, P2, P3, and P4.
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Figure A.32. SEC traces of the PMMA homopolymers P9-FM and P9-non-capped.
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Figure A.33. SEC traces of the PMMA homopolymers P10-FM, and P10-FM-cap, and P10.
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Figure A.34. SEC traces of the three prepared phosphine ligand copolymers P11-FM, P11-FM-
cap, and P11.
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Figure A.35. SEC traces of the three prepared bipyridine ligand copolymers P12-FM, P12-FM-
cap, and P12.

1000 10000 100000

 P11

 P11-Au

n
o
rm

a
liz

e
d
 d

e
te

ct
o
r 
re

sp
o
n
se

M / g mol -1

Figure A.36. SEC traces of the free phosphine ligand copolymer P11 and the gold functionalized
metallopolymer P11-Au.
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Figure A.37. SEC traces of the free bipyridine ligand copolymer P12 and the platinum and

palladium metallopolymers P12-Pt and P12-Pd, respectively.
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Figure A.38. SEC traces of the STP-containing copolymers P13a–d.
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Figure A.39. SEC traces of the maleimide-containing copolymers P14a (furan protected) and

P14.
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Figure A.40. SEC trace of the SP-containing copolymer P15.
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A.9 ToF-SIMS and XPS analysis

Table A.1. Description of ToF-SIMS fragments and their aliases used for structure elucidation

in the ToF-SIMS mappings.

alias description characteristic fragments used for mappings

negative polarity positive polarity

total total ion count All ions All ions

silicon residual substrate – Si+

signal

tetrazole surface anchored – C4H2NO
+, C6H4NO

+,

tetrazole C7H7NO
+, C7H8NO

+

RAFT group capped dithiobenzoate – S2O2C9H
+
9 , S2O2C16H

+
17,

RAFT moiety S2O2C10H
+
12

bipyridine ligand 9 – C6H6N
+, C11N2H

+
9 ,

C10H6N
+
2

PMMA PMMA polymer C3H3O
–, –

backbone C4H5O
–
2

phosphine ligand 7 C6P
–, C6H5P

–, –

C6H4P
–

gold 7-AuCl complex Au–(a) –

in the copolymer

platinum 9-PtCl2 complex Pt–, PtCl –2 –

in the copolymer

palladium 9-PdCl2 complex Pd–, PdCl –2 –

in the copolymer

(a) Only Au– was used, as the isotopic pattern of the AuCl– ion is overlapping with isotopic patterns of the PtCl–

and PtCl –2 ions, respectively.
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Table A.2. Description of the surface reaction setups with the employed shadow masks. The

different shadow masks are depicted below the table.

surface reaction employed shadow masks

setup step 1) step 2) step 3)

A no mask – –

A-KIT KIT mask – –

B point mask (I) point mask (II) –

C point mask (III) point mask (IV) point mask (V)

D point mask (I) point mask (II) no mask

no mask KIT mask point mask (I) point mask (II)

point mask (III) point mask (IV) point mask (V)
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A.9.1 Monofunctional patterning

P9-non-capped

S2-non-capped

Scheme A.26. Attachment of P9-non-capped on surface S2-non-capped (setup A).
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Figure A.41. ToF-SIMS spectra of S2-non-capped. Positive polarity (top), negative polarity

(bottom).
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P10
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Scheme A.27. Attachment of P10 on surface S2 (setup A).

total
MC: 1958; TC: 7.03E7

silicon
MC: 66; TC: 1.08E6

tetrazole
MC: 89; TC: 1.08E6

RAFT group
MC: 5; TC: 2.56E4

0.20 mm

4

2

0

3
·10

1.5

1.0

0.5

0.0

0.20 mm

60

40

20

0

0.20 mm

75

50

25

0

0.20 mm

total
MC: 4114; TC: 1.37E8

PMMA
MC: 166; TC: 4.83E6

0.20 mm 3
·10

3

2

1

0

0.20 mm 2
·10

1.2

0.8

0.4

0.0

Figure A.42. ToF-SIMS spectra of S2. Positive polarity (top), negative polarity (bottom).
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Figure A.43. C1s XPS spectra of S2.
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P10
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Scheme A.28. Attachment of P10 on surface S2-KIT (setup A).
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Figure A.44. ToF-SIMS spectra of S2-KIT. Positive polarity (top), negative polarity (bottom).
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Scheme A.29. Attachment of P11 on surface S3 (setup A).
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Figure A.45. ToF-SIMS spectra of S3. Positive polarity (top), negative polarity (bottom).
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Figure A.46. C1s and Cl 2p XPS spectra of S3.
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Scheme A.30. Attachment of P11 and subsequent post-loading with a [AuCl(tht)] solution

towards surface S3-Au (setup A).
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Figure A.47. ToF-SIMS spectra of S3-Au for various immersion times 𝑡 of the surface into the
metal salt solution.
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Figure A.48. ToF-SIMS spectra of S3-Au. Positive polarity (top), negative polarity (bottom).
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Figure A.49. C1s and Au 4f XPS spectra of S3-Au.

272



A.9 ToF-SIMS and XPS analysis

P12

S4

Scheme A.31. Attachment of P12 on surface S4 (setup A).
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Figure A.50. ToF-SIMS spectra of S4. Positive polarity (top), negative polarity (bottom).
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Figure A.51. C1s and N 1s XPS spectra of S4.
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A.9 ToF-SIMS and XPS analysis

1) [PtCl (DMSO) ]2 2

2) washing

P12

S4-Pt

Scheme A.32. Attachment of P12 and subsequent post-loading with a [PtCl2(DMSO)2] solution

towards surface S4-Pt (setup A).
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Figure A.52. ToF-SIMS spectra of S4-Pt. Positive polarity (top), negative polarity (bottom).
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Figure A.53. C1s, N 1s, Cl 2p, and Pt 4f XPS spectra of S4-Pt.
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P12-Pt
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Scheme A.33. Attachment of P12-Pt on surface S5-long with a long irradiation pathway

through the metallopolymer solution (setup A).
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Figure A.54. ToF-SIMS spectra of S5-long. Positive polarity (top), negative polarity (bottom).
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P12-Pt

S5

Scheme A.34. Attachment of P12-Pt on surface S5 (setup A).
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Figure A.55. ToF-SIMS spectra of S5. Positive polarity (top), negative polarity (bottom).
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Figure A.56. C1s, N 1s, Cl 2p, and Pt 4f XPS spectra of S5.
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P12-Pd

S6

Scheme A.35. Attachment of P12-Pd on surface S6 (setup A).
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Figure A.57. ToF-SIMS spectra of S6. Positive polarity (top), negative polarity (bottom).
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Figure A.58. C1s, N 1s, Cl 2p and Pd 3d XPS spectra of S6.
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P11-Au

S7

Scheme A.36. Attachment of P11-Au on surface S7 (setup A).
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Figure A.59. ToF-SIMS spectra of S7. Positive polarity (top), negative polarity (bottom).
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Figure A.60. C1s and Au 4f XPS spectra of S7.

A.9.2 Bifunctional patterning

P12-Pd P12-Pt

S8

Scheme A.37. Attachment of P12-Pd and P12-Pt on surface S8 (setup B).
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Figure A.61. ToF-SIMS spectra of S8. Positive polarity (top), negative polarity (bottom).
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Figure A.62. XPS mappings of S8.
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P12-PdP12-Pt

S8-rev

Scheme A.38. Attachment of P12-Pt and P12-Pd on surface S8-rev (setup B).
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Figure A.63. ToF-SIMS spectra of S8-rev. Positive polarity (top), negative polarity (bottom).
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Figure A.64. XPS mappings of S8-rev.
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P12-Pd P11-Au

S9

Scheme A.39. Attachment of P12-Pd and P11-Au on surface S9 (setup B).
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Figure A.65. ToF-SIMS spectra of S9. Positive polarity (top), negative polarity (bottom).
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Figure A.66. XPS mappings of S9.
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P12-PdP11-Au

S9-rev

Scheme A.40. Attachment of P11-Au and P12-Pd on surface S9-rev (setup B).
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Figure A.67. ToF-SIMS spectra of S9-rev. Positive polarity (top), negative polarity (bottom).
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Figure A.68. XPS mappings of S9-rev.
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P12-Pt P11-Au

S10

Scheme A.41. Attachment of P12-Pt and P11-Au on surface S10 (setup B).
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Figure A.69. ToF-SIMS spectra of S10. Positive polarity (top), negative polarity (bottom).
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Figure A.70. XPS mappings of S10.
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P12-PtP11-Au

S10-rev

Scheme A.42. Attachment of P11-Au and P12-Pt on surface S10-rev (setup B).
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Figure A.71. ToF-SIMS spectra of S10-rev. Positive polarity (top), negative polarity (bottom).
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A.9 ToF-SIMS and XPS analysis
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Figure A.72. XPS mappings of S10-rev.
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A.9.3 Trifunctional patterning

P12-PtP12-Pd P11-Au

S11

Scheme A.43. Attachment of P12-Pd, P12-Pt, and P11-Au on surface S11 (setup C).
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Figure A.73. ToF-SIMS spectra of S11. Positive polarity (top), negative polarity (bottom).
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A.9 ToF-SIMS and XPS analysis
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Figure A.74. XPS mappings of S11.

297



A Appendix

P12-Pt P12-Pd P11-Au

S11-rev

Scheme A.44. Attachment of P12-Pt, P12-Pd, and P11-Au on surface S11-rev (setup C).
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Figure A.75. ToF-SIMS spectra of S11-rev. Positive polarity (top), negative polarity (bottom).
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A.9 ToF-SIMS and XPS analysis
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Figure A.76. XPS mappings of S11-rev.
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P12-Pt P12-Pd P11-Au

S12

Scheme A.45. Attachment of P12-Pt, P12-Pd, and P11-Au on surface S12 (setup D).
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Figure A.77. ToF-SIMS spectra of S12. Positive polarity (top), negative polarity (bottom).
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A.9 ToF-SIMS and XPS analysis
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Figure A.78. XPS mappings of S12.
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P12-PtP12-Pd P11-Au

S12-rev

Scheme A.46. Attachment of P12-Pd, P12-Pt, and P11-Au on surface S12-rev (setup D).
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Figure A.79. ToF-SIMS spectra of S12-rev. Positive polarity (top), negative polarity (bottom).
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A.9 ToF-SIMS and XPS analysis
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Figure A.80. XPS mappings of S12-rev.
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