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1. Introduction

One of the basic principles of physics is the fact that an electric charge is radiating when

it is exposed to an acceleration. This is intensively used in dedicated accelerators where

this radiation was observed the first time in 1947 [1]. As this observation took place

at a synchrotron, this radiation is called synchrotron radiation. Synchrotron radiation

offers some unique features like a high brilliance and a broad spectrum. Depending on

the particle energy, its spectrum ranges from infrared up to hard X-rays. By pushing

the energy of the accelerated particles to higher values, the frequency of the emitted

radiation increases as well. As the wavelength is decreasing hereby, this allows e.g.

structural analysis in unprecedented detail as the achievable resolution is defined by

the radiation wavelength.

Since 1968 synchrotron radiation is used as scientific tool, when the first dedicated

storage ring for synchrotron radiation experiments (Tantalus I [2]) was built. In the

following, the number of these light sources increased rapidly, a development that is

still on-going with new synchrotron light sources being built around the world.

Already in the early time of accelerator physics, first predictions were made concerning

the coherence of this radiation: For wavelengths above the length of the emitting struc-

ture, the radiation from the single particles interfere constructively leading to a strong

increase of the emitted radiation power [3]. The bunches in a synchrotron typically have

a length in the range of tens of picoseconds, this coherent radiation would be in the

Gigahertz range. The drawback hereby is the fact that the vacuum pipe, the particles

are moving in, damps or even suppresses the transmission of this radiation.

When the bunches are longitudinally compressed strong enough, the emission of this

coherent synchrotron radiation (CSR) is pushed into the Terahertz range and is no

longer damped due to shielding effects. In parallel to this short-bunch operation, several

accelerators reported on an unstable behaviour of the bunches during the emission of

CSR (e.g. NSLS VUV [4], SURF II [5], ALS [6], BESSY-II [7], [8], Diamond [9], SOLEIL

[10]). This behaviour is due to the formation of sub-structures on the bunch that occur

when the bunch starts to interact with its previously emitted CSR in a bent section of

the storage ring [11, 12]. As the CSR self-interaction of the bunch can lead to quick

changes in the amplitude of these sub-structures, the radiation is often emitted in short

and intense bursts. Thus, this instability is referred to as micro-bunching instability

with a bursting behaviour of the bunch.
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1. Introduction

The energy spread of the particles inside a bunch is a very important parameter to

describe and analyse the micro-bunching instability. In the past, energy spread studies

have been done based on measurements as well as simulations. Measurements of the

energy spread at the SLC damping ring showed that the energy spread is constant below

the bursting threshold and starts to increase for bunch currents above [13]. In addition,

measurements at the Synchrotron Ultraviolet Radiation Facility (SURF III) showed

that the energy spread and the radiation are modulated with the same period length

[14]. In this case, the energy spread was accessed via pinhole measurements of the

horizontal beam size in a dispersive section. It is noteworthy that both measurements

were not time-resolved. Time-resolved measurements of the horizontal bunch size during

the micro-bunching instability at SPEAR3 showed a sawtooth-like modulation of the

energy spread [15, Fig. 6]. There, a fast-gated intensified camera (FGC) was used. At

such a camera, an image intensifier is mounted in front of the sensor. It can be switched

on and off within a very short time resulting in the illumination of just a single bunch.

Using this gating function, the camera acts as a pulse picker which allows single-turn

images of the bunch. This principle is used at different accelerators since many years

(e.g. SLC damping ring [16], KEK-B [17]).

Numerical simulations of the longitudinal phase space showed, that the bunch size

(given by the bunch length) and the bursting CSR emission have the same modulation

period length [18].

One step further towards a better understanding of the dynamics of an electron bunch

during the micro-bunching instability are time-resolved measurements of the different

bunch parameters. Time-resolved means that the different parameters can be mea-

sured on a single-turn basis, in the ideal case also turn-by-turn or even bunch-by-bunch.

Hereby, the relevant time scales are defined by the accelerator and its radio frequency

(RF) systems. In the case of the Karlsruhe research accelerator (KARA), where the

experimental studies of this thesis have been done, the bunch spacing is 2 ns and the

revolution time is 368 ns. This sets stringent requirements as for bunch-by-bunch mea-

surements a time range of only 2 ns can be used for the detection, readout, digitizing

and data storage. Thus, the detector systems must be sufficiently sensitive and fast

enough to fulfill these requirements.

One feasible way for energy spread studies is the investigation of the horizontal bunch

size as it is coupled to the energy spread in dispersive sections of an accelerator. Ideally,

the horizontal bunch size should be measured for every turn and for a sufficiently long

time (at least for several milliseconds) to resolve the bursting characteristics. At KARA,

this would require a camera with a frame rate of at least 2.7 MHz. This is very difficult

to achieve and thus those cameras are still not commercially available. To overcome

this limitation, an FGC can be used. In order to cover more than only one turn per

image a fast rotating mirror is mounted in front of the camera. This mirror sweeps the
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incoming light over the entrance aperture of the camera. During this sweep, the gate

is opened and closed several times. Thus, many single turn images of the bunch are

placed beside each other on the camera sensor before it is read out. This technique was

first used at PEP-II [19], later also at SPEAR3 [20].

Within the framework of this thesis, such an FGC setup was successfully installed at

KARA. It allows time-resolved energy spread studies with a single-turn resolution. The

system is embedded into a hardware synchronisation system that enables the simulta-

neous detection of different bunch parameters. To determine the horizontal bunch size

from the FGC images, a dedicated data analysis scheme was developed, which takes

the particularities of the imaging process into account, as the bunch is moving in the

same plane as its size is intended to be measured. As the micro-bunching instabil-

ity is a bunch-current dependent effect, a precise measurement of the filling pattern

is required. This is achieved by using the principle of time-correlated single photon

counting (TCSPC), the corresponding setup was upgraded concerning the resolution

and the reduction of dead-time induced distortions. An additional important aspect for

accelerator studies is a proper representation of the accelerator in simulation programs.

Within the scope of this thesis, the Accelerator Toolbox for MATLAB (AT) has been

used to model the accelerator and study beam dynamics in the short-bunch mode.

This thesis is structured in the following way: In Chapter 2, a brief introduction into

accelerator physics is given, while in Chapter 3, KARA and the visible light diagnostics

(VLD) port are presented. Chapter 4 introduces and discusses different aspects of the

(self-)interaction of the bunch with its environment, including the micro-bunching in-

stability. The experimental setups using visible light are presented in Chapter 5. These

setups are embedded into a synchronisation scheme, which is introduced in Chapter 6.

In Chapter 7, the accelerator simulation studies using AT are discussed. The setups

and data analysis framework allow time-resolved experimental studies of the bunch

arrival time and during the micro-bunching instability, those are discussed in Chap-

ter 8. As further detector developments are very promising and first tests already show

their potential, an outlook is given in Chapter 8.5, before the thesis is summarized in

Chapter 9.
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2. Accelerator physics

This chapter introduces the basics of accelerator physics, with focus on the relevant as-

pects for the topics covered by this thesis. First, storage rings are introduced followed by

the incoherent and coherent synchrotron radiation. The fundamentals of the transverse

as well as the longitudinal beam dynamics are presented. As the emission of synchrotron

radiation leads to damping effects and the formation of an equilibrium energy spread,

both topics are discussed.

2.1. Storage rings

Storage rings are particle accelerators that are able to keep a particle beam at constant

energy in their ultra-high vacuum beam pipe for a long time (several hours). Be-

sides their use for particle collision experiments, they are used as synchrotron radiation

sources. This radiation is emitted when highly-relativistic charged particles (usually

electrons) are deflected. It has some unique features like a high intensity and a broad

spectrum ranging from infrared (IR) up to hard X-rays. If the electron bunches are

shortened by changing some accelerator parameters, the emission in the THz range can

become coherent.

2.2. Ultra-relativistic approximation

The accelerated particles in the context of this thesis are always electrons. They have

a rest mass of m0 = 511 keV/c2 [21]. The energy-momentum relation

E =
√
E2

kin + E2
0 =

√
p2c2 +m2

0c
4 (2.1)

relates the total energy E to the kinetic energy Ekin and the rest energy E0. For kinetic

energies far above 511 keV this leads to E0 � Ekin and thus

E ≈ pc (2.2)

which is used in the following.
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2. Accelerator physics

2.3. Synchrotron radiation

The acceleration of a charged particle leads to the emission of electro-magnetic radia-

tion. In storage rings that are specially designed as light sources, this effect is exploited

to produce synchrotron radiation used for various experiments. This radiation is either

emitted in the dipole magnets or in the so called insertion devices, where the beam is

exposed to a sequence of short dipole fields that let it oscillate and thus radiate stronger.

The synchrotron radiation has some unique features that makes it an important tool

for material science and also for diagnostic purposes. Synchrotron radiation has a

continuous spectrum (from IR up to hard X-rays) and is also emitted collimated.

2.3.1. Incoherent synchrotron radiation

For a transverse deflection of a relativistic particle in a dipole field, the total emitted

power P0 can be calculated to [22, Eq. (2.15)]:

P0 =
e2c

6πε0

1

(m0c2)4

E4

R2
(2.3)

with E as its energy and R as the bending radius in the magnet. ε0 is the vacuum

permitivity which is 8.85 · 10−12 A s
V m

[23].

Two facts are particularly important:

1. The power scales with 1/m4
0, so electrons are preferred over heavier particles like

e.g. protons.

2. The power scales with E4

R2 , so already a small increase of the energy leads to

a strong increase of the radiated power and is (usually) easier to achieve than

reducing the bending radius R.

The energy loss per turn U0 for a single particle can be determined by integrating the

radiation power from Eq. (2.3) along the bent section of one turn:

U0 =

∮
P0dt = P0

2πR

c
=

e2

3ε0

1

(m0c2)4

E4

R
. (2.4)

For electrons, this leads to [22, Eq. (2.19)]

U0[keV] = 88.5
E4[GeV4]

R[m]
. (2.5)

In the rest frame of the particles, the emission is the one of a Hertz dipole, while in the

lab frame – after applying a Lorentz transformation – the photons are emitted into a

cone with an opening angle Θ that can be approximated by [22, Eq. (2.23)]:

tan Θ ≈ 1

γ
, (2.6)

with γ as relativistic gamma factor.
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2.3. Synchrotron radiation

As γ is large for highly relativistic particles, Θ is small and one can set tan Θ ≈ Θ. For

a stationary observer the light pulse of a single electron in the far-field has the length

[22, Eq. (2.25)]

∆t ≈ 4R

3cγ3
(2.7)

with R as bending radius. For highly relativistic electrons (γ ≥ 103) and a bending

radius of typically some meters (for KARA R = 5.559 m), the light pulses have a length

of several attoseconds (10−18 s).

The temporal profile of the synchrotron radiation pulse of an electron bunch is the

convolution of the longitudinal bunch profile with the single electron pulse. As the

single electron pulse is very short compared to the electron bunch length, it can be

assumed to be a delta pulse and thus the intensity profile of the synchrotron radiation

pulse perfectly represents the profile of the electron bunch. This fact is the base for

different techniques of non-invasive beam diagnostics based on detecting the incoherent

synchrotron radiation.

2.3.2. Coherent synchrotron radiation

For an electron bunch coherent amplification of the emitted synchrotron radiation can

occur. The starting point for that is the radiation field Ej of a single electron j within

a bunch at a frequency ω [24, Sec. 24.7]

Ej ∝ ei(ωt+φj). (2.8)

The phase φj describes the position of this electron relative to the bunch center. The

total radiation power is given by the square of the radiation field for all electrons:

P (ω) ∝
N∑
j,l

EjE∗l ∝ N +
N∑
j 6=l

eφj−φl . (2.9)

This finally leads to

P (ω) = p0 (ω)N
(
1 + (N − 1)F

)
≈ p0 (ω) ·

 N︸︷︷︸
incoherent

+ N2F︸ ︷︷ ︸
coherent

 (2.10)

with the single electron radiation power p0 (ω) and the so-called form factor F . The

form factor is given by

F (ω) =

∣∣∣∣∣ 1

Ne

∫ ∞
−∞

ρ(t)e−iωtdt

∣∣∣∣∣
2

(2.11)

and is the absolute squared of the Fourier transform of the normalized charge distribu-

tion. For a Gaussian shaped bunch with length σt this leads to

F (ω) = e−(σtω)2 . (2.12)
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2. Accelerator physics

So for wavelengths above the bunch length, F becomes close to 1 and due to the square

of the number of electrons a strong amplification in radiation power is achieved for this

coherent radiation referred to as coherent synchrotron radiation (CSR). To make use

of this coherent radiation in an accelerator, the bunch length has to be tuned down to

get a coherent emission for wavelength below the cut off wave length, which is given by

[18]

λcut-off = 2

√
h3

R
, (2.13)

with the height of the beam pipe h and R as the bending radius. For KARA with a

32 mm high beam pipe and a bending radius of 5.6 m, λcut-off = 4.8 mm.

2.4. Optics and beam dynamics

To reach a stable orbit for an electron beam, magnetic and electrical fields are used.

While magnetic fields are used for deflecting the particles, electric fields are used for

longitudinal acceleration and to compensate the energy losses due to the emission of

synchrotron radiation. The following basic introduction into the terminus and the

underlying physics is based on the book of Wille [22].

The usage of electric and magnetic fields for guiding an electron through an accelerator

is due to the Lorentz force

~FL = e
(
~E + ~v × ~B

)
(2.14)

with ~E as the electric and ~B as the magnetic field acting on an electron with the charge

e and the velocity ~v. If ~v is large – as it is the case for relativistic particles in a storage

ring with v ≈ c – (static) magnetic fields are more suitable for deflecting the particles.

In addition, those fields do not change the particle energy due to ~FL ⊥ ~B. Thus,

changing the particle energy is achieved using longitudinal electric fields.

A convenient way to describe ring accelerators is the usage of a co-moving coordinate

system. This coordinate system follows the trajectory of a reference particle with the

reference energy E = E0. It is illustrated in Figure 2.1.

The reference particle follows the reference path while x, y and z describe the position

of the particle with momentum p relative to this reference orbit. Together with the

corresponding momenta x′ = dx
ds

, y′ = dy
ds

and δ = E−E0

E0
= ∆E

E0
, the six-dimensional

phase space of the particles is defined.

16



2.4. Optics and beam dynamics

Θ

reference particle trajectory
s

x

y z

particle trajectory

reference particle

 

particle

Figure 2.1.: Co-moving coordinate system with the two transverse components

x and y, and the longitudinal component z pointing tangentially away from the

reference particle trajectory (adapted from [24, Fig. 4.2.]).

2.4.1. Transverse beam dynamics

As magnetic fields are used for deflecting the particles (with charge e and energy E), the

equality of Lorentz and centripetal force can be used as starting point for a mathematical

description leading to

1

R(x, y, s)
=
ec

E
By(x, y, s). (2.15)

The bending radius R is large compared to the dimensions of the beam and thus a

Taylor-expansion of the magnetic field is useful:

ec

E
By(x, y, s) =

ec

E
·By0 +

ec

E

dBy

dx
x +

ec

E

1

2!

d2By

dx2
x2 + ...

=
1

R︸︷︷︸
Dipole

+ kx︸︷︷︸
Quadrupole

+
1

2!
mx2︸ ︷︷ ︸

Sextupole

+ ...

The different magnetic multipoles are responsible for different effects:

1. Dipole: Bending

To get a circular shaped trajectory, it has to be bent. At KARA, this is achieved

using 16 dipole magnets in total.

2. Quadrupole: Focussing

To prevent the electron bunches from becoming too large (the vacuum pipe has a

finite size), focussing elements – similar to those used in light optics – are required.

To get a focussing, a magnetic field is needed having a strength that increases

with the distance from the center. This is achieved using quadrupole magnets, a

scheme of such a magnet is shown in Fig. 2.2. It also shows one drawback of these

quadrupole magnets: they only focus in one direction, in the other one they lead
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2. Accelerator physics

to defocussing. To achieve a net focussing, those quadrupole magnets have to be

arranged in dedicated patterns.

Figure 2.2.: Principle scheme of a quadrupole magnet. The red arrows indicate

the forces on the particles, in this example the quadrupole is focussing horizontally

while defocussing vertically [25, Fig. 2].

3. Sextupole: Correct chromatic effects

Quadrupole magnets act as lenses for the particle beam. Analogue to light optics,

also at these magnetic lenses chromatic effects occur as the focal length of the

quadrupole magnets depends on the particle energy. Thus, a finite energy spread

leads to a spread of the corresponding focus points. This effect is also called

chromaticity and is compensated using sextupole magnets.

Considering only the first two orders and assuming that the horizontal and vertical

plane are not coupled, the following equations of motions can be derived with the

dipole strength 1
R2(s)

and the quadrupole strength k(s) [22, Eq. (3.21)]:

x′′(s) +

(
1

R2(s)
− k(s)

)
x(s) =

1

R(s)

∆E

E0

(2.16a)

y′′(s) + k(s)y(s) = 0. (2.16b)
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2.4. Optics and beam dynamics

They can be shortened by neglecting dispersive effects (∆E
E0

= 0) and one obtains a set

of differential equations:

u′′(s) +K(s)u(s) = 0 K(s) =

 1
R2(s)

− k(s) if u(s) = x(s)

k(x) if u(s) = y(s).
(2.17)

For a solution to these equations, one has to keep in mind the periodic structure of a

circular accelerator with an orbit length L0. This leads to K(s+ L0) = K(s) and thus

a general solution for the equations is

u(s) = A(x) cos(Ψu(s) + φ). (2.18)

The amplitude A(s) as well as the phase Ψu(s) depend on the longitudinal position s

and are periodic with L0. The corresponding oscillation is called betatron oscillation

with the betatron frequencies fx and fy for oscillations in the horizontal and vertical

plane, respectively. The amplitude A(s) can be written as

A(s) =
√
εβ(s) (2.19)

with β(s) as the so-called beta function and ε as emittance.

To derive the equations of motion, dispersive effects were ignored by setting ∆E
E

to

zero. But especially for dipole magnets – used for bending the trajectory to get a

closed orbit – this is no longer possible. Going back to equation (2.16b) and defining a

special dispersion orbit D(s) with ∆E/E0 = 1 leads to an inhomogeneous differential

equation

D′′(s) +
1

R2
D(x) =

1

R
. (2.20)

The solution of such an equation is the sum of the general solution for the homogeneous

part (1/R = 0) and one particular solution Dp for the inhomogeneous case. The ansatz

Dp = const. eventually leads to the solution for the dispersive case:

x(s) = x∆E/E0=0(s) +D(s)
∆E

E0

. (2.21)

Thus, the orbit x(s) is the sum of the orbit of a particle with reference energy (∆E/E0 = 0)

and the part due to the finite energy deviation. This energy deviation leads to a slightly

different bending radius in the dipole magnets. As the horizontal dispersion Dx(s) is

usually much larger than the vertical dispersion Dy, the latter one is usually ignored

and thus D(s) = Dx(s) is used in the following.

The dispersion function D(s), the beta functions βx(s) and βy(s) are called optics

functions. All three are defined by the different magnetic elements of an accelerator.

In Fig. 2.3, the beta function as well as the dispersion of KARA are plotted. The

symmetry of the lattice is fourfold, with four sectors whereby each sector consists of
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Figure 2.3.: Optics function (horizontal dispersion and beta function) for the

KARA storage ring. The dashed lines indicate the fourfold symmetry of the lattice.

The curves were calculated using the Accelerator Toolbox for MATLAB (AT) [26].

To enhance the visibility, the dispersion is scaled by a factor of 10 to achieve a

similar magnitude as the beta function.

two mirror-symmetric parts. As the typical values of the dispersion are low compared to

the ones of the beta functions, it is usual to plot them together and scale the dispersion

by a factor of 10.

As the dispersion shifts the orbit in cases of an energy deviation, also the resulting

length L of the closed orbit and thus also the revolution time T changes. The so-called

momentum compaction factor αc relates this orbit length deviation and the energy

deviation:

αc =
∆L/L0

∆E/E0

≈ 1

L0

∮
D(s)

R(s)
ds. (2.22)

The last equality holds true if only linear optics (dipoles and quadrupoles) are consid-

ered. Equation (2.22) states, that the momentum compaction factor αc depends on the

magnet lattice. The momentum compaction factor αc connects the transverse and the

longitudinal motion, therefore the longitudinal beam dynamics are briefly sketched in

the following.
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2.4. Optics and beam dynamics

2.4.2. Longitudinal beam dynamics

While the transverse motion of the beam is affected by magnetic fields, longitudinal

electric fields are used to influence the longitudinal motion. As the particles lose energy

due to the emission of synchrotron radiation, this energy loss has to be compensated.

Otherwise, the beam will be lost as the particles would travel on orbits with decreasing

radius until they hit the inner wall of the beam pipe.

This longitudinal acceleration is achieved in resonators that are called radio frequency

(RF) cavities. Fed by microwave emitters (in case of KARA: two klystrons [27, 28]),

a standing electromagnetic wave is excited inside the cavities. The geometry of the

cavities is designed to achieve a purely electric field in the longitudinal direction at the

particle trajectory [24].

The fundamental frequency fRF is mostly defined by the geometry of the cavity, in case

of KARA it is 500 MHz 1.

The energy gain ∆E of an electron with charge e that passes a cavity depends on the

peak voltage VRF and the phase φ of the electric field:

∆E = eVRF sinφ. (2.23)

The ratio of the RF frequency fRF and the revolution frequency f0 is referred to as

harmonic number h, in case of KARA h is 184.

fRF = h · f0 (2.24)

The harmonic number h gives the number of the buckets of a storage ring, being the

stable areas in phase space that can be filled with electrons [22, Sec. 5.7]. Thus, the

electrons do not travel arbitrarily distributed (coasting beam), but are grouped into

packages called bunches.

The sinusoidal shape of the electric fields leads to a longitudinal focusing of the particles

called phase focusing. Particles with an energy below the reference energy are deflected

stronger in the dipole magnets resulting in a shorter orbit. This shorter orbit leads to

an earlier arrival in the RF cavity at the next turn. Thus, those particles are exposed

to a higher voltage than the reference particle and gain more energy, which results in

a slightly longer orbit on the following turn. As a consequence, the particles arrive

slightly later the next turn, see Fig. 2.4 for a schematic principle. This holds true if the

momentum compaction factor αc is kept positive, which was the case within the scope

of this thesis. As a consequence, the particles oscillate around the synchronous phase

φs. This oscillation is referred to as synchrotron oscillation.

1The frequency is not exactly 500MHz, but typically around 499.7MHz. Nevertheless, it is referred

to as ’500MHz-RF’.
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Figure 2.4.: Principle of phase focussing: particles with an energy below the

reference energy E0 (blue curve) have a shorter revolution time, arrive earlier in

the cavities and are exposed to a higher voltage. Thus, they get a slightly higher

energy gain leading to a slightly longer revolution time (red curve) and vice versa.

This results in a longitudinal oscillation of the particle around the stable phase φs

and is known as phase focussing.

The following introduction is based on [29, pp. 146 ff.]. For this analytical descrip-

tion, a particle inside a bunch is considered. Due to synchrotron radiation, it looses a

certain amount of energy per turn U . Depending on its arrival time τ relative to the

synchronous particle at ts, it gains or looses the energy amount ∆E:

∆E = eVRF sin
(
2πfRF(ts + τ)

)
− U. (2.25)

With the synchronous phase φs = 2πfRFts and assuming τ � T0 with T0 as revolution

time, the sinusoidal part can be simplified:

∆E = eVRF sin (φs) +
2πhVRF cos (φs)

T0

τ − U. (2.26)

As the energy gain per turn is usually very small, one can set ∆Ė = ∆E
T0

and thus

∆Ė =
eVRF sin (φs)

T0

+
2πheVRF cos (φs)

T 2
0

τ − 1

T0

U. (2.27)

Expanding the energy loss as a function of ∆E and τ as

U (∆E, τ) ≈ U0 +
dU

dE
∆E +

dU

dt
τ (2.28)

leads to

∆Ė =
eVRF sin (φs)

T0

+
2πheVRF cos (φs)

T 2
0

τ − 1

T0

U0 −
1

T0

dU

dE
∆E − 1

T0

dU

dt
τ. (2.29)
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2.5. Radiation damping

With the condition for the synchronous particle U0 = eVRF sin (φs), this leads to

∆Ė =
2πheVRF cos (φs)

T 2
0

τ − 1

T0

dU

dE
∆E − 1

T0

dU

dt
τ. (2.30)

Using τ̇ = τ
T0

= αc∆E/E0 this finally leads to the second order differential equation:

∆Ë +
1

T0

dU

dE︸ ︷︷ ︸
damping

∆Ė−2πhαceVRF cos (φs)

T 2
0E0︸ ︷︷ ︸

ω2
s,0=(2πfs)

2

∆E +
αc
T0E

dU

dt︸ ︷︷ ︸
neglected here

∆E = 0. (2.31)

This is the differential equation for a damped harmonic oscillator. Initially, the last

term is neglected and the synchrotron frequency fs is introduced here with

fs =
1

T0

·
√
−heVRF cosφs

2πE0

αc. (2.32)

This frequency depends on the energy of the reference particle E0 and the momentum

compaction factor αc and thus also on the magnet lattice. Equation (2.32) can also be

used to determine the momentum compaction factor αc from the synchrotron frequency

and the RF voltage.

Normally, the number of particles per bunch is in the order of 106 and higher. A

convenient way to treat this is to describe the particles as an ensemble with the root

mean square (RMS) widths σx, σx′ , σy, σy′ , σz, σδ. By neglecting interactions between

the particles, one can deduce the motion of the center of mass of the distributions

directly from the single particle ansatz. For highly relativistic beams (as it is normally

the case for electron machines) the bunch length is given by [24, Eq. (9.70) and (9.71)]

σz =
cσδ|αc|
2πfs

=
c√

2πfrev

√
αcE0

heVRF

σδ. (2.33)

To decrease the bunch length, the momentum compaction factor αc should be lowered

as the bunch length scales with
√
αc.

2.5. Radiation damping

The emission of synchrotron radiation is coupled to an energy loss which damps the syn-

chrotron oscillation. In Eq. (2.31), this is contained in the second summand. Together

with the synchrotron frequency fs, this equation can be written as

∆Ë +
2

τz

∆Ė + ω2
s,0∆E = 0 (2.34)

with ωs,0 = 2πfs. τz is the the longitudinal damping time which is defined as

1

τz

=
1

2T0

dU

dE
. (2.35)
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2. Accelerator physics

The analytical treatment finally leads to an expression for τz (for details, see [22, pp.

211 ff.]:

1

τz

=
U

2T0E
· (2 +D) (2.36)

D =

∮ [
D
R

(
2k + 1

R2

)]
ds∮

ds
R2

(2.37)

with U as energy loss per turn calculated according to Eq. (2.5).

The longitudinal damping time is defined by the energy E and the magnet lattice as D
is a function of the dispersion D, the quadrupole strength k and the bending radius R.

A similar treatment for the horizontal and vertical plane finally gives the three damping

times:

1

τz

=
U0

2T0E
· (2 +D) =

U0

2T0E
· Jz (2.38a)

1

τx

=
U0

2T0E
· (1−D) =

U0

2T0E
· Jx (2.38b)

1

τy

=
U0

2T0E
=

U0

2T0E
· Jy. (2.38c)

The sum of the damping partition numbers Ji is – according to the Robinson theorem

[30] – equal to 4:

Jz + Jx + Jy = 4. (2.39)

For storage rings with separated magnets for bending and focussing (as it is the case

for KARA), D is usually very small and thus damping occurs in all three planes with

Jz = 2, Jx = 1, Jy = 1. While the Robinson theorem states, that the overall radiation

damping is constant, the amount of damping can be distributed between the different

planes [31].

2.6. Energy spread

The particles of a beam do not all have the same energy as the stochastic emission of

photons leads to a spread of their energies. This spread is referred to as energy spread

and is determined by different processes like damping and quantum excitation due to

the emission of synchrotron radiation.

After a certain transient time, the energy spread reaches an equilibrium limit, the so-

called natural energy spread that can be derived according to [24, Sec. 11.3.1].

A particle with a certain energy deviation ∆E0 at the time t0 is undergoing a syn-

chrotron oscillation with the frequency fs:

∆E(t) = ∆E0e
i2πfs(t−t0). (2.40)
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2.7. Horizontal bunch size

After the emission of a photon with the energy εγ at the time t1, the oscillation of the

energy deviation has changed to

∆E1 = ∆E0e
iΩs(t−t0) − εγeiΩs(t−t1). (2.41)

The transition from a single particle to a Gaussian distribution finally leads to an

expression for the natural energy spread [24, Eq. (11.45)]

δ2
0 = Cq

γ2

Jz

〈1/R3〉
〈1/R2〉

= Cq
γ2

JzR
(2.42)

where for the last step an isomagnetic lattice was assumed with all dipole magnets

having the same bending radius. The constant Cq

Cq =
55

32
√

3

~c
m0c2

. (2.43)

is 3.84 · 10−13 m for electrons.

Thus, the natural energy spread only depends on the beam energy (via γ) and the

bending radius R. For KARA, the natural energy spread for a beam energy of 1.3 GeV

is 4.7 · 10−4.

For the equilibrium case, the energy spread and the bunch length are related by

σt,0 =
cαc

2πfsβ
δ0. (2.44)

The bunch length σt,0 is referred to as zero-current or natural bunch length.

2.7. Horizontal bunch size

If a particle beam has a finite energy spread, the effect of the dispersion leads to a

change of the bunch size as it is summarized here according to [24, Sec. 11.4.4].

In Eq. (2.19), the oscillation amplitude for the betatron oscillation of a single particle

was defined based on the beta function β and the emittance ε. This holds for a particle

having the same energy as the reference particle. In case of a slight deviation σδ from

this value, the oscillation amplitude becomes

A =
√
εβ(s) +D(s)σδ. (2.45)

As stated above, this is the case for the horizontal plane as for most storage rings the

vertical dispersion can be neglected. Going one step further to a particle distribution,

the horizontal RMS beam size at the longitudinal position s along the storage ring is

given by

σx(s) =

√
εx · βx(s) +

(
D(s) · σδ

)2
. (2.46)
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2. Accelerator physics

Equation (2.46) shows, that the beam size at a certain point is defined by the beta func-

tion βx and the dispersion D, being both lattice parameters as well as the emittance ε.

This is consequently used to investigate the energy spread as it can be accessed by

(time-resolved) measurements of the horizontal bunch size in a dispersive section of a

storage ring (Sec. 5.2).
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3. KARA

The experimental studies of the micro-bunching instability within the scope of this thesis

were done at the Karlsruhe research accelerator (KARA). This chapter briefly introduces

the storage ring and its pre-accelerators. Afterwards, the regularly offered short-bunch

operation mode is discussed.

3.1. Accelerator chain

The KIT synchrotron KARA is operated as synchrotron light source. The synchrotron

radiation is used for different purposes like tomography, diffraction analysis or lithog-

raphy [32]. Besides the 23 dedicated beam lines for these studies, also diagnostics ports

exist, where the incoherent synchrotron radiation is coupled out to serve as diagnostics

tool. KARA uses electrons with beam energies up to 2.5 GeV. To achieve this high

energy, a chain of pre-accelerators is used. Figure 3.1 shows a picture of the KARA

pre-accelerator chain.

1. Electron gun

The KARA electron gun is a thermionic gun accelerating the electrons to an

energy of 90 keV [33]. From its working principle, this electron gun allows the

injection of single bunches into the accelerator.

2. Racetrack microtron

The next accelerator is the racetrack-microtron. It consists of two dipole magnets

deflecting the beam by 180 ◦, with one linear accelerator (Linac) in-between. The

electrons pass this Linac ten times until they have the final energy of 53 MeV. As

the energy increases from turn to turn, the bending radius inside the two dipoles

increases linearly with the energy and thus the trajectory moves towards the outer

side of the microtron [34].

3. Booster synchrotron

This is the last of the pre-accelerators. The booster is a synchrotron meaning that

the energy and the magnetic field in the dipole magnets is increased synchronously

to keep the beam always on the same trajectory. In the booster, the bunches are

accelerated up to 500 MeV. One booster cycle, which is the sequence of injection
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3. KARA

Figure 3.1.: Overview of the KARA pre-accelerator chain. The electron-gun is

located at the right hand side, from there the electrons are transferred to the

racetrack-microtron, its two dipole magnets can be seen in the middle. Afterwards,

they are transported through the transfer line to the booster synchrotron that spans

along the outer walls.

into the booster, energy ramp, extraction and down-ramping of the magnets, lasts

for one second.

4. The KARA storage ring

After the bunches have passed the pre-accelerator chain, they are injected into

the main storage ring. The layout of the accelerator is illustrated in Fig. 3.2.

For bending the electron beam path 16 dipole magnets are used (yellow), while

a focussing is achieved by the 40 quadrupole magnets (red). Those magnets are

grouped in five families, which means that the magnets of one family are all fed

by the same power supply. To correct chromatic effects 24 sextupole magnets

are used. They are grouped in two families. The magnetic lattice has a fourfold

symmetry as it was also illustrated by the lattice functions D and βx in Fig. 2.3.
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3.1. Accelerator chain

Figure 3.2.: Layout of the KARA storage ring consisting of 16 dipole magnets

(yellow) and 40 quadrupole magnets (red). Two of the straight sections contain the

radio frequency (RF) cavities. Each cavity pair is waveguide-coupled to a klystron

inside of the storage ring (not shown here). The other straight sections are used for

insertion devices [35].

Two of the straight sections are used for the RF system and contain two RF

cavities each. In these cavities, the electrons are accelerated longitudinally by a

standing electro-magnetic wave with a frequency of 500 MHz. The other straight

sections are used for the insertion devices. These devices consist of a sequence of

short dipole magnets with alternating field orientation. They lead to an oscillatory

motion of the electrons and for each bending movement synchrotron radiation is

emitted. The individual pulses from each bending superimpose to increase the

photon flux [24, Sec. 24.1.4 - 24.1.5].

Some key parameters of the storage ring are listed in Table 3.1.
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3. KARA

Table 3.1.: KARA key parameters

Circumference 110.4 m

Beam energy 0.5 GeV to 2.5 GeV

Beam current up to 200 mA

RF frequency 499.7 MHz

Harmonic number 184

Revolution time 368.2 ns

3.2. Short-bunch operation mode

To study the occurrence of the micro-bunching instability, the bunches have to be

compressed longitudinally by reducing the momentum compaction factor αc [36]. This

operation mode is referred to as short-bunch or low-αc mode and is offered regularly

at KARA. As stated in Eq. (2.22), αc is given by the integral over the dispersion. To

reduce the integral, the dispersion is locally pushed to negative values by changing the

currents in the quadrupole magnets [8, 37]. As the bunches are getting shorter, this

process is referred to as squeezing. This is illustrated in Fig. 3.3, where the horizontal

dispersion for one sector of KARA is plotted for different optics.

The blue line corresponds to an optic with a high αc of 7.7 · 10−3, while the green

and the red one correspond to a reduced αc. It can be seen that the dispersion has

to be stretched in order to reduce αc (see Eq. (2.22)). It is also noteworthy, that the

dispersion at the imaging source point of the VLD port is barely changing during the

squeeze. This is shown in detail in Fig. 3.4. As the VLD port (see Sec. 3.3) covers a

path length of approximately 0.08 m, the dispersion changes along this trajectory with

up to 13 percent. This is illustrated by the grey lines above and below the blue line.

3.3. The visible light diagnostics port

Besides the 23 beam lines used for experiments with synchrotron radiation, also diag-

nostics ports exist where the synchrotron radiation is used as diagnostics tool for the

accelerator. One of these ports is the visible light diagnostics (VLD) port, where the

experimental setups described in Chapter 5 are located [38]. The port uses the incoher-

ent synchrotron radiation in the visible wavelength range from the 5◦ port of a dipole

magnet. It was originally designed for longitudinal bunch diagnostics using a streak

camera (SC) [39]. Therefore, its optics consists of a set of planar and off-axis paraboloid

mirrors. To separate the visible radiation from the X-rays, the first mirror is a cooled
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Figure 3.3.: Dispersion for different optics used for reducing the momentum com-

paction factor αc calculated by using the Accelerator Toolbox for MATLAB (AT)

[26]. The vertical lines depict the position of maximum dispersion (dotted), the

visible light diagnostics (VLD) port (solid) and the position of minimum dispersion

(dashed).

aluminium mirror with an angle of 45◦ that absorbs X-rays and reflects the visible light

upwards. After it has left the vacuum beam pipe through a quartz window, the light is

focussed by the first off-axis paraboloid mirror (f =1200 mm) that also guides the light

trough the radiation safety wall into the lab.

To allow a simultaneous operation of the different setups, the incoming light is divided

into wavelength regions. This is achieved by a set of two shortpass filters as it is

illustrated in Fig. 3.5.

The first shortpass filter reflects the light with wavelengths above 400 nm. The wave-

lengths below are transmitted and sent to the time-correlated single photon counting

(TCSPC) setup used for filling-pattern measurements (see Sec. 5.1) while the remaining

light is reflected onto the second shortpass filter. It has a cut-off wavelength of 500 nm,

consequently, the light that is transmitted through this filter has wavelengths between

400 nm and 500 nm and is sent to the fast-gated intensified camera (FGC) (see Sec 5.2),

while the wavelengths above 500 nm are reflected towards the streak camera (SC) [39,

40]. The wavelengths of the two shortpass filters were chosen with respect to an optimal

efficiency of the detectors of the different setups. In addition, it has to be ensured that

the beam path to the SC does not contain any dispersive elements. As this setup is

used for studies of the bunch length, dispersive effects would lead to a lengthening of

the light pulses otherwise.

31



3. KARA

0.0010.0020.0030.0040.0050.0060.007
c

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Di

sp
er

sio
n 

(m
)

Maximum
VLD port
Minimum

Figure 3.4.: Dispersion at the VLD port (blue) as well as at the position of the

maximum (red) and minimum dispersion (purple) plotted over αc. While it remains

almost constant at the VLD port, the maximum value is increasing while the mini-

mum value is decreasing. As this decrease is stronger than the maximums increase,

the integral over the dispersion becomes smaller.

Figure 3.5.: Wavelength separation setup at the VLD port. Coming from the top

the light is reflected by an off-axis paraboloid mirror towards a set of two shortpass

filters that separates the light for the time-correlated single photon counting (TC-

SPC), the streak camera (SC) as well as the fast-gated intensified camera (FGC)

(published in [38, Fig. 1]).
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4. Interaction of the bunch with its

environment

When travelling along the beam trajectory, a bunch is undergoing an interaction with its

environment. A convenient way to describe this phenomenon is the impedance approach.

While an exhaustive description of the accelerator impedance is not feasible, several

models exist that can be used to describe different aspects of the interaction. Some of

these impedance models are discussed here, followed by the effects the impedance can

have on the bunch: A shift of the synchronous phase and of the incoherent synchrotron

frequency. When the bunch interacts with its own radiation field, sub-structures can

occur that lead to the emission of coherent synchrotron radiation (CSR), which again

acts back on the bunch. This micro-bunching instability is discussed in this chapter as

well.

4.1. Wake fields and impedances

Assuming a perfectly conducting beam pipe wall with a uniform shape, a bunch will

travel without any losses and free of external forces. This changes for a finite resistance

of the wall or in case of a change of geometry. In both cases, electromagnetic fields are

induced that are dragged behind the bunch which are called wake fields. The following

introduction is based on [41, pp. 1-1 ff.].

Those electro-magnetic fields can act back on the bunch and thus the total field seen

by the particles can be described as(
~E, ~B

)
total

=
(
~E, ~B

)
external fields (RF, magnets)

+
(
~E, ~B

)
wake fields

. (4.1)

The effect of such a wake field E(τ) on the charge distribution ρ(τ) during one turn is

given by the wake potential Vw(τ)

Vw(τ) =

∫ L

0

E(τ, s)ds =

∫ ∞
−∞

W (τ − τ ′)ρ(τ ′)dτ ′. (4.2)

It is the convolution of the wake function W (τ) with the charge distribution ρ(τ).
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4. Interaction of the bunch with its environment

Analogous to conventional circuits, the impedance terminus can be used. The longi-

tudinal impedance Z can be expressed as Fourier transform of the longitudinal wake

function:

Z (ω) =

∫ ∞
−∞

W (τ)e−iωτdτ. (4.3)

Among the different properties of impedances (see e.g. [41, Eq. (1.31)-(1.35)]), two are

of greater interest in the following:

1. The real part of the impedance is even, while the imaginary part is odd:

Z∗ (ω) = Z (−ω) . (4.4)

When integrating over ω this leads to∫ ∞
−∞

Z (ω) dω =

∫ ∞
−∞

Re
[
Z (ω)

]
dω = 2

∫ ∞
0

Re
[
Z (ω)

]
dω. (4.5)

2. In case the cross-section of the beam pipe at the entrance as well as at the exit

are the same, the real part of the impedance is positive:

Re
[
Z (ω)

]
≥ 0. (4.6)

Within the scope of this thesis, only longitudinal impedances are treated.

The effects of the real and imaginary part of an impedance on an ultra-relativistic

electron bunch can be described as follows: A purely capacitive impedance (Im (Z) < 0)

leads to a shortening of the bunch, while a purely inductive one (Im (Z) > 0) will

lengthen it. The resistive part of the impedance (Re (Z)) leads to energy losses of the

bunch while passing the structure [41].

In accelerator physics, impedances are responsible for beam instabilities. While a closed

formulation of the overall impedance of a storage ring is not feasible, different models

exist to describe at least specific parts of the storage ring (radio frequency (RF) cavities,

tapers, collimator, ...) or certain interaction effects.

4.1.1. Resistive wall

This impedance describes the effect of a cylindrical beampipe with a finite conductivity

[42, p. 204]:

Z (ω) =
Z0cL

π
· 1[

1 + sgn(ω)i
]
bc
√

σcZ0c
2|ω| − ib2ω

. (4.7)

It is characterized by the beam pipe length L and radius b as well as the conductivity

of its material σc. Z0 is the free-space impedance with Z0 ≈ 377 Ω. The beam pipe
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4.1. Wake fields and impedances

at the Karlsruhe research accelerator (KARA) does not have a cylindrical shape (see

Fig. 4.1), thus its resisitive wall contribution to the impedance can only be estimated

using Eq. (4.7). As the impedance increases for smaller values of b, b is set to 16 mm to

estimate the maximum impedance effect. The beam pipe is made of Remanit, therefore

the conductivity is set to 1.33 · 106 S/m.

Figure 4.1.: Cross-section of the KARA beam-pipe, the dimensions are given in

units of millimetres [43].

In Fig. 4.2, the resistive wall impedance for one turn as well as two form factors for

different root mean square (RMS) bunch lengths are plotted.

One can see that there is only a small overlap between the bunch spectrum and the

resistive wall impedance if only Gaussian bunches are assumed, even if they have a

relatively low bunch length of 1 ps.

4.1.2. CSR impedances

In a bent section of the storage ring, the head of the bunch can interact with the

previously emitted radiation from the tail [44]. This interaction is described by the

so-called CSR impedance. There are several models for this impedance, two of them

are discussed in the following:

• Free space (FS)

The most-simple case neglects the effect of the vacuum beam pipe. This free-

space CSR impedance scales with ω1/3. A good approximation of this impedance

for ultra-relativistic particles (γ →∞) is given by Agoh [45, Eq. (79)]:

ZFS = Z0L
Γ
(
2/3
)

2π

(
i
ω

3cR2

)1/3

(4.8)

with R as (local) bending radius (at KARA: R= 5.559 m) and L as length of the

structure.
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Figure 4.2.: Top: Form factor F of two Gaussian bunches with 10 ps and 1 ps bunch

length, the vertical black lines depict the 3 dB bandwidth. Bottom: Resistive wall

(RW) impedance calculated for the KARA beam pipe and one turn. The vertical

black lines depict the 3 dB bandwidth of the form factors.

• Parallel plates (PP)

A different ansatz is the parallel plates CSR impedance, which takes the shielding

by the vacuum pipe into account. The vacuum pipe is approximated by two

infinitely large metal plates [46]. Even if the horizontal limits of the beam pipes

are not taken into account, this impedance describes the dynamics of the micro-

bunching instability at KARA quite well [47]. For ultra-relativistic particles (γ →
∞) in a constant magnetic field it can be be written as [45, Eq. (76)]:

ZPP = Z0L
2π

hc

(
2c

ωR

)1/3 ∞∑
p=0

F0

(
βp
)

F0(βp) = Ai′
(
β2
p

)
Ci′
(
β2
p

)
+ β2

pAi
(
β2
p

)
Ci
(
β2
p

)
βp =

π

hc
(2 · p+ 1)

(
2ω2

c2R

)−1/3

.

(4.9)

It is characterized by the distance of the parallel plates hc and the bending radius
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4.1. Wake fields and impedances

R (at KARA: hc = 32 mm and R = 5.559 m). Ai, Ci and the corresponding

derivatives are the Airy functions with Ci = Ai− iBi.

Both impedances are illustrated in Fig. 4.3. For frequencies above 400 GHz, the two

impedances are nearly identical as for higher frequencies the shielding effect from the

parallel plates vanishes. It is noteworthy that the parallel plates impedance is capacitive

for frequencies below 100 GHz, while it is inductive for frequencies above. Also, both

impedances have a significantly higher magnitude for frequencies above 40 GHz than

the resistive wall impedance. Thus, for this frequency range the contribution of the

CSR impedance is expected to be dominant.
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Figure 4.3.: Top: Form factor F of two Gaussian bunches with 10 ps and 1 ps

bunch length, the vertical black lines depict the 3 dB bandwidth. Bottom: Real

and imaginary part of the parallel plates (PP), the free-space (FS) CSR impedance

and the resistive wall impedance (RW) calculated for KARA. The vertical black

lines depict the 3 dB bandwidth of the form factors.
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4. Interaction of the bunch with its environment

4.2. Impedance effects

In general, an impedance leads to a distortion of the potential well. Thus, the knowledge

of the impedance is crucial to understand, predict and even prevent beam instabilities.

As it cannot be measured directly, indirect measurements have to be used to allow

estimations of the impedance. Two possible ways to probe impedance related effects

are the measurement of the synchronous phase shift and the incoherent synchrotron

frequency shift.

4.2.1. Synchronous phase shift

Due to the emission of synchrotron radiation, an electron looses energy, which is com-

pensated by the RF cavities. The energy loss due to synchrotron radiation consists of

two components: The first is due to incoherent losses that do not depend on the bunch

current, while the second – coherent – part depends on the bunch current and shape,

the latter one is given by the form factor. These losses lead to a current-dependent

shift of the synchronous phase as it is derived from Eq. (2.23) in the following.

Due to the two components of the energy loss, the synchronous phase has to be separated

in two parts: φ̃s = φs + ∆φ and, Eq. (2.23) becomes

NeVRF sin (φs + ∆φ) = NU, (4.10)

with N as number of electrons per bunch and U as energy loss per electron and turn.

The energy loss per bunch and turn (NU) due to the coherent and incoherent syn-

chrotron radiation can be calculated with the radiation power from Eq. (2.10):

NU =

∫ ∞
−∞

P (ω) dω =

∫ ∞
−∞

e2Z (ω) ·
(
N +N2F

)
dω

= Ne22

∫ ∞
0

Re
[
Z (ω)

]
dω︸ ︷︷ ︸

Incoherent

+N2e22

∫ ∞
0

Re
[
Z (ω)

]
F (ω) dω︸ ︷︷ ︸

Coherent

.
(4.11)

Here, p0 (ω) = e2Re
[
Z (ω)

]
was used with Z (ω) as impedance for one turn and the

impedance property from Eq. (4.5). Finally, Eq. (4.10) can be written as

NeVRF sin (φs + ∆φ) = Ne22

∫ ∞
0

Re
[
Z (ω)

]
dω +N2e22

∫ ∞
0

Re
[
Z (ω)

]
F (ω) dω.

(4.12)

Using addition theorems at the left side leads to

NeVRF sin (φs) cos (∆φ) +NeVRF cos (φs) sin (∆φ)

= 2Ne2

∫ ∞
0

Re
[
Z (ω)

]
dω + 2N2e2

∫ ∞
0

Re
[
Z (ω)

]
F (ω) dω.

(4.13)
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4.2. Impedance effects

As ∆φ is assumed to be small, one can set cos (∆φ) = 1 and sin (∆φ) = ∆φ. Thus, the

equation simplifies to

NeVRF sin (φs) +NeVRF∆φ cos (φs)

= 2Ne2

∫ ∞
0

Re
[
Z (ω)

]
dω + 2N2e2

∫ ∞
0

Re
[
Z (ω)

]
F (ω) dω.

(4.14)

The first terms on both sides are the incoherent terms, while the second ones describe

the coherent losses that depend on the bunch shape given by the form factor F (ω).

As the synchronous phase φs is the phase where the incoherent losses are compensated,

the coherent losses lead to a – bunch current dependent – phase shift ∆φ:

NeVRF∆φ cos (φs) = N2e22

∫ ∞
0

Re
[
Z (ω)

]
F (ω) dω. (4.15)

With Ne = T0Ib, this can be written as

∆φ =
2T0Ib

VRF cos (φs)

∫ ∞
0

Re
[
Z (ω)

]
F (ω) dω. (4.16)

The integral part is often referred to as loss factor k [24, Eq. (22.17)]:

k = 2

∫ ∞
0

Re
[
Z (ω)

]
F (ω) dω. (4.17)

The synchronous phase shift in Eq. (4.16) is given in units of radians. Taking the RF

period length into account, the synchronous phase can be written in time units as

∆φτ =
2T 2

0

2π · h · VRF cos (φs)
Ib

∫ ∞
0

Re
[
Z (ω)

]
F (ω) dω. (4.18)

To measure the synchronous phase shift, a precise determination of the arrival time

of the bunches is required. To cover the required bunch current range, two different

approaches can be used. The first is to track the arrival time of a single bunch over

the decay of the bunch current, while the second one uses a dedicated filling pattern

where each bunch has a different current. This approach requires a machine with a

large harmonic number to prevent beam loading effects [48]. With a harmonic number

h of 184, this approach is not seen as suitable for KARA, therefore the method using

the bunch current decay is used here. As such a measurement takes a long time (up to

several hours), this requires a good long-term stability of the detectors and the timing

system.

As it will be discussed in Sec. 8.3.2, the synchronous phase shift can be measured by

different methods. Regardless which one of them is used, it only gives the convolution

of the real part of the impedance with the bunch spectrum. With knowledge of the

longitudinal bunch profile (e.g. from electro-optical spectral decoding (EOSD) measure-

ments) it would be possible to calculate the bunch spectra and to do a deconvolution

to reveal the real part of the impedance.
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4. Interaction of the bunch with its environment

4.2.2. Incoherent synchrotron frequency shift

In Eq. (2.31), the last summand has been neglected so far. Taking this term into

account as well, the differential equation becomes

∆Ë +
1

T0

dU

dE
∆Ė +

[
−2πhαceVRF cos (φs)

T 2
0E0

+
αc
T0E

dU

dt

]
︸ ︷︷ ︸

ω2
s

∆E = 0. (4.19)

The energy loss U can be expressed as a voltage V induced by the electron and thus

U = eV . This voltage – that corresponds to the wake potential – is given by the

spectrum of the bunch current Ĩ (ω) and the impedance

V =

∫ ∞
−∞

Ĩ (ω)Z (ω) eiωtdω. (4.20)

It changes with time as

dV

dt
= iω

∫ ∞
−∞

Ĩ (ω)Z (ω) eiωtdω. (4.21)

Averaging over the whole bunch finally gives〈
dV

dt

〉
= Ib

∫ ∞
−∞0

Im
[
Z (ω)

]
ωF (ω) dω. (4.22)

Thus, Eq. (4.19) can be written as

∆Ë+
1

T0

dU

dE
∆Ė+

[
−2πhαceVRF cos (φs)

T 2
0E0

+
αc
T0E

eIb

∫ ∞
−∞0

Im
[
Z (ω)

]
ωF (ω) dω.

]
︸ ︷︷ ︸

ω2
s

∆E = 0.

(4.23)

Compared to the unperturbed case in Eq. (2.31), the impedance leads to a shift of the

frequency with

ω2
s = 4π2f 2

s = −2πhαceVRF cos (φs)

T 2
0E0

+
αc
T0E

eIb

∫ ∞
−∞0

Im
[
Z (ω)

]
ωF (ω) dω

= ω2
s,0

[
1− T0

2πVRF cosφs
Ib

∫ ∞
−∞0

Im
[
Z (ω)

]
ωF (ω) dω

] (4.24)

For small effects, the frequency shift ∆fs – which is the difference between the coherent

motion with the frequency f coh
s (see Eq. (2.32) and the incoherent motion with the

frequency f inc
s – can be written as:

∆f =
T0

4πVRF cosφs
Ib

∫ ∞
−∞0

Im
[
Z (ω)

]
ωF (ω) dω. (4.25)
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4.3. Potential well distortion

4.3. Potential well distortion

A more general – and also more elegant – way to describe physical systems and phenom-

ena is to use the Hamiltonian formalism. For the two effects discussed before (phase

and frequency shift) a more intuitive approach was used. In general, the additional

voltage induced by the bunch current via the impedance leads to a deformation of the

potential well.

For a single particle within a bunch, the Hamiltonian can then be written as [24, Eq.

(22.122)]

H = −1

2
αc

(
∆E

E0

)2

− 1

2

ω2
s, 0

αc
τ 2 − e

E0T0

∫ τ

0

Vw
(
τ ′
)

dτ ′

= −1

2
αc

(
∆E

E0

)2

− 1

2

ω2
s, 0

αc
τ 2︸ ︷︷ ︸

H0

+
e

E0T0

∫ τ

0

∫ ∞
−∞

Z (ω) Ĩ (ω) eiωτ
′
dωdτ ′.

(4.26)

The relative energy deviation ∆E/E0 and the arrival time offset from the center of

the bunch τ span the longitudinal phase space. The term H0 is the Hamiltonian for

the unperturbed case, where the synchrotron oscillation with the angular frequencies

ωs, 0 = 2πfs, 0 (see Eq. (2.32)) corresponds to a rotation in the phase space.

Strictly speaking, the Hamilton formalism cannot be used here due to dissipative forces

like radiation damping. Nevertheless – as the radiation damping time is longer than

one synchrotron period – damping can be neglected on small time scales and thus the

formalism can still be used.

The perturbation due to the wake fields is added as an additional term to H0 and leads

to a distortion of the parabolic potential well from the RF.

Due to random quantum excitation and radiation damping, the stationary phase space

distribution factorizes into a Gaussian distribution along the energy axis ∆E/E0 and

the longitudinal distribution ρ (τ) [24, Eq. (22.136)]:

ψ
(
∆E/E0, τ

)
= C exp

(
−∆E2

2σ2
δ

)
· ρ (τ) . (4.27)

In the longitudinal phase space, the potential well distortion will only be visible as

deformation of the temporal distribution ρ(t), while the energy distribution still has

a Gaussian shape with the energy spread σδ as width. This is shown in Fig. 4.4,

where a simulated energy profile and a longitudinal bunch profile are plotted. Both

are simulated using the software Inovesa, which simulates the longitudinal phase space

[49]. For these simulations, the parallel plates CSR impedance was used.
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Figure 4.4.: Simulated energy and longitudinal bunch profile for potential well

distortion due to the parallel plates CSR impedance. Top: Energy profile with

Gaussian shape, the x-axis is given in units of the natural energy spread σ0,

Bottom: Longitudinal bunch profile.

Simulation parameter: E0 = 1.3 GeV, Ib = 0.15 mA, σ0 = 4.7×10−4 , fs = 11.2 kHz,

parallel plates distance hc = 32 mm.

While the energy profile follows a Gaussian distribution, the longitudinal bunch profile

is distorted and follows a Häıssinski distribution. As long as there is no additional

instability, the energy spread remains constant at the value of the natural energy spread

σ0 according to Eq. (2.42).

4.4. Micro-bunching instability

If the electron density exceeds a certain threshold, the distortion of the potential well

due to the interaction with the CSR can be so strong, that there is no longer a stationary

distribution possible. In this case, small perturbations are not damped away but grow in

intensity [12]. They occur as sub-structures on the bunch profile and the self-interaction

of the bunch with its own radiation leads to a rapid increase of their amplitudes. As

the growth time of this instability is much shorter than the damping period, this is

visible as a sawtooth-like modulation on the the energy spread [50]. The rapid growth

of the sub-structures leads to an increase of the bunch size. At a certain point, radiation

damping becomes dominant and the bunch size starts to shrink. When a certain critical

value for the charge density is reached, the sub-structures start to grow again and the

next cycle sets in. Figure 4.5 shows an Inovesa simulation for this case.
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4.4. Micro-bunching instability

Figure 4.5.: Inovesa simulations of the bursting behaviour of the bunch during

the micro-bunching instability. The top row shows the energy spread undergoing

a sawtooth like modulation. For four time steps, the corresponding energy profiles

are plotted in the middle row, where the black lines depict Gaussian fits. The

corresponding longitudinal phase spaces are plotted in the bottom row.

Simulation parameters: E0 = 1.3 GeV, Ib = 1.28 mA, σ0 = 4.7 ·10−4 , fs = 11.2 kHz,

parallel plates distance hc = 32 mm.

The top panel shows the energy spread which is undergoing a sawtooth modulation.

For four time steps, the corresponding energy profiles as well as the longitudinal phase

spaces are plotted in the middle and bottom panel, respectively. While the energy

profile is rather smooth at the onset of the burst, it is distorted as sub-structures occur

on the profile. They quickly rise in amplitude, before radiation damping starts to

dominate leading to a shrinking of the energy spread and to a smoothing of the energy

profile. As the CSR emission depends on the sub-structures, that arise quickly and are

damped down afterwards, the CSR also shows a sawtooth pattern. This is illustrated

in Fig. 4.6, where the CSR signal detected by a Schottky diode (which measures the

incoming radiation power [51]) is plotted over time. This behaviour of the bunch is

often referred to as bursting.
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4. Interaction of the bunch with its environment

Figure 4.6.: Typical sawtooth-like CSR intensity recorded using a Schottky diode

and KAPTURE [52, 53]. The curve is not the detector response, but the amplitude

of the detectors peak signal sampled once per turn (Data taken by Miriam Brosi).

Chao and Gareyte derived a scaling law for the bunch length during this instability

[54]: If the impedance depends on the frequency like

Z ∝ ωa, (4.28)

the bunch length as well as the energy spread both scale with

σδ ∝ σz ∝ I
1

2+a

b . (4.29)

This scaling law has been verified at other storage rings, e.g. SPEAR II and PEP [54].

While the frequency dependence of the parallel plates CSR impedance is sophisticated,

the one for the free-space CSR impedance is simpler: It scales with ω
1
3 (Eq. (4.8), see

also Fig. 4.3). For high frequencies, the parallel plates impedance can be approximated

by the free-space CSR impedance. Hence, this simplification will lead to a scaling of

the bunch length as σz ∝ (Ib)
3/7.

This gives an additional estimation on the behaviour of the energy spread during the

micro-bunching instability. It is also noteworthy, that the sawtooth-like modulation of

the bunch shape and the CSR discussed above, are only occurring for certain bunch

current ranges. In addition, other so-called bursting regimes exist for other bunch

currents [55]. The different regimes are characterized by the temporal profile of the CSR

emission, but they all have the existence of sub-structures on the bunch in common .

For the onset of the micro-bunching instability, a lower threshold current can be derived.
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4.5. Bursting threshold

4.5. Bursting threshold

The micro-bunching instability only occurs for bunch currents above a certain thresh-

old current, this threshold is referred to as bursting threshold [55]. The onset of the

micro-bunching instability is usually defined as the current, at which the energy spread

starts to increase. For the parallel plates CSR impedance, numerical simulations of

the longitudinal phase led to the following relation for the bunch current Ib at this

threshold [56]:

Ib = IAγδ0
2αcR

− 1
3σz,0

1
3

(
0.5 + 0.34R

1
2σz,0(hc/2)−

2
3

)
(4.30)

σz,0 =
cαc
2πfs

δ0 (4.31)

=

√
− αcc2T 2

0E0

2πheVRF cosφs
δ0. (4.32)

with the parameters according to Table 4.1.

To change the bursting threshold, the beam energy E0, the RF voltage VRF and the

momentum compaction factor αc (e.g. by changing the magnet current in the dipole and

sextupole magnets) can be varied. The scaling law of the bursting threshold calculated

by Eq. (4.32) was successfully confirmed by measurements at KARA [47].

Table 4.1.: Parameters for the scaling law for the bursting threshold

Parameter Typical values for KARA

IA Alfven current 17045 A

γ Relativistic gamma factor 2500 - 4900

δ0 Natural energy spread 4.7 · 10−4 - 9.2 · 10−4

αc Momentum compaction factor 1.6 · 10−4 - 9.4 · 10−3

R Bending radius 5.559 m

σz,0 Natural bunch length 1.9 - 38.2 ps

hc Vacuum chamber height 32 mm
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5. Optical diagnostics

Incoherent synchrotron radiation is a versatile diagnostics tool for accelerator physics as

the light pulse directly represents the charge distribution of the bunch. In this chapter,

the diagnostics setups using this feature are presented: The filling pattern monitor based

on time-correlated single photon counting (TCSPC), the FGC as well as the KALYPSO

system. The latter two are used to measure the horizontal bunch profile and thus the

energy spread. All setups are located at the visible light diagnostics (VLD) port (see

Sec. 3.3).

5.1. Time-correlated single photon counting

The distribution of the beam current on the individual bunches is called filling pattern.

As the micro-bunching instability crucially depends on the bunch current, a precise

measurement of the filling pattern is required. At the KARA, the technique of TCSPC

is used [57]. It is based on the measurement of the arrival time distribution of single

photons from the incoherent synchrotron radiation relative to the revolution clock. This

distribution directly represents the relative filling pattern and in combination with the

measurement of the total beam current by a DC current transformer (DCCT) [22,

pp. 301 ff.], this allows precise measurements of the bunch charges. Compared to

the classical approach of sampling in the time-domain by using a fast photo-detector

(e.g. an avalanche photodiode) and a dedicated DAQ system (e.g. a fast oscilloscope),

TCSPC has the advantage of being cost-efficient and it provides a high dynamic range.

Apart from a precise determination of the filling pattern, the system can also be used

for studies of the synchronous phase shift. In this case, the arrival times of the bunches

relative to a reference signal is studied during a bunch current decay.

5.1.1. Experimental setup

The setup used at KARA consists of a single photon avalanche diode (SPAD) [58]

that is sensitive to single photons in the visible wavelength range and a PicoHarp

300 as histogramming device which offers 65536 histogram time bins [59]. In case

of KARA with a revolution time of 368 ns, their width is set to 8 ps to cover one

complete revolution. The optical setup is depicted in Fig. 5.1 and consists of a 400 nm
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Figure 5.1.: Principle scheme of the optical setup for TCSPC.

bandpass filter and an iris lens mounted directly in front of the SPAD sensor. The

combination of the small iris lens and the sensor with a diameter of 20 µm acts as an

optical discriminator blocking photons from background radiation. Thus the setup can

be operated without any additional background light shielding [38].

The bandpass filter (center wavelength 400 nm, FWHM ±10 nm) suppresses the for-

mation of the diffusion tail in the arrival time histogram, as for short wavelengths the

penetration depth of light in silicon is reduced [60]. This reduces the probability to cre-

ate electron-hole pairs outside of the depletion zone which then differ into the depletion

zone where they trigger an avalanche after a statistically fluctuating delay [61].

Figure 5.2.: Raw data histogram without (red) and with a 400 nm bandpass filter

(blue) mounted in front of the SPAD (published in [38, Fig. 2]).

The effect of this filter is illustrated in Fig. 5.2, where two raw data histograms recorded

with and without the band pass filter are plotted. The band pass filter significantly

reduces the exponential decay which follows each peak, this also increases the dynamic

range.

The wavelength of 400 nm is a trade-off between a short wavelength and a sufficient

quantum efficiency of the detector.
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5.1. Time-correlated single photon counting

5.1.2. Dead-time correction

To get a high dynamic range, a large number of photons per bin is required. To increase

this number, a long integration time and a high count rate can be used, but both suffer

from some drawbacks:

While a longer integration time leads to a higher number of photons, the beam current

is simultaneously decaying which eventually reduces the resolution again. If the count

rate becomes too high, dead-time effects start to play a role as the probability for a

photon not to be detected increases. Both the SPAD and the PicoHarp have a certain

dead-time where they cannot handle incoming events. When a photon hits the SPAD

and an avalanche has been triggered and detected, the bias voltage of the pn-junction is

reversed to quench the avalanche before the bias voltage is restored and the next photon

can be detected. This quenching takes a certain time in which the detector is blind

to additional incoming photons. The dead-time of the PicoHarp, in which the device

cannot handle incoming logical pulses from the SPAD, is defined by the electronics.

Both dead times have been measured with τd, PH = (86.8± 0.2) ns for the PicoHarp and

τd, SPAD = (37± 1) ns for the SPAD (see Sec. A.1.1).

The probability of a photon not to be recorded as it is falling into the dead-time is

increasing with photon rate. As a consequence, the histogram is distorted. To estimate

and prevent this distortion, a dead-time correction scheme has been implemented. It

is based on the ansatz presented in [62] which was adjusted according to the needs of

a synchrotron acting as light source. It allows for each bin i the calculation of the real

number of photon νi from the recorded number of photons ni:

νi =
ni

i−b∏
j=i−nτd, PH

(
1− nj

N

) ≈ ni

1−
i−b∑

j=i−nτd, PH

nj
N

(5.1)

The different parameters are summarised in Table 5.1.

This dead-time correction scheme is based on the following assumptions:

• The dead-time of the PicoHarp dominates, the one of the SPAD is a second order

effect which can be neglected (see Sec. A.1.2 in the appendix).

• The probability pi = ni/N for an event to be detected in bin i is small (typically

1 · 10−4), allowing to replace the product in the nominator by a sum. In addition,

this provides a higher numerical stability as higher order terms are neglected.

• There is only one photon emitted per bunch and turn and thus the correction

scheme only takes the photons from the previous bunches into account (sum ends

at i− 50).
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5. Optical diagnostics

Table 5.1.: Parameters for the PicoHarp dead-time correction.

Variable Meaning Value

νi Real number of photons / bin

ni, nj Measured counts / bin

τd, PH PicoHarp dead-time 86.8 ns

nτd, PH
Bins per PicoHarp dead-time 10850

b Bins per bunch 50

TAcq Acquisition time Typically 30 s

TRev Revolution time 368 ns

N Number of excitation cycles TAcq/TRev

To test the dead-time correction scheme, two histograms are taken with different photon

rates. From the one with the lower rate (1.9 ·104 counts/s), the reference filling pattern

is calculated. In the histogram with the high count rate (1.2 · 106 counts/s), dead-time

effects induce a distortion which is corrected using the correction scheme discussed

above. From the distorted as well as the corrected histograms, filling patterns are

determined, which are finally compared to the reference pattern. This comparison is

illustrated in Fig. 5.3.

As the effect of the distortion and the dead-time correction are relatively small, they

are illustrated in the bottom panel in more detail. There, the blue curve shows the

difference between the reference filling pattern and the one distorted by the dead-time,

while the green one shows the difference between the reference filling pattern and the

dead-time corrected one. The dead-time leads to bunch current differences of up to

±50 µA. The dead-time correction scheme reduces this difference to values of below

±10 µA. Finally, the corrected and the reference filling pattern coincide mostly within

the uncertainty of the reference filling pattern which is indicated by the grey area. This

uncertainty is determined using Monte-Carlo studies.

This shows that the dead-time correction scheme is adequate to reduce the distortion

induced by the PicoHarp dead-time significantly which allows precise studies of possible

multi-bunch effects in the emission of coherent synchrotron radiation (CSR) [64].
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Figure 5.3.: Top panel: Reference, distorted and dead-time corrected filling pat-

tern. Bottom panel: Difference between the reference and the distorted (blue)

and corrected (green) filling pattern. The grey area depicts the uncertainty of the

reference filling pattern (published in [63, Fig. 3]).

51



5. Optical diagnostics

5.1.3. Data analysis

The TCSPC is primarily used for precise measurements of the filling pattern, but also

allows studies of the synchronous phase shift by tracking the bunch arrival times. Both

measurement techniques require dedicated data analysis schemes, which are discussed

in the following.

Filling pattern determination

To determine the distribution of the current on the 184 radio frequency (RF) buckets

from the raw data histogram with 65536 bins, three steps are required:

1. Group the first 368 ns of the histogram in 184 intervals with 2 ns width.

2. Determine the local maximum for each interval and sum over the adjacent bins.

Monte-Carlo studies showed, that the best performance is achieved, if the 25

preceding and the 25 successive bins are taken into account.

3. Normalise these 184 values to a sum of 1 to get the relative filling pattern.

This is illustrated in Fig. 5.4.

For the error on the bunch currents, two contributions are assumed and taken into

account:

• Counting error per bin σi: Assuming Poisson’s statistics, it is calculated from

the number of counts per bin ni by σi =
√
ni.

• Beam current error: As the beam current decays during the acquisition time, it

is measured at the beginning and at the end of each measurement. As uncertainty

for the mean value the standard deviation is taken, which corresponds to half of

the difference between the two values. In addition, the DCCT has a measurement

error of 0.5 µA [65]. These two contribution are added quadratically to get the

beam current error.

The resulting bunch current errors are determined by a Monte-Carlo error propagation.

There, the data analysis is repeated many times and the input parameters (raw data

histogram and beam current) are varied according to their error as standard deviation.

Finally, the mean and the standard deviation of the result is calculated. This allows to

study the influence of the different uncertainties on the resulting values. Usually, the

contribution from the counting statistics dominates, as it is also illustrated in Fig. 5.5.

There, two consecutive measurements with different photon rates are compared. To

lower the photon rate, a neutral density (ND) filter with an optical density of 0.01 is
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5.1. Time-correlated single photon counting

Figure 5.4.: Raw data histogram and zoom-in, the dark blue areas indicate the

bins used for integrating the counts to calculate the filling pattern (top and center

panel, respectively). The bottom panel shows the integrated counts for the 184 RF

buckets (data published in [63, Fig. 1]).

used which leads to the reduction of the photon flux by approximately two orders of

magnitude.

While Fig. 5.5a shows a case for a high count rate and thus good statistics, Fig. 5.5b

shows the same fill (data taken three minutes later) for a count rate which is two orders

of magnitude lower due to the usage of a ND filter. For the higher count rate, the

histogram and thus the filling pattern has a smoother shape and also the error on the

bunch current is one order of magnitude lower.

For the measurements with the fast-gated intensified camera (FGC) discussed in Sec. 8,

single bunch fills have been used. There, the TCSPC based filling pattern measurements

are important to ensure that there is only one bunch in the storage ring. In Fig. 5.6, a

zoom into a TCSPC raw histogram for such a single bunch fill is plotted.

Calculating the ratio of the counts for the bunch at 306 ns and the counts for the
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(a) Photon rate: 1.0× 105 counts/s (b) Photon rate: 1.3× 103 counts/s

Figure 5.5.: TCSPC histograms, the corresponding bunch currents Ib and their

measurement errors σI for the same fill with two different photon count rates (pub-

lished in [63, Fig. 2]).

adjacent bucket leads to 2.3 · 104, which illustrates also the high dynamic range of the

setup. This ratio is referred to as bunch purity [66]. It is a measure for the quality of a

single bunch fill as it gives the ratio between the charge in the wanted and the unwanted

buckets.
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5.1. Time-correlated single photon counting

Figure 5.6.: TCSPC raw data histogram. The peak at 306 ns is the signature of a

bunch while at the position of the adjacent bucket 2 ns later no signal can be seen.

In this case, the bunch purity is 2.3 · 104.

Synchronous phase shift studies

To study the synchronous phase shift of a bunch, its arrival time relative to the RF is

determined. Usually, this is done using a streak camera (SC) which allows a precise

measurement of the longitudinal bunch profile and its arrival time [67]. As the TCSPC

histogram represents the arrival time distribution of single photons, this technique can

be used as well to study the arrival times [48].

For the determination of the arrival time, usually Gaussian curves are fitted to the peaks

in the histogram. Even if the diffusion effects inside of the SPAD are suppressed by the

400 nm band pass filter, the peaks deviate significantly from a purely Gaussian shape.

As the diffusion effects inside of the detector lead to an approximately exponential decay,

an exponentially modified Gaussian distribution is used for the fits. Its probability

density function (PDF) is the convolution of the PDF of a Gaussian distribution and

the PDF of an exponential distribution.

Mostly used in chemistry for the analysis of asymmetric chromatographic peaks [68],

such a distribution is characterized by the mean µ̃ and width σ̃ of the precursor Gaussian

and the time constant τ̃ of the precursor exponential. Its PDF can be written as [68,

Eq. (2)]

fEMG (x, µ̃, σ̃, τ̃) =
1

2τ̃
e

[
1
2( σ̃τ̃ )

2
−x−µ̃

τ̃

]
· erfc

(
1√
2

(
σ̃

τ̃
− x− µ̃

σ̃

))
(5.2)
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with erfc as the complementary error function [69, Eq. (6.2.9)]

erfc(x) = 1− 2√
π

∫ ∞
x

e−t
2

dt. (5.3)

As this function cannot be determined analytically, a numerical approximation is re-

quired. In the scope of this thesis, the approximation proposed in [69, p. 221] is used.

For the fit, the PDF is rescaled and a constant is added for the background level.

The bunch arrival time τ is determined from the first statistical moment which is given

by the sum of the Gaussian mean value µ̃ and the exponential time constant τ̃ :

τ = µ̃+ τ̃ . (5.4)

Compared to a pure Gaussian, fitting such a function leads to better results. This is

illustrated in Fig. 5.7.

Figure 5.7.: Peak of a raw data histogram (blue) and the corresponding fits using

an exponentially modified Gaussian (EMG, red) and a pure Gaussian curve (blue)

(published in [70, Fig. 2]).

The better performance is quantified by the value for the reduced chi-squared χ2
red (1.01

for the exponentially modified Gaussian, while it is 4.92 for the purely Gaussian), but

also a comparison by eye shows, that the exponentially modified Gaussian reproduces

the shape of the peaks better.

As alternative to such a fit, the statistical moments can be calculated to determine the

arrival times. Nevertheless which method is used (fitting or statistical moments), the

uncertainties are depending on the the statistics. As higher the photon rate and thus

the counts per bin, as lower is the measurement error on the arrival time determination.

For the bunch illustrated in Fig. 5.7, this is summarised in Table 5.2.
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5.1. Time-correlated single photon counting

Table 5.2.: Arrival time error στ for one bunch and different photon count rates.

Photon rate (counts/s) 1.0 · 105 1.3 · 103

Fit στ (ps) 0.45 2.65

Statistical moments στ (ps) 0.49 1.14

There, the comparison of the arrival times shows, that the higher photon flux and thus

the better statistics clearly reduces the error on the arrival time determination. While

fitting leads to slightly better results for high count rates, the statistical analysis seems

to be more suitable for low count rates. This has the following reasons:

• For the fit empty bins are problematic as their errors are – according to Pois-

son’s statics – zero. If the measurement errors are taken into account for the fit,

these empty bins will be weighted zero. In addition, they will lead to infinite

contributions to the reduced chi-squared χ2
red:

χ2
red =

1

NDOF

N∑
i=1

(
yi − f(xi)

σi

)2

. (5.5)

It is calculated from the difference between the measurement data yi and the fit

f(xi) with σi as measurement error.

As a consequence, the error for empty bins is set to 1 and thus overestimated.

For high count rates with only a few empty bins, this is not an issue, but for

low count rates with a relatively large number of empty bins this leads to an

underestimation of χ2
red. As the error on the fit parameters scales with 1/χ2

red,

this lead to an overestimation of the measurement error.

Figure 5.8 shows the data set for the low count rate in Tab. 5.2 and the cor-

responding fit. While the reduced chi-squared is too small, the fit still gives a

reasonably good description of the data.

• For the statistical moments, empty bins besides the peak regions are not a prob-

lem. For an increasing noise level, the contributions from these background bins

increase as well. As a consequence, the analysis range has to be chosen very

carefully to prevent a distortion of the mean value.

In the following, the method based on fitting an exponentially modified Gaussian dis-

tribution is used. This allows the tracking of the arrival time τ with respect to the

bunch current to determine the synchronous phase shift. This can be used to study the

resistive part of the longitudinal impedance (see Sec. 4.2.1).
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Figure 5.8.: Bunch peak recorded using TCSPC and an exponentially modified

Gaussian curve fitted to the data (red). The grey lines depict the error on Poisson’s

statistics, for the empty bins it is set to 1 which also leads to an underestimation

of χ2
red.

5.2. Fast-gated intensified camera

The energy spread is an important parameter for the investigation and understanding of

the micro-bunching instability. While it cannot be directly measured, it can be studied

by measurements of the horizontal bunch size in a dispersive section of the accelerator.

There, the horizontal bunch size σx and the energy spread σδ are related by Eq. (2.46)

σx =

√
βxεx + (Dσδ)

2 (2.46)

with the dispersion D, the horizontal emittance εx and the horizontal beta function βx

at the radiation source point. At the KARA VLD port, an FGC is used to measure the

horizontal bunch profile with a single turn resolution.

5.2.1. Experimental setup

The experimental setup was designed and commissioned as the scope of a Master’s

thesis [71]. The design is based on previous works [19, 20] and consists of a commercially

available camera (Andor iStar 340T [72]) with effectively 1200 x 512 pixels and a fast

rotating mirror with a galvanometric drive. For focussing and shaping the light beam,

a sequence of two off-axis paraboloid mirrors and two cylindrical lenses is used, see

Fig. 5.9.
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horizontal cylindrical lens
f = 80 mm 

off-axis paraboloid 
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Figure 5.9.: Scheme of the optical setup at the FGC: The light from the source

point passes through a rectangular absorber, is reflected upwards at the first planar

mirror and then focussed using the first off-axis paraboloid mirror. After the second

planar mirror it hits the second off-axis paraboloid mirror before it passes a sequence

of two cylindrical lenses and hits the rotating mirror reflecting the light onto the

camera (adapted from [73, Fig. 1]).

In addition to the focussing, the light beam is rotated by 90 ◦ and thus the y-axis on

the camera corresponds to the horizontal plane of the electron beam and vice versa.

In the following, the terminus horizontal and vertical always refers to the coordinate

system of the electron beam. The nominal magnification (for a static source at the

image source point) in the horizontal plane is 2.6, while for the vertical plane it is 0.3.

In the vertical plane, the resolution ∆y is defined by the absorber [74, Eq. (24)]

∆y = L
λ

a
. (5.6)

With the distance L between source and absorber (1600 mm), its width a (5 mm) and the

wavelength λ (400 nm), the vertical resolution becomes ∆y = 126 µm. As a consequence,

studies of the vertical beam size are not possible as typical vertical beam sizes are below

this value. To overcome the diffraction limit in the vertical plane, an additional double

slit would be required to apply interferometric measurement techniques as demonstrated

in [75].

In the horizontal plane, the resolution is limited by the depth of field effect [74], which

also later taken into account for the optical simulation of the imaging process (see

Sec. 5.2.3). According to [74, Eq. (37)], the horizontal resolution ∆x can be calculated

as

∆x =

(
3

4π

)2/3

λ2/3R1/3. (5.7)

Here, the data for the VLD port lead to ∆x = 37 µm.
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Figure 5.10.: Principle scheme of the rotating mirror. It sweeps the incoming light

over the sensor of the camera and due to the gating during this rotation single turn

images of the bunch are placed on the sensor [73, Fig. 3].

With the ability to switch the image intensifier of the camera on and off within 2 ns

(gating), the camera can be used to pick one bunch out of a multi-bunch fill. The

rotating mirror sweeps the incoming light over the sensor and in combination with the

gating, this enables the tracking of the horizontal bunch profile for a certain number of

turns, see Fig. 5.10.

With the KARA revolution frequency of 2.7 MHz, the maximum repetition rate of the

gate allows to resolve every 6th turn. Such a very fast gating also requires a fast mirror

sweep to resolve the single spots on the sensor, where each of these spots is a single

turn image of the bunch. The saturation speed of the mirror driver further reduces this

number and therefore, a minimum gate separation of 10 turns is reasonable. The sensor

size is sufficient to place up to 80 spots on it. The limited number of data points is

a drawback as one has to choose between a good temporal resolution covering only a

small time range or a large time range at the expense of reduced temporal resolution.

One raw image acquired using the FGC is plotted in Fig. 5.11. In this particular case,

55 spots were recorded, each separated by 24 turns (≈ 8 µs). To get the horizontal

bunch size and thus the energy spread for each spot, a dedicated data analysis scheme

was developed and tested successfully as it is discussed in the following.
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5.2. Fast-gated intensified camera

Figure 5.11.: FGC raw image showing horizontal images of the same bunch for

every 24th turn. The sinusoidal modulation of the spots is due to the synchrotron

oscillation.

5.2.2. From the energy spread to the spot size

As stated above, the FGC setup is intended for studies of the energy spread. While

Eq. (2.46) describes the coupling between the energy spread and the horizontal bunch

size σx using the optics parameters D, βx and εx, the characteristics of the imaging

system are described by the so-called filament beam spread function (FBSF) and the

horizontal magnification mhor. The FBSF can be seen as an equivalent to the point

spread function (PSF) that has been extended to a moving point-like source [76]. Thus,

the final image is the convolution of the FBSF with the charge distribution.

The resulting work-flow from the energy spread to the FGC spot size is illustrated in

Fig. 5.12.
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Figure 5.12.: Illustration of the relation between the energy spread and the spot

size on the FGC.

For quantitative studies of the energy spread, D, βx, εx at the imaging source point as

well as the FBSF and the magnification mhor are required. To get the optics param-

eters at the imaging source point, a simulation model of the accelerator that is based

on measurements is used (see Sec. 7). For the FBSF, the imaging system has to be

investigated using simulations.
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5.2.3. Data analysis

The imaging system for the FGC consists of a set of two planar and two off-axis

paraboloid mirrors as well as two cylindrical lenses (see Fig. 5.9). Off-axis paraboloid

mirrors are used since the VLD port was originally designed for longitudinal bunch

diagnostics using a streak camera (SC) [39]. For transverse imaging, which is the case

here, off-axis paraboloid mirrors are not perfectly suited because they induce image

distortions for a divergent light source. In addition, it has to be taken into account,

that the bunch is moving during the acquisition process in the same plane its profile is

determined. Thus, the profile seen by the observer is the superposition of many pro-

files. This effect – also referred to as depth of field – is a common problem for horizontal

beam size measurements using synchrotron radiation [77]. For an optical system based

on lenses, this can be treated analytically [74, 78]. This distortion can be seen as kind

of a motion blur that also occurs in photography if the object moves during the image

acquisition. The normal solution to solve this would be to reduce the exposure time.

At the FGC, this is not possible since the 1.55 ns FWHM used for the measurements

are the technical minimum. Another possibility to reduce the effective exposure time

would be to decrease the horizontal width of the absorber (currently: 20 mm). Apart

from the fact that this requires a completely new dipole chamber, it would also decrease

the resolution limit because for a smaller aperture diffraction effects will start to play

a role.

For the FGC setup with its two off-axis paraboloid mirrors, the imaging process is

studied by (numerical) simulations using the software OpTaliX [79]. In this simulation,

the different optical elements are represented by optical planes with the corresponding

surface curvatures, diffraction indices and reflection coefficients. Ray-tracing allows

illumination studies using extended sources with e.g. a Gaussian shape. The movement

of the bunch in the horizontal plane during the imaging process can be studied as well.

For this, a sequence of images from a source moving on a circular trajectory through

the imaging source point is simulated with the single image summed up to form the

final image. For three time steps during the acquisition process, this is illustrated in

Fig. 5.13.

This superposition is described by the FBSF which takes the particularities of the

optical setup and its moving source into account.

To determine the FBSF, a point-like source that moves stepwise on a circular trajec-

tory is imaged. As OpTaliX cannot handle such an infinitely small source, a finitely

small Gaussian source is used. The second important parameter for the source is the

divergence of the emitted radiation. For synchrotron radiation, the angle of maximum
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Figure 5.13.: Principle scheme of the profile superposition at the VLD port: The

Gaussian shaped bunch is moving on a circular trajectory and radiating, the ver-

tical black lines depict the absorber. For three time steps, the radiation cones are

illustrated in blue, black and red. The three corresponding profiles are plotted in

the bottom panel.

intensity at a given wavelength can be approximated by [80, Eq. (24)]:

Θ [rad] = 1.66 ·
(
λ

ρ

)1/3

. (5.8)

Assuming a wavelength of 450 nm for the FGC, this leads to Θ ≈ 0.4 ◦ which is used for

the horizontal divergence. In the vertical plane, the absorber with the height of 5 mm

limits the vertical acceptance to 0.2 ◦.

The source parameters that are used for the FBSF studies are summarized in Table

5.3, for the focal lengths and element positions in the OpTaliX simulation model the

nominal values are used.

Since the VLD port is diffraction limited in the vertical plane, only the horizontal plane

is taken into account. Therefore, for each simulation step, the horizontal profile in the

image plane is determined by histogramming the positions of the rays at the image

surface, the bin width is set to the pixel size of 13.5 µm.

Finally, all histograms are summed up and normalized to get the FBSF. Systematic

studies showed, that the shape of the FBSF is very sensitive to an angular deviation

between the electron orbit and the optical axis when passing the imaging source plane.
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Table 5.3.: Source parameters for the OpTaliX FBSF studies.

Wavelength 450 nm

Source size σx,y 1 pm

Horizontal divergence 0.4 ◦

Vertical divergence 0.2 ◦

Number of steps 101

Bending angle ± 1.0 ◦

This deviation is parameterised by the angle β, for three different values this is illus-

trated in Fig. 5.13.

To get the horizontal bunch profile from the profile of the individual spots of an FGC

image, it has to be deconvolved with the FBSF. In the frequency domain, the decon-

volution corresponds to the division of the two Fourier transforms. This can lead to

a numerically unstable behaviour due to zero-value components in the denominator

and additional noise components. There exist different methods for this inverse fil-

tering (e.g. Wiener deconvolution), but they are relatively slow and require iterative

processes and/or additional estimates of the signal-to-noise ratio (SNR). Therefore, a

work-around is used to get the horizontal bunch size σx : It is based on the assumption

that the horizontal bunch profile has a Gaussian shape or at least that a Gaussian fit

can be used to get a measure for its size. To achieve this, a Gaussian curve convolved

with the FBSF is fitted to the data. Thus, the fit function reads as

f
(
x,C,A, µx, σspot

)
= fFBSF ∗

C + A · e
− 1

2

(
x−µx
σspot

)2
 , (5.9)

where the operator ∗ denotes the convolution. Amongst the amplitude A, the horizontal

position µx and an additional offset C, the fit gives a measure for the spot size σspot.

The offset C covers the non-vanishing background counts on the FGC sensor. This

ansatz was preferred to the subtraction of dedicated background images as it is robust

against changes of the image intensifier settings and (thermal) long-time drifts of the

pixel noise.

For the fit, also the errors on the data points are taken into account. Two contributions

are considered:

1. Pixel noise: As the diameter of the micro-channel plate (MCP) channels is ap-

proximately twice the pixel size, a certain correlation between neighbouring pixels

is expected. As an estimation of this noise contribution, the standard deviation
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Figure 5.14.: Top panel: Illustration of the simulated electron trajectories for

different angles β between the electron orbit and the optical axis, which is depicted

by the horizontal dashed line. The dotted line is the imaging source plane. Bottom

panel: Three FBSF determined from OpTaliX simulations for different β.

σPixel over the four neighbouring pixels (two in each direction) is calculated for

each pixel. In addition, also a possible electric cross-talk between the pixels is

covered.

2. Poisson statistics: The counting error per pixel is given by

σiPoisson
=
√
ni.

Thus, for each pixel the error σi can be calculated as

σi =
√
σ2
iPixel

+ σ2
iPoisson

. (5.10)

The error on the resulting fit parameters is calculated from the covariance matrix U−1
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and the reduced chi-squared χ2
red [81]:

σpi =

√
U−1
ii

χ2
red

. (5.11)

To benchmark the performance of the data analysis, only measurements below the

bursting threshold can be taken as reference as only there the energy spread follows a

Gaussian distribution (see Eq. (4.27) in Sec. 4.3). The drawback is, that for these bunch

currents the signal intensity is relatively low, however there is no (better) reference for

this benchmarking.

Concerning the choice of the FBSF, the best performance is achieved by setting β to

0.5 ◦. This seems to take the relevant deviations from the design parameters (tilts,

offsets, orbit deviations) into account. It it noteworthy, that for different machine

settings and beam orbits, an adjustment of this value could be required.

One example for such a fit with β = 0.5 ◦ is illustrated in Fig. 5.15.

Figure 5.15.: FGC raw image in grey scale with the analysis range for one spot

highlighted in color, the corresponding profile and the fit is plotted in the bottom

panel.

It shows that the fit reproduces the spot profile very well, which is also supported by

the reasonably good value of the reduced chi-squared.

Based on the assumptions and estimations discussed above, the fit shows an excellent

performance. For four different machine optics, this is illustrated in Fig. 5.16.
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(b) αc = 2.4 · 10−4, Ib= 0.08 mA

χ2
red = 1.02

0 100 200 300 400 500
Horizontal position (px)

12

14

16

18

20

22

24

1
0

3
 C

o
u
n
ts

(c) αc = 1.9 · 10−4, Ib= 0.04 mA
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Figure 5.16.: Comparison of horizontal spot profiles with the corresponding fits

for different machine optics.

In all cases, the reduced chi-squared χ2
red has a reasonable magnitude showing that the

model used for the fit agrees quite well with the data and the assumed errors on the

data points.

The last step in the data analysis chain is the conversion from the spot size σspot, which

is given in units of pixel, to the horizontal bunch size σx. To do so, the pixel size σpixel

as well as the horizontal magnification mhor have to be taken into account:

σx =
σspot · σpixel

mhor

. (5.12)

According to the data sheet, the FGC has a pixel size of 13.5 µm. The horizontal

magnification is given by the optical setup and is defined by the positions of the three

focussing elements: the two off-axis paraboloid mirrors (f = 1200 mm and 152.4 mm)

and the horizontal cylindrical lens (f = 80 mm). A precise determination of the exact

positions of the elements is difficult as parts of the setup are on the inner side of the
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radiation safety wall and completely shielded against background light. This uncer-

tainty on the element position induces a relatively large uncertainty on the horizontal

magnification as it is very sensitive to misalignments. As a consequence, the error on

the horizontal magnification is estimated from the setup to be 0.10.

The time between two consecutive gates is a camera parameter given as integer number

of turns. As discussed in [71], this value is used to assign a time separation between two

consecutive spots, the absolute calibration for the synchronisation with other detector

systems is discussed in Chapter 6.

This toolset now allows to determine the horizontal bunch size σx with a single turn

resolution and a high dynamic range. Thus, it serves as a versatile tool to study the

beam dynamics during the micro-bunching instability. Before these systematic studies

are discussed in chapter 8, another setup for horizontal beam diagnostics is presented

that has been tested successfully.

5.3. Turn-by-turn horizontal bunch size measurements

As mentioned in the previous section, the FGC has intrinsic limits due to the limited

number of data points per image. This requires a trade-off between temporal resolution

and acquisition time, which has to be chosen in advance to any measurement. To

overcome this limitation, the KALYPSO system [82, 83] was tested at the VLD port to

measure the horizontal bunch size. Such a system is foreseen as successor of the FGC.

5.3.1. Experimental setup

KALYPSO is an ultra-fast 1D line camera with 256 pixels and a maximum frame

rate of 2.7 MHz. This allows turn-by-turn studies in the single bunch operation. Due

to its modular design, it can be equipped with different types of sensors. For the

measurements discussed in the following, a silicon detector was used. As the system

was designed with focus on a high data throughput, it can operate continuously as

the only limiting factors are the data transfer speed to the readout computer and its

memory.

To use the system, the optical system of the FGC was adjusted: By using a flip mirror

the light was coupled out before the last focussing lens. To achieve good focussing in

the vertical plane, another cylindrical lens (f =70 mm) was used. Fig. 5.17 shows the

setup at the VLD port.
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5.3. Turn-by-turn horizontal bunch size measurements

Figure 5.17.: Image of the KALYPSO setup at the VLD port. The incoherent

synchrotron radiation – depicted by the white arrow – is deflected by a mirror and

focussed onto the sensor by a cylindrical lens. The KALYPSO system is housed in

the black metal box.

5.3.2. Data analysis

To determine the horizontal bunch size, a dedicated data analysis scheme has been

developed which takes the FBSF of the setup into account. It consists of the following

steps:

1. Background subtraction

At certain time stamps, background images are taken where the light from the

electron beam is blocked and images for 105 turns are recorded. Afterwards, for

each pixel the average background is calculated and subtracted from the images

recorded with synchrotron radiation. Pixels where the background subtraction

would lead to negative counts are set to zero.

2. Error estimation

Two contributions are assumed for the measurement error of the individual pixels:

a) Pixel noise: To account for an eventual cross-talk between neighbouring
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Figure 5.18.: FBSF for the KALYPSO setup simulated using the software Op-

TaliX.

pixels, the standard deviation σPixel over the nearest neighbour pixels is cal-

culated for each pixel.

b) Poisson statistics: The absolute counting error per pixel is given by

σiPoisson
=
√
ni.

Thus, for each pixel the error σi can be calculated as

σi =
√
σ2
iPixel

+ σ2
iPoisson

. (5.13)

As discussed for the data analysis for the TCSPC based synchronous phase shift

studies, the pixel error is set to 1 for pixels with zero value errors as they would

be ignored in the fitting process otherwise due to their zero weights.

3. Fitting a convolution of the FBSF with a Gaussian

As for the FGC, also here a convolution of a Gaussian with the FBSF is fitted

to the horizontal profile. The FBSF is determined using OpTaliX with the same

simulation input parameters concerning the source characteristics as for the FGC.

Here, the bin width is set to 50 µm which corresponds to the KALYPSO pixel

pitch. The resulting FBSF is plotted in Fig. 5.18.

Due to the background subtraction, the fitting function does not contain a dedi-

cated background offset. Again, the error on the fit parameters is calculated from

the scaling of the diagonal elements of the covariance matrix with the reduced

chi-squared.

In Fig. 5.19, one horizontal profile is plotted together with the corresponding fit.
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Figure 5.19.: Background subtracted horizontal bunch profile recorded using the

KALYPSO system and the corresponding fit to the data. As the imaging process

induces a distortion of the profiles from a Gaussian shape, the FBSF is taken into

account for the fit as well.

The value for the reduced chi-squared indicates a reasonably good agreement of the fit

model and the errors with the measurement data. An example picture recorded with

the system is plotted in Fig. 5.20.

The top panel shows the background corrected raw image for 105 consecutive turns.

Each column corresponds to one horizontal bunch profile and fits are applied to each

of these columns. The resulting positions and sizes of the bunch are plotted in the

center and bottom panel, respectively. The horizontal bunch position in the middle

panel shows a synchrotron oscillation with varying amplitude including a strong rise in

amplitude at 23.2 ms. This abrupt onset is used as timing reference for the synchronisa-

tion with other detector systems. The horizontal bunch size in the bottom panel shows

significant superimposed noise. Therefore, profile histograms are applied to the data

which are shown as blue dots with the corresponding standard deviation as vertical

error bars.

To benchmark this data analysis scheme, the determined horizontal bunch size can be

compared to the ones measured using the FGC for identical machine settings and a

comparable bunch current (Ib = 0.8 mA). Such a benchmark is shown in Fig. 5.21.

The two curves have approximately the same magnitude and modulation period length.

As they are from two completely different fills, they are manually aligned along the time

axis to enhance the visibility.

As it is the case for the KAPTURE system, KALYPSO allows a quasi-instantaneous
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start of the recording and does not need a certain preparation time as discussed in

Sec. 6.2. Therefore, it is a very promising tool, also due to its long acquisition time

with single turn resolution, as it is further discussed in Sec. 8.1.3.
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5.3. Turn-by-turn horizontal bunch size measurements

Figure 5.20.: Image recorded using the KALYPSO system. The top panel shows

the background corrected raw image while the center and bottom panel show the

corresponding bunch position and sizes. To overcome the noisy structure of the

signal, a profile histogram was applied to the bunch size. The horizontal bunch

position in the middle panel shows a synchrotron oscillation with varying amplitude,

including an abrupt onset at 23.2 ms.
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Figure 5.21.: Horizontal bunch size measured using KALYPSO with a profile

histogram applied to the data (blue) and the FGC (red) for identical machine

settings and bunch currents. For better visibility, the two curves were aligned along

the time axis. As a guide to the eye, the data points from the FGC are connected

by lines.
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To get insight into the dynamics of the bursting behaviour of a bunch, it is crucial to

measure its different parameters synchronously with a single-turn precision. To achieve

this, a hardware based synchronisation scheme was set up and tested. In this chapter the

system will be presented and the integration of the fast-gated intensified camera (FGC)

into this scheme will be discussed as there are setup-intrinsic delays to be taken into

account.

6.1. Overview

The simplest way to measure simultaneously several bunch parameters would be to

feed the signals from the different detector systems into one common data acquisition

(DAQ) system, e.g. an oscilloscope. This is suitable if all devices are located close to

each other or if the storage ring has a quite compact design (e.g. SURF [5]). In case of

KARA, this is not directly possible due to several reasons:

1. The systems for optical and coherent synchrotron radiation (CSR) detection are

located at different positions around the storage ring:

• The FGC setup and a KALYPSO system [82, 83] at the visible light diag-

nostics (VLD) port.

• KAPTURE [52, 53] in combination with fast THz detectors for CSR studies

at the IR2 beamline.

• An oscilloscope using the segmented mode with fast THz detectors for CSR

studies at the IR1 beamline.

2. At all these systems, a dedicated post-processing of the data is required, as e.g.

the FGC delivers 2D images, while the KAPTURE system provides – in the

multi-detector mode – for each detector one data point per bunch and turn.

Thus, the acquisitions of the systems have to be aligned temporally to enable later

on correlation studies between the derived parameters like CSR intensity and energy

spread. To get such a common time-axis for all experiments, a precise synchronisation of

the systems is required. To achieve this, a dedicated hardware synchronisation scheme
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6. Synchronisation of the FGC setup

is used that provides a set of triggers starting the acquisition of all systems at the

same time. Therefore, the different setups have to be investigated with regard to their

intrinsic delays occurring between the triggering and the first measurement.

KAPTURE and KALYPSO use a hardware technology with continuous sampling, in-

dependent of the coupled detectors. Thus, the acquisition trigger starts the storage of

the data into the memory and therefore a quasi-instantaneous start of the recording is

achieved. For the FGC setup, this is different: Due to the measurement controls and

the inertia of the mechanical components, a certain time is needed for the first sample

to be recorded.

6.2. FGC setup hardware delays

Due to its layout consisting of the camera and the fast rotating mirror, the FGC setup

has some intrinsic mechanical and electrical delays. The mechanical ones are due to the

inertia of the rotating mirror, while the electrical delays are induced by the amplifier

of the mirror voltage driver. The process diagram is illustrated in the appendix, see

Fig. A.4.

When a measurement process is started, the setup is going through the following steps:

1. Depending on the set value for the measurement time range, a linear voltage ramp

with a certain slope for the mirror is calculated by the waveform generator [84].

2. When this linear voltage ramp starts, the mirror voltage driver induces a delay

between the input signal and the resulting mirror position that can be measured

using an oscilloscope, in case of the setup used here it was determined to be 130 µs.

3. To protect the sensor from overexposure, the mirror has a holding position in

which the light passes the sensor and thus the light spot has to be driven first

onto the sensor to be recorded. At a certain point of the voltage ramp, the light

spot reaches the sensor. This point is defined by a threshold voltage and when this

voltage is reached, a logical signal is sent by the second output of the waveform

generator to the trigger logic unit (TLU). This unit acts as a gate for the incoming

trigger pulses that are now sent to the camera to trigger the gating of the image

intensifier.

These delays can be determined by measurements, an example for such a measurement

is illustrated in Fig. 6.1. By compensating for these delays, the setup can be integrated

into the hardware synchronisation scheme.
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6.2. FGC setup hardware delays

Figure 6.1.: Delay measurements on the FGC. The top panel shows the signal

from the waveform generator that feeds the mirror driver. The resulting mirror

position voltage is shown in the middle panel. A delay relative to the waveform

generator signal (τmirrodriver ≈ 130 µs), as well as the non-linear start and and end

of the ramp can be seen. The bottom panel shows the corresponding pickup signal

from the camera gate. Opening the gate leads to a sharp spike in the pickup signal.

In this particular case, the first gate used for measurements comes approx. 180 µs

after the starting trigger of the measurement at t=0 µs.
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6. Synchronisation of the FGC setup

6.3. Hardware synchronisation scheme

The hardware synchronisation scheme allows simultaneous measurements of the differ-

ent bunch properties on a single turn base [85]. This scheme uses as commercial timing

system that is based on one event generator (EVG) and several event receivers (EVRs)

[86]. It provides a common measurement trigger (referred as physics trigger) that is

sent to all measurement stations. It is a so-called arm trigger, that does not start the

measurement directly as this is done with the next incoming trigger pulse from the

KARA revolution clock. This trigger defines the starting point of a common time-axis

for all experiments. A principle schematic is illustrated in Fig. 6.2.

EVG

EVR 1

EVR 2

EVR 3

EVR 4

FGC

KAPTURE

KALYPSO

LLRF

R
F
P
h
a
se

st
ep

Time Revolution clock Acquisition

Event generator Event receivers Systems Calibration

Figure 6.2.: Schematic of the synchronisation principle based on the KARA timing

system consisting of one EVG and several EVRs located at the different measure-

ment systems. The intrinsic delay times of the system are illustrated by the different

widths of the boxes and are compensated by the timing of the individual EVRs.

The synchronisation is calibrated by applying a triggered RF phase step using the

low-level RF (LLRF) system (schematic published in [85, Fig. 2]).

The intrinsic delays of the setups are indicated by the different widths and positions of

the corresponding boxes. As discussed before, this is especially the case for the FGC.

It is compensated by triggering the preparation process a certain time in advance of

the other measurement setups included in the synchronisation scheme.

6.4. Calibration of the synchronisation

The studies of the setup intrinsic delays at the FGC setup and the corresponding com-

pensation in the synchronisation scheme allows a coarse synchronisation of the FGC

with respect to KAPTURE and KALYPSO. For a fine calibration of the synchronisa-

tion, an additional reference signal is required. This is achieved by triggering a sudden

step in the radio frequency (RF) phase using the LLRF system. This sudden step leads

to the onset of a strong synchrotron oscillation and the signature of this oscillation
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can be detected by the different detector systems. With respect to the synchronous

measurement discussed later in Chapter 8.1, here the focus is set to the synchronisation

between the FGC and the KAPTURE system.

For these calibration measurements, KAPTURE was used to sample the signal from a

fast avalanche photo diode (APD) that is sensitive in the visible range. The longitudinal

synchrotron motion of the bunch induced by the RF phase step leads also to an energy

oscillation with the same frequency. This energy oscillation is transferred by dispersion

into a horizontal oscillation around the imaging source point of the beam line. There-

fore, the intensity of the detected incoherent synchrotron radiation is modulated with

the same frequency and phase.

On the FGC, this energy oscillation is visible as well, as the source point is also in

a dispersive section of the storage ring. This oscillation has the same phase as the

oscillation on the incoherent synchrotron radiation sampled by the APD.

Figure 6.3.: FGC raw image (top panel) and the APD signal recorded with KAP-

TURE (bottom panel). The abrupt onset of a synchrotron oscillation on both

panels is due to the triggered RF phase step.

An FGC raw image and the corresponding KAPTURE signal are illustrated in Fig. 6.3.

Here, the signal from the APD shows deviations from an ideal sinusoidal curve with

some flat tops around the upper turning points of the oscillation. It is assumed that

this is an aperture effect of the optical beam path leading to spatial cut-off effects.

Nevertheless, the most important feature of this measurement, the strong synchrotron

oscillation, is clearly visible and can be used for the calibration.
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6. Synchronisation of the FGC setup

This fine calibration consists of the following steps:

1. Fitting a sinusoidal curve to the KAPTURE data.

2. Phase shifting the FGC spot position in steps of one turn and calculating for

each step the correlation between the spot size and the sinusoidal curve for the

corresponding turns.

3. Determination of the maximum value of this correlation, the corresponding phase

shift value is used for the calibration.

4. Averaging over 20 consecutive triggers gives the average phase shift being included

into the data analysis as additional delay time with the corresponding error given

by the standard deviation.

Finally, this leads to a fine calibration with the uncertainty of 2 turns which is also

illustrated in Fig. 6.4. There, the synchrotron oscillation due to the RF phase step is

plotted that is recorded with the FGC as well as the KAPTURE system sampling the

signal from an APD.
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Figure 6.4.: Intensity of the incoherent synchrotron radiation recorded with KAP-

TURE and an APD (top panel) and the corresponding horizontal bunch position

recorded with the FGC. The vertical black line depicts the RF phase step occurring

1 ms (≈ 2720 turns) after the physics trigger. The frequency and the phase of the

black sinusoidal curve are determined by a fit to the KAPTURE data. The FGC

time axis is calibrated with respect to this curve.
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accelerator optics

To study the beam dynamics, a proper simulation model of the accelerator is required.

Within the scope of this thesis, the Accelerator Toolbox for MATLAB has been used.

In this chapter, the simulation model is introduced and the method to determine the

quadrupole strengths is discussed. Afterwards, two aspects of the tracking studies are

presented: studies of the transverse beam profile and the damping of the horizontal

bunch size. Finally, the simulation model is benchmarked against measurements of the

equilibrium horizontal bunch size.

7.1. The AT model

The various beam dynamics effects in an accelerator can be studied using a dedicated

simulation software. For these studies, many different programs are available. In the

scope of this thesis, the Accelerator Toolbox for MATLAB (AT) was chosen [87]. It has

the advantage of being integrated into the MATLAB Middle Layer [88], which is also

operational at KARA [89]. This integration simplifies the combination of measurements

and simulations. In addition, AT recently underwent a major upgrade [26].

The core of these simulations is the machine model. In such a model, each relevant

hardware component of the accelerator has its equivalent that is characterised by some

geometrical (e.g. length) and beam dynamics parameters (e.g. quadrupole strength).

The lattice model used here is based on the previous works of Marit Klein [90] and Max

Streichert [91]. It takes into account the measured tilts of the quadrupole and sextupole

magnets as well as the multipole components and fringe fields for the dipole magnets.

One important task for the simulation is the determination of the magnet strengths.

While in a real accelerator, the magnetic strengths are controlled by setting an electric

current through the coils via the power supplies, the simulation program directly uses

the magnetic strengths. As a direct conversion from the current through the coils to the

magnet strength is usually not possible, the magnet strengths have to be determined

numerically. For the quadrupole strengths, this can be achieved using LOCO.
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7.2. LOCO fits

Linear Optics for Closed Orbits (LOCO) is a software code that – amongst others –

allows the determination of the quadrupole strengths by fitting them to measurement

data of the horizontal dispersion Dx and the orbit response matrix (ORM) [92].

The horizontal dispersion is determined by measurements of the horizontal shift of the

orbit when the RF frequency is varied. For highly relativistic electrons, a change ∆fRF

of the RF frequency leads to an orbit shift ∆x that is proportional to the dispersion D

and the momentum compaction factor αc (see Sec. 2.4). Thus, the dispersion Dx can

be determined by [93, Eq. (83)]

Dx(s) = −αc∆x(s)
fRF

∆fRF

. (7.1)

To determine the ORM, the response of the individual beam position monitors (BPMs)

to changes of the corrector magnets are measured. Such an ORM contains information

on the machine optics in a highly entangled form, from which the beta function βx

can be determined [94]. For the short-bunch mode operation with a low momentum

compaction factor αc, the measurements of the dispersion as well as the ORM are very

delicate, especially if a sufficiently high resolution is intended. For such a machine

optics, the magnitude of the dispersion is increased locally (see Fig. 3.3). Thus, already

a small deviation of the RF frequency leads to a relatively large orbit drift and – in the

worst case – to a loss of the electron beam.

The experimental studies discussed in Chapter 8 were conducted for several accelerator

optics, which are characterised by different values of the momentum compaction factor

αc. For these optics, LOCO fits are performed to determine the quadrupole strengths.

With these quadrupole strengths, it is possible to determine the optics functions and

thus the equilibrium bunch size at the imaging source point of the visible light diag-

nostics (VLD) port. Therefore, the dipole magnets are split into a sequence of short

dipole magnets using the atdivelem function of AT.

The results of these studies are summarized in Table 7.1. αc,sim depicts the momentum

compaction factor calculated from the simulation model according to Eq. (2.22).

The results of the LOCO fits show that the dispersion at the VLD port is nearly constant

for the different optics. For the machine optics A, the resulting dispersion and beta

function are plotted in Fig. 7.1.

For the equilibrium state, the horizontal bunch size σx can be calculated from the

simulation results by

σx =

√
(D · σδ)2 + βx · εx. (7.2)

The two summands below the square have a similar magnitude for the optics considered

here. Thus, the calculation of the horizontal bunch size is sensitive to large systematic
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Table 7.1.: Equilibrium bunch parameters at the VLD imaging source point for

different accelerator optics determined from the AT model of KARA using LOCO.

Optics αc,sim βx (m) D(m) εx (nm rad) σx,0 (mm) σt,0 (ps)

A 8.6 · 10−4 0.76 0.29 79.3 0.28 4.44

B 5.6 · 10−4 0.84 0.28 78.5 0.29 3.60

C 4.4 · 10−4 0.80 0.29 78.8 0.29 3.23

D 2.8 · 10−4 0.74 0.28 78.8 0.27 2.69

E 2.5 · 10−4 1.05 0.29 81.76 0.32 2.38

errors [95]. For the case here, the relative error on βx, D and εx is estimated to be

5 %. This leads to the error band shown in Fig. 7.2, where the horizontal bunch size is

plotted for the optics shown in Fig. 7.1.

It can be seen that the bunch changes its size along one turn and also inside of the

dipole magnets.

7.3. Tracking studies

Beyond the determination of the machine optics, the model can be used for tracking

studies. Tracking means, that a set of particles – which are individually described by a

set of 6D phase space vectors
#»

T – is sent trough the lattice model for a certain number

of turns. This allows e.g. to study the shape of the beam at different positions along

the trajectory. While for the LOCO fits only the quadrupole magnets were taken into

account, these studies also require proper settings of the sextupole magnets. This can

be achieved using the atmatch function of AT [96]. It fits the sextupole strengths of the

lattice model to measured values of the chromaticities. The chromaticities itself can be

determined from measurements of the horizontal and vertical betatron tune shift for

momentum changes. As for the dispersion, these momentum changes are achieved by

changing the RF frequency.

The classical approach for tracking is to model the lattice as a sequence of n 6x6

matrices where each matrix represents one element in the accelerator. To track one

particle through this lattice for one turn, its 6D phase space vector
#»

T is multiplied with

this matrix sequence:

#»

T n = M1 ·M2 · ... ·Mn-1 ·Mn ·
#»

T n-1. (7.3)

Especially for a large number of particles and a long lattice (the model used here

consists of 424 elements), such computations are very time-consuming. To speed this
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Figure 7.1.: Machine optics (Optics A, see Table 7.1) for KARA determined using

LOCO fits. The vertical black line depicts the position of the VLD port. To enhance

the visibility, the dispersion is scaled by a factor of 10 to achieve a similar magnitude

as for the horizontal beta function βx.

up, an additional abstraction can be applied using the atfastring function [26]. It

combines all linear elements (dipole and quadrupole magnets) in one element and all

non-linear elements (e.g. sextupole magnets) in another element. Together with the four

RF cavities, such an abstracted lattice has only 6 components. To take the quantum

excitation due to the emission of synchrotron radiation into account, an additional

quantum diffusion element MQuant. diff. is added [97]

#»

T n = MLinear ·MNon-linear ·MRF 1 · ... ·MRF 4 ·MQuant. diff. ·
#»

T n-1. (7.4)

This method speeds up tracking a lot, but has the drawback that the particle distribu-

tion can only be investigated at the entrance point of the lattice. Thus, this entrance

point has to be chosen in a way that it is as close as possible before the observation

point. The missing section between the entrance and the observation point is then

handled by a linear transfer represented by an additional transport matrix M .

Combined with the various functions of AT, such an accelerator model allows to inves-

tigate some beam dynamics related effects.
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Figure 7.2.: Horizontal bunch size (Optics A, see Table 7.1) for KARA determined

using LOCO fits, the vertical black line indicates the position of the VLD port.

The error band is calculated assuming a 5% error on the optics functions and the

emittance. The bottom panel shows a zoom around the imaging source point of the

VLD port.

7.3.1. Imaging the transverse bunch profile

To monitor the transverse bunch profile at a certain position along the ring, two ap-

proaches can be used: For the multi-particle approach, a bunch of particles is tracked

through the lattice for a sufficient number of turns to reach an equilibrium state be-

tween radiation damping and quantum excitation. Then, the horizontal and vertical

positions of the particles can be mapped when the bunch passes the monitor. For a

sufficient resolution, a large number of particles (> 106) is required. This leads to very

long computational times due to the tracking of the transient process. A more memory-

efficient way is the single-particle approach. Here, a single particle is tracked for a

very large number of turns and for each turn, its transverse position is mapped. After

a sufficient number of turns, this particle has sampled the whole phase space and thus

the histogramming of the positions allows the imaging of the transverse bunch profile.

This approach is valid as long as there is no interaction between the particles.
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Figure 7.3.: Simulated electron beam at the VLD port source point. For the

simulation, a single particle was tracked for 2·108 consecutive turns and for each turn

the horizontal and vertical positions are histogrammed. The dashed line illustrates

the slight tilt of the ellipse (tilt angle: 0.7 ◦). The bottom panel shows the projection

onto the x-axis with a Gaussian fit applied to it.

In Fig. 7.3, such a single particle image is illustrated. It shows a simulated bunch profile

at the VLD imaging source point and is acquired by mapping 2·108 turns using machine

optics A (see Table 7.1).

The resulting image can be seen as an equivalent for the image of a bunch consisting of

2 · 108 particles, in case of KARA this corresponds to a bunch current of 0.09 mA. The

tilts of the magnets induce an additional coupling between the horizontal and vertical

direction and lead to a tilt of the beam ellipse as it is illustrated by the dashed line. As

this angle is relatively small (0.7 ◦), the deviation of the size of the horizontal projection

and the size of the ellipse are below the measurement uncertainties. Thus, this tilt is

neglected and the horizontal bunch size is determined from the horizontal projection.

Fitting a Gaussian to the horizontal projection gives an equilibrium bunch size of

0.282 mm which agrees well with the value calculated from the optics functions and

the equilibrium emittance (0.281 mm).
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7.3.2. Diffusion blow-up

The energy loss of the particles due to the emission of synchrotron radiation leads to

damping effects. This damping reduces the amplitude of the synchrotron oscillation,

but also leads to a shrinking of the bunch size. As the emission of the radiation also

leads to a quantum excitation that counteracts the damping, an equilibrium state is

reached after a certain amount of time (Sec. 2.5).

For the understanding and investigation of the micro-bunching instability – which is

coupled to a variation of the energy spread – the determination of the damping times

is crucial. One possibility to measure the longitudinal damping time is the damping of

the coherent motion of the bunch, e.g. a strong synchrotron oscillation triggered by a

sudden step in the RF phase. This approach has the drawback, that it is sensitive to

decoherence effects and Landau-Damping due to the chromaticity [98]. Alternatively,

the damping times can be accessed by investigations of the bunch size as well.

While a proper simulation of collective effects using tracking programs usually requires

a large number of particles (∼ 1 · 109) and thus a high computational power, the

damping of the bunch that follows a coherent synchrotron radiation (CSR) burst can

be studied also with a lower number of particles. The micro-bunching instability leads to

a blow-up of the longitudinal phase space. In the simulation, this can be approximated

by manipulating the quantum diffusion element. This element is described by a 6x6

matrix LT and affects the bunch as [97, Eq. (12)]

#»

T 1 =
−→
T 0 + LT · #»r . (7.5)

#»r is as a set of random numbers with σ = 1 and µ = 1 . For the blow-up of the

longitudinal phase space, this matrix is multiplied by a blow-up matrix B:

L̃T = LT ·B = LT ·



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 b 0

0 0 0 0 0 b


(7.6)

that is characterised by a scaling parameter b (b > 1). This blow-up holds on for a

certain number of turns (here: 2000) before b is set to 1 and the damping start to

dominate. For the analysis, the horizontal bunch size σx is calculated by the standard

deviation of the horizontal particle position for each simulation step.

According to Eq. (2.38), the emission of synchrotron radiation leads to different damping

times in the horizontal and longitudinal plane. Therefore, the longitudinal component

(the energy spread σδ) and the horizontal component (emittance εx) of the horizontal

bunch size are damped with different damping times.
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7. Modeling the short-bunch mode accelerator optics

After an excitation, which increases the energy spread by the amount A and that stops

at t = 0, the energy spread is damped with the longitudinal damping time τz towards

the natural energy spread δ0. This can be written as [31, solving Eq. (116)]:

σδ(t) =
√
A · e−2t/τz + δ2

0. (7.7)

The horizontal emittance is damped with the horizontal damping time τx towards its

equilibrium value εx,0 [31, Eq. (120)]:

εx(t) = εx (t = 0) · e−2t/τx + εx,0 ·
[
1− e−2t/τx

]
= B · e−2t/τx + εx,0. (7.8)

Combining equations (7.7) and (7.8) leads to

σx(t) =

√
D2 · σδ (t)2 + βx · εx (t)

=
√
D2 ·

[
A · e−2t/τz + δ2

0

]
+ βx ·

[
B · e−2t/τx + εx,0

]
(7.9)

≈
√
C · e−2t/τx,eff + σ2

x,0. (7.10)

Thus, the horizontal bunch size is damped with an effective horizontal damping time

τx,eff towards its equilibrium value σx,0. The effective damping time τx,eff is a function

of two amplitudes A and B and the damping times:

τx,eff = τx,eff (A,B, τx, τz) with τz ≤ τx,eff ≤ τx.

Figure 7.4 shows the damping of the various bunch parameters for a simulated diffusion

blow-up of the longitudinal phase space. Here, the bunch was blown up longitudinally

for a certain time period which is marked as grey bar followed by a decay due to

radiation damping.

Even if only the longitudinal phase space has been blown-up here, the horizontal emit-

tance increases as well. Fitting Eq. (7.7) to the energy spread (top panel) leads to

τz = 10.3 ms, while the fit according to Eq. (7.8) to the horizontal emittance (cen-

ter panel) gives τx = 18.4 ms. Both values are in reasonably good agreement with

the values determined from the synchrotron radiation integrals (see Eq. (2.38)), which

are 10.4 ms and 20.4 ms, respectively. The horizontal emittance was calculated using

[24, Eq. (8.39)]. The effective horizontal damping time τx,eff is determined by fitting

Eq. (7.10) to the horizontal root mean square (RMS) bunch size which gives a value of

τx,eff = 14.0 ms.

As the horizontal emittance cannot be determined experimentally at KARA yet (at

least not time-resolved), a quantitative measurement of the energy spread is not possi-

ble. Therefore, only the horizontal bunch size is used in the following as a qualitative

measure for the energy spread during the micro-bunching instability. To overcome this

limitation, a second time-resolved measurement of the horizontal bunch size would be

required at a position with a different horizontal beta function βx.
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7.3. Tracking studies
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Figure 7.4.: Damping of various parameters followed by blow-up of the longitudinal

phase space. The top panel shows the energy spread σδ in units of the natural energy

spread δ0, the center panel the horizontal emittance εx and the bottom panel the

horizontal bunch size σx. The grey bar indicates the time range of this blow-up (see

also Sec. 7.3.2).

Simulation parameters: Machine optics A (see Table 7.1), 100.000 particles
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7. Modeling the short-bunch mode accelerator optics

7.4. Benchmarking the AT model

When the bunch current exceeds the bursting threshold, the micro-bunching instability

leads to an increase of the energy spread [13], which can be detected as an increase of

the horizontal bunch size. Below the bursting threshold, the horizontal bunch size is

constant due to the equilibrium between quantum excitation and radiation damping.

This allows a benchmarking of the simulation model and the underlying LOCO fits

against fast-gated intensified camera (FGC) measurements. Therefore, the average

horizontal bunch size from FGC images is compared to the calculated values from the

simulation model. For three optics from Table 7.1, this is illustrated in Fig. 7.5, where

the measured horizontal bunch size is plotted above and below the bursting threshold.

In addition to the errors on the horizontal bunch size from the optics functions, another

contribution is taken into account as well. At the VLD port, not only one point but

a certain part of the beam trajectory is imaged. Along this part of the trajectory, the

horizontal bunch size is expected to change as well (see Fig. 7.2) As the exact part of the

trajectory is not known, this induces an additional error on the equilibrium horizontal

bunch size. Therefore, the total error on the equilibrium horizontal bunch size is – based

on a Monte-Carlo error propagation – estimated to be ± 10 µm, which is plotted as an

error band.

While the horizontal bunch size is roughly constant below the bursting threshold, it

starts to increase when the bunch current exceeds this threshold. In general, the plots

show a good agreement between the measured bunch size and the calculated value for

the equilibrium case below the bursting threshold. This means that the parametrisation

of the filament beam spread function (FBSF) with only one parameter (angular devi-

ation β between electron orbit and optical axis) is reasonable. For the case shown in

Figure 7.5a, the measured values are slightly below the theoretical ones. This mismatch

can be due to the relatively large systematic errors that can occur at these studies [95].

Nevertheless, these results show that the the data analysis scheme for the FGC with

its handling of the FBSF on one hand and the machine model based on LOCO fits on

the other hand agree quite well.
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7.4. Benchmarking the AT model

(a) Optics A:

(b) Optics C

(c) Optics D

Figure 7.5.: Mean horizontal bunch size over four different bunch current decays

using different machine optics. The dashed line and its grey error bar depict the

equilibrium bunch size range at the VLD source point, while the vertical black line

illustrates the bursting threshold. The vertical axes are zero-suppressed.
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8. Potential for studies of horizontal

bunch size and arrival time

The micro-bunching instability leads to a modulation of the longitudinal phase space.

For a certain bunch current range, this instability is coupled to a bursting behaviour of

the bunch and a sawtooth-like modulation of the energy spread. To study this instability

in more detail with the long-term perspective to control this instability, the measurement

systems described in the previous chapter have been used: the FGC and KALYPSO for

time-resolved horizontal bunch size measurements and the TCSPC system for bunch

arrival time studies. In the first part, the synchronous studies of energy spread and

CSR intensity are presented, while in the second part, studies of the damping time and

the bursting frequency are discussed. The third part covers the impedance measurements,

before the first experimental observation of the short bunch-length bursting on the energy

spread is presented at the end.

8.1. Synchronous studies of energy spread and CSR

As discussed in Chapter 4, the micro-bunching instability is coupled to the emission of

coherent synchrotron radiation (CSR). Previous studies showed a sawtooth-like modu-

lation of the bunch size (bunch length and energy spread) with the same modulation

period length as the CSR [5, 15, 18]. It is noteworthy that the measurements discussed

there did not have a single-turn resolution as it became possible at KARA with the

fast-gated intensified camera (FGC) setup. In addition, the FGC setup is synchronised

to other detector systems, especially to those for the CSR detection.

The measurements discussed in this section show time-resolved studies using the FGC

(see Sec. 5.2) and the KAPTURE system. After applying the data analysis to the

individual FGC images, the resulting horizontal bunch size as measure for the energy

spread are set into context with the CSR intensity taken simultaneously.
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8. Potential for studies of horizontal bunch size and arrival time

8.1.1. Bursting behaviour of energy spread and CSR

The first example for such a synchronised measurement is illustrated in Fig. 8.1a. The

top panel shows the horizontal bunch size (and thus the energy spread), while the

bottom panel shows the CSR intensity measured using a broadband Schottky diode

read out by the KAPTURE system [52, 53]. The used diode has a sensitivity range

from 50 GHz up to 1 THz [99].
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Figure 8.1.: (a) Horizontal bunch size as measure for the energy spread recorded

with a gate separation of 500 turns (top) and the synchronously measured CSR

signal sampled using a Schottky diode (bottom). The energy spread shows the

same modulation pattern as the CSR (data published in [100, Fig. 7], CSR data:

courtesy Miriam Brosi).

(b) Reduced chi-squared for the fits to determine the horizontal bunch size.

Beam parameters: fs = 8.1 kHz, VRF = 1500 kV, Ibunch = 0.88 mA
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8.1. Synchronous studies of energy spread and CSR

One can see that the energy spread shows the same modulation period length as the

CSR. At the onset of the burst, the bunch is blown up until it reaches a certain upper

limit where damping effects start to become dominant and the size as well as the

CSR intensity start to decrease. This shrinking holds on until a certain lower limit

is reached being coupled to the onset of the next burst. This behaviour was already

experimentally observed at SURF III in 2001 [5]. The occurence of the micro-bunching

instability is due to a deformation of the longitudinal phase space. Besides the periodic

occurence of sub-structures on the bunch profile, there is also global distortion of the

charge distribution which has also been observed experimentally on the longitudinal

bunch profile at KARA [39]. Due to its ability to resolve single turns, the FGC can be

used to study the deformation of the energy profile during the bursting behaviour. To

quantify the deformation of the horizontal bunch profile, the reduced chi-squared χred

for the fits to determine the horizontal bunch size (see Sec. 5.2.3) is investigated. For

the case plotted in Fig. 8.1a, this is shown in Fig. 8.1b.

There, the data show the same periodic behaviour as the horizontal bunch size and the

CSR intensity. As closer the value of χ2
red is to 1, the more Gaussian the bunch shape

is. This shows, that during the damping-induced shrinking, the bunch becomes more

and more Gaussian before it is distorted again when the instability triggers the onset

of the next burst. This distortion can either be due to a global deformation e.g. the

bunch is leaning sideways or due to sub-structures on the profile itself.

The second example discussed here is taken for a lower value of αc and also at a lower

bunch current. The horizontal bunch size and the corresponding CSR signal are shown

in Fig. 8.2.

Again, the energy spread as well as the CSR intensity have the same modulation period

length. Compared to Fig. 8.1a, the CSR intensity is no longer constant between two

bursts, but shows an increase while the energy spread is still decreasing. This can be

explained by the fact, that the bunch becomes shorter and this shortening leads to the

emission of CSR for higher frequencies. The broadband Schottky diode used here is

sensitive to these bunch length fluctuations and thus this decrease of the bunch length

leads to higher intensities in the frequency band of the diode. This shrinking holds on

until a certain lower limit is reached. At this point, the charge density inside the bunch

is high enough to trigger a new burst. Numerical simulations using the Vlasov-Fokker-

Planck solver Inovesa [49] showed, that at this point the amplitude of the sub-structures

starts to grow rapidly as well [101].
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8. Potential for studies of horizontal bunch size and arrival time

Figure 8.2.: Horizontal bunch size as measure for the energy spread recorded

with a gate separation of 504 turns (top) and the synchronously measured CSR

signal recorded using a Schottky diode (bottom). The two curves have the same

modulation period length, but here the CSR intensity starts to increase again while

the bunch is still shrinking (data published in [100, Fig. 8], CSR data: courtesy

Miriam Brosi).

Beam parameters: fs = 6.7 kHz, VRF = 1500 kV, Ibunch = 0.25 mA.

8.1.2. Onset of a CSR burst

To study the onset of a CSR burst in more detail, the FGC is configured to record

shorter time scales.

For the example discussed here, the gate separation was set to 24 turns and a time

range of 500 µs was used. In this case also a second – narrow-band – Schottky diode

was used (sensitivity range: 220-330 GHz [102]). The result is illustrated in Fig. 8.3.

At the beginning, the horizontal bunch size and thus the energy spread is slightly

decreasing due to damping effects. At the same time, the CSR intensity on both

Schottky diodes is constant. Around t=0.1 ms, the first changes can be seen when

the CSR intensity on the broadband Schottky diode starts to increase, while for the

narrow-band this increase starts approximately 0.1 ms later. This earlier increase on

the broadband Schottky diode is due to their lower frequency limit [55]. The increase

of the CSR intensity seen by the narrow-band Schottky diode is due to sub-structures

occurring on the bunch profile. At this early stage, they are too small to substantially

increase the overall bunch size, so it stays roughly constant with some fluctuations.
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8.1. Synchronous studies of energy spread and CSR

Figure 8.3.: Horizontal bunch size as measure for the energy spread recorded

with a gate separation of 24 turns to achieve a good timing resolution (top) and

the corresponding CSR intensity (bottom) sampled with two Schottky diodes with

different bandwidths (data published in [100, Fig. 9], CSR data: courtesy Miriam

Brosi).

Beam parameters: fs = 13.35 kHz, VRF = 1500 kV, Ibunch = 1.57 mA

At a certain point the horizontal bunch size as well as the CSR intensity starts to

increase rapidly. Inovesa simulations showed that this onset is due to rapid changes of

the amplitude of the sub-structures on the bunch profile [101].

These single image based examples already clearly demonstrate the ability of the FGC

to study the energy spread dynamics during the micro-bunching instability. The syn-

chronous measurement of the CSR intensity shows that the energy spread and the CSR

intensity undergo fluctuations with the same period length. Nevertheless, they can

show different behaviours between the bursts, depending on the range of the bunch

length fluctuations defining the lower frequency limit of the emitted CSR.
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8. Potential for studies of horizontal bunch size and arrival time

8.1.3. Turn-by-turn studies of the bursting behaviour

As previously discussed, the FGC setup has an intrinsic limit as it can only handle a

limited number of data points. Thus, a trade-off between a good temporal resolution

and a long time range is required beforehand of a measurement. To overcome this

limitation, a KALYPSO system is used. In combination with the data analysis discussed

in Sec. 5.3, such a system allows a turn-by-turn investigation of the energy spread by

recording the horizontal bunch size. This allows to study the onset of a CSR bursts

and to investigate the phase offset between the energy spread and the CSR intensity in

more detail. KALYPSO is based on the same hardware architecture as the KAPTURE

system and thus also overcomes the intrinsic mechanical and electrical delays of the

FGC setup. This enables an instantaneous start of the sampling and therefore simplifies

the synchronisation with other detector systems, e.g. for CSR measurements. For the

measurements discussed in the following, an oscilloscope in the segmented mode is used

to sample a Schottky detector for the CSR as well as an avalanche photo diode (APD)

for the incoherent synchrotron radiation.

To check if the two detector systems measure synchronously, abrupt onsets of the syn-

chrotron oscillation are used. These onsets can be induced by triggered steps in the

RF phase, but they also happen randomly from time to time. The latter case is used

here. Fig. 8.4 shows the horizontal bunch position recorded using KALYPSO and the

corresponding signal from an APD sensitive in the visible range in the IR1 beam line

at KARA.

The abrupt onset of the synchrotron oscillation at 23.2 ms occurs on both curves at

the same time. Thus, the two detector systems can be used for synchronous studies.

This allows to study the horizontal bunch size and the CSR intensity recorded using

a broadband Schottky diode [99]. Such a measurement – covering a time range of

27 ms – is plotted in Fig. 8.5.

It can be seen, that the horizontal bunch size (and thus the energy spread) shows the

same modulation pattern as the bursting CSR. The turn-by-turn ability of KALYPSO

allows to study this in more detail. To illustrate this, the time range between 13.1 ms

and 20.7 ms is investigated in the following, that is also illustrated by the gray area in

Fig. 8.5. It is plotted in Fig. 8.6.

There, it can be seen that the minimum horizontal bunch size does not exactly coincide

with the onset of the CSR burst in the signal from the Schottky diode, as the latter

one starts to increase approximately 0.58 ms earlier. At this early stage of a CSR burst,

the amplitudes of the sub-structures on the longitudinal bunch profile are too small to

lead to an overall increase of the bunch size as damping effects are still dominant. At a

certain point, the instability driven blow-up starts to dominate and the bunch is blown

up.
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8.1. Synchronous studies of energy spread and CSR

Figure 8.4.: Horizontal bunch position from KALYPSO at the visible light di-

agnostics (VLD) port (top) and the corresponding signal from an APD sampling

the incoherent synchrotron radiation using an oscilloscope in the segmented mode

(bottom). The vertical black lines depict the onset of a synchrotron oscillation act-

ing as a timing reference for the synchronisation (APD data: courtesy Johannes L.

Steinmann).

Already this one data set shows the potential of KALYPSO for energy spread studies.

At the FGC, the observation of the onset of a burst with a good temporal resolution has

to be seen as a lucky punch as it is required to exactly hit the relevant time range which

spans only approximately half a millisecond (see e.g. Fig. 8.3). The main drawback

of the current version, that has been tested here, is the limited dynamic range and a

quite high noise level. This will be improved by a future version of the system. Thus,

KALYPSO will allow time-resolved energy spread studies in unprecedented detail.
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8. Potential for studies of horizontal bunch size and arrival time

Figure 8.5.: Top: Horizontal bunch size recorded using KALYPSO. To overcome

the noisy structure of the bunch size signal, profile histograms have been applied

to the data.

Bottom: Corresponding CSR intensity sampled using an oscilloscope in the seg-

mented mode. The data set is the same as in Fig. 8.4 (CSR data: courtesy Johannes

L. Steinmann).

Beam parameters: fs = 6.8 kHz, VRF = 1500 kV , Ibunch = 0.80 mA.
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8.1. Synchronous studies of energy spread and CSR

Figure 8.6.: Zoom into the data set shown in Fig. 8.5 with the horizontal bunch

size in the top and the CSR intensity in the bottom panel. The vertical black lines

depict the times, where the horizontal bunch size is minimum, while the grey bar

in the top panel illustrates the time range, where the CSR intensity already starts

to increase beforehand of the energy spread increase (CSR data: courtesy Johannes

L. Steinmann).
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8. Potential for studies of horizontal bunch size and arrival time

8.2. Radiation damping and bursting frequency

As the bursting behaviour of the bunch due to the micro-bunching instability is an

interplay between excitation and radiation damping, studies of the damping behaviour

are required to achieve a deeper insight into the physics of these processes. Using the

FGC for time-resolved horizontal bunch size measurements allows to study this in more

detail.

The damping of the horizontal bunch size depends on the horizontal as well as the

longitudinal damping time. As the longitudinal and horizontal contributions can not

be distinguished, an effective damping time is used as a measure for the horizontal bunch

size damping (see Eq. (7.10)). For two FGC images taken at identical machine settings

(corresponding to optics A in Table 7.1), measurements of this effective damping time

are shown in Fig. 8.7.

There, it can be seen that the horizontal bunch size is undergoing a sawtooth-like mod-

ulation due to the micro-bunching instability which is coupled to a bursting behaviour

of the bunch. While the bunch currents are approximately the same, the duty cycle

and the period length of the sawtooth as well as the effective damping times scatter.

While for the case in Fig. 8.7a, the period length is 5.7 ms with effective damping times

of 11.2 ms and 9.7 ms, the period length in Fig. 8.7b is 6.4 ms with effective horizontal

damping times of 15.6 ms and 15.3 ms, respectively.

In this case, the lower damping – depicted by a larger damping time – leads to an in-

crease of the bursting period. There, it takes more time until the instability threshold

is hit again resulting in triggering the onset of the next burst. For the case in Fig. 8.7b,

the decay of the bunch size – where the fit is applied to the data – is not as smooth

as for the cases shown in Fig. 8.7a. This is a hint that in this case the micro-bunching

instability continued to blow-up the bunch even if radiation damping is dominant lead-

ing to a shrinking of the bunch size. Already these two examples clearly show the high

degree of randomness in the individual bursts.

For the accelerator optics used here, the Accelerator Toolbox for MATLAB (AT) sim-

ulations predicted an effective horizontal damping time of 14.0 ms (see Fig. 7.4).

Extending the damping time studies over a certain bunch current range shows, that the

determined effective damping times τx,eff scatter around a mean value which is close to

the value predicted by AT simulations as it is shown in Fig. 8.8.

This is a first hint, that the bursting frequency is mostly determined by the radiation

damping due to the emission of incoherent synchrotron radiation. Therefore, the rela-

tion between the horizontal bunch size, its damping and the repetition rate of the CSR

bursts can be studied as it will be discussed in the following.
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8.2. Radiation damping and bursting frequency
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Figure 8.7.: Horizontal bunch size measured using the FGC in the short-bunch

mode during the bursting behaviour of the bunch. To determine the effective damp-

ing time, an exponential fit is applied to the falling edges. The dotted lines depict

the 10th and 90th percentile of the horizontal bunch size, respectively.

Beam parameters: fs = 11.2 kHz, VRF = 1500 kV, αc = 4.8 · 10−4

A simple model to describe the sawtooth behaviour of the horizontal bunch size σx is

given by Eq. (8.1)

σx (t) =


√
Ce−2t/τx,eff + σ2

x,0, for 0 ≤ t ≤ tdecay

mt+ σx,min, for tdecay ≤ t ≤ 1/fburst

(8.1)

which describes the behaviour as a sequence of an exponential decay holding on for a

time period tdecay followed by a linear rise with the duration trise = 1/fburst − tdecay.
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8. Potential for studies of horizontal bunch size and arrival time
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Figure 8.8.: Effective horizontal damping times over bunch current. The dashed

line depicts the effective horizontal damping time determined by AT simulations.

As for a sawtooth signal, a duty cycle d can be defined as

d = trise · fburst =
(
1/fburst − tdecay

)
· fburst = 1− tdecay · fburst. (8.2)

Taking the measured values of the maximum and minimum horizontal bunch sizes

σx,max and σx,min and the effective damping time τx,eff from AT simulations, this leads

to

σ2
x,max = C +σ2

x,0 (8.3a)

σ2
x,min = C · e−2tdecay/τx,eff +σ2

x,0. (8.3b)

From these equations, the bursting frequency fburst can be calculated as

fburst = − 2

τx,eff (d+ 1) ln

[
σ2
x,min−σ2

x,0

σ2
x,max−σ2

x,0

] . (8.4)

To study this relation, the bursting frequency fburst is calculated from measured bunch

sizes and compared to the dominant frequency from the horizontal bunch size spec-

trogram. This spectrogram is calculated using Lomb periodograms [103]. For three

different fills, this is shown in Fig. 8.9.

For the maximum and minimum bunch sizes, the 10th and 90th percentile are taken as

a measure due to their robustness against outliers and noise. They are shown in the left

column with the corresponding horizontal bunch size spectrograms shown in the right

column. There, the black dots depict the bursting frequency calculated using Eq. (8.4).

In general, the calculated frequency agrees reasonably well with the measured ones.

An overestimation of fburst, which occurs for higher bunch currents, can be due to

an underestimation of the radiation damping because of an instability driven blow up
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8.2. Radiation damping and bursting frequency

(a) αc = 4.7 · 10−4

(b) αc = 2.4 · 10−4

(c) αc = 1.8 · 10−4

Figure 8.9.: Left column: Minimum and maximum horizontal bunch size plotted

over three different bunch current decays depicted by the values for αc. The in-

dividual data points are faded out and profile histogram applied to them. Right

column: Color-coded horizontal bunch size spectrogram and bursting frequency

fburst calculated using Eq. (8.4).
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8. Potential for studies of horizontal bunch size and arrival time

working against the damping. For low bunch currents, the intensity of the bunch size

fluctuation in the spectrogram tends to vanish.

In Fig. 8.9a, the bump of the dominant frequency in the spectrogram between 0.8 mA

and 0.6 mA is not fully covered by the calculated bursting frequency which only reaches

values of approx. 350 Hz, while the spectrogram show peaks above 400 Hz. In this case

it is noteworthy, that the bunch size measurements was quite noisy which makes the

determination of the maximum and minimum horizontal bunch size difficult as they

suffer from the low signal-to-noise ratio (SNR) as well. Nevertheless, the bump can be

at least described qualitatively by the calculated frequencies. For the other two cases,

this smearing out of the spectrogram coupled to a disagreement with the calculated

frequencies appears for bunch currents which are below 0.2 mA.

This is a hint, that the bursting frequency is mostly determined by the bunch current

dependency of the horizontal bunch size (and thus the energy spread) for a constant

damping time τx,eff or at least a constant product of τx,eff · (d+ 1) = τ̃x,eff .

The bunch current dependency of the bunch size is defined by the impedance which de-

scribes the interaction of the bunch with its environment. Due to a current-dependent

bunch lengthening, which was previously measured at KARA [40], the bunch spec-

trum changes with bunch current and thus also the overlap of this spectrum with the

impedance changes.

To study this impedance in more detail, the impedance-related effects on the bunch size

as well as the arrival time have been measured. They are discussed in the following.
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8.3. Impedance studies

8.3.1. Incoherent synchrotron frequency shift

The synchrotron frequency given by Eq. (2.32) describes the coherent motion of the

center of mass of an electron bunch. Apart from this coherent motion, there are also

incoherent motions of the single electrons. This incoherent frequency shifts with bunch

current and this frequency shift depends on the imaginary part of the storage ring

impedance, see Sec. 4.2.2. While the coherent synchrotron oscillation is visible as a

dipole motion of the bunch, the incoherent synchrotron frequencies of the particles

within a bunch lead to higher order modes like e.g. the quadrupole mode which is

depicted in Fig. 8.10.
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Figure 8.10.: Illustration of the first two eigenmodes of the synchrotron oscillation.

While for the dipole mode the bunch length and energy spread are constant, both

oscillate for the quadrupole mode.

As such a quadrupole oscillation is coupled to an oscillation of the bunch size, the

incoherent synchrotron frequency can be determined from the horizontal bunch size

measured by the FGC. Such a measurement is illustrated in Fig. 8.11. There, the

machine settings (αc = 2.9 · 10−4 in combination with a low RF voltage VRF: 250 kV)

led to a strong synchrotron oscillation.

The top panel shows the time-domain data of the horizontal bunch position and size.

While the horizontal bunch position oscillates with the coherent synchrotron frequency,

the horizontal bunch size shows an oscillation with twice the incoherent synchrotron

frequency. By comparing the two curves, it can be seen that the size does not oscillate

with exactly twice the frequency of the position but with a slightly smaller frequency.

To study this frequencies in more detail, Lomb periodograms are applied to the data,

they are shown in the bottom panel. In addition to the FGC data, the corresponding

FFT spectrum of the CSR recorded using a broadband Schottky detector is plotted.

The position periodogram as well as the FFT of the CSR both have a peak at the
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Figure 8.11.: Top panel: Horizontal bunch position and size in the time domain.

The data points are connected by lines to guide the eye. Bottom panel: Lomb

periodograms of the FGC data from the top panel and the corresponding fast Fourier

transformation (FFT) of the CSR recorded with a broadband Schottky detector

(CSR data: courtesy Miriam Brosi).

Beam parameters: fs = 3.5 kHz, VRF = 250 kV, Ibunch = 1.63 mA

coherent synchrotron frequency f coh
s = 3.5 kHz. The second harmonic of the incoherent

synchrotron oscillation is visible as peak on the bunch size periodogram as well as the

CSR at a frequency of 6.6 kHz. This is significantly below 2 · f coh
s . As discussed in

Sec. 4.2.2, the difference ∆fs between the coherent and the incoherent synchrotron

frequency depends on the imaginary part of the impedance and the bunch spectrum.

In this case, the incoherent synchrotron frequency is below the coherent one and thus

∆fs < 0. As cos (φs) < 0, this means that the inductive part of the impedance

(Im
[
Z (ω)

]
> 0) dominates, which leads to a bunch lengthening with current.

Mapping the incoherent synchrotron frequency over a bunch current range leads to

the spectrograms of the horizontal bunch size as well as the CSR which are plotted in

Fig. 8.12. The black dots in the horizontal bunch size periodogram (left panel) depict

the frequencies with the highest amplitude as a measure for 2 · f inc
s . Even if only a

relatively small bunch current range is shown here, it can be seen that the incoherent

synchrotron frequency is shifting towards higher values during the bunch current decay.
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8.3. Impedance studies

Figure 8.12.: Left panel: Spectrogram of the horizontal bunch size calculated

using Lomb periodograms. The black dots illustrate the frequency for the maximum

amplitude and the red dashed line depicts a fit according to Eq. (8.5). Right panel:

corresponding CSR spectrogram recorded by a broadband Schottky detector, the

black dots are the same as in the left panel (CSR data taken by Miriam Brosi).

The black dots coincide well with the corresponding line in the CSR spectrogram shown

in the right panel.

A simple relation between the coherent and the incoherent synchrotron frequency is

given by [104, Eq. (5)]

f inc
s = f coh

s · 1

(1− λIb)
(8.5)

with λ as bunch lengthening factor. This function is fitted to the black dots in the left

panel, the dashed red line illustrates this fit which leads to a value for λ of -0.057 ±
0.001 mA−1.

Using the horizontal bunch size oscillation is one method to access the incoherent syn-

chrotron frequency. Previous studies at KARA used either the method of resonant spin

depolarisation [105] or the turn-by-turn beam position monitor (BPM) readout. The

latter measurement were also conducted during the short-bunch operation, but with a

higher synchrotron frequency of f coh
s = 9.6 kHz and led to λ = -0.024 ± 0.001mA−1

[71]. This is significantly above the value for the FGC measurements and thus coupled

to a weaker bunch lengthening. An even weaker – or almost no bunch lengthening –

was seen, when the incoherent tune shift was studied at a beam energy of 2.5 GeV with

unsqueezed and thus relatively long bunches using the resonant spin depolarisation

method. This led to λ = -0.0057 ± 0.014mA−1 [104].
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8. Potential for studies of horizontal bunch size and arrival time

These results give a clear hint to a lengthening and widening of the bunch with bunch

current, which is a signature for an inductive impedance of the storage ring ( Im [Z] > 0).

This agrees with previous measurements of the bunch lengthening at KARA using a

Streak Camera [40].

To investigate the real part of the impedance, the shift of the synchronous phase of the

electron bunch can be determined as it is discussed in the following.

8.3.2. Synchronous phase shift

As discussed in Sec. 5.1.3, the time-correlated single photon counting (TCSPC) system

can be used for the measurement of the synchronous phase shift. This shift is a mea-

sure for the real or resistive part of the longitudinal impedance of a storage ring (see

Sec. 4.2.1).

A very common method to study the synchronous phase shift is to use a streak camera

(SC) and a filling pattern with one main bunch and – at least – one reference bunch with

a very small current. The idea is, that the reference bunch current decays much slower

and thus its phase does not change. Especially for the CSR impedance, this eventual

drift of the reference bunch can be an issue. Simulations of this shift at KARA showed,

that the shift of the reference bunch due to the parallel plates CSR impedance is very

small for the cases discussed here [70].

Therefore, the measurements using the TCSPC were conducted using the reference

bunch method to determine the arrival time difference ∆τ as a measure for the syn-

chronous phase, this is illustrated in Fig. 8.13.

Using the relation ∆φτ = ∆τ − TRF allows to track the phase shift ∆φτ over bunch

current. Previous measurements at KARA using a streak camera (SC) (See [40, Fig.

3.1] for schematics) are discussed in [67] and [33]. There, the method with the refer-

ence bunch was chosen as the timing stability of the SC can be insufficient for precise

measurements of the bunch arrival times.

The technique of TCSPC allows to study the synchronous phase shift as well. As it

measures the arrival time of all bunches in parallel, it allows to compare the relative

timing (time difference ∆τ between main and reference bunch) as well as the overall

arrival time drift for the bunches. To check the consistency of the TCSPC data with

previous SC measurements, several fills with a reference and a main bunch were studied.

There, for each measured raw data histogram, the arrival time difference ∆τ between

the two bunches is determined. For one fill the arrival time difference ∆τ is plotted

over bunch current difference in Fig. 8.14.
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Figure 8.13.: Shift of the main bunch (blue) with respect to a reference bunch

(black). To compensate the additional resistive energy losses, the main bunch

passes the cavities at a higher voltage and is thus phase shifted by ∆φ relative to

the nominal phase, indicated by the shaded blue dot. To determine this phase shift,

the time difference ∆τ between the two bunches is measured.

As discussed in [67], a linear curve can be fitted to the data to get an – averaged – value

for the loss factor k from the slope dτ
dI

of the curve:

k =
2π · VRF · 184

T 2
rev

cos (φs) ·
dτ

dI
. (8.6)

A different approach is conducted in [33]. There, the impedance of a broadband res-

onator and Gaussian bunches are assumed and the resulting loss factor is determined

from fits. While the model of a broadband resonator was found to be not perfectly

suitable to describe the impedance of KARA during the micro-bunching instability, it

is nevertheless possible to fit a linear curve to the measurement data [33, Fig. 6.8].

Therefore, the data have been analysed again (see Sec. A.3 in the appendix for the SC

data analysis).

The case with fs = 6.8 kHz is illustrated in Fig. 8.15. Here, the linear fit leads to

χ2
red = 0.95. It is noteworthy that the values on the y-axis do not tend towards zero for

a bunch current difference of 0 mA. This is due to the additional offset c in Eq. (A.2).

As only the slope is relevant, this does not play a role.

Both measurement techniques give hint to a relatively linear shift of the synchronous

phase with bunch current (see Fig. 8.14 for TCSPC and Fig. 8.15 for the SC). Only for

low bunch currents, this behavior changes. In addition, the linear shift can be observed

for different machine settings. The TCSPC as well as the (previous) SC measurements

are summarized in Table 8.1.

Both techniques show an increase of the loss factor for a decreasing value of αc which
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Figure 8.14.: Shift of the synchronous phase given by the arrival time difference ∆τ

over the bunch current difference between main and reference bunch. To determine

the slope of the shift, a linear fit is applied to the data for bunch currents above

the bursting threshold (Fill 6112 (see Table 8.1), Ibthr
= 0.19 mA).

is in agreement with the theory. For lower values of αc, the bunches get shorter and

thus sample a broader part of the impedance leading to an increase of the integral in

Eq. (4.17).

For the SC measurements, the value for the RF voltage can only be estimated as

these measurements have been done with a non-calibrated RF system. Therefore, the

uncertainty of the RF voltage is assumed to be 50 kV.

The fills 6110 and 6111 have been taken with identical machine settings and also their

loss factor coincides within the uncertainties. For the fills 6106 and 6112 this is not the

case. While for both fills the loss factors are below the ones for fills 6110 and 6111,

which had shorter bunches, they differ by more than ±1σ. In addition it is noteworthy

that for fill 6106, the main and the reference bunch were separated by 3 RF buckets (≈
6 ns), while for the other fills a separation of one RF bucket was used.

The SC data also shows an increase of the loss factor for shorter bunches, except for

fill 3431. There, the loss factor is 35.0 mV/ps, which is a factor 2 or 3 times larger than

the value to be expected with regard to the other measurements.
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Figure 8.15.: Shift of the synchronous phase with bunch current measured with a

SC [33]. To determine the slope of the shift, a linear fit is applied to the data for

bunch currents above the bursting threshold (Fill 3430, Ibthr
= 0.26 mA).

Possible reasons for the outliers are:

• The storage ring impedance was changed between the fills, e.g. by inserting a

scraper into the beam pipe or by changes in the RF cavities that lead to a drastic

increase of the energy loss due to the excitation of higher order modes. While

the fills 6110 - 6112 were done consecutively, fill 6106 was done 24 hours before.

During this period, small long-term temperature drifts can occur.

• While TCSPC also allows a precise measurement of the filling pattern, at the SC

this is not possible as the relative distribution of the beam current on the main

and the reference bunches can only be estimated from the longitudinal profile

data. If this leads to an overestimation of the bunch current difference between

main and reference bunch, this increases the slope and thus the loss factor.

In general, the error on the loss factor is larger for the TCSPC measurements than

for the ones with the SC. This is assumed to be due to the better temporal resolution

of the latter device. While at the streak camera, the temporal sampling interval is

0.7 ps (256 pixel cover 190 ps), the minimum bin width of the PicoHarp is 8 ps, which

is one order of magnitude larger. Nevertheless, the precision for the TCSPC loss factor

determination is remarkably good as e.g. the time range covered by the y-axis in

Fig. 8.14 is only slightly above the width of one bin. In addition, the value of χ2
red

implies an overestimation of the error on the arrival time difference ∆τ .
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8. Potential for studies of horizontal bunch size and arrival time

Table 8.1.: Machine parameters and corresponding loss factors for different fills.

Fill E (GeV) VRF (kV) φs (◦) fs (kHz) αc k (V/pC) Technique

6110 1.3 1500 178.3 7.0 1.9 · 10−4 33.1 ± 8.4 TCSPC

6111 1.3 1500 178.3 7.0 1.9 · 10−4 30.4 ± 5.6 TCSPC

6106 1.3 1500 178.3 11.3 5.1 · 10−4 26.9 ± 3.6 TCSPC

6112 1.3 1500 178.3 11.5 5.3 · 10−4 18.6 ± 1.6 TCSPC

3430 1.3 ∼800 ∼176.7 6.8 ∼ 3.5 · 10−4 20.9 ± 1.5 SC [33]

3429 1.3 ∼800 ∼176.7 8.4 ∼ 5.3 · 10−4 17.2 ± 1.4 SC [33]

3431 1.3 ∼800 ∼176.7 15.4 ∼ 1.8 · 10−3 35.0 ± 2.6 SC [33]

3428 1.3 ∼800 ∼176.7 31.5 ∼ 7.5 · 10−3 9.2 ± 0.9 SC [33]

Nevertheless, the measurements discussed above show, that the loss factor k is increas-

ing with decreasing bunch length. In addition, it can be assumed to be constant as the

synchronous phase shifts linearly with bunch current. This is a signature for an energy

loss – given by
∫∞

0
Re
[
Z (ω)

]
F (ω) dω – which is proportional to the bunch current.
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8.4. Short bunch-length bursting

In Sec. 7.4 it was shown that the energy spread remains constant below the bursting

threshold. For KARA, this is only the case if the machine settings lead to a momentum

compaction factor αc > 2.64 · 10−4 [106]. If αc is below this value, the occurrence of

another instability below the main bursting threshold can be observed. During this

instability the energy spread is expected to increase again.

This weak instability – referred to as short bunch-length bursting – was predicted by

numerical simulations [56] and experimentally studied at KARA using CSR measure-

ments [106]. Using the FGC now allowed first experimental studies of the energy spread

during this instability.

The low currents for which the short bunch-length bursting occurs are challenging due

to the corresponding low intensities of the measured synchrotron radiation. Therefore,

studies with a single-turn resolution are not yet feasible, but by taking the average

horizontal bunch size fore each FGC image as a measure for the overall energy spread

increase, this re-increase of the energy spread can be confirmed as is shown in Fig. 8.16.

Figure 8.16.: Mean horizontal bunch size (blue) and corresponding CSR fluctua-

tion (red) as bursting strength plotted over beam current. The vertical black line

depicts the main bursting threshold while the horizontal dashed line and the grey

bar depicts the equilibrium horizontal bunch size and the corresponding error, re-

spectively. For bunch currents below 0.04 mA, the bursting strength increases again,

the same holds for the horizontal bunch size (CSR data: courtesy Miriam Brosi).

Beam parameters: fs = 6.88 kHz, VRF = 1500 kV, αc = 1.8 · 10−4
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Here, the machine settings led to αc ∼ 1.8 · 10−4. Below the bursting threshold, the

horizontal bunch size (and thus the energy spread) remains constant, but for bunch

currents below 0.004 mA it increases again. This increase coincides with the increase

of the CSR bursting strength. This strength is determined by the fluctuation of the

CSR intensity in a certain frequency range [47]. If no CSR is emitted, this fluctuation

should be approximately zero. This parallel increase of the energy spread as well as the

bursting strength is a signature of the short bunch-length bursting.

8.5. Outlook

The promising results discussed in Sec. 8.1.3 already showed the direction towards

the future: Using a KALYPSO based system for measurements of the horizontal bunch

profile to study the energy spread dynamics. This will allow to overcome the limitations

of the existing setup and in addition, this system is quasi-identical to the one used for

electro-optical spectral decoding (EOSD). This simplifies the synchronisation a lot as

the rotating mirror is no longer required.

Future versions of KALYPSO will use a new silicon sensor which has smaller pixels to

increase the readout speed and to reduce the pixel noise to provide a higher sensitivity.

In addition, the usage of anti-reflective coatings is foreseen [82].

In combination with the KAPTURE system, it will be possible to study energy spread,

bunch length and CSR emission for long time scales with a single turn resolution. This

will allow studies of the longitudinal beam parameters in unprecedented detail and is

an important step towards tomographical studies of the longitudinal phase space.
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If the momentum compaction factor αc is reduced by changes of the quadrupole and

sextupole magnets, the micro-bunching instability can occur in the KIT storage ring

KARA. There, the bunch emits coherent synchrotron radiation (CSR) and interacts

with its previously emitted CSR, which leads to the formation of sub-structures on the

bunch profile. As the wavelength of the emitted radiation depends on the time-scale of

the emitting structure, this coherent radiation is in the frequency range of Terahertz.

Due to the dynamics of the instability, radiation is not emitted constantly, but fluctuates

with period lengths in the range of milliseconds. This is referred to as bursting. The

micro-bunching instability is coupled to a modulation of the energy spread and thus

the energy spread is an important parameter to investigate and map the dynamics of

the instability.

One requirement for experimental studies of the micro-bunching instability is a precise

knowledge of the bunch current. Therefore, a setup based on time-correlated single pho-

ton counting was installed. To compensate for eventual dead-time effects which distort

the time-correlated single photon counting (TCSPC) measurements, a dedicated dead-

time correction scheme was developed and successfully tested. In addition, TCSPC

also allows measurements of the synchronous phase shift. To achieve this, exponen-

tially modified Gaussians are fitted to the peaks in the raw data histogram. They take

the detector characteristics into account and lead to better results compared to fitting

purely Gaussian curves.

In the scope of this thesis, time-resolved studies of the micro-bunching instability have

been done with special focus on the energy spread. The energy spread cannot be

measured directly, but can be accessed by studies of the horizontal bunch size in a

dispersive section of the storage ring. To allow time-resolved studies of the horizontal

bunch size, a setup based on a fast-gated intensified camera (FGC) and a fast rotating

mirror was designed and commissioned. The camera has an image intensifier that can

be switched on and off within 2 ns. Therefore, the image intensifier acts as a pulse

picker for one bunch in a multi-bunch fill. The combination of this gating with the

fast rotating mirror allows to record single-turn images of one bunch. This enables to

track the horizontal bunch profile for a selected number of turns. In case of KARA,

the minimum gate separation is 6 turns. Another limitation of the setup is the number

of spots that can be placed on the camera sensor. Thus, there is a trade-off between a
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good temporal resolution and long time-ranges required beforehand of a measurement.

To get the horizontal bunch profile from the raw data, a dedicated data analysis scheme

was developed. As the bunch is moving during the image acquisition in the same plane

as its profile is intended to be measured, the filament beam spread function (FBSF) has

to be taken into account. It is determined from simulations of the optical setup and

the imaging process. For sake of efficiency and robustness, the horizontal bunch size is

determined by fitting a convolution of a Gaussian with the FBSF to the data.

In addition to the determination of the horizontal bunch size, also a timing calibration

with respect to other detector systems was done. As the FGC setup has some intrinsic

mechanical and electrical delays, these delays have to be compensated for synchronous

measurements. This synchronisation is done using a dedicated hardware synchronisa-

tion scheme based on the timing system. To calibrate the synchronisation, the low-level

RF (LLRF) system was used to trigger steps in the RF phase. Those steps lead to the

onset of a strong synchrotron oscillation that can be detected by the various detector

systems.

A very important tool for beam dynamics studies are simulations of the accelerator. In

the scope of this thesis, the Accelerator Toolbox for MATLAB (AT) was used. Com-

bined with Linear Optics for Closed Orbits (LOCO) fits to determine the quadrupole

strengths, this enabled tracking studies for the short-bunch operation mode of KARA.

The simulations include the ability to study the equilibrium beam size at the imaging

source point of the FGC setup and to benchmark this size against measured values. It

could be shown that the calculated horizontal bunch sizes agree well with the measured

values.

With the fully synchronised setups, it is possible to qualitatively study the energy

spread synchronously to the emission of CSR. It could be shown that the energy spread

as well as the CSR have the same modulation period length. These energy spread

fluctuations are due to the interplay of the instability which leads to a blow up of the

energy spread at the onset of the burst. Radiation damping then leads to a shrinking of

the energy spread and if the energy spread reaches the instability threshold again, the

bunch becomes unstable and the onset of the next burst is triggered. Using KALYPSO

allows more detailed studies of the onsets of the individual CSR bursts as it enables

turn-by-turn studies of the horizontal bunch size.

The temporal pattern of this bursting behaviour is determined by the radiation damping

and the instability induced blow-up. By studying the damping of the horizontal bunch

size using a FGC it was shown that this damping is mostly determined by the classical

radiation damping which does not take any coherent radiation effects into account.

The impedance characteristics have been studied using the FGC as well as the TCSPC

system. With the FGC it is possible to map the incoherent synchrotron frequency

and its shift with bunch current, which allows to draw conclusions on the imaginary
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part of the impedance. These studies showed, that the impedance is mostly inductive(
Im
[
Z (ω)

]
> 0
)

. For the real or resistive part of the impedance, the synchronous

phase shift has been investigated. It could be shown that the energy loss due to the

resistive part of the impedance increases with decreasing bunch lengths.

Thanks to its high dynamic range, the FGC finally allowed a first experimental obser-

vation of the short bunch-length bursting on the energy spread. This weak instability

was observed as increase of the horizontal bunch size for the same bunch current range,

where also the CSR fluctuation intensity showed an additional increase.
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Acronyms

APD avalanche photo diode.

AT Accelerator Toolbox for MATLAB.

BPM beam position monitor.

CSR coherent synchrotron radiation.

DAQ data acquisition.

DCCT DC current transformer.

EOSD electro-optical spectral decoding.

EVG event generator.

EVR event receiver.

FBSF filament beam spread function.

FFT fast Fourier transformation.

FGC fast-gated intensified camera.

FWHM full width at half maximum.

IR infrared.

KALYPSO Karlsruhe line array for linear spectroscopy.

KAPTURE Karlsruhe pulse taking ultra-fast readout electronics.

KARA Karlsruhe research accelerator.

KIT Karlsruhe Institute of Technology.

Linac linear accelerator.

LLRF low-level RF.

LOCO Linear Optics for Closed Orbits.
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Acronyms

MCP micro-channel plate.

ND neutral density.

ORM orbit response matrix.

PDF probability density function.

PSF point spread function.

RF radio frequency.

RMS root mean square.

SC streak camera.

SNR signal-to-noise ratio.

SPAD single photon avalanche diode.

TCSPC time-correlated single photon counting.

TLU trigger logic unit.

VLD visible light diagnostics.

122



Bibliography

[1] F. R. Elder et al. “Radiation from Electrons in a Synchrotron”. In: Phys. Rev.

71 (11 1947), pp. 829–830. doi: 10.1103/PhysRev.71.829.5.

[2] E. M. Rowe and F. E. Mills. “Tantalus. 1. A Dedicated Storage Ring Synchrotron

Radiation source”. In: Part. Accel. 4 (1973), pp. 211–227. url: http://cds.

cern.ch/record/1107919.

[3] J. S. Nodvick and D. S. Saxon. “Suppression of Coherent Radiation by Electrons

in a Synchrotron”. In: Phys. Rev. 96 (1 1954), pp. 180–184. doi: 10.1103/

PhysRev.96.180.

[4] G. Carr et al. “Observation of coherent synchrotron radiation from the NSLS

VUV ring”. In: Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment 463.1 (2001),

pp. 387–392. doi: 10.1016/S0168-9002(01)00521-6.

[5] U. Arp et al. “Spontaneous coherent microwave emission and the sawtooth in-

stability in a compact storage ring”. In: Phys. Rev. ST Accel. Beams 4 (5 2001),

p. 054401. doi: 10.1103/PhysRevSTAB.4.054401.

[6] J. M. Byrd et al. “Observation of Broadband Self-Amplified Spontaneous Co-

herent Terahertz Synchrotron Radiation in a Storage Ring”. In: Phys. Rev. Lett.

89 (22 2002), p. 224801. doi: 10.1103/PhysRevLett.89.224801.

[7] M. Abo-Bakr et al. “Coherent Emission of Synchrotron Radiation and Longi-

tudinal Instabilities”. In: Proceedings of PAC’03. Vol. 5. IEEE. 2003, pp. 3023–

3025. doi: 10.1109/PAC.2003.1289801.

[8] A.-S. Müller et al. “Far infrared coherent synchrotron edge radiation at ANKA”.

In: Proceedings of PAC’05. IEEE. 2005, pp. 2518–2520. doi: 10.1109/PAC.2005.

1591164.

[9] W. Shields et al. “Microbunch Instability Observations from a THz Detector at

Diamond Light Source”. In: Journal of Physics: Conference Series 357.1 (2012),

p. 012037. doi: 10.1088/1742-6596/357/1/012037.

[10] C. Evain et al. “Spatio-temporal dynamics of relativistic electron bunches during

the micro-bunching instability in storage rings”. In: EPL (Europhysics Letters)

98.4 (2012), p. 40006. doi: 10.1209/0295-5075/98/40006.

123

https://doi.org/10.1103/PhysRev.71.829.5
http://cds.cern.ch/record/1107919
http://cds.cern.ch/record/1107919
https://doi.org/10.1103/PhysRev.96.180
https://doi.org/10.1103/PhysRev.96.180
https://doi.org/10.1016/S0168-9002(01)00521-6
https://doi.org/10.1103/PhysRevSTAB.4.054401
https://doi.org/10.1103/PhysRevLett.89.224801
https://doi.org/10.1109/PAC.2003.1289801
https://doi.org/10.1109/PAC.2005.1591164
https://doi.org/10.1109/PAC.2005.1591164
https://doi.org/10.1088/1742-6596/357/1/012037
https://doi.org/10.1209/0295-5075/98/40006


Bibliography

[11] G. Stupakov and S. Heifets. “Beam instability and microbunching due to coher-

ent synchrotron radiation”. In: Phys. Rev. ST Accel. Beams 5 (5 2002), p. 054402.

doi: 10.1103/PhysRevSTAB.5.054402.

[12] M. Venturini and R. Warnock. “Bursts of Coherent Synchrotron Radiation in

Electron Storage Rings: A Dynamical Model”. In: Phys. Rev. Lett. 89 (22 2002),

p. 224802. doi: 10.1103/PhysRevLett.89.224802.

[13] K. L. F. Bane, K. Oide, and M. Zobov. “Impedance calculation and verifica-

tion in storage rings”. In: 1st CARE-HHH-APD Workshop on Beam Dynamics

in Future Hadron Colliders and Rapidly Cycling High-Intensity Synchrotrons.

CERN, 2005. doi: 10.5170/CERN-2005-006.143.

[14] U. Arp et al. “Spontaneous coherent microwave emission and the sawtooth in-

stability in a compact storage ring”. In: Phys. Rev. ST Accel. Beams 4 (5 2001),

p. 054401. doi: 10.1103/PhysRevSTAB.4.054401.

[15] J. Corbett et al. “Bunch Length and Impedance Measurements at SPEAR3”.

In: Proceedings of EPAC’08. 2011, pp. 1595–1597.

[16] M. Minty et al. “Using a fast-gated camera for measurements of transverse beam

distributions and damping times”. In: AIP Conference Proceedings. Vol. 281. 1.

AIP. 1992, pp. 158–167.

[17] J. Flanagan et al. “High-speed gated camera observations of transverse beam

size along bunch train at the KEKB B-factory”. In: Proceedings of EPAC’00.

2000, pp. 1119–1121.

[18] R. Warnock. “Study of bunch instabilities by the nonlinear Vlasov-Fokker-Planck

equation”. In: Nucl. Instrum. Meth. A561 (2006), pp. 186–194. doi: 10.1016/

j.nima.2006.01.041.

[19] A. Fisher et al. “Turn-by-Turn Imaging of the Transverse Beam Profile in PEP-

II”. In: AIP Conference Proceedings. Vol. 868. 1. AIP. 2006, pp. 303–312. doi:

10.1063/1.2401418.

[20] W. Cheng et al. “Fast-gated camera measurements in SPEAR3”. In: Proceedings

of PAC’09. 2009, pp. 4015–4017.

[21] M. Tanabashi et al. “Review of Particle Physics”. English (US). In: Physical

Review D 98.3 (2018). doi: 10.1103/PhysRevD.98.030001.

[22] K. Wille. Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen.

Teubner Studienbücher, 1996.
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[74] A. Hofmann and F. Méot. “Optical resolution of beam cross-section measure-

ments by means of synchrotron radiation”. In: Nuclear Instruments and Meth-

ods in Physics Research 203.1-3 (1982), pp. 483–493. doi: 10 . 1016 / 0167 -

5087(82)90663-9.

[75] T. Mitsuhashi. “Spatial coherency of the synchrotron radiation at the visible

light region and its application for the electron beam profile measurement”. In:

Proceedings of PAC’97. IEEE. 1997, pp. 766–768.
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danken möchte, nämlich meinem Freundeskreis, wobei ich auch hier einige Vertreter

dieser Zunft besonders hervorheben möchte:
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Herrn Segger, die mir wichtige Impulse gegeben haben, ohne die das vorliegende Werk
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A. Appendix

A.1. Time-correlated single photon counting

A.1.1. Dead time determination

PicoHarp

For the determination of the dead time of the PicoHarp 300, the input channel normally

used for the single photon avalanche diode (SPAD) is connected to a frequency generator

that sends logical pulses with a certain frequency. If this frequency exceeds the inverse

dead time 1/τd, PH, the count rate on the input channel drops to the half as half of the

incoming trigger pulses now fall into the dead time and thus are not recorded.

In Fig. A.1 this measurement is illustrated by plotting the PicoHarp count rate over

the input count rate from the frequency generator. By analysing the position of the two

steps in the curve (at 11.5 1/s and 23.1 1/s) the dead time of the PicoHarp is determined

to be τd, PH=86.8 ± 0.2 ns. This coincides with the data sheet value of <95 ns [59].
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Figure A.1.: PicoHarp count rate over input count rate from a frequency generator.

When the input count rate exceeds 1/τd, PH, the count rate drops as events starting

to fall into the dead time reducing the measured count rate. The same repeats if

the input count rate exceeds twice the inverse dead time.
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Single photon avalanche diode

The SPAD used at the TCSPC-setup is an actively-quenched diode: When a single

photon has triggered an avalanche process, the diode electronics detects this avalanche

and reverts the polarity of the bias voltage to quench the avalanche process [107].

Otherwise, it will not stop and thus damage the diode. After the quench, the voltage

is reversed again and the SPAD is able to detect the next incoming photon. This

quenching and re-arming of the device takes a certain dead time τd, SPAD.

To determine this dead time, the diode is exposed to a high photon flux and the output

of the diode (TTL pulses) is sampled by an oscilloscope. Using the infinite persistence

mode of the oscilloscope allows an estimation of the dead time, this is illustrated in

Fig. A.2. Thus, the dead time of the diode can be determined to 37 ± 1 ns. This is

below the typical dead time from the manufacturers specifications [58] of 45 ns.

Figure A.2.: Screenshot of the oscilloscope sampling the TTL-pulses from the

SPAD in infinite persistence mode. The minimum time between two pulses is

determined to be 37 ns.
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A.1. Time-correlated single photon counting

A.1.2. Estimation of the SPAD dead time effects

Both components of the TCSPC setup – the PicoHarp as well as the SPAD – have a

dead time. As the dead time of the PicoHarp is more than a factor 2 above the one

of the SPAD (86.8 ns compared to 37 ns), its dead time dominates. The overall dead

time of the system is only extended by the SPAD dead time if a photon hits the SPAD

during the last 37 ns of the PicoHarp dead time. To estimate the additional effect of

this dead time, the histogramming process can be simulated. Therefore, a sequence of

photon arrival times is created using pseudo-random numbers using the Python NumPy

package [108].

As input, the filling pattern (184 values), the acquisition time TAcq as well as the overall

photon count rate are required. From these values, the total number of photons and

the number of turns covered by the acquisition N are calculated.

The random sampling then consists of the following steps:

1. For each photon, the corresponding emission turn is determined from a uniform

distribution between 0 and N .

2. For each photon, the emitting bunch is determined using a random generator with

the filling pattern as underlying probability distribution.

3. Remove all duplicates (photons coming from the same bunch at the same turn).

4. Adding a jitter to each individual photon arrival time based on a normal distri-

bution.

For the analysis, an iteration over all photon arrival times is done and for each photon

is tested if it falls into a dead time triggered by the previous events. Events falling into

the dead time are tagged and thus ignored for the histogramming. The result of this

study is illustrated in Fig. A.3.

In the top panel, the three filling patterns are plotted. The blue curve is the reference

filling pattern that also acts as user defined probability distribution for step 2. The red

curve is the filling pattern for the case when only the PicoHarp dead time is taken into

account while the green curve depicts the case where the SPAD dead time is taken into

account as well. The center panel shows the difference between the reference and the

filling patterns distorted by the PicoHarp or by both devices’ dead times. The bottom

panel shows the difference between the two curves from the center panel. While the

difference between the reference filling pattern and the filling pattern only distorted by

the PicoHarp is up to ± 40µA, the additional effect of the SPAD dead time is below

± 1.5µA and thus more than one order of magnitude lower.

Therefore, only the PicoHarp dead time is taken into account for the correction.
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Figure A.3.: Estimation of the additional filling pattern distortion due to the

SPAD dead time. The top panel shows the reference filling pattern and the two

filling patterns where for the red curve only the PicoHarp dead time was taken into

account while for the green curve also the SPAD dead time. The center panel shows

the difference between the reference curve and the distorted filling patterns. The

difference between the two distorted filling patterns is shown in the bottom panel.

A.2. Fast-gated camera: control and readout

A single FGC measurement consists of different steps. This is illustrated in the diagram

in Fig. A.4

1. When a measurement is started from the control computer, the waveform gener-

ator calculates the corresponding voltage ramp for the mirror driver.

2. The waveform generator starts the voltage ramp, at the same time the CCD

exposure starts.

3. When the mirror has reached the position where the light is reflected onto the

sensor, the waveform generator sends a logical signal to the TLU (AND gate) to

let the incoming trigger pulses from the EVR pass.

4. The trigger pulses passed by the TLU are sent to the camera to open the gate.
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Figure A.4.: Control diagram for the FGC setup. The measurement is controlled

using a PC that starts the waveform calculation in the waveform generator. It gives

two signals: the first one is the voltage ramp for the mirror driver, the second one

is the logical signal for the trigger logic unit (TLU). It is used to let the incoming

gate trigger pulses from the event receiver (EVR) pass through (adapted from [71,

Fig. 5.5]).

5. After the light has been swept over the sensor, the TLU stops passing the trigger

pulses and the exposure stops.

6. The final image is read from the FGC.

7. The waveform generator drives the mirror back to the starting position.
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A.3. Streak camera: data analysis

To get a measure for the position relative to the fast time axis of the streak camera (SC),

a sum of two Gaussian curves – including an offset term to compensate the background

level – is fitted to the individual data sets:

f(t) = c+ A1 · exp

(
−1

2

(
t− τ1

σ1

)2
)

+ A2 · exp

(
−1

2

(
t− τ2

σ2

)2
)
. (A.1)

From the two arrival times τ1 and τ2, the synchronous phase shift can be calculated [33,

Eq. (6.9)]:

∆φ = τ1 + τ2 − τ0. (A.2)

Here, an additional constant τ0 is subtracted from the sum of the two times τ . This

does not play a role for the loss factor studies, as only the slope of the curve is relevant.

To determine the distribution of the beam current on the bunches, the offset value c is

subtracted from the profile data and the integral over the peak regions is calculated.

This is illustrated in Fig. A.5. There, the top panel shows one SC raw image, where

the horizontal and vertical pixel axis has been converted into time values. The bottom

panel shows the projection of the image onto the horizontal or fast time-axis. For the

errors, Poisson’s statistics with σi =
√
ni is assumed. In addition, it shows that the

shape of the average bunch profile deviates from a Gaussian for the main bunch (left

peak).
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A.3. Streak camera: data analysis
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Figure A.5.: Raw image (top) and averaged longitudinal bunch profiles (bottom)

recorded using a streak camera (SC). The left peak is the main bunch wile the right

one is from the reference bunch. The red line is a double Gaussian fit according to

Eq. (A.1). The colored areas below the curve depict the integration range used for

the determination of the current distribution on the bunches.
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Das Leben ist wie eine

Avalanche-Diode:

Alle warten auf den Durchbruch.

Life is like an avalanche diode:

Everybody is waiting for the

breakthrough.


	Content
	Introduction 
	Accelerator physics 
	Storage rings
	Ultra-relativistic approximation 
	Synchrotron radiation
	Incoherent synchrotron radiation
	Coherent synchrotron radiation 

	Optics and beam dynamics 
	Transverse beam dynamics
	Longitudinal beam dynamics

	Radiation damping 
	Energy spread
	Horizontal bunch size

	KARA 
	Accelerator chain
	Short-bunch operation mode
	The visible light diagnostics port 

	Interaction of the bunch with its environment 
	Wake fields and impedances 
	Resistive wall
	CSR impedances

	Impedance effects
	Synchronous phase shift 
	Incoherent synchrotron frequency shift 

	Potential well distortion 
	Micro-bunching instability 
	Bursting threshold

	Optical diagnostics 
	Time-correlated single photon counting 
	Experimental setup
	Dead-time correction
	Data analysis

	Fast-gated intensified camera 
	Experimental setup
	From the energy spread to the spot size 
	Data analysis 

	Turn-by-turn horizontal bunch size measurements 
	Experimental setup
	Data analysis


	Synchronisation of the FGC setup 
	Overview
	FGC setup hardware delays 
	Hardware synchronisation scheme
	Calibration of the synchronisation 

	Modeling the short-bunch mode accelerator optics 
	The AT model
	LOCO fits
	Tracking studies
	Imaging the transverse bunch profile
	Diffusion blow-up 

	Benchmarking the AT model 

	Potential for studies of horizontal bunch size and arrival time 
	Synchronous studies of energy spread and CSR 
	Bursting behaviour of energy spread and CSR
	Onset of a CSR burst
	Turn-by-turn studies of the bursting behaviour 

	Radiation damping and bursting frequency 
	Impedance studies
	Incoherent synchrotron frequency shift 
	Synchronous phase shift 

	Short bunch-length bursting 
	Outlook 

	Summary 
	Acronyms
	Bibliography
	Acknowledgements
	Appendix
	Time-correlated single photon counting
	Dead time determination 
	Estimation of the SPAD dead time effects 

	Fast-gated camera: control and readout
	Streak camera: data analysis 


