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Telécom ParisTech, Equipe S3, Departement INFRES, 46 rue Barrault, 75013 Paris, France, e-
mail: ada.diaconescu@telecom-paristech.fr

Holger Giese
Hasso Plattner Institute for Software Systems Engineering at the University of Potsdam, Prof.-Dr.-
Helmert-Str. 2-3, D-14482 Potsdam, Germany, e-mail: holger.giese@hpi.uni-potsdam.de

Henry Hoffmann
University of Chicago, Department of Computer Science, Ry 250, Ryerson Hall, 1100 E 58th St,
Chicago, IL 60637, e-mail: hankhoffmann@cs.uchicago.edu

Samuel Kounev
University of Würzburg, Department of Computer Science, Am Hubland, D-97074 Würzburg,
Germany e-mail: samuel.kounev@uni-wuerzburg.de

Anne Koziolek
Institute for Program Structures and Data Organization, Karlsruhe Institute of Technology, Am
Fasanengarten 5, D-76131 Karlsruhe, Germany e-mail: koziolek@kit.edu

Peter Lewis
School of Engineering and Applied Science, Aston, University, Birmingham, UK, e-mail:
p.lewis@aston.ac.uk

Anders Robertsson
Lund University, Department of Automatic Control, Ole Römers väg 1, SE 223 63 Lund, Sweden,
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Abstract This chapter defines three reference scenarios to which other chapters may
refer for the purpose of motivating and illustrating architectures, techniques and
methods consistently throughout the book. The reference scenarios cover a broad
set of characteristics and issues that one may encounter in self-aware systems, and
represent a range of domains and a variety of scales and levels of complexity. The
first scenario focuses on an adaptive sorting algorithm, and exemplifies how a self-
aware system may adapt to changes in the data on which it operates, the environment
in which it executes, or the requirements or performance criteria to which it man-
ages itself. The second focuses on self-aware multi-agent applications running in a
data center environment, allowing issues of collective behavior in cooperative and
competitive self-aware systems to come to the fore. The third focuses on a cyber-
physical system. It allows us to explore many of the same issues of system-level
self-awareness that appear in the second scenario, but in a different context and at
a potentially even larger (potentially planetary) scale, when there is no one clear
global objective.

1 Introduction

This chapter introduces three reference scenarios for which self-awareness plays an
important role. The reference scenarios are intended to cover a broad set of charac-
teristics and issues that one may encounter in self-aware systems, and to represent a
range of domains and a variety of scales and levels of complexity. They constitute a
starting point that will be elaborated further in other chapters, as needed.

The remainder of the chapter is organized as follows. In Section 2, we explain
the criteria that led us to choose this particular set of reference scenarios, including
a set of research questions that we wished to expose, and a set of dimensions that
we wished to explore.

The first scenario, presented in Section 3, focuses on an adaptive sorting algo-
rithm, and exemplifies how a self-aware individual system element may adapt to
changes in the data on which it operates, the environment in which it executes, or
the requirements or performance criteria to which it manages itself.

The second scenario (Section 4) features applications running in a data center en-
vironment. It brings to the fore issues of coordination, cooperation, and competition
that arise within self-aware applications composed of multiple interacting self-aware
elements or components. Moreover, it raises issues of competition and conflict that
may arise among multiple self-aware applications, and between those applications
and a self-aware entity that represents the interests of the data center owner.

The third scenario (Section 5) focuses on a cyber-physical system. It allows us
to study issues of system-level self-awareness similar to those of Section 4, but in
a different context and at a potentially even larger (potentially planetary) scale, at
which there is no one clear global objective. This scenario is built up incrementally
in increasing levels of scale and complexity, thereby highlighting different levels of
self-awareness. The chapter concludes with a brief summary (Section 6).
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2 Rationale

The purpose of this section is to explain some of the considerations that led to our
choice of reference scenarios, including a set of research questions and dimensions
that we wished to explore.

Among the key research questions regarding self-aware systems that we wish our
reference scenarios to support are:

• How can self-awareness help a computing system achieve its goals?
• What is the relationship between a system’s properties and the type and degree

of self-awareness that is most appropriate or beneficial for it?
• What are the costs or drawbacks of self-awareness, and what is its overall net

benefit?
• How do different instances of self-awareness operating at different levels of a

system interact with or otherwise affect one another, and what is the impact of
these interactions upon overall system behavior and performance?

Among the key dimensions of self-awareness that we wished to explore through
the reference scenarios were:

• Goal complexity. For any given self-aware entity, does its goal concern a sin-
gle attribute (such as a thermostat that just manages temperature), or is it multi-
attribute (as in the data center scenario, where an application owner might strive
to optimize multiple application performance criteria (involving response time,
throughput, and down-time) while minimizing resource usage (so as to reduce
payments due to the data center owner)?

• Goal alignment. For self-aware systems that comprise more than one self-aware
entity, to what degree do the objectives of the constituent entities align with one
another? This is related to whether or not the individual entities are operating
explicitly on behalf of one authority, or several.

– The adaptive sorter scenario represents a simple one-component system with
a single purpose.

– The data center scenario exemplifies a multiplicity of individual goals held
among the end users, the application owners, and the data center owner.

– The various cyberphysical scenarios cover a range of cases, including:
· Appliances that have their own individual objectives but may have some

consideration for global house-wide objectives built into them;
· Smart homes that each seek to minimize cost and maximize power con-

sumption by their owners, potentially creating resource contention and pos-
sibly resource shortages; and

· Shuttles that are designed to be highly cooperative with one another.

• Heterogeneity. Self-aware systems may tend towards homogeneity or hetero-
geneity in terms of technology and protocols as well as behaviour, strategies,
self-management capabilities, self-awareness level, degree to which they have
adapted effectively to the environment in which they are situated, and timing
characteristics [20, 21].
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3 Adaptive Sorting

What might it mean for software to be adaptive and self-aware? To answer this ques-
tion, we start by considering as an example the std::sort algorithm included in
the C++ Standard Template Library (STL). In its current form, the STL sorting algo-
rithm is neither adaptive nor self-aware. However, there are two important reasons
why one might want to endow it with adaptability and self-awareness: coping with
the plethora of different hardware architectures on which the algorithm might run,
and coping with the wide variety of input data characteristics.

First, consider the influence of the hardware architectural features such as cache
size, cache line size, and the number of registers on the nature of the optimal sorting
algorithm and parameters. In the version of libstdc++ included with GCC 4.3,
merge sort was used until the list was smaller than 15 elements, below which in-
sertion sort was used. This choice was established empirically as best for problems
of a certain size and type on architectures that were common when the library was
originally written. By 2009, architectures had evolved to the point where a higher
cutoff was found to be more effective [1]. 1

Second, consider the influence of data set characteristics such as size and distri-
bution (e.g. standard deviation) upon the optimal sorting algorithm and parameters.
Experiments reveal that data sets with small standard deviations favor the quick-
sort algorithm, while for larger standard deviations the CC-radix sort [17, 29] is the
best choice. When the number of keys is increased, the best algorithms for small
standard deviation values are multi-way mergesort, while CC-radix is best for larger
input sizes and higher standard deviation [22].

Recently, researchers have begun to experiment with generating sorting algo-
rithms dynamically, based on observations of the performance and the execution
platform and fine grained performance tuning [1,4]. This automatic tuning is usually
done through an empirical search [18, 19, 26] that identifies the algorithm (among a
set of potential ones) that performs best on the specific deployment machine. Code
that dynamically adapts to the characteristics of the input has a significant advantage
over other types of optimization [22].

Having established why it is advantageous for a sorter to be capable of adapt-
ing to its environment (i.e. the hardware architecture and the data upon which it
operates), we now imagine what an adaptive, self-aware sorter might be like.

3.1 Scenario

An adaptive, self-aware sorter should sense the environment and the input data to
be sorted and adapt its behavior accordingly. These requirements have both design-
time and run-time implications.

1 Another notable example where hard-coded parameters have evolved over time to accommodate
changes in architecture is the Discrete Fourier Transform [4, 9].
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First, consider the design of a self-aware sorter. The designer must anticipate
that the sorter could be instantiated in a variety of different environments, including
different hardware architectures, or different amounts of compute resources such as
CPU, memory, and I/O. The designer must also anticipate that at run-time the user of
the sorting algorithm could express goals and constraints in terms of a variety of dif-
ferent high-level attributes, including latency, throughput, energy consumption, etc.
and that the data set could vary widely in terms of size or other characteristics that
might affect sorting efficiency. The designer must then incorporate her knowledge
or expectations into the design of the self-aware sorter. The design must include:

1. means for sensing certain aspects of the environment (e.g. the identity of the
operating system, available compute resources, or the data-set size);

2. means for controlling certain aspects of the sorter’s behavior (e.g. the type of
sorting algorithm used, or the amount of memory allocated);

3. means for sensing certain attributes of the self-aware sorter’s behavior that might
possibly be of interest to the user;

4. knowledge of which environmental aspects and algorithmic behavior attributes
can be sensed, and which algorithmic parameters can be controlled;

5. models (or partial models, or hints about the likely functional form of models
whose details could be learned at run time) that capture the dependency of be-
havioral attributes upon environmental conditions;

6. means for capturing user goals and constraints; and
7. means for using models to optimize control parameters with respect to user goals

and constraints

The design goals, run-time expectations (and ranges into which user goals fall), and
models or model hints should be expressed in a form that can be used by formal
verification methods to confirm that the sorter is correct and satisfies the designer’s
goals and objectives (which include coping with the widest possible set of condi-
tions and user expectations).

Now consider the self-aware sorter at run-time. When instantiated within a spe-
cific environment, the self-aware sorter senses the hardware and resources of that
environment, assesses the data set that it is being asked to sort, and receives in-
formation about the user’s goals and constraints with regard to latency, throughput,
energy consumption, or other attributes of interest. For example, the user might wish
the sorter to minimize CPU and memory usage while maintaining a compute time
of no more than 5 seconds. Given the initial model provided by the designer, its un-
derstanding of the environment in which it is situated, its own state and capabilities,
and the user’s objectives, the self-aware sorter then uses its optimization capabil-
ity to determine the best sorting algorithm and associated parameters to use, and
perform the sort accordingly.

In a more advanced variant of the scenario, the self-aware sorter dynamically
searches for new sorting algorithms not contained within its original code base that
are more optimal given current circumstances. Such algorithms might exist in the
form of libraries that could be dynamically linked into the code, or a web service.
In order to determine that these new algorithms are likely to be better than any cur-
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rently used by the sorter, new algorithms should be accompanied by models that
predict their likely performance. Such models might be packaged with the algo-
rithms themselves, for example, or provided by a trusted third party that conducts
extensive experiments on the algorithms in order to learn models for them.

In an orthogonal variant, models relating environmental conditions and algorith-
mic parameters to high-level performance criteria might be learned dynamically as
the sorter is applied to various data sets over time. If the designer has already pro-
vided a model, the model learning might take the form of Bayesian updates to the
original model. If the designer has instead provided hints about relevant variables
and/or some expectation about the structure of the model, these could be used as
a framework or constraint in which the learning would take place. In any case, the
learning could be performed by the sorter itself, or it could be done by third parties
that do the learning and then make the resultant models available.

Preferably, the design specification should be accessible by the instantiated self-
aware sorter. If for some reason the assumptions under which the design was per-
formed and verified are violated, an alert could be created and sent to the designer
or to the verification algorithm. Upon learning that the original assumptions are
violated, the designer would have a chance to re-design the algorithm, or the ver-
ification algorithm could be launched automatically and signal the designer if the
run-time conditions are such that the algorithm is not sound (or optimal). Moreover,
other properties can be taken into account, like software health [28].

3.2 Key Questions

• How feasible is it for the designer of a self-aware software component to build
in the required sensors, controls, models, and self-regulation mechanisms? Must
we invent a new generation of software design tools to help with this task?

• What type of information could a self-aware software component capture at run-
time that would support improvements in the design of the next generation of that
software? What are methods by which such information captured from multiple
runtime instances of self-aware sorters be integrated into the redesign?

• Is it possible to remove the human designer from the loop, such that the re-design
step becomes a type of runtime adaptation? How would this work?

4 Data Center Resource Management

As a second reference scenario, we consider self-awareness in the context of a data
center. This is an interesting case because data centers involve management of thou-
sands of applications, and are therefore several orders of magnitude beyond the
self-aware sorter in terms of scale and complexity. Moreover, in this case there are
many different stakeholders instead of just one:
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• the data center owner, who operates the physical infrastructure, consisting of
a large number of physical (and, increasingly, virtual) machines plus network
and other computational resources required to run applications. The data center
owner seeks to honor its service level agreements with the application owners
while minimizing the costs of building and maintaining the data center.

• multiple application owners, who purchase compute resources from the data cen-
ter owner and use those resources to deploy, run and manage applications that
provide services to end users. They seek to honor their SLAs with end users
while minimizing what they pay to the data center owner for use of the physical
infrastructure; and

• myriad end users who use the applications provided by the application owners
and are concerned only with their own perceived service quality. Web users typ-
ically tolerate a waiting-time between 2 and 4 seconds [25], depending upon the
type of application (e.g., interactive web page vs. mail delivery service). There is
some price elasticity, i.e. end users may be willing to pay more for better service.

The data center owner, application owners and end users may come from dif-
ferent organizations (e.g., in a public cloud) and the usage of the service and the
infrastructure may be connected with certain fees. The expectations regarding the
quality of service and the fees are defined through service-level agreements (SLAs)
between the data center owner and the application owners, as well as SLAs between
application owners and their end users.

The need for data centers and the applications that run in them to be adaptive
is well-recognized. Many applications are subject to strongly time-varying work-
loads that can (during so-called “flash crowds”) reach peaks five times more intense
than the average workload [5], causing the resource requirements to increase ac-
cordingly [27]. Moreover, unexpected hardware failures occur frequently in data
centers [14, 24].

Virtualization is a key technology that has been introduced to enable more dy-
namic management of resources and applications in data centers. Virtualization flex-
ibly allocates computing, storage and network resources to applications running in
data centers. Data center owners benefit because they can consolidate independent
applications onto the same physical hardware, thereby reducing the physical re-
source and electrical power required to support a given number of applications. Vir-
tualization allows a data center owner to overcommit physical resources, i.e. they
can allow the allocated virtual machine (VM) resource reservations to exceed the
current physical resource capacity, on the assumption that not all virtual machines
require the resources at the same time [2, 15]. Application owners benefit because
they can dynamically acquire additional computational resources whenever their
application workload increases, and release those resources back to the data cen-
ter when it decreases — which is much more efficient and cost-effective than the
traditional method of requesting enough dedicated physical resource to satisfy the
maximum anticipated demand.

Virtualization enables efficiency and cost-effectiveness for both data center own-
ers and application owners, resulting in savings that can be passed on to the end
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users. In practice, however, it is challenging to manage virtualization in such a way
that objectives are met fairly and efficiently as workloads fluctuate, and goals shift.

One factor that contributes to this challenge is that modern virtualization and
middleware platforms provide a wide range of adaptable parameters, such as where
virtual machines are placed on physical hosts, the number of VM instances, the size
of each VM (e.g., number of virtual CPUs), the scheduling priorities for a VM (e.g.,
CPU reservations, limits and shares), and the platform configuration (e.g., thread
pools, cache size).

Another factor is that it is difficult to know how changes to the parameters will
affect the behavior of the system, and its impact upon the various stakeholders. Typ-
ical cloud management solutions of today (such as Amazon EC22, or CloudStack3)
use auto-scaling techniques to add or remove resources from an application when
low-level metrics such as CPU utilization cross a given threshold — a very rough
proxy for the metrics of actual interest to application owners and end users, such as
application performance and robustness. These VM management solutions are not
only unaware of the high-level goals of the stakeholders; they would not know how
to manage to those goals because they lack models that map from VM management
parameters to application-level metrics.

A final factor is that today’s VM management systems do not take into account
the multiple conflicting goals of the various stakeholders in a principled way. In-
deed, the interests of the data center owner and the application owners are often
completely at odds with one another; for example, data center owners wish to min-
imize costs by minimizing use of power and physical resources, while application
owners want the higher performance that results from maximizing power and physi-
cal resources. Consequently, VM management systems are unlikely to realize trade-
offs that are understandable or fair. For example, some modern virtualization tech-
niques attempt to optimize resource allocation at the data center level. The VMware
Distributed Resource Scheduler (DRS) [13] balances and distributes the load be-
tween physical hosts in a data center by migrating virtual machines. The Distributed
Power Management (DPM) controller [13] automatically consolidates VMs if phys-
ical hosts are underutilized, placing freed-up hosts in standby mode to save energy
and rebooting when necessary. While an effort is made to minimize the likelihood
that an application will be starved for resource while waiting for a reboot, these
controllers do not consider application performance requirements explicitly.

4.1 Scenario

Here we exemplify how self-awareness could enable more effective use of virtual-
ization from the perspective of the two stakeholders who have the ability to control
resources: the application owner and the data center owner.

2 http://aws.amazon.com/en/ec2/
3 http://cloudstack.apache.org/
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A hypothetical self-aware controller operating on behalf of the application owner
[31] wishes to use an appropriate amount of resource, such that the fees it pays to
the data center owner for the use of physical or virtual compute resources are no
more than they need to be to satisfy the demand from their end users. To do this,
an application controller could take two types of actions. First, it requests virtual
computational resources r from the data center owner (at some cost), and second,
it sets the values of the parameters under its control c(r) to allocate and control the
virtual resource r. The virtual resource might for example be a week of time on
a virtual machine with a CPU capacity of 5 · 109 cycles per second, with 8GB of
memory and 80GB of SSD storage.

The application controller’s goal is to maximize its revenue from the end-user
SLAs, π(V), where V represents the values of the attributes appearing in the SLA.
The end-user SLAs would be based upon application-level metrics, such as average
response time (or 95% response-time percentiles), latency, and might include penal-
ties for service disruption. Additional application-level attributes might include elas-
ticity [16] (i.e., the ability to rapidly increase or decrease the allocated resource in
response to demand from end users) and resource stability (guarantees that fluctua-
tions in the compute resource provided to the application will be minimized4 .

The self-aware controller has a self-model V(c(r),λ ) that expresses how its per-
formance attribute values depend upon the control settings and the workload λ .
Some methods by which such a model might be learned are discussed in Chapter
5.1. The self-aware controller then optimizes over all control settings to identify Chapter 5.1Chapter 5.1
c∗(r), the setting for which π∗(r) = π(V(c∗(r),λ )) is greatest.

The self-aware controller uses the above procedure to compute π∗(r) for all pos-
sible values of r. Then, it performs a second optimization over all values of r to
determine the value r∗ that optimizes the net profit π∗(r)− γ(r) (the revenue from
the end-user SLAs minus the payment to the data center owner for the resources
r). It requests compute resources r∗ from the data center owner, and then when
it receives them it allocates and controls those resources according to the optimal
control values c∗. Since the model contains a workload-dependent term, it and any
optimizations based upon it must be continually updated as the workload fluctuates.

A hypothetical self-aware controller operating on behalf of the data center owner
could employ a similar approach involving self-models coupled with optimization,
balancing its need to satisfy SLAs that it has in place with each of the application
owners against its desire to minimize its own costs for physical infrastructure and
power. Specifically, the data center controller can select a set of control parameters
c that (according to a self-model r(c)) is expected to produce an amount of virtual
resource r. Additionally, the choice of control parameters c implies an increase ρ(c)
in the amount of physical resource and power that must be provisioned in order to
realize those control parameters. When an application controller requests an amount
of virtual resource r′, the data center controller’s task is then to find the c∗ that

4 The data center owner might minimize such fluctations by using traditional performance isolation
techniques such as physically isolating the compute resources. In contrast to current practice, in
which SLAs explicitly mention physical isolation, in our opinion the SLA should be expressed
solely in terms of a service guarantee, and not in terms of how that guarantee is implemented.
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minimizes the effective amortized cost for physical resources and power p(ρ(c)),
subject to the constraint that r(c) = r′. The data center will then receive a profit of
γ(r′)− p(ρ(c∗)) from that application owner.

This scenario is somewhat naı̈ve in that it assumes that resource and control
settings are instantaneously responsive. This is not true in general; for example,
it can take seconds, or even minutes, to allocate new VMs to an existing application,
particularly if a physical server needs to be powered on. In a more sophisticated
variant of the above scenario, the self-aware application controller would take into
account these time lags, and compute its resource request proactively by anticipating
that more resource is likely to be needed soon. Reinforcement learning approaches
have proven effective in such cases [30].

In yet another variant of the scenario, the agreement between the application
owner and the data center owner would be based upon SLAs describing the virtual
resource r provided to the application controller, rather than directly in terms of the
resource itself. The attributes appearing in such an SLA would include traditional
resource-level metrics such as CPU cycles, memory allocation, and bandwidth, but
it would also include metrics describing service disruptions (e.g. downtime) as well
as bonuses and/or penalties incurred when the provided resource is more or less than
a specified target amount.

In another variant, the data center controller enforces an overall constraint on the
amount of physical infrastructure and power consumed across all applications. This
necessitates significant changes to the interaction between the data center owner and
the application owners. Since the application owners do not decide unilaterally how
much resource they will receive, a negotiation process would now be required.

4.2 Key Questions

• Which methods are most efficient and effective for learning models that map
from controllable parameters and environmental conditions to SLA attributes?
Some answers to this question will be provided in Chapter 5.1.Chapter 5.1Chapter 5.1

• In the scenario above, both controllers used a relatively simple predictive model
control approach to govern their actions. More sophisticated approaches are
needed to handle situations where there is a delay between when an action is
taken and its effect is manifest, such as reinforcement learning. What are the best
techniques for exploiting models to select actions, and under what conditions?

• In the scenario above, the data center owner provided to each application owner
the amount of resource that they requested, and the application owners then did
their best to manage within that allocation. One can envision other scenarios
in which the data center owner determines the amount of resource, or there is
some information exchange or negotiation through which both parties can jointly
determine the allocation. What other schemes exist, and how well do they work
under various circumstances, from the standpoint of both parties? Some answers
to this question can be found in Walsh et al. [31], and in Chapter 5.2 .Chapter 5.2Chapter 5.2
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• For both the data center owner and the application owners, the terms of the SLA
have a profound impact on the behavior of the system. What are some means by
which these SLAs can be established in the first place? Must they always be set
unilaterally, by the data center owner? Or might there be a process of negotiation
between the data center owner and the application owners, and if so what are
some plausible (or perhaps optimal) negotiation mechanisms?

• Would it be feasible to replace SLAs with an auction or other type of dynamic
economic mechanism, and if so how would this affect the nature of the algorithms
employed by the controllers?

5 Cyber-Physical Systems

In this section, we present several scenarios involving cyber-physical systems in
which multiple self-aware entities interact within a shared environment. These sce-
narios allow us to study individual and collective self-awareness, and the relation-
ships between them. As in Frey et al. [8] and Chen et al. [7], the scenarios are
organised in order of increasing complexity and scale.

5.1 Thermostat

5.1.1 Scenario

The first and simplest scenario takes place within a home and involves a single
device pursuing a single goal. Specifically, a thermostat strives to maintain a room’s
temperature within one degree of a value specified by one of the home’s inhabitants.
The amount of heating or cooling power that must be supplied to the room depends
upon the ambient outside temperature, which can vary over the course of a day or a
season. Accordingly, the thermostat is equipped with a thermometer that senses the
room’s temperature, and it uses a simple model to convert the difference between the
observed and desired temperature into a signal that controls an actuator that turns
the room heating or air conditioning on or off.

In a more complex variant of the scenario, the thermostat pursues multiple goals
simultaneously. For instance, in addition to the temperature goal, the thermostat can
be constrained by a power consumption goal, such as a maximum power that may
be used to heat or cool the house during a day. Alternatively, a power goal could be
defined dynamically by an automatic controller of a local power grid, to which the
thermostat is connected. Rather than being defined in terms of a daily threshold, the
goal might require that the connected device prioritises or avoids power consump-
tion. The goal may change at regular intervals depending on the overall state of the
power grid — i.e., the current balance between power consumption and production.
In many cases, the thermostat’s temperature and power goals may conflict with one
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another, as reaching a higher temperature with respect to the external environment
requires the thermostat to consume (switch on) power while the power goal may
recommend the opposite (switch off). In more complicated cases, an additional (and
potentially conflicting) goal may be given to the thermostat in order to minimise
the cost of power consumption for the home owner, while the grid controller could
impose fluctuating power prices.

In an orthogonal variant of the scenario, the self-aware thermostat is capable
of explaining its state, behaviour and plans. Specifically, if queried, the thermostat
would be able to report its actions (past, current and planned) and the motivations
behind them, evaluate its performance with respect to its goal(s), and perhaps even
diagnose failures to meet its goals. Such a degree of self-awareness is key to the abil-
ity of the thermostat to improve itself, either dynamically at runtime or by collecting
observations that would aid in designing the next-generation self-aware thermostat.

5.1.2 Key Questions

• How would extending the thermostat’s awareness to encompass a broader con-
text, including the presence of humans or the temperature of adjoining rooms,
improve its performance and efficiency? How costly would it be to add the requi-
site sensors, or communication capabilities, or computational power? Would the
extra self-awareness warrant this cost?

• How would extending the thermostat’s awareness to encompass a broader set of
models, such as daily or seasonal external temperatures, models of other rooms
in the house, or power price predictions improve its performance or efficiency?
How would the costs of such improvements compare to the benefits?

• What are the best means for resolving conflicts among multiple goals?

5.2 Smart Home

5.2.1 Scenario

This scenario adds to the previous scenario an additional “smart” window shutter
and a washing machine, thereby illustrating a case in which several heterogeneous
devices pursue different goals within a single environment, under a single author-
ity. Acting upon signals from sensors that sense sunlight and external and internal
temperature, and possibly human presence sensors as well, the smart window shutter
pursues goals related to the home’s lighting and temperature by controlling actuators
that rotate the shutter panels individually. In doing so, the smart window controller
simultaneously affects both the temperature and the light intensity within the house.

The self-aware washing machine offers different programmes with different on-
off cycles and durations, which can be selected by users to run within a speci-
fied timeframe. When connected to a smart grid, the washing machine may avoid
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power consumption or price peaks by delaying the washing cycle automatically.
Note that, since the shutter’s actions affect temperature and the washing machine’s
affect power, the introduction of these two self-aware entities into the environment
create the potential for goal conflicts that extend across these devices.

In a more complex version of the scenario, additional thermostats or window
shutters are introduced throughout the house, and the user specifies house-wide
goals or constraints, such as house temperature and lighting preferences, or power
consumption thresholds or costs — thereby requiring cross-device coordination.

Another interesting twist on the scenario considers the consequences of altering
the set of sensors or devices installed within the smart home. Individual self-aware
devices must adjust to the presence of new sensors or devices that consume power or
produce heat, or to the absence of recently-removed sensors or devices. Moreover,
any models or controllers that operate at the level of the smart home as a whole
must adjust to changes in power-consumption or power-provision profiles or other
characteristics of newly-introduced or recently-removed devices.

5.2.2 Key Questions

• What conflicts might arise as multiple homogeneous or heterogeneous self-aware
devices operating within a single environment attempt to satisfy their individual
(and possibly multifarious) goals? For example, how could thermostats cooper-
ate with shutters to manage temperature goals, while simultaneously attending
to their respective power and light-intensity goals? How effectively can various
negotiation or other mechanisms resolve such conflicts?

• How can a collective of self-aware entities manage to micro and macro goals
simultaneously, such as the power consumption of each device and of the house
overall? What are the relative merits of a single central self-aware controller for
the home as a whole vs. an arbiter or a fully-decentralized arrangement in which
global goals are somehow translated into local goals that are combined with the
intrinsic goals of the individual controllers?

• How can self-aware entities detect and cope with changes in their environment,
such as the addition or removal of sensors or devices?

• How could a self-aware collective (such as a smart home) provide coherent ex-
planations of its behaviour and plans, both at an individual and a collective level?

5.3 Smart Micro-Grid

5.3.1 Scenario

Consider a scenario in which several smart homes are interconnected via a smart
micro-grid. Not only does this move up a level in scale from the previous scenario;
it allows one to explore situations in which there is no single authority, but rather
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multiple authorities with interests that may both overlap and conflict. The interests
of each smart home owner may be represented by its own independent self-aware
controller, while the interest of the power company that owns the micro-grid may
also be represented by its own self-aware controller. The interests of these vari-
ous authorities overlap in some regards; for example they all desire power service
dependability and sustainability. However, they also conflict in other aspects; for
example, each home owner desires minimal costs, while the power company wants
maximal profits.

Each self-aware controller may act independently of the other, and may even
choose to leave the power grid at any time. The power grid authority likely plays a
role in determining the power consumed by each smart home, but it may be indirect
in nature, or shared with the smart homes (e.g. if the allocation depends upon pric-
ing or some type of negotiation). However, it does not have fine-grained over the
allocation of power within individual homes; that is the province of the individual
smart home controllers.

Other minor variants of the scenario introduce additional entities representing the
interests of other independent authorities, such as

• alternative energy generators (e.g., wind turbines and solar plants);
• governmental or other regulatory authorities that may impose general laws (and

hence constraints) directly (e.g., restrictions on power consumption by individual
homes) or indirectly (e.g., limits on prices charged by the power company);

• entities other than smart homes that consume electric power: businesses, electric
cars, etc., and whose behavior are therefore coupled in myriad subtle and unan-
ticipated ways with that of the smart homes (see for example [23] on the topic of
probabilistic modeling, and Chapter 5.2).Chapter 5.2Chapter 5.2

5.3.2 Key Questions

• When multiple self-aware controllers with independent objectives interact in the
absence of a central authority, what forms of communication and negotiation
most ensure that there is sufficient mutual benefit to warrant the interaction?

• In systems of multiple independent self-aware entities, the learning and adapta-
tion of one such entity induces a behavioral change that affects the experience of
those with which it interacts. How is it possible for self-aware entities to learn
and adapt in an environment that is always changing due to the learning and
adaptation of the other self-aware entities?

• In systems of multiple independent self-aware entities, to what extent is it possi-
ble or desirable for self-aware entities to become aware of one anothers’ goals,
internal states and behaviours?

• Given possible restrictions on information access (due e.g. to privacy concerns),
what mechanisms and incentives support exchange of useful information among
self-aware entities? How might they best employ such information?
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5.4 System of Autonomous Shuttles

5.4.1 Scenarios

As a final cyber-physical systems scenario, consider an intelligent transportation
system in which trains of connected railroad cars are replaced by a collection of
autonomous shuttles.5 By operating on-demand, autonomous shuttles can be more
efficient, and tailor their operation more precisely to passenger needs and priorities.
For example, managers may request high speed transport to an urgent meeting, while
tourists may request transport within a certain time window for less cost.
Model-Driven Development of Safe Self-Optimizing Mechatronic Systems . . . 5
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Fig. 2. The hierarchy of OCMs of a shuttle and its connections to other shuttles

the controllers as depicted in Fig. 2. A shuttle consists of components like the
suspension/tilt module, the engine, the tracking module etc. which in turn are
defined by OCMs.

As a complete mechatronic system usually consists of several concurrently
running components, a further possibility for communication between compo-
nents besides the strict hierarchical control flow exists. Top-level OCMs of several
nested hierarchies, which usually represent a major system component, may act
as freely interacting software agents in the overall architecture in addition to the
strict hierarchies. This means that agents exchange information and collaborate
in a peer-to-peer manner but that no central control is defined anymore. As ex-
amples of such major system components consider the different shuttles, stations
and possibly job brokers involved with the RailCab project. These agents inter-
act with each other in form of collaborations with well-defined role interfaces.
In principle, the controllers of different agents can interact with each other, as
well as the reflective operators and the cognitive operators, each on their corre-
sponding levels. In any case their interaction is limited to a peer-to-peer style
with individual messages rather than centralized, broadcasted messages.

2.2 Self-Adaptation and Self-Optimization

Self-optimization by means of self-adaptation can be realized in rather different
forms in the outlined general architectural model depending on the specific self-
optimization goals and the impact the different elements have concerning the
characteristics that should be optimized.

The most obvious location for self-adaptive behavior is the cognitive opera-
tor. Due to the decoupling from the hard real-time processing complex processing
steps for the self-optimization of a single OCM can be realized here. In a subse-
quent step they have to be enacted by influencing the behavior of the reflective

Fig. 1 Architecture of the autonomous shuttle as well as their combination (figure taken from [11]).

A prototype autonomous shuttle system of this nature is under development [11].
In order to separate the hard real-time processing required for reliable switching and
reconfiguration from the soft real-time processing required for long term decision
making, the system features an operator controller module (OCM) containing an
arbiter that controls the underlying physical processes. The reflective operator han-
dles the necessary reconfiguration in hard real-time. At the same time, a cognitive
operator captures the more demanding aspects of self-optimization such as decision
making based on run-time models. As depicted in Figure 1, the architecture of a

5 http://www.railcab.de/index.php?id=2&L=1



16 Kephart et al.

single autonomous shuttle is a hierarchy of OCMs6. Optionally, the highest-level
OCMs within each autonomous shuttle may interact with one another.

In one class of variants, the shuttles operate completely independently, optimiz-
ing their own operation without directly sharing any information other than what can
be obtained from observation, i.e. they have no awareness of one another’s models
or intent. For example, they might parastically save energy by following other shut-
tles when possible to reduce air resistance. In another variant, shuttles compete with
another to earn money by transporting passengers or cargo. If the mechanism used
to match shuttles with transport requests is an auction, then to form a competent
bid the shuttles need to generate good estimates of the time, energy and expense in-
curred in meeting specific transport requests, which requires that they learn and/or
use models of their own capabilities and costs as well as a model of the environment
in which they operate. Their bids may be placed with or without an awareness of the
existence of other shuttles that are vying to serve the same transport requests.

In another class of variants, the shuttles are aware of one another in the sense of
possessing or being capable of learning models of other shuttles. Such a degree of
awareness could be advantageous, as it affords the possibility of anticipating their
likely bids or operational behaviors.

Another dimension to the autonomous shuttle fleet scenario is whether the shut-
tles coordinate their actions with one another, and if so whether that coordination
is achieved through a central coordinator or in a decentralized fashion via messages
exchanged among the shuttles (in which case coordination would be an emergent
effect). A natural motivation for such coordination would be to optimize transport
orders globally across the entire fleet, maximizing its revenue by optimizing quality
of service and minimizing its cost by determining which shuttles are in a position
to provide the requested service most efficiently. While fleet-level planning would
be conducted across the set of shuttles, each shuttle’s individual controller would
still be responsible for executing the plan, based on its model of its own capabilities
along with characteristics of the environment in which it operates.

In the case where shuttles cooperate by explicitly exchanging high-level informa-
tion with one another, all of the activities of self-aware computing systems discussed
by Weyns et al. [32] may be realized, including

• Learning run-time models jointly. Consider a fleet of shuttles that cooperates
by exchanging monitoring data to learn the characteristics of other shuttles, the
characteristics of the environment, or the characteristics of the shuttle fleets. For
example, exchanging data on track conditions [6] can help shuttles optimize their
travel to any part of the system that has been been experienced by at least one
shuttle.

6 The design of a single autonomous shuttle would be an interesting scenario in itself. See the
Mechatronic UML approach [6] for the model-driven development of self-optimizing embedded
real-time systems, which includes a notion of UML components for hybrid behavior, real-time
statecharts extending UML state machines, and the required tool support [6,10] and analysis tech-
niques [3, 10–12] developed to be able to design safe autonomous shuttles and their internal hier-
archical structure with self-optimization.
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• Sharing goals and joint reasoning. If shuttles exchange their goals, their plan-
ning can take into account what other shuttles are likely to do, and might through
bilateral or multilateral negotiation arrive at a mutually satisfactory itinerary. For
example, they may avoid operating at cross purposes, e.g. bidding against one
another or planning conflicting itineraries.

• Joint actions. If shuttles share with one another their plans, they have a chance
to detect problems or conflicts and renegotiate or discover a solution that will be
more globally beneficial. For example, if a shuttle is no longer able to move on
its own, another shuttle may be able to help it by pushing it to the next station.

Also of interest is a competitive scenario that inherits the characteristics of the
cooperative shuttle scenario presented above, including the autonomy of individual
shuttles and the centralized or decentralized coordination that optimizes plans and
schedules over an individual fleet, and imbeds that scenario in a larger one in which
fleets compete with one another to serve transport requests. This scenario shares
much in common with the scenario in which individual shuttles compete with one
another, except that now the competition is at the level of entire fleets rather than
shuttles. For example, in the case it becomes interesting to consider the potential
advantage that one fleet might gain by learning models of competing fleets.

Finally, the scenario may be extended to a larger-scale and more heterogeneous
intelligent transport system that encompasses automobiles, taxis, bicycles and other
forms of transportation that are represented by self-aware controllers — a diverse
milieu that brings together myriad diverse interests and applications (e.g. bus and
trucking companies, individual and taxi drivers, traffic management, and city gov-
ernment).

5.4.2 Key Questions

• How can a system of autonomous shuttles or other self-aware systems fulfill
dependability requirements?

• What coordination mechanisms can permit self-aware systems to satisfy their
own individual objectives while functioning competently in a system-of-systems
that contains myriad other self-aware systems that represent multiple diverse in-
terests?

• What forms of information can usefully be shared among self-interested self-
aware entities in cooperative settings, or competitive settings, or combinations
thereof? Depending upon the type of information shared, how can self-aware en-
tities best avail themselves of such information for making individual decision,
or for engaging in negotiation or cooperative planning with other self-aware en-
tities? Under what conditions are the cost and effort worthwhile?
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6 Conclusion

This chapter presented three broad scenarios, providing some insights on the role
of self-awareness in the design of smarter systems. The first scenario, an adaptive
sorting algorithm, showed a single agent adaptation system, where one entity can
exploit its knowledge of the system to improve its behavior. The second scenario
showed multiple entities in a data center that could benefit from self-awareness to
pursue higher level goals. In this case, there is at least a specific data center owner,
together with other playes. The owner and the players goals should be fulfilled. The
third set of scenarios showed mulitple entities that can have conflicting goals, where
the owner of the system is unclear or undefined. For all these scenarios, the chapter
pointed out challenges and opportunities to be explored.

Acknowledgements This work was partially supported by the Swedish Research Council (VR)
for the projects “Cloud Control” and “Power and temperature control for large-scale computing
infrastructures”, and through the LCCC Linnaeus and ELLIIT Excellence Centers.

References

1. Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and
Saman Amarasinghe. Petabricks: A language and compiler for algorithmic choice. In Pro-
ceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’09, pages 38–49, New York, NY, USA, 2009. ACM.

2. Luiz Andre Barroso and Urs Hölzle. The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines. Morgan & Claypool, 2009.

3. Basil Becker, Dirk Beyer, Holger Giese, Florian Klein, and Daniela Schilling. Symbolic In-
variant Verification for Systems with Dynamic Structural Adaptation. In Proc. of the 28th Intl.
Conf. on Software Engineering (ICSE), Shanghai, China. ACM, 2006.

4. Anthony Blake and Matt Hunter. Dynamically generating FFT code. J. Signal Process. Syst.,
76(3):275–281, September 2014.

5. Peter Bodik, Armando Fox, Michael J. Franklin, Michael I. Jordan, and David A. Patterson.
Characterizing, modeling, and generating workload spikes for stateful services. In SOCC,
pages 241–252, New York, NY, USA, 2010. ACM.

6. Sven Burmester, Holger Giese, Eckehard Münch, Oliver Oberschelp, Florian Klein, and Peter
Scheideler. Tool Support for the Design of Self-Optimizing Mechatronic Multi-Agent Sys-
tems. International Journal on Software Tools for Technology Transfer (STTT), 10(3):207–
222, June 2008.

7. Tao Chen, Funmilade Faniyi, Rami Bahsoon, Peter R. Lewis, Xin Yao, Leandro L. Minku, and
Lukas Esterle. The handbook of engineering self-aware and self-expressive systems. CoRR,
abs/1409.1793, 2014.

8. Sylvain Frey, François Huguet, Cédric Mivielle, David Menga, Ada Diaconescu, and Is-
abelle M. Demeure. Scenarios for an autonomic micro smart grid. In SMARTGREENS 2012 -
Proceedings of the 1st International Conference on Smart Grids and Green IT Systems, Porto,
Portugal, 19 - 20 April, 2012, pages 137–140, 2012.

9. M. Frigo and S.G. Johnson. FFTW: an adaptive software architecture for the FFT. In Acous-
tics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Con-
ference on, volume 3, pages 1381–1384 vol.3, May 1998.



Reference Scenarios for Self-Aware Computing 19

10. Holger Giese, Sven Burmester, Wilhelm Schäfer, and Oliver Oberschelp. Modular Design
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