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Abstract—A descriptive, easy to implement approach for
the self sensing operation of permanent magnet synchronous
machines (PMSM) is presented in this paper. Position and
speed identification is performed by solving a nonlinear
equation system with a simple, real-time capable algorithm.
The approach considers nonlinear magnetic effects by means
of flux linkage maps and thus provides reliable position and
speed identification in the full speed and torque operating
range for stationary and dynamic operation. An experimen-
tal proof of functionality is presented.

Index Terms—Nonlinear systems, Optimization methods,
Permanent magnet machines, Sensorless control

I. INTRODUCTION

Dynamic and precise control of electrical machines
requires exact knowledge of rotor position and speed. To
obtain these values, speed- and position-sensors, attached
to the machine shaft, are usually used. Among other
drawbacks, these sensors are costly, require space and
reduce system reliability [1]. These problems have led
to research and publication of numerous position and
speed identification methods for various types of electrical
machines. The desired information can be extracted from
the electromagnetic behavior of the respective machine,
thus the methods are also called self sensing [2], [3].

This paper puts a focus on the self sensing control of
permanent magnet synchronous machines (PMSM). Two
characteristics of the PMSM are most commonly used
to determine rotor position and speed, the back elec-
tromotive force (EMF) and magnetic anisotropy, which
results in rotor angle dependent phase inductances [4].
At high speed, back EMF carries information about rotor
speed and position [5]. At low speed, back EMF is
very low, respectively non existent at standstill. Low
speed self sensing methods rely on the estimation of
phase inductances. Therefor, high frequency voltages or
currents, so called excitation signals, are injected. The
resulting electromagnetic response is measured and allows
to identify the phase inductances and thus the present
rotor position [2].

Another issue, which has to be handled is, that espe-
cially for high power density machines, e.g. in automotive
applications, a reduced amount of iron material is used.
On the one hand, this reduces costs, but on the other
hand these machines show a highly nonlinear behavior
due to effects like magnetic saturation, cross-coupling and

iron losses [6]–[9]. These nonlinearities can render current
control and self sensing position estimation impossible
with common approaches.

All mentioned characteristics of the PMSM can be
described by means of a mathematical machine model.
The presented algorithm compares measured electrical
quantities with calculated values obtained from a machine
model. The present rotor position angle and speed is
identified by minimizing their differences. In contrast to
similar approaches [10], a nonlinear model, supported by
flux linkage maps, is used. Hence, magnetic saturation and
cross-coupling are covered, allowing dynamic operation
in the complete current range.

The underlying machine model is briefly described in
section II and represents the base for the nonlinear iden-
tification equations derived in section III together with
the identification algorithm itself. Experimental results are
shown and discussed in section IV.

II. PMSM MODEL

Although a complex machine model could be used with
the presented method, this paper will only cover a fun-
damental model for the sake of clarity and to investigate
the influence of model errors. Slotting effects, iron losses
and temperature dependencies of machine parameters are
neglected.

Electrical machines are usually modelled using a rotor
or magnetic flux aligned reference frame. It allows the
distinct description of direct- and quadrature-components
of all physical values. The PMSM fundamental model in
the rotor aligned reference frame is given by equations (1)
and (2).

vd = Rid +
dψd (id, iq)

dt
− ωψq (id, iq) (1)

vq = Riq +
dψq (id, iq)

dt
+ ωψd (id, iq) (2)

In the fundamental machine model, the resulting d- and
q-flux linkages ψd and ψq and thus the inner torque only
depend on the respective current components and not on
the rotor angle.

The phase resistance R can be measured and is con-
sidered constant. The machine is assumed to have sym-
metric phase resistances, so R is valid in any reference
frame. The current-dependent flux linkages ψd (id, iq) and
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Fig. 1: Flux linkage maps ψd(id, iq) and ψq(id, iq)

ψq (id, iq) can be acquired [11] and are stored as flux
linkage maps like shown in figs. 1a and 1b. By means of
these maps, nonlinear magnetic effects can be considered
by the control method or in this case by the identification
algorithm.

To obtain the rotor aligned reference frame values,
the Park-transformation must be applied to the measured
phase values. For this transformation, the present rotor
position angle γ has to be known. If there is no position
sensor available, rotor position and angular speed can still
be determined using the machine model itself. To clarify
this, the voltage equations from above will be rewritten
in the stator oriented reference frame.

vα = Riα +
dψα (iα, iβ, γ)

dt

∣∣∣∣
γ=const.

− ωψβ (iα, iβ, γ)

(3)

vβ = Riβ +
dψβ (iα, iβ, γ)

dt

∣∣∣∣
γ=const.

+ ωψα (iα, iβ, γ)

(4)

If γ and ω are unknown, this is a nonlinear equation
system with two equations and two variables. Currents iα
and iβ are measured, voltages vα and vβ can be measured
or obtained from a suitable converter model. Machine
resistances and flux linkages are known, whereby the
latter have to be transformed by (5), since they are usually
stored as current dependent d- and q-components.

ψ
αβ

(
iαβ, γ

)
= ψ

dq

(
iαβ · e−jγ

)
· ejγ (5)

Obviously, the problem of self sensing lies within the
solution of equation system (3)-(4). Unfortunately, this
is not trivial, since no closed-form solution exists. The
presented algorithm aims at solving this equation system
to obtain precise values of rotor position and speed even
under highly nonlinear conditions.

III. POSITION AND SPEED IDENTIFICATION

The machine voltage equations (3) and (4) can be
used to calculate expected voltages for measured currents
iα, iβ and any arbitrary rotor position and speed. When
the correct present values of γ and ω are inserted, the
calculated and measured voltages vα and vβ are equal.
Thus, minimizing the difference between measurement
and model through variation of the model variables γ
and ω leads to a correct solution. The resulting equations,
whose zeros have to be found are (6) and (7).

∆vα (γ, ω) = vα

−Riα +
dψα (iα, iβ, γ)

dt

∣∣∣∣
γ=const.

− ωψβ (iα, iβ, γ)

(6)

∆vβ (γ, ω) = vβ

−Riβ +
dψβ (iα, iβ, γ)

dt

∣∣∣∣
γ=const.

+ ωψα (iα, iβ, γ)

(7)

Plotting these two-dimensional functions leads to voltage
difference maps, which can be seen in figs. 2a and 2b for
one electrical rotation and the maximum speed range of a
reference machine. For both voltage components, lines of
zero voltage difference can be found. These lines indicate,
that for the given parameters γ and ω, the measured and
calculated voltages are equal. Assuming an ideal machine
model and phase voltage determination, the rotor position
and speed can be found, when measured and calculated
voltages are equal for both voltage components. This is
the case at the intersections of these lines, as shown
in fig. 2c.

Since the voltage equations are ambiguous for an angle
shift of 180° and inverse speed, there will always be two
intersections, which is a general problem of self sensing.



Additional mechanical constraints allow the elimination
of the false solution: for high speeds it can be assumed
that the machine will not reach reverse speed between
two identification steps. For low speeds, the rotor will not
rotate 180° in the short period of time. Nevertheless, the
ambiguity must be resolved at the beginning of operation
using a suitable initialization routine [12]–[14].

A. Identification Algorithm Implementation

Consequently, self sensing is performed by precisely
finding the intersection of functions ∆vα (γ, ω) = 0 and
∆vβ (γ, ω) = 0. For this non-linear problem, an efficient
algorithm is presented, which can be used on a real time
control system, i.e. to dynamically find rotor position and
speed in every control cycle.

The algorithm is visualized in fig. 3. The first step is
to define an area in which the intersection is expected, as
shown in fig. 3a. The area should be delimited by at least
the feasible speed and angle range, that can be reached
during the given control period. The center point of the
area can be determined from the past values of speed and
angle and assuming constant rotation between two control
periods.

The values of ∆vα and ∆vβ are calculated for the
corners of the searching area. Afterwards, for ∆vα as well
as ∆vβ, zero crossings along the borders of the searching
area are identified by linear approximation between the
corner values. Connecting the zero crossing points on the
borders results in approximated ∆vα = 0 and ∆vβ = 0
lines, as shown in figs. 3b and 3c.

The intersection of these lines can be used as starting
point of the next iteration with smaller searching area,
as shown in fig. 3d. As depicted in figs. 3e and 3f,
the solution becomes more precise with each iteration,
because the error caused by linearization becomes smaller.
The more nonlinear a machine is, the more iterations can
be necessary. For the machine used in this paper, three
iterations have been sufficient.

B. Low Speed Operation

A benefit of the presented method is that it can be used
in the full speed range up from standstill. Yet, it has to
be ensured, that the machine remains observable. At low
speed operation back EMF becomes small, respectively
vanishes at standstill. When in stationary operation, only
an ohmic voltage drop due to the phase currents can be
measured. The phase resistances are usually symmetric
and do not carry any information about rotor position.

To overcome this problem, a general approach is to
inject high frequency excitation currents. The resulting
phase voltages, induced due to change of flux link-
ages, contain rotor position information. This is because
phase inductances depend on the rotor angle for suitable
PMSMs, caused by magnetic anisotropy (ldd = dψd/did 6=
lqq = dψq/diq). Anisotropy is a prerequisite for low speed
operation with the presented approach as for most self
sensing methods.

The effect of excitation signal injection can be shown
visually in a descriptive way. The situation resulting from
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(c) Coordinates, at which measured and calculated voltages equal, are
feasible solutions. Thus, the rotor position and speed can be found at
an intersection of the lines defined by ∆vα = 0 and ∆vβ = 0.

Fig. 2: Graphical representation of the approach. The red cross shows
the correct solution.
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(a) Step 1: Definition of a feasible search area
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(b) Step 2: Linear approximation of the
∆vα = 0 line using the search area corner
values of γ and ω in (6)
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(c) Step 3: Linear approximation of the
∆vβ = 0 line using the search area corner
values of γ and ω in (7)
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(d) Step 4: Definition of a new, smaller search
area around the found intersection
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(e) Iteration of the described steps. With each
iteration, errors caused by nonlinearities be-
come smaller.
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(f) After the last iteration, the found solution
should be satisfying. The number of necessary
iterations depends on the machine.

Fig. 3: Visualization of the identification algorithm. The red cross marks the correct solution of the identified pair of γ and n.

vanishing EMF is depicted in fig. 4a. The zero lines of the
identification equations have no intersections but overlap
for most values of γ. Leading to an infinite amount of
solutions of the equation system, the rotor position and
speed can’t be determined anymore. During the injection
of high frequency currents, distinct intersections occur as
can be seen in fig. 4b. Thus, a reliable rotor position and
speed identification is possible again.

To allow operation in the full speed range, known
approaches usually switch between different identification
methods for high- and low-speed. With the presented
approach, it is sufficient to inject a high frequency current
below a certain speed limit, because the current-slope
induced voltages are also modelled by the machine volt-
age equations and considered in (6) and (7). The high
frequency signal can be superimposed on the reference
of the current controller.

A block diagram of an exemplary current controlled
electrical drive system, including the presented approach
for rotor position and speed identification, is shown in
fig. 5. The same structure is valid for the experimental
implementation in the following chapter.

IV. EXPERIMENTAL RESULTS

For experimental validation, several measurements are
performed with the setup depicted in fig. 6. Two equal and
mechanically coupled automotive PMSMs are used. The
machine parameters are listed in table I. One machine is
speed-controlled and a reference position sensor provides
position and speed information. The second machine is
operated with current control and the presented approach
is used to identify its rotor speed and position. The iden-
tification is performed in closed loop, so no information
from a position sensor is used for the current transfor-
mation and control as shown in fig. 5. The identified
rotor position is filtered by linear regression to reduce
the influence of current and voltage measurement noise.

A Si-IGBT inverter is used with a switching frequency
of fS = 8kHz and a dc-link voltage of vDC = 250V.
The dc-link and output voltages of the inverter and the
phase currents are measured. The identification algorithm
is fully executed during every switching period on a
Texas Instruments TMS320C6748 based real-time signal
processing system [15]. Thus, every 125 µs a new rotor
position and speed value is available.
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(a) When EMF vanishes due to low speed, the zero-lines overlap
and no solution can be found.
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(b) The injection of high frequency currents leads to restored
feasability. Distinct intersections of the zero-lines occur again.

Fig. 4: Effect of high frequency current injection at low speed and standstill

Current
controller

dq

αβ

αβ

123

Modu-
lator

Energy
source

PMSM

αβ

123

αβ

123

Iteration i = 1..n

PMSM
model
(3)-(4)

Identi-
fication
(fig. 3)

dq

αβ

Excitation
signal

generator

v∗d

v∗q

v∗α

v∗β

v∗1
v∗2
v∗3

s1−6

v1

v2

v3

i1

i2

i3

vα

vβ

iα

iβ

γ̃i

ω̃i
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Fig. 5: Block diagram of an electrical drive system with the presented position and speed identification

TABLE I: MACHINE PARAMETERS

Parameter Symbol Value

Rated power PN 35 kW
Rated torque TN 80 Nm
Rated phase voltage Vph,N 110 V
Rated current IN 160 A
Rated speed nN 4000 rpm
Pole pairs p 4
Phase inductance d-component Ld 120 µH to 210 µH
Phase inductance q-component Lq 180 µH to 550 µH

When the rotor speed is low (−300 rpm ≤ n ≤
300 rpm), a high frequency current is injected with fHF =
4kHz, îd,HF = 0.5A and îq,HF = 5A.

To validate the algorithm at different rotor speeds, a
speed reference ramp from − 1

2nn to 1
2nn is applied to the

speed controlled machine as can be seen in fig. 9a. The

inner torque reference of the current controlled (self sens-
ing) machine is set to Ti,w = TN respectively Ti,w = 1

2TN.
The identified rotor speed and position are compared to
the values of a reference position sensor. Resulting errors
are shown in figs. 9b and 9c. The estimation errors stay
low, verifying the stability of the presented method. Also
for standstill and low speeds, the identification is reliable.

The speed and load dependent identification error,
which can be seen, occurs because iron losses were
neglected in the machine model. Iron losses and the
resulting model errors become larger at higher electric
angular velocity and higher magnetic flux. Also for low
speeds, when high frequency currents are injected, iron
losses distort the machine model and lead to increased es-
timation errors. As can be seen, position error is constant
in the speed range −300 rpm to 300 rpm. This is the case,
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Fig. 7: Photography of the used inverter cabinet. It consists of an
active-front-end inverter, two machine inverters and a real-time signal
processing system.
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Fig. 8: Variation of the differential phase inductances during different
torque reference steps as measure of the machine nonlinearities

because losses caused by high frequency current injection
are dominant at low speeds, since the d- and q-axis flux-
linkage variations also generate losses in the rotor iron
and magnets as opposed to flux-linkage variations due to
rotation. The described errors can be reduced, when iron
losses are considered in the machine model.

To validate the dynamics and the robustness against
nonlinearities, large torque reference steps are applied
to the self sensing machine, while the speed-controlled
machine reference is set to 1000 rpm respectively 0 rpm.

The estimated and real inner torque may differ due to
incorrect position estimation. Therefore, the inner torque
(8) is calculated with the estimated as well as real d-
and q-currents, correctly transformed with the position
sensor output angle. The difference of both values is the
resulting inner torque error. For highly dynamic operation,
this error should stay low.

T =
3

2
p (ψd · iq − ψq · id) (8)

The results can be seen in figs. 10 and 11. For both
rotor speeds, the real inner torque (figs. 10a and 11a), the
position identification error (figs. 10b and 11b) and the
inner torque error (figs. 10c and 11c) are provided. As a
measure for the occurring nonlinearities, the differential
inductances ldd and lqq are shown in fig. 8.

The resulting position estimation error stays below 8°
and allows dynamic, stable and precise current control
with a torque error below 5%.
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Fig. 9: Mechanical speed and electrical angle identification errors during a speed reference reversal at nominal torque and half nominal torque
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Fig. 10: Dynamic control performance and angle estimation error during different torque reference steps at n = 1000 rpm
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Fig. 11: Dynamic control performance and angle estimation error during different torque reference steps at n = 0 rpm



V. CONCLUSION

A descriptive, easily implementable rotor position and
speed identification algorithm for nonlinear PMSMs is
presented. The problem of position and speed identi-
fication is reduced to zero-crossing determinations and
an intersection detection of two lines. Though a simple
approach, it provides stable and reliable results in the
full operating range of a PMSM. Further, the derived
equations provide a depiction of self sensing and can help
to understand the problems occurring in some operating
points, such as low speed.

The provided iterative algorithm can be calculated on a
real time control system. When supported by a nonlinear
machine model, it can perform self sensing position and
speed identification for highly nonlinear machines in the
full operating range, even during dynamic operation. This
has been proven by experiment. When using an expanded
machine model, e.g. considering iron losses or slotting
effects, even more precise results can be expected.
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