A Semantic Use Case Simulation Framework for
Training Machine Learning Algorithms

Nicole Merkle', Stefan Zander?, and Viliam Simko'

! FZI Forschungszentrum Informatik am KIT, Information Process Engineering,
Haid-und-Neu-Str. 10-14, D-76131 Karlsruhe, Germany,
merkle@fzi.de, simko@fzi.de
2 University of Applied Sciences Darmstadt, Institute for Computer Science,
Schofferstrasse 8B, D-64295 Darmstadt, Germany,
stefan.zander@h-da.de

Abstract. To train autonomous agents, large training data sets are re-
quired to provide the necessary support in solving real-world problems.
In domains such as healthcare or ambient assisted living, such training
sets are often incomplete or do not cover the unique requirements and
constraints of specific use cases, leading to the cold-start problem. This
work describes a semantic simulation framework that generates quali-
tative use case specific data for Machine-Learning (ML) driven agents,
thus solving the cold-start problem. By combing simulated data with
axiomatically formalized use case requirements, we are able to train ML
algorithms without real-world data at hand. We integrate domain specific
guidelines and their semantic representation by using SHACL/RDF(S)
and SPARQL CONSTRUCT queries. The main benefits of this approach
are (1) portability to other domains, (2) applicability to various ML al-
gorithms, and (3) mitigation of the cold-start problem or sparse data.

1 Introduction

Real-world problems and domain-specific use cases are often so diverse and com-
plex, that a thorough formalization of all requirements and interdependencies at
design time is difficult, if not impossible. Moreover, use cases are often not gener-
alizable because their performance depend on individual and varying parameters
(e.g. user-preferences, goal-oriented requirements, context-dependent require-
ments etc). In order to provide sufficient support in such situations, agents usu-
ally require formal specifications (e.g. in the form of rules) or large datasets that
cover domain and problem characteristics. However, problem-specific datasets
are neither always available nor—in most of the cases sufficiently—representative
for a given problem. Especially not in situations, where agents have to deal with
personalization and context-dependent use cases in indeterministic and hetero-
geneous environments. Privacy policies as well as regulative, governmental, and
technical restrictions further contribute to the lack of sufficient data. Moreover,
as starting, virtual agents have neither an appropriate trained model nor an
individual knowledge representation that enables them to train a specific and

individualized prediction model on-the-fly. In most of the cases, the only thing
available are guidelines or domain expert knowledge, which need to be repre-
sented in a machine-processable way. Furthermore, teaching a machine learning-
based system needs time, especially when the data have to be gathered and
preprocessed first during its runtime. This leads to the undesirable situation
that an agent acts in a random and uncertain way (cold-start problem) at the
beginning of its lifecycle, resulting in an unwanted and inappropriate behaviour
for a given situation or context [5]. Especially, in critical situations (e.g. user
interactions) this can be problematic. Moreover, almost every performed agent
activity generates new data, since every activity has an impact to the states,
conditions and actors in an environment. The presented approach aims at pro-
viding use case specific and personalized synthetic data in order to overcome the
outlined cold-start problem. The assumption underlying our approach is that
semantically created synthetic simulation data serve as substitute of missing
real-world data, thus enabling machine learning based agents to immediately
perform appropriate activities although the required data are not available at
the beginning of an agent’s life cycle.

In order to accomplish this objective, our approach provides a simulation
framework that utilizes ontological semantics for defining and processing general
meta-model specifications for use cases of different domains. Under consideration
of the discussed problems and challenges, our approach addresses the following
research questions:

RQ1 Does the presented simulation framework generate data of sufficient qual-
ity to solve the cold-start problem in uncontrolled environments?

RQ2 Is the simulation framework capable of adapting its data-generation pro-
cess to different problem domains sufficiently?

In order to evaluate the proposed simulation framework, we a) apply our ap-
proach in two heterogeneous domains—healthcare and smart home environment—
in order to show the universal validity of our approach and b) test if it sufficiently
solves the cold-start problem.

The remainder of this work is structured as follows: Section Pl discusses related
work. Section [3| presents the fundamental concepts of the semantic simulation
framework. Section [4] demonstrates through two example applications from the
health-care and smart home domain, that the approach is sufficiently generic for
its application in different problem domains. Section [5| evaluates the approach
by applying it to the two example use cases. Therefore, we consider appropriate
guidelines from the Chronic Kidney Disease Pathway (CKDPathway)ﬂ and rules
for controlling devices in an smart home environment in order to compare our
results with the results of some trained and applied ML algorithms. Section [f]
concludes the work by deriving lessons learned and provides an outlook to future
activities.

3 http://ckdpathway.ca

2 Related Work

The cold-start problem has been extensively researched in the domain of rec-
ommender systems (e.g. [IBBIT77]). Several solutions have been proposed to
tackling both item and user cold start problems: Active learning, which is a
special field of semi-supervised machine learning (cf. [I6/2[T4]), aims at evalu-
ating the usefulness of data points in order to improve recommender system
performance and data quantity. Collaboration and data exchange strategies are
often deployed in agent-based system environments to help agents in providing
appropriate assistance in new and unanticipated situations by learning from the
experiences of other agents [12J4]. Hybrid approaches, e.g. combining content-
based matching approaches and collaborative filtering [I5] or association rules
and clustering techniques[I] revealed to be helpful in mitigating the cold-start
problem by deducing similarity indicators from content-based characteristics.
In order to address the sparsity of user profiles, Yahoo! research developed a
collective learning representation framework to tackle both the item cold start
and the user cold start by using matrix factorization techniques (cf. [7]) such as
alternating least squares and multiplicative updates [6].

Although several solutions have been proposed to tackle cold-start problems,
the deployment of semantic technologies, ontology-based description frameworks,
and semantic simulation frameworks have received only marginal attention. The
synergies between recommender systems and semantic knowledge structures such
as ontologies have first been studied by Middleton et al. [§]. Nouali et al. [11]
demonstrated that a semantically enhanced description of user and resource
information increases precision, coverage and quality of recommendation sys-
tems. A review about general semantic recommender systems has been pub-
lished by [13] whereas DiNoia and Ostuni [3], Musto et al. [I0], and Tomeo et
al. [20] (among others) specifically focus on systems that have been extended
with data from the Linked Open Data (LOD) initiative. Although the posi-
tive effects of semantic technologies on recommender systems, in particular for
content-based filtering, are broadly acknowledged (cf. [21]), many recent ap-
proaches (e.g. [BII0J20]) started to analyze the extent to which recommender
systems can be enhanced using LOD (cf. [10]). However, a semantic simulation
framework comparable to one in this work was not specifically addressed. A
very similar approach to the one proposed here that addresses the sparsity and
scarcity problem was developed by Thanh-Tai et al. [19]. In contrast to generat-
ing new data via simulation, their approach uses a semantic model to generate
similarity data for a given original dataset.

3 Approach

The presented simulation framework can be considered as part of a bigger sys-
tem architecture that acts as a recommendation- and task-execution- framework
for given use cases. Thereby, a use case constitutes an aggregate representation
of evident states and possible activities that are performed by virtual agents in

order to solve given problems. Domain knowledge is necessary and provided by
human experts in a formal representation. This domain knowledge is used by the
simulator component in order to generate numerical state representations and
compute reward or punishment values that are relevant for making decisions
and executing activities in the appropriate use case. The transformation into
a numerical state representation is required because in neural networks as well
as in many other ML algorithms, only numerical representations are processed.
Therefore, nominal values are encoded by applying one-hot-encoding to gener-
ated feature values. Moreover, all values are normalized before they are sent to
the appropriate agent. The machine learning (ML) algorithms that the targeted
agents apply, are either reinforcement learning (RL) (e.g. Deep-Q-Networks) or
(un-) supervised (e.g. deep neural networks, collaborative filtering, K-Means, la-
tent semantic analysis) ML algorithms. Therefore, the simulator generates during
the online-training of the RL agent the appropriate CSVE| files as a side-product.
While the RL agent is trained online in several thousand episodes by means of
rewards and punishments, the generated CSV files serve as datasets for the (un-)
supervised algorithms.

The application of the entire system architecture is divided in two phases, a
learning phase and an adaption phase. The learning phase addresses the train-
ing of machine learning (ML) models based on generated guideline-rules and
domain knowledge data, represented as RDF(S) instances. The learning phase
is conducted in order to avoid the cold-start of the ML components. However,
before the learning phase can start, the simulator component requires a formal
representation of use cases that require to be simulated. The general architec-
ture and step-by-step process are represented in Figure [I| First, the domain

Activity

Agents

(un)supervised
Algorithm

csv

Domain Expert Simulator

Deep-Q-
States’
Meta-Model +Rewards Network

[
RDF-Editor |2 Data Store o |

trained model

Fig. 1: Overview of the system architecture

expert specifies by means of an arbitrary RDF editor (e.g. Topbraid, Protge,
Semantic MediaWiki) the use cases’ A-Box representation, comprising states,
activities and guideline-rules following the use case meta-model constraints. The

4 comma separated values

simulator utilizes this A-Box representation for generating the numerical state
representations (numerical state vector + reward and CSV) for the appropri-
ate ML algorithms. Our approach utilizes different semantic web technologies,
such as the Shape Constraint Language (SHACLE and SPARQIE in order to
represent and request simulation use cases, so that the simulator can process
this representation. We use SHACL as a vocabulary because it allows to define
validation constraints for RDF(S) graphs. Moreover, its application assures a
closed-world assumption that is necessary in order to avoid inconsistency and
undefined states within the simulation framework. Since the different states are
defined by conditions and guideline-rules, the simulator transforms these rules
into SPARQL CONSTRUCT queries in order to derive the appropriate state in that
the simulation currently resides. This step is necessary because the simulator
generates or adjusts during the training phase just single values of a state vec-
tor representation. Therefore, it needs to derive the new state after the values
are updated. According to the constructed and derived state, the simulator rea-
sons the appropriate reward value of a state. This reward value represents the
acceptability of a state and is in particular required in reinforcement learning
algorithms. According to the reinforcement learning paradigm [I8], reward val-
ues are utilized in order to train strategies for a given task by rewards and
punishments of the environment.

Later in the adaption phase, the ML algorithms adjust their model represen-
tation by collected real-world data that have been gathered during the system
runtime. Adaption means in this context that individualized data is used in or-
der to personalize general ML models that initially were only trained based on
guideline-rules.

3.1 The Framework Architecture

The architecture of the framework consists of different components that interact
with each other via event-driven Web protocols.

As soon as the simulation starts, the appropriate ML agent sends an initial
message to the simulator. This message includes information about the requested
use case and in how many iterations or episodes the training has to be performed.
An episode starts on a random start state and finishes first, as soon as a goal
state of the use case is achieved by the agent. Usually several thousand episodes
are required in order to train an agent.

The use case information is necessary for the simulator in order to request
from the graph store the appropriate meta-information regarding the specific
use case that shall be simulated. The use case simulation meta-model (SHACL
shape definitions) together with use case instances are stored in a graph database.
The simulator and other components can request the entire meta-model graph
representation via a SPARQL endpoint. Internally, the simulator generates an
in-memory RDF store that is created and utilized using the RDF4JE| API.

® https://www.w3.org/TR,/shacl/
5 https://www.w3.org/TR/rdf-sparql-query/
7 http://rdf4j.org/

Based on semantically represented use case guidelines or use case pathways
(e.g. clinical pathway), the simulator generates a numeric vector representation
of the current use case state. This vector representation is sent as event message
to the corresponding ML algorithm. The algorithm is capable, by means of the
graph store, to send activity URIs to the simulator. Subsequently, the simulator
looks up what effects the received activity might have. Considering for instance
the healthcare domain, an effect can be the increase of the patient’s heartrate
value, after the patient has made some kind of sports activity. The simulator
looks then up the last stored heartrate value in the state vector and increases
this value, in order to send the updated state representation to the ML algorithm.
The change of single values in the state vector ensures that the states are adapted
according to the performed activity effects. This interaction between simulator
and agent happens iteratively in thousands of episodes, depending on the agents
iteration request or until it has finished its training.

During the training, the simulator stores all generated vector states as data
samples in a CSVE| file, so that this CSV file can be utilized by additional ML
algorithms for training a use case specific model.

3.2 The Simulation Meta-Model

Often, use cases and domain guidelines are described by domain experts, in a
human-readable documentation. In order to allow the simulator to process use
case- as well as guideline-representations and generate realistic data for the al-
gorithms, we propose a RDF(S)-based simulation meta-model that we discuss
here. The appropriate shape definitions are described in the next sections. Fig-
ure 2| provides an overview of the simulation meta-model elements. The SHACL
definition of the simulation meta-model can be found at this URIP] It is planned
to enhance our devised meta-model by classes of already existing ontologies such
as the universAAI[’] and QUDTY] ontology in order to follow the Linked Open
Data principles of the semantic web.

Simulation Tasks

A simulation task encapsulates all information, required by the simulator. It is
linked to the use case that shall be simulated.

Use Cases

The use case node shape comprises the related states-of-interest and activities
that an agent can perform or recommend. Moreover, it is linked to all required
observation features, that are monitored by the agent in order to make decisions.

8 coma separated value

9 https://raw.githubusercontent.com /vcare-project /vcare-
models/master /simulation.shapes.ttl

10 http://ontology.universaal.org/

" http://qudt.org/

| ® simulationTask |
‘ B simulatesUseCase : UseCasel[1..] ‘

\]f\mu\ateeUseCase ® state
® UseCase - !wascond\tion : Condition[1..]
B requiresActivity : Activity[1..] m isTarget : boolean(1..1]
\]/eqmmAmey
® Activity hasCondition
B hasDuration : decimal ® Condition
hasDurationUnit : string[1..1! N N .
S o) -
: L hasStopConditior” | gy hasObservationFeature : ObservationFeature[1..]
M hasFrequency : integer
' hasStopCondition : Condition[0..1] hasPunishmentRule
hasRewardRule
Jﬁasmca asObservationFeature
© Effect

® ObservationFeature
m featureType : FeatureType[1..1]
m hasRangeEnd : decimal[1..1]
hasObservationFeaturé | gy hasRangesStart : decimal[1..1]
M hasUnit : string[1..1]

M hasImpactType : ImpactType[1..1]

M hasimpactValueRange : decimal[0..1]

M hasObservationFeature : ObservationFeatu
M hasPunishmentRule : Condition[0..1]

M hasRewardRule : Condition[0..1]

asimpactType \l;eatmeType
® ImpactType ® FeatureType

Fig. 2: UML representation of the simulation meta-model

States

The state shape is represented and derived by conditions that hold for the state.
A state can be either a target state or an intermediate state, indicated by a
boolean value. If a target state is achieved, the task is fulfilled by the agent and
the next training episode can start.

State Conditions

State conditions reflect the guidelines for a use case. More concretely, they de-
fine whether all gathered observations apply to a single state. These conditions
are specified in the form of mathematical expressions as illustrated below: The
following expression types are allowed.

1. Ordinal expression — (e.g. Heart rate < 100)
2. Nominal expression — (e.g. Eye-color: brown, blue, green)
3. Logical expression — (e.g. Heart rate < 100 AND Heart rate >= 40

The simulator takes these condition expressions for utilizing them within
SPARQL query FILTER expressions. Moreover, the condition expressions pro-
vide the range boundaries in which the simulator can generate values in order to
simulate a certain state. Therefore, the simulator parses the conditon expressions
and preprocesses the generated values by feature scaling into a normalized nu-
merical feature vector representation, sorts and keeps them in-memory in order
to select the appropriate values in a context-dependent manner. Nominal val-
ues are transformed by one-hot-encoding into a numerical vector representation
consisting of ones and zeros. Thereby, every nominal value has a fixed position
inside the vector. The value one at the appropriate position indicates that the
nominal feature is present while the value zero indicates that it is absent. As
logical operators are AND, OR and XOR allowed, since they are sufficient for

specifying logical conditions. Furthermore, a state condition is linked to one or
multiple observation features, since the conditions are build up by observation
values.

Observation Features

An observation feature defines the feature type (e.g. nominal, numerical), the
feature’s value unit (e.g. kg, cm), and the value range containing a starting point
number and ending point number. Within this range definition, the observation
values are generated by the simulator.

Activities

Activities reflect what an agent or user can perform in order to achieve a goal
and solve a task. The most important property of an activity in this approach, is
its effect to the environment, since activity effects are changing the state of the
environment. Therefore, activities lead to new observable states. Moreover, an
activity can have a duration (e.g. 10 minutes) and can be performed in a certain
frequency. Every activity has a stop condition that indicates whether it can be
finished by the agent.

Effects

Since states are represented to the RL agent as numerical vectors, an effect can
either increase, decrease a value by a certain amount or convert an one-hot-
encoded nominal value to its opposite (e.g. true (1) to false (0) or vice versa).
For this reason, the effect has an impact that indicates, whether a value shall be
increased, decreased or converted. Moreover, an effect is linked to the appropri-
ate observation feature to which it has an impact. Every activity is related at
least to one effect, since activities cause state changes by their effects. The sim-
ulator is enabled by the effect representations to update state representations.
Thereby, the impact value range property specifies how much the effect impacts
an observation feature. Furthermore, the effects’s reward- and punishment-rules
are utilized by the simulator in order to reason rewards and punishments for
certain performed activities in a given state because the effects of an activity are
either desired or not desired effects depending on the observed state.

3.3 The Generation of Numerical State Representations

In this section, we comment on how single state vector values are adapted in or-
der to generate new states according to performed activity effects. Since the state
conditions are mathematical expressions, the simulator queries these conditions
from a given state representation and parses them in order to create, based on
their operators, appropriate expressions. These expressions provide an instruc-
tion for the simulator to create values within certain ranges. Subsequently, every

observation feature value is sorted and stored in an in-memory data structure
together with the generated values. The sorting of the values allows to update
the state vector with higher or lower values depending on the current activity
effects. Let us assume, we have a mathematical expression that expresses that
the body mass index (BMI) requires to be in between a range of 18.5 and 25, as
the depicted condition in Equation

(BMI > 18.5) A (BMI < 25.0) (1)

This condition holds for instance for the state TargetBMI. The simulator
parses this expression and selects the start and end value of the BMI range as
well as the operators (e.g. >=, <=). Based on these expression tokens, values
are generated for the state TargetBMI inside the given range.

Every observation feature is stored with a list of generated values, restricted
by the given guideline conditions. As soon as the simulator receives an activity, it
looks up its effect to the observation features from the meta-model and compares
the previous observation feature values in order to increase, decrease or convert
them. This is easy to handle, since the values are sorted. Therefore, the simulator
is able to select values from the lists that are higher or lower or the opposite
(0 versus 1) than the last stored value.

3.4 State Reasoning using SPARQL Queries

In every state-update-loop, the simulator needs to be aware of the currently gen-
erated state. Since only single observation values in the state vector are adapted,
the state in which the simulation resides is not evident. Therefore, the simula-
tor generates a statement for every updated observation, such as the following
assertion:

:BMI :hasValue "22.4"""xsd:double .

The simulator adds this assertion to the in-memory RDF(S) representation
and infers the states in which an ML agent might be. This is done by using
automatically generated SPARQL CONSTRUCT queries. Every generated query has
the same structure:

CONSTRUCT {7agent :isInState ?state.}
WHERE {

?agent rdf:type :Agent.

:BMI :hasValue 7bmi.

FILTER(?bmi >= 18.5 && 7bmi <= 25.0)}

The CONSTRUCT queries are generated during the parsing of the condition
expressions. Therefore, the simulator retrieves the states and their conditions
and maps them to SPARQL FILTER expressions. The simulator generates by the

10

CONSTRUCT query a new graph statement that expresses that the agent is in a
certain state. The state conditions are listed in the WHERE clause within FILTER
functions. In this way structured queries are universally applicable since they
allow to reason the current state of an agent according to the given observations.
Considering the previous BMI example, the simulator would infer the TargetBMI
state, provided that the given FILTER conditions hold.

3.5 The Reasoning of Rewards

The simulator has also the task to assign rewards to the agent according to the
performed activity of the agent in a given state. This requires that the simulator
determines the reasoned state of the agent and the appropriate effect of the
performed activity. After the current state is reasoned as discussed in section
3.4, the simulator reasons by means of CONSTRUCT queries the appropriate
reward value for a state and the performed activity. The SPARQL query looks
as follows:

CONSTRUCT {:DecreaseBMI :hasReward "-1.0"""xsd:double.}

WHERE {

7agent :performsActivity 7activity.

7activity :hasEffect :DecreaseBMI.

{?7agent :isInState :Underweight.} UNION {?agent :isInState :NormalBMI.l}}

In the given example, the simulator reasons a punishment of minus one for the
DecreaseBMI effect, if the agent is in the state Underweight or in the state
NormalBMI. Therefore, rewards and punishments are assigned based on states
and activity effects, since an effect can be desired or not, depending on the given
states.

4 Proof-of-Concept

We selected two use cases from different domains, in order to demonstrate the
generalizability of the presented approach. The first use case (CKDPathway)
stems from the healthcare domain. The objective of this use case is to allow
a virtual coach to make activity recommendations based on the given clinical
pathway and by made vital sign observations. The second use case is about the
intelligent control of IoT devices in a smart home environment depending on
user activities and environmental states. In the next subsections, we describe
the use cases and their relevant entities.

4.1 The Chronic Kidney Disease Pathway

The CKDPathway provides guidelines for the diagnosis and treatment of Chronic
Kidney Disease (CKD). The pathway recommends lifestyle management activ-
ities, such as e.g. low sodium diet, physical exercises and medication. Nine-

11

teen different states can be identified (CKDWithDiabetes, CKDWithoutDia-~
betes, NoCKDRisk, CKDRisk, TargetA1C etc.) and thirty-seven possible activ-
ities (FluidIntakeRegulation, FruitVegetableConsumption, Walking, TestACR,
TesteGFR, etc.). Moreover, the CKDPathway contains target states (TargetBMI,
TargetA1C, TargetBloodpressure, etc.) that represent the long-term objectives
of the CKDPathway. Every state in our setting is represented by a numerical vec-
tor, consisting of twenty-one observation values. The sensed observation features
are: eGFR, ACR, Hematuria, Diabetes, BMI, systolic value, diastolic value etc.
The diagnosis of CKD requires different rules (e.g. eGFR < 60ml/min/1.732,
ACR >= 3mg/mmol) that are also provided by the CKDPathway. For more
details regarding the pathway, we refer to the appropriate online sourcﬂ and
our shape definitio

4.2 Intelligent Smart Home Control Systems

The intelligent smart home control (SHC) use case has the objective to control or
regulate context-dependent devices in the environment. The state space consists
of different states, such as e.g. (1) UserInFrontOfTV, (2) TVOn, (3) TVOff,
(4) RoomTemperatureCold, (5) RoomTemperature Warm, (6) RoomBrightness-
Dark, (7) RoomBrightnessBright. The concrete objectives of this use case are:

— Autonomously switch the TV on or off, depending on the user location.

— Autonomously regulate the brightness in the rooms according to the user
location, states of the installed lamps and brightness sensors.

— Autonomously regulate the temperature in the rooms according to the pref-
erences of the user and the room temperature.

Considering these objectives, we determined the following observation features
that are related to the previous mentioned states:

— BrightnessInLUX - Numerical value
TemperatureInCelsiusDegree - Numerical value

— DistanceToTVInCentimeters - Numerical value

— UserLocatedRoom - Nominal value (Name of the room)

The according activities of the smart home system are: (1) TurningLightOn,
(2) DimLight, (3) TurningLightOff, (4) Increase Temperature, (5) DecreaseTem-
perature, (6) TurnTVOn, (7) TurnTVOff. An excerpt of the appropriate rules
are defined in Equation [2| The appropriate states are determined by the given
rule conditions.

BrightnessInLUX < 100 — RoomBrightnessDark
TemperaturelnCelsiusDegree > 25 — RoomTemperatureWarm
UserLocatedRoom : XY — UserInRoomXY (2)

12 http://ckdpathway.ca
13 https://github.com/vcare-project/vcare-models/blob/master/vcare.shapes.ttl

http://ckdpathway.ca
https://github.com/vcare-project/vcare-models/blob/master/vcare.shapes.ttl

12

5 Evaluation

In this section, we aim at answering posed research questions RQI]and RQ2| The
goal is to explore if the generated simulation data can be used to avoid the cold-
start problem. Moreover, we want to prove that our approach is applicable to
multiple domains. Therefore, we evaluate if (a) the trained algorithms enable a
RL agent to maximize its collected rewards by learning to recommend activities,
yielding in the highest expected rewards and (b) the generated state vectors
allow ML algorithms to predict, for unseen feature vectors, the correct states.
Thereby, the clinical pathway guidelines as well as the given smart home rules
provide the ground-truth of our evaluation. Based on the simulation meta-model,
we created RDF(S) instances of the previously discussed use cases. Then, based
on their representation, we trained a Deep-Q-Network RL algorithnﬂ which
was proposed by DeepMind in their paper [9]. We adopted for our evaluation,
Karpathy’s reinforcejs library because it implements different RL algorithms
and is usable in browser as well as server environments. In order to prove the
quality of the generated data, we counted the absolute rewards over time that
the ML agent received during the evaluation phase. The diagram in Figure [32]
represents the execution steps (x-axis) with a window size of 70, while the y-
axis represents the collected relative absolute rewards. We shows the positive
rewards and received punishments using differently colored lines, comprising
4000 data samples. Figure shows that the CKDPathway use case provided
a good separation between the negative and positive rewards. As the learning
phase starts, the lines start to diverge in opposite directions. However, neither
the blue line increases nor the red line decreases significantly. This indicates
that the RL algorithm does not improve after some training time. In the ideal
case the blue line would increase steadily, while the red line would decrease, so
that the agent achieves the maximum expected reward. Figure [3b] representing
the agent improvement for the SHC use case is even worse. It seems that the
agent learns nothing and that it even collects more punishments than rewards.
Considering this result, the agent learns nothing from the generated simulation
data. In order to explore the separation of the generated states, we plotted every
feature of the SHC case as multiple 2D-projections in Figure @] Every state in
the plot is represented by a specific color. The better the separation of states, the
better is the generated data for training ML algorithms. Here, the 4000-samples
data set (b) provides an apparent advantage over the 1000-samples data set
(a). This insight indicates: the more data is generated the more are the states
separable. A feature vector representing several states in the same time leads to
an insignificant separation of states. Therefore, the approach can be improved if
the simulator generates sparse feature vectors representing only one state in a
single training step. Moreover, states, represented by the same features, require
significant guideline-rules. This observation can be later used to improve the
quality of the models prepared by the domain experts.

4 Implementation from Karpathy under https://github.com/karpathy/reinforcejs

https://github.com/karpathy/reinforcejs

13

B Negative Reward
B Positive Reward

40
1
20
I

B Negative Reward
B Positive Reward
DA e

30
1

20
1

10
1

Absolute Amount of Reward
Absolute Amount of Reward
10
|

(a) (b)

Fig.3: (a) CKD: Absolute Reward over time. (roll sum, win=70) and (b) SHC:
Absolute Reward over time. (roll sum, win=70)

00 04 08 0100 300 500 00 04 08 0100 300 500

EE
s sl
b

[T

00 04 08

"

k3 SR

r N :

s e]

- -

- +
fo

b

b

0 200 500
Ly

P Sy
e
v
A
T
0200 600 1000 0 10 20 30 40 50 0 200

(a) 1000 samples (b) 4000 samples

0 10 20 30 40 50

Fig. 4: Distribution of states projected to two dimensions (pairs of observations).

Our evaluation has the following limitations. (1) We did not compare our
approach against a baseline due to the cold-start problem — no data sets are
available that can act as a baseline. For this reason, the domain expert’s guideine-
rules and the proposed clinical pathway provide already a baseline against that
we can evaluate our approach. However, it is planned to implement additionally
a rule-based agent in order to compare its performance against the trained RL
agent’s performance. (2) Another limitation is that we did not evaluate the
training of a ML agent with and without the simulator. Therefore, it is required
to show in a future evaluation that the simulator allows a faster convergence of
the ML algorithm than a training without a simulator. In a later stage, we would
like to prove that the trained RL agent generalizes better than a rule-based agent
does due to the limitations of rules.

6 Conclusion and Outlook

We proposed and evaluated a semantic simulation framework that utilizes a
general meta-model for use cases and their guideline rules. In the framework’s
evaluation, we showed for RQ1 and RQ2 its limitations when it comes to solving
the cold-start problem and its application to multiple domains. We demonstrated

14

what a crucial role the domain experts play in the process. The approach is rather
sensitive to the quality of rules and rewards modeled. Model validation (we used
SHACL) is essential for keeping the quality of the A-Box representation at a
usable level. We also showed that the approach can be improved by modeling
the state representations using sparse numerical vectors (for better separation)
or by providing more samples (which is usually the case in the ML world). Given
that the proposed improvements are performed, we can conclude that (a) the
simulation framework generates data of sufficient quality so that the cold-start
problem can be solved in uncontrolled environments and (b) that the simulation
framework is capable of adapting its data-generation process to different problem
domains sufficiently. As supporting tools for the creation of use case specifications
and agent profiles, we utilized Semantic MediaWiki (SMW)EL which allows an-
notating wiki pages semantically. Domain experts can use SMW to easily model
the required concepts for the simulation framework. For the implementation of
the RL-agent, we adopted the library reinforcejleI, which implements different
RL algorithms. We demonstrated that rewards and punishments should be as-
signed depending on the given state and activity effects, since agents need to
learn the effects that their activities might have in certain situations. Moreover,
unwanted states have to be considered in the A-Box representation as well as ac-
tivities with negative impact to the given states in order to assure that an agent
does not get stuck in a certain state. Considering the evaluation results, our
future work is to improve the approach by implementing the discussed lessons
learned.

Acknowledgement

This work is supported by the European Union (H2020) under the vCare project
(grant agreement No. 769807).

References

1. A.K.Mariappan, H.S.: A hybrid approach to solve cold start problem in recom-
mender systems using association rules and clustering technique. International
Journal of Computer Applications 74(4), 17 — 23 (July 2013)

2. Carlson, A., et al.: Toward an architecture for never-ending language learning. In:
AAAL vol. 5, p. 3. Atlanta (2010)

3. Di Noia, T., et al.: Recommender Systems and Linked Open Data, pp. 88-113.
Springer International Publishing, Cham (2015), doi:10.1007/978-3-319-21768-0_4

4. Godoy, D., Amandi, A.: An agent-based recommender system to support collab-
orative web search based on shared user interests. In: Haake, J.M., Ochoa, S.F.,
Cechich, A. (eds.) Groupware: Design, Implementation, and Use. pp. 303-318.
Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

15 https://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki
16 https://github.com/karpathy/reinforcejs

https://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki
https://github.com/karpathy/reinforcejs

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

15

Lika, B., Kolomvatsos, K., Hadjiefthymiades, S.: Facing the cold start problem in
recommender systems. Expert Systems with Applications 41(4, Part 2), 2065 —
2073 (2014), doi:10.1016/j.eswa.2013.09.005

Mantrach, A.: Cold start solutions for recommender systems, https://research.
yahoo.com/_c/uploads/SeminarUCSD.pdf

Mehta, R., Rana, K.: A review on matrix factorization techniques in recommender
systems. In: 2017 2nd International Conference on Communication Systems, Com-
puting and IT Applications (CSCITA). pp. 269-274 (April 2017)

Middleton, S.E., Alani, H., Roure, D.D.: Exploiting synergy between ontologies
and recommender systems. CoRR arXiv:cs/0204012 (2002)

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., Riedmiller, M.A.: Playing atari with deep reinforcement learning. CoRR
arXiv:cs/0204012 (2013)

Musto, C., et al.: Introducing linked open data in graph-based recommender
systems. Information Processing and Management 53(2), 405 — 435 (2017),
doi:10.1016/j.ipm.2016.12.003

Nouali, O., Belloui, A.: Using semantic web to reduce the cold-start problems in
recommendation systems. In: 2009 Second International Conference on the Appli-
cations of Digital Information and Web Technologies. pp. 525-530 (Aug 2009)
Palau, J., et al.: Collaboration analysis in recommender systems using social net-
works. In: Cooperative Information Agents VIII. pp. 137-151. Springer (2004)
Peis, E., et al.: Semantic recommender systems. analysis of the state of the topic.
Hipertext.net 6, (online) (2008), http://hipertext.net/english/pagl031.htm
Rubens, N.; et al.: Active Learning in Recommender Systems, pp. 809-846.
Springer US, Boston, MA (2015), doi:10.1007/978-1-4899-7637-6_24

Schein, A.L., Popescul, A., Unger, L.H., Pennock, D.M.: Methods and metrics for
cold-start recommendations. In: Proc. of SIGIR’02. pp. 253-260. Tampere, Finland
(2002), doi:10.1145/564376.564421

Settles, B.: Active learning literature survey. Computer Sciences Technical Re-
port 1648, University of Wisconsin-Madison (2010), http://axon.cs.byu.edu/
~martinez/classes/778/Papers/settles.activelearning.pdf

Son, L.H.: Dealing with the new user cold-start problem in recommender systems:
A comparative review. Information Systems 58, 87 — 104 (2016), http://www.
sciencedirect.com/science/article/pii/S0306437914001525

Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edn. (1998)

Thanh-Tai, H., Nguyen, H.H., Thai-Nghe, N.: A semantic approach in recom-
mender systems. In: Future Data and Security Engineering. pp. 331-343. Springer
International Publishing, Cham (2016)

Tomeo, P., et al.: Exploiting linked open data in cold-start recommendations
with positive-only feedback. In: Proc. of the 4th Spanish Conference on Infor-
mation Retrieval. pp. 11:1-11:8. CERI ’16, ACM, New York, NY, USA (2016),
doi:10.1145/2934732.2934745

Yang, R., et al.: Using semantic technology to improve recommender systems based
on slope one. In: Semantic Web and Web Science. pp. 11-23. Springer (2012),
doi:10.1007/978-1-4614-6880-6_2

https://research.yahoo.com/_c/uploads/SeminarUCSD.pdf
https://research.yahoo.com/_c/uploads/SeminarUCSD.pdf
http://hipertext.net/english/pag1031.htm
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://www.sciencedirect.com/science/article/pii/S0306437914001525
http://www.sciencedirect.com/science/article/pii/S0306437914001525

	A Semantic Use Case Simulation Framework for Training Machine Learning Algorithms
	Introduction
	Related Work
	Approach
	The Framework Architecture
	The Simulation Meta-Model
	The Generation of Numerical State Representations
	State Reasoning using SPARQL Queries
	The Reasoning of Rewards

	Proof-of-Concept
	The Chronic Kidney Disease Pathway
	Intelligent Smart Home Control Systems

	Evaluation
	Conclusion and Outlook

