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Abstract
This second part of a pair of papers complements the first part (see Kirsch 
2018 (35 104004)) but can be read independently. Scattering of time-harmonic 
waves from periodic structures at some fixed real-valued wave number 
becomes analytically difficult whenever there arise surface waves: These non-
zero solutions to the homogeneous scattering problem physically correspond 
to modes propagating along the periodic structure and clearly imply non-
uniqueness of any solution to the scattering problem. As in the first part we 
consider a medium described by a refractive index which is periodic along 
the axis of an infinite cylinder in R3 and constant outside of the cylinder. We 
formulate a proper radiation condition which allows the existence of traveling 
modes (and is motivated by the limiting absorption principle proven in the 
first part) and prove uniqueness and existence.

Keywords: Helmholtz equation, periodic wave guide, radiation condition

(Some figures may appear in colour only in the online journal)

1.  Introduction

This part continues the first part (see [2]) but can be read independently of it. While in the first 
part the limiting absorption principle for the scattering by a tube in R3 filled with a periodic 
refractive index was proven and the corresponding radiation condition was derived we now 
take a different point of view and assume the radiation condition as given. With this radiation 
condition, formulated for real and positive wave numbers k  >  0, we prove uniqueness and 
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existence of a solution. The limiting absorption principle is not used in this part but serves 
only as a motivation for the definition of the radiation condition. Indeed, from the purely 
mathematical point of view one can replace the radiation condition by several others which 
also (by essentially the same proof) yields uniqueness and existence of a solution, see remarks 
3.4 and 4.6 below.

2.  Formulation of the problem

We begin by setting up some notations (see figure 1). Let k ∈ R with k  >  0 be the wave number 
which is kept fixed throughout the paper. Let BN(0, R) = {x ∈ RN : |x| < R} be the ball in RN  
with center 0 and radius R  >  0, and TR = B2(0, R)× R ⊂ R3 be the tube (or infinite cylinder) 
in x3  −  direction. Furthermore, we define the finite cylinder by CR := B2(0, R)× (0, 2π) ⊂ R3 
and C∞ := R2 × (0, 2π) ⊂ R3. Furthermore, we assume that TR is filled with some medium 
with index of refraction n ∈ L∞(R3) which is assumed to be 2π−periodic with respect to the 
variable x3 and equals to one outside of TR0 for some R0  >  0. Finally, let f ∈ L2(R3) be given 
with support contained in TR0. The problem is to determine u ∈ H1

loc(R3) with

∆u + k2n u = −f in R3.� (1)

The solution is understood in the variational sense; that is, we search for u ∈ H1
loc(R3) such 

that
∫

R3

[
∇u · ∇ψ − k2n uψ

]
dx =

∫

TR0

f ψ dx for all ψ ∈ H1(R3) with compact support.

Without a radiation condition the solution is not expected to be unique. In [2] we constructed 
the so called limiting absorption solution of the problem; that is, the limit of the solutions 
uε ∈ H1(R3) of the coercive problems ∆uε + (k + iε)2n uε = f  when ε > 0 tends to zero. 
The structure of the limiting absorption solution motivates the radiation condition below (defi-
nition 2.5). Its formulation needs some preparation.

Closely related to the source problem (1) is the family of quasi-periodic problems. Let 
α ∈ R. A function u ∈ H1(CR) is called α−quasi-periodic if u(x1, x2, 2π) = eiα2πu(x1, x2, 0) 
for all (x1, x2) ∈ B2(0, R) (in the sense of traces). It is obvious that one can restrict α to be 
in an interval of unit length and we take α ∈ [−1/2, 1/2]. The subspace of α−quasi-periodic 
functions is denoted by H1

α(CR), and the local space H1
α,loc(C∞) is defined by

H1
α,loc(C∞) :=

{
u ∈ H1

loc(C∞) : u|CR ∈ H1
α(CR) for all R > 0

}
.

Therefore, the α−quasi-periodic source problems are to determine uα ∈ H1
α,loc(C∞) such that

∆uα + k2n uα = −fα in C∞� (2)

in the variational sense; that is,
∫

C∞

[
∇uα · ∇ψ − k2n uα ψ

]
dx =

∫

CR

fα ψ dx

for all ψ ∈ H1
α(C∞) with ψ = 0 for x2

1 + x2
2 � R2 for some R  >  R0. Here fα ∈ L2(C∞) is 

some given function with compact support in CR0 . For the α−quasi-periodic problem (2) a 
natural radiation condition is the extension of the classical Rayleigh expansion to our case; 
that is, the requirement that uα has an expansion of the form
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uα(r,ϕ, x3) =
∑
�,m∈Z

a�,m
H(1)

m
(
r
√

k2 − (�+ α)2
)

H(1)
m

(
R1

√
k2 − (�+ α)2

) ei[mϕ+(�+α)x3], r > R1,

� (3)

for some R1 > R0 and a�,j ∈ C. Here, H(1)
m (z) denote the Hankel functions of the first kind and 

order m ∈ Z. The branch of the square root 
√

z  for z ∈ C with Imz � 0 is chosen such that 
Rez � 0 and Imz � 0. The series converges in H1(CR2 \ CR1) for every R2 > R1. This condi-
tion can equivalently be replaced by a one-dimensional radiation condition for the Fourier 
coefficients.

Lemma 2.1.  Let u ∈ H1
α,loc(C∞ \ CR) be a α−quasi-periodic solution of the Helmholtz 

equation ∆u + k2u = 0 in C∞ \ CR for some R  >  R0. Then the following conditions are 
equivalent:

	(a)	�u has a Rayleigh expansion of the form (3).

	(b)	�All of the Fourier coefficients u�,m(r) = 1
2π

∫ 2π
0

∫ 2π
0 u(r,ϕ, x3)e−i[mϕ+(�+α)x3]dx3 dϕ for 

�, m ∈ Z, satisfy the one-dimensional radiation condition

lim
r→∞

√
r
[
u′�,m(r)− i k� u�,m(r)

]
= 0� (4)

		 where k� =
√

k2 − (�+ α)2.

Proof.  It is obvious that (a) implies (b). Indeed, if u has a Rayleigh expansion of the form 

(3) then the Fourier coefficients are given by u�,m(r) = 2π a�,m
H(1)

m

(
r
√

k2−(�+α)2
)

H(1)
m

(
R1

√
k2−(�+α)2

) which sat-

isfy (4) by the asymptotic behaviour of the Hankel functions as r tends to infinity.

Let now u�,m(r) satisfy (4). The fact that u satisfies the Helmholtz equation implies that the 
Fourier coefficients satisfy Bessel’s differential equation

[
1
r

∂

∂r

(
r
∂

∂r

)
+ k2 − m2

r2 − �2
]

u�,m(r) = 0, r > R.� (5)

The general solution is given by u�,m(r) = c�,mH(1)
m (k�r) + d�,mH(2)

m (k�r) for some coefficients 
c�,m, d�,m. Condition (4) implies d�,m = 0 which proves the assertion.� □ 

But even with this Rayleigh expansion the solutions of (2) are not always unique. As the 
case of constant n explicitly shows there might exist parameters α ∈ [−1/2, 1/2] for which 
non-trivial quasi-periodic solutions of (2) for f   =  0 exist. These parameters are called excep-
tional values. We define the set

A =
{
α ∈ [−1/2, 1/2] : there exists � ∈ Z with |α+ �| = k

}

of cut-off values (note that A consists of one or two elements) and make the following 
assumption.

Assumption 2.2.  For every α ∈ A the only α−quasi-periodic solution u ∈ H1
α(C∞) of (2) 

for f   =  0 which satisfies the Rayleigh expansion (3) has to be the trivial one. In other words, 
no α ∈ A is an exceptional value.
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The following can be shown (see, e.g. lemma 2.9 of [2]).

Lemma 2.3.  Let assumption 2.2 hold. Then there exist only finitely many exceptional val-
ues α ∈ [−1/2, 1/2]. Furthermore, if α is an exceptional value then also −α. Therefore, the 
set of exceptional values can be described by 

{
α̂j : j ∈ J

}
 where J ⊂ Z is finite and symmetric 

with respect to the origin and α̂−j = −α̂j for j ∈ J. The corresponding eigenspaces

X̂j =
{
φ̂j ∈ H1

α̂j
(C∞) : ∆φ̂j + k2nφ̂j = 0 in C∞, φ̂j satisfies the Rayleigh expansion

}
� (6)

are finite dimensional. Furthermore, the expansion coefficients a�,m in (3) of any eigenfunction 
φ̂ ∈ Xj  vanish for all |�+ α̂j| � k. This implies that every eigenfunction φ̂ ∈ X̂j  is evanescent; 
that is, there exists c  >  0 and σ > 0 with 

∣∣φ̂j(x)
∣∣ � c e−σ|̃x| for all x ∈ C∞ where x̃ = (x1, x2). 

We set mj = dimX̂j.

We now choose a special basis in X̂j  which is justified by the limiting absorption principle 
(see part A, [2]). In every X̂j  we consider the mj   −  dimensional self-adjoint eigenvalue prob-
lem to determine λ ∈ R  and φ̂ ∈ X̂j  with

−i
∫

C∞

∂φ̂

∂x3
ψ dx = λ k

∫

C∞

n φ̂ ψ dx for all ψ ∈ X̂j.

Figure 1.  The geometry with its notations.
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We denote the eigenvalues and eigenfunctions by λ�,j and φ̂�,j, respectively; that is,

−i
∫

C∞

∂φ̂�,j

∂x3
ψ dx = λ�,j k

∫

C∞

n φ̂�,j ψ dx for all ψ ∈ X̂j and � = 1, . . . , mj,

� (7)

and every j ∈ J. We normalize the eigenfunctions 
{
φ̂�,j : � = 1, . . . , mj

}
 such that

2k
∫

C∞

n φ̂�,j φ̂�′,j dx = δ�,�′ for all �, �′.� (8)

We make a second assumption and assume that the wave number k is regular in the following 
sense.

Definition 2.4.  k  >  0 is called regular, if λ�,j �= 0 for all � = 1, . . . , mj  and j ∈ J where 
λ�,j ∈ R, � = 1, . . . , mj , are the eigenvalues of the selfadjoint eigenvalue problem (7) in the 
finite dimensional space X̂j .

Then, for every j ∈ J we can split the propagating modes φ̂�,j in those with λ�,j > 0 and 
those with λ�,j < 0. These describe the modes which travel upwards and downwards, respec-
tively. The radiation condition, formulated below in definition 2.5, consists of two parts. The 
first part (see part (a) of definition 2.5) describes the behavior along the axis of the cylinder 
while the second part (part (b) of definition 2.5) describes the behavior orthogonal to the cyl-
inder. The second part is formulated in terms of the Fourier transform Fg : Z× R → C of g 
with respect to cylindrical coordinates which is given by

(F f )(m, ξ) =
1

2π

∫

R

∫ 2π

0
f (ϕ, y3) e−i(mϕ+ξy3)dϕ dy3, m ∈ Z, ξ ∈ R.

Then F  is well defined and bounded from L2(ΓR) into

L2(Z× R) :=

{
ĝ : Z× R → C : ĝ(m, ·) ∈ L2(R) for all m and

∑
m∈Z

∫

R

∣∣ĝ(m, ξ)
∣∣2dξ < ∞

}
.

The inverse transform is then

(F−1g)(ϕ, x3) =
1

2π

∑
m∈Z

∫

R
g(m, ξ) ei(mϕ+ξx3) dξ.

Also, Parseval’s identity holds in the form
∫

ΓR

∣∣g(x)∣∣2 ds = R
∫

R

∫ 2π

0

∣∣g(φ, x3)
∣∣2dφ dx3 = R

∑
m∈Z

∫

R

∣∣(Fg)(m, ξ)
∣∣2dξ.

� (9)
In the formulation of the radiation condition we separate the propagating modes which travel 
upwards or downwards. This separation is formulated by auxiliary functions ψ± ∈ C∞(R) 
with the properties

∣∣ψ+(t)− σ(t)
∣∣ +

∣∣∣∣
dψ+(t)

dt

∣∣∣∣ +

∣∣∣∣
d2ψ+(t)

dt2

∣∣∣∣ �
c
|t|

, |t| � 1, ψ− = 1 − ψ+,

� (10)
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where σ(t) = 1
2

(
1 + signt

)
=

{
1, t > 0,
0, t < 0.

 Here, the constant c  >  0 is independent on t. In 

particular, ψ+(t) tends to zero as t tends to −∞ while it tends to 1 as t tends to +∞. The func-
tion ψ− behaves analogously.

Definition 2.5 (Radiation condition).  Let assumption 2.2 hold and let k  >  0 be regular 
in the sense of definition 2.4 and let ψ± ∈ C∞(R) be given with the properties (10). The solu-
tion u ∈ H2

loc(R3) of (1) has a decomposition in the form u = u(1) + u(2) where:

	 (a)	�u(1)|TR̂
∈ H1(TR̂) for every R̂ > R, and u(2) ∈ W2,∞(R3) is given by

u(2)(x) = ψ+(x3)
∑
j∈J

∑
λ�,j>0

a�,j φ̂�,j(x) + ψ−(x3)
∑
j∈J

∑
λ�,j<0

a�,j φ̂�,j(x), x ∈ R3,

� (11)

		 for some a�,j ∈ C. Here, 
{
λ�,j, φ̂�,j : � = 1, . . . , mj

}
 are the eigenvalues and eigenfunc-

tions, respectively, of the eigenvalue problem (7).
	(b)	�The cylindrical Fourier transform (Fu(1))(r, m, ξ) of u(1) satisfies the one-dimensional 

radiation condition

lim
r→∞

√
r
[
∂

∂r
(Fu(1))(r, m, ξ)− i k(ξ) (Fu(1))(r, m, ξ)

]
= 0� (12)

		 for all m ∈ Z and almost all ξ ∈ R . Here, k(ξ) =
√

k2 − ξ2.

Remarks 2.6. 

	 (a)	�From (11) we observe that for x3 → ±∞ the solution behaves as 
∑

j∈J u±j  where u±
j  are 

linear combinations of 
{
φ̂�,j : � = 1, . . . .mj, λ�,j ≷ 0

}
.

	(b)	�Examples for functions ψ+ with (10) are

ψ+(t) =
1√
2π

∫ t

−∞
e−s2/2ds or ψ+(t) =

1
2

[
1 +

2
π

∫ t

0

sin s
s

ds
]

, t ∈ R.

		 The asymptotic behaviour of u(2) is not changed by choosing different functions 

ψ± because for any functions ψ±
1  and ψ±

2  with (10) it holds that ψ±
1 − ψ±

2 ∈ H1(R). 
Therefore, the difference is subsumed in u(1).

	 (c)	�In part A we have shown that the limiting absorption solution satisfies this radiation con-
dition. The coefficients a�,j  are explicitly given by

a�,j =
2πi
|λ�,j|

∫

R3
f (x) φ̂�,j(x) dx, � = 1, . . . , mj, j ∈ J.� (13)

3.  Uniqueness

If we interpret Im
∫
γr

u ∂u
∂ν ds as an energy flow along the axis of the tube then the energies of 

the guided modes are constant and positive as the following lemma shows. In the case of a 
closed waveguide; that is, posing the boundary condition u  =  0 or ∂u/∂r on ∂TR, the follow-
ing lemma implies almost directly uniqueness of the solution. We were not able to adjust the 
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proof to the open waveguide problem but prove uniqueness in a different way (see below). The 
result of this lemma is, however, interesting in itself.

Lemma 3.1.  Let γr = R2 × {r} for r ∈ R and u± =
∑

j∈J

∑
λ�,j≷0 a�,j φ̂�,j for some 

a�,j ∈ C. Then, for every r ∈ R and σ ∈ {+,−},

Im
∫

γr

uσ
∂uσ

∂x3
ds =

1
4π

∑
j∈J

∑
σλ�,j>0

λ�,j
∣∣a�,j

∣∣2.

Proof.  Set L±
j = {� : λ�,j ≷ 0} and uσ

j =
∑

�∈Lσ
j

a�,j φ̂�,j for j ∈ J. Then, for j, j′ ∈ J  by 
Green’s theorem in the region C∞,r := R2 × (r, r + 2π),

0 =

∫

∂C∞,r

(
uσ

j

∂uσ
j′

∂ν
− uσj′

∂uσ
j

∂ν

)
ds

= −
∫

γr

(
uσj

∂uσ
j′

∂x3
− uσ

j′
∂uσj
∂x3

)
ds +

∫

γr+2π

(
uσj

∂uσ
j′

∂x3
− uσ

j′
∂uσj
∂x3

)
ds

=
(

ei(α̂j′−α̂j)2π − 1
)∫

γr

(
uσ

j

∂uσ
j′

∂x3
− uσ

j′
∂uσ

j

∂x3

)
ds.

Therefore, the last integral vanishes for j �= j′. Thus we have

2Im
∫

γr

uσ
∂uσ

∂x3
ds =

∫

γr

[
uσ

∂uσ

∂x3
− uσ ∂uσ

∂x3

]
ds

=
∑
j∈J

∫

γr

[
uσ

j

∂uσ
j

∂x3
− uσ

j

∂uσ
j

∂x3

]
ds = 2

∑
j∈J

Im
∫

γr

uσ
j

∂uσ
j

∂x3
ds

= 2
∑
j∈J

Im
∫

γ0

uσj
∂uσ

j

∂x3
ds

because x3 �→ uσj
∂uσj
∂x3

 is 2π−periodic. Now we show that for every j ∈ J

Im
∫

γ0

uσj
∂uσ

j

∂x3
ds =

1
2π

Im
∫

C∞

uσj
∂uσ

j

∂x3
dx.

Setting v(x) = x3 uσj (x) yields ∂v(x)
∂x3

= uσj (x) + x3
∂uσj (x)
∂x3

 and ∆v + k2nv = 2
∂uσj
∂x3

. Therefore,

2
∫

C∞

uσ
j

∂uσ
j

∂x3
dx =

∫

C∞

uσj
(
∆v + k2nv

)
dx

=

∫

C∞

v
(
∆uσj + k2nuσj

)
dx +

∫

∂C∞

(
uσj

∂v
∂ν

− v
∂uσj
∂ν

)
ds

= −
∫

γ0

|uσj |2ds +
∫

γ2π

[
uσ

j

(
uσ

j + 2π
∂uσ

j

∂x3

)
− 2πuσ

j

∂uσj
∂x3

]
ds

= 2π
∫

γ0

(
uσj

∂uσ
j

∂x3
− uσ

j

∂uσj
∂x3

)
ds = 4π i Im

∫

γ0

uσ
j

∂uσ
j

∂x3
ds

A Kirsch﻿Inverse Problems 35 (2019) 104005



8

which proves the equality. Furthermore,
∫

C∞

uσ
j

∂uσj
∂x3

dx =
∑

�,�′∈Lσ
j

a�,j a�′,j

∫

C∞

φ̂�,j
∂φ̂�′,j

∂x3
dx

= ik
∑

�,�′∈Lσ
j

a�,j a�′,j λ�′,j

∫

C∞

n φ̂�,j φ̂�′,j dx =
i
2

∑
�∈Lσ

j

λ�,j |a�,j|2

by the definiton of φ̂�,j. Taking the imaginary part yields the assertion.� □ 

The relationship between the original source problem (1) and the α−quasi-periodic prob-
lems (2) is given by the Floquet–Bloch transform F which is defined as

(Ff )(t,α) =
∑
m∈Z

f (t + 2πm) e−iα2πm, t ∈ (0, 2π), α ∈ [−1/2, 1/2],

for f ∈ C∞
0 (R). From the definition we directly observe that for smooth functions f  and fixed 

α the transformed function t �→ (Ff )(t,α) is α−quasi-periodic while for fixed t the function 
α �→ (Ff )(t,α) is 1  −  periodic. It is hence sufficient to consider L2

(
(0, 2π)× (−1/2, 1/2)

)
 as 

image space of F. It is well known that F has an extension to a bounded operator from L2(R) 
onto L2

(
(0, 2π)× (−1/2, 1/2)

)
 with inverse

(F−1h)(t) =

∫ 1/2

−1/2
h(t,α) dα, t ∈ R,� (14)

where we extended h(·,α) to a α−quasiperiodic function in R . Furthermore, the restriction of 
F to H1(R) is an isomorphism from H1(R) onto L2

(
(−1/2, 1/2), H1

qp(0, 2π)
)
 where the latter 

space is defined as the completion of
{

v ∈ C1([0, 2π]× [−1/2, 1/2]
)

: v( j)(2π,α) = eiα2πv( j)(0,α) for all α and j = 0, 1
}

with respect to the norm
√∫ 1/2

−1/2
‖v(·,α)‖2

H1(0,2π)dα.

Let

(F1g)(t) =
1√
2π

∫ ∞

−∞
g(s) e−istds, t ∈ R,

be the one dimensional Fourier transform which can be expressed by the Floquet–Bloch trans-
form as

(F1g)(�+ α) =
1√
2π

∫ 2π

0
(Fg)(s,α) e−i(�+α)s ds = (Fg)�(α), � ∈ Z, α ∈ (−1/2, 1/2],� (15)

where (Fg)�(α) are the Fourier coefficients of (Fg)(·,α), � ∈ Z. Therefore,

(Fg)(t,α) =
1√
2π

∑
�∈Z

(F1g)(α+ �) ei(α+�)t.� (16)

In the following we use the same symbol F also for the Floquet–Bloch transform with respect 
to the variable x3 of functions on R3; that is,
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(Ff )(x,α) =
∑
m∈Z

f (x + 2πmê(3)) e−iα2πm, x ∈ C∞, α ∈ [−1/2, 1/2],

where ê(3) = (0, 0, 1)�. Then the analogous of (15) and (16) are given by

(F f )(r, m, �+ α) =
1

2π

∫ 2π

0

∫ 2π

0
(Ff )(r,ϕ, x3,α) e−i(mϕ+(�+α)x3) dx3 dϕ = (Ff )�,m(r,α),� (17)

(Ff )(x,α) =
1

2π

∑
m,�∈Z

(F f )(r, m,α+ �) ei(mϕ+(α+�)x3)
� (18)

for r  >  0, m, � ∈ Z, and α ∈ (−1/2, 1/2]. Here, r,ϕ, x3 are the cylindrical coordinates of 
x ∈ R3 and (Ff )�,m(r,α) are the Fourier coefficients of (Ff )(r, ·, ·,α).

From part (a) of the radiation condition we observe that u(1) satisfies the differential equa-
tion ∆u(1) + k2nu(1) = −h − f  where

h(x) = ∆u(2)(x) + k2n(x) u(2)(x)

=
∑
j∈J

∑
σ∈{+,−}

∑
σλ�,j>0

a�,j

[
φ̂�,j(x)

d2ψσ(x3)

dx2
3

+ 2
dψσ(x3)

dx3

∂φ̂�,j(x)
∂x3

]

=
∑
j∈J

mj∑
�=1

sign(λ�,j) a�,j

[
φ̂�,j(x)

d2ψ+(x3)

dx2
3

+ 2
dψ+(x3)

dx3

∂φ̂�,j(x)
∂x3

]

� (19)
since ψ− = 1 − ψ+. From the properties (10) we observe that h decays as 1/|x3| as |x3| tends to 
infinity. Therefore, the Floquet–Bloch transform (Fh)(x,α) is well defined for all α ∈ R. The 
following lemma computes it for the terms in the sum.

Lemma 3.2.  Set ϕ(x3) =
dψ+(x3)

dx3
 for abbreviation. Then

F

(
φ̂�,j

dϕ
dx3

+ 2ϕ
∂φ̂�,j

∂x3

)
(x,α) =

(
∆+ k2n(x)

)[
φ̂�,j(x) ρ(x3,α− α̂j)

]
+ δα−α̂j

1
π

∂φ̂�,j(x)
∂x3

for all α ∈ (−1/2, 1/2] and almost all x ∈ R3. Here, δβ = 1 for β ∈ Z and δβ = 0 for β /∈ Z 
and ρ  is given by

ρ(x3,β) =





1√
2π

∑
�∈Z

(F1ϕ)(�+ β)

i(�+ β)
ei(�+β)x3 , β /∈ Z,

1√
2π

∑
��=0

(F1ϕ)(�)

i�
ei�x3 , β ∈ Z.

Proof.  Using that φ̂�,j is α̂j−quasi-periodic, we observe that

F
(
φ̂�,j ϕ

)
(x,α) = φ̂�,j(x)

∑
m∈Z

ϕ(x3 + 2πm) e2πm(α̂j−α)i = φ̂�,j(x) (Fϕ)(x3,α− α̂j)

and analogously for ∂φ̂�,j

∂x3
 replacing φ̂�,j. We compute the Floquet–Bloch transform of ϕ. From 

(16) we conclude that
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(Fϕ)(x3,β) =
1√
2π

∑
�∈Z

(F1ϕ)(�+ β) ei(�+β)x3 =
∂ρ(x3,β)

∂x3
+

(F1ϕ)(0)√
2π

δβ

� (20)

for x3,β ∈ R. Analogously, by (16),

(Fϕ′)(x3,β) =
1√
2π

∑
�∈Z

(cF1ϕ
′)(�+ β) ei(�+β)x3 =

∂2ρ(x3,β)
∂x2

3
.

Using (F1ϕ)(0) = 1√
2π

∫∞
−∞ ϕ(t) dt = 1√

2π
 this yields

F

(
φ̂�,j

dϕ
dx3

+ 2ϕ
∂φ̂�,j

∂x3

)
(x,α) = φ̂�,j(x)

∂2ρ(x3,α− α̂j)

∂x2
3

+ 2
∂ρ(x3,α− α̂j)

∂x3

∂φ̂�,j(x)
∂x3

+
1
π

∂φ̂�,j(x)
∂x3

δα−α̂j

=
(
∆+ k2n

)[
φ̂�,j(x) ρ(x3,α− α̂j)

]
+

1
π

∂φ̂�,j(x)
∂x3

δα−α̂j

and ends the proof.� □ 

Now we are able to show uniqueness under the radiation condition of definition 2.5.

Theorem 3.3.  Let assumption 2.2 hold and let k  >  0 be regular in the sense of definition 
2.4. Then there exist at most one solution u ∈ H2

loc(R3) of the source problem (1) satisfying the 
radiation condition of definition 2.5.

Proof.  Let u ∈ H2
loc(R3) be a solution of the source problem (1) corresponding to f   =  0 

which satisfies the radiation condition. We recall that u(1) satisfies the differential equa-
tion ∆u(1) + k2nu(1) = −h where h is given by (19). Taking the Floquet–Bloch transform and 
using the previous lemma yields

∆(Fu(1))(x,α) + k2n(x)(Fu(1))(x,α) = −(Fh)(x,α) = −∆w(x,α)− k2n(x)w(x,α)

for almost all α (in particular α /∈
{
α̂j : j ∈ J

}
+ Z) where

w(x,α) =
∑
j∈J

mj∑
�=1

sign(λ�,j) a�,j φ̂�,j(x) ρ(x3,α− α̂j), x ∈ C∞,� (21)

and ρ  from lemma 3.2. We note that w(·,α) is α−quasi-periodic. Now we set 
v(x,α) = (Fu(1))(x,α) + w(x,α) for x ∈ C∞ and almost all α ∈ R. Then we observe that 
v(·,α) is α−quasi-periodic and ∆v(·,α) + k2n v(·,α) = 0 in C∞ for almost all α ∈ R. Next 
we show that v(·,α) satisfies a Rayleigh expansion for x /∈ CR. By lemma 2.1 it is sufficient 
to show that the Fourier coefficients of v(·,α) satisfy the one dimensional radiation condition. 
This is clear for the Fourier coefficients of w because of the exponential decay of φ̂�,j(x) as r 
tends to infinity. The Fourier coefficients û�,m(r,α) of (Fu(1))(·,α) are given by (18); that is,

û�,m(r,α) =
1

2π

∫ 2π

0

∫ 2π

0
(Fu(1))(r,ϕ, x3,α) e−i(mϕ+(�+α)x3) dϕ dx3 = (Fu(1))(r, m, �+ α),
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and this satisfies the radiation condition of definition 2.5, part (b), by assumption. By lemma 
2.1 this is equivalent to the Rayleigh expansion. This holds for almost all α ∈ [−1/2, 1/2]. The 
trivial uniqueness result for the α−quasi-periodic scattering problem at non-exceptional wave 
numbers implies that v(·,α) vanishes in C∞ for almost all α. Thus, (Fu(1))(·,α) = −w(·,α) 
in C∞ for almost all α ∈ (−1/2, 1/2]. Now fix any j0 ∈ J and choose a small open interval I 
such that α̂j0 ∈ I and α̂j /∈ I for j �= j0. Then, for almost all α ∈ I ,

(Fu(1))(x,α) +
∑
j�=j0

mj∑
�=1

sign(λ�,j) a�,j φ̂�,j(x) ρ(x3,α− α̂j)

= −

[ mj0∑
�=1

sign(λ�,j0) a�,j0 φ̂�,j0(x)

]
ρ(x3,α− α̂j0)

= −

[ mj0∑
�=1

sign(λ�,j0) a�,j0 φ̂�,j0(x)

] [
1√
2π

ϕ(α− α̂j0)

i(α− α̂j0)
ei(α−α̂j0 )x3

+
1√
2π

∑
� �=0

ϕ(�+ α− α̂j0)

i(�+ α− α̂j0)
ei(�+α−α̂j0 )x3

]
.

This equation has the form

g(x,α) =
1√
2π

[ mj0∑
�=1

sign(λ�,j0) a�,j0 φ̂�,j0(x)

]
ϕ(α− α̂j0)

i(α− α̂j0)
ei(α−α̂j0 )x3

for some g which is in L2
(
CR̂ × I

)
 for every R̂ > R. Therefore,

‖g(·,α)‖2
L2(CR̂)

=
1

2π (α− α̂j0)
2

∣∣ϕ(α− α̂j0)
∣∣2

∥∥∥∥∥
mj0∑
�=1

sign(λ�,j0) a�,j0 φ̂�,j0

∥∥∥∥∥
2

L2(CR̂)

.

The left-hand side is integrable over I in contrast to the right hand side unless the sum vanishes 

identically in CR̂. From the linear independence of 
{
φ̂�,j0 : � = 1, . . . , mj0

}
 we conclude that all 

of the coefficients a�,j0 vanish. This holds for all j 0; that is, u(2) vanishes identically. It remains 
to show that u(1) vanishes. Then u  =  u(1) solves ∆u + k2nu = 0 in R3 and u ∈ H1(TR̂) for all 
R̂ > R. Taking the Floquet–Bloch transform yields that Fu satisfies the Rayleigh expansion 
and ∆(Fu) + k2n(Fu) = 0 in C∞ for almost all α ∈ (−1/2, 1/2). Since the set of exceptional 
is finite by lemma 2.3 we conclude that Fu vanishes for almost all α and thus also u  =  0 al-
most everywhere.� □ 

Remark 3.4.  In the radiation condition the signs of λ�,j determine whether the corre
sponding propagating mode travels to x3 → +∞ or to x3 → −∞. From the proof we note 
that this particular decomposition {1, . . . , mj} = {� : λ�,j > 0} ∪ {� : λ�,j < 0}—which is 
justified by the limiting absorption principle—is not necessary. Any prescribed decomposi-

tion of {1, . . . , mj} into disjoint sets L(1)
j  and L(2)

j  would also provide uniqueness.
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4.  Existence

In the first part [2] we have shown existence indirectly by the limiting absorption principle. 
It is the aim to present a direct proof of existence which is solely based on the radiation 
condition.

The radiation condition suggests that we search for the solution u of ∆u + k2nu = −f  in 
the form u = u(1) + u(2) where u(1) ∈ H1(TR̂) for every R̂ > R and u(2) ∈ W2,∞(R3) is given 
by

u(2)(x) = ψ+(x3)
∑
j∈J

∑
λ�,j>0

a�,j φ̂�,j(x) + ψ−(x3)
∑
j∈J

∑
λ�,j<0

a�,j φ̂�,j(x), x ∈ R3,

� (22)

for a�,j ∈ C given by (13). Here, 
{
λ�,j, φ̂�,j : � = 1, . . . , mj

}
 are the eigenvalues and eigenfunc-

tions, respectively, of the eigenvalue problem (7) for every j ∈ J. Furthermore, we choose 

explicitly ψ± ∈ C∞(R) to be ψ+(t) = 1√
2π

∫ t
−∞ e−s2/2ds, t ∈ R, and ψ− = 1 − ψ+. We set 

again h = ∆u(2) + k2nu(2) in R3. Then u(1) has to solve ∆u(1) + k2nu(1) = −f − h in R3. 
Furthermore, since f  and also h are in L2(R3) (for h this follows from the form (19) and the 
decay of dψ+/dt  and d2ψ+/dt2) we can take the Floquet–Bloch transforms. Because of the 
exponential decay of f  and h as |x3| → ∞ we note that Ff and Fh are continuous with respect 
to α. Therefore, it is the aim to solve

∆uα + k2nuα = −(Ff )(·,α) − (Fh)(·,α) in C∞� (23)

for every α ∈ [−1/2, 1/2]. Assume for the moment that there exists a solution uα ∈ H1
α,loc(C∞) 

of (23) for every α ∈ [−1/2, 1/2] which satisfies also the radiation condition (4) such that 

α �→ ‖uα‖H1(CR̂)
 is continuous for every R̂ > R. Then u(1) =

∫ 1/2
−1/2 uα dα belongs to H1(TR̂) 

for every R̂ > R and u = u(1) + u(2) satisfies ∆u + k2nu = −f  in R3 and the radiation con-
dition (12) by (17). Therefore, we have to study (23) and (4) with respect to solvability and 
continuous dependence on α.

In the first part we reduce the problem (23) and (4) to an operator equation of the form

ũα − Kαũα = rα in H1
per(CR)� (24)

with a compact operator Kα and right hand side rα ∈ H1
per(CR) which depend continuously 

on α (see lemma 4.2 below). Here, H1
per(CR) denotes the subspace of H1(CR) consisting of 

2π−periodic (wrt x3) functions. The reduction to this equation on the bounded domain CR is 
not quite standard because the part (Fh)(·,α) in (23) does not vanish outside of any CR̂—in 
contrast to (Ff )(·,α) which vanishes outside of CR.

The equation (24) is singular in the sense of Colton and Kress (section 1.4 of [1]) because 
it is uniquely solvable for all α which are not exceptional. For α ∈ {α̂j : j ∈ J}, however, 
the kernel of I − Kα is not trivial. We will apply a theorem from [1] (see theorem A.1 of the 
appendix) which proves that the mapping α �→ ũα can be continuously extended to the whole 
interval [−1/2, 1/2]. Therefore, the inverse Floquet–Bloch transform yields that u(1) ∈ H1(TR̂) 
for any R̂ > R and provides the solution u = u(1) + u(2).

For the reduction of (23) to an equation  of the type (24) we need to investigate the 
α−quasi-periodic problem (2) for right hand sides fα which do not vanish for large  
values of r but decay sufficiently large as r → ∞. We recall that in our case  

fα = (Ff )(·,α) + (Fh)(·,α). We define the weighted space (C∞) =
{

f ∈ L2(C∞) : 
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f̃σ ∈ L2(C∞)
}

 where f̃σ(x) = (1 + x2
1 + x2

2)
σ/2f (x), x ∈ C∞. This space is equipped with 

the canonical norm ‖ f‖L2
σ(C∞) = ‖f̃σ‖L2(C∞). The spaces L2

σ(C∞ \ CR) for R  >  0 are defined 

analogously.
For given σ > 1 and fα ∈ L2

σ(C∞) we consider the problem to determine uα ∈ H1
α,loc(C∞) 

with

∆uα + k2nuα = −fα in C∞, ,� (25)

satisfying the family of one-dimensional radiation conditions (4) for the Fourier coefficients 
of uα. Again, later we will set fα = (Ff )(·,α) + (Fh)(·,α).

To reduce this problem (25) and (4) to a boundary value problem on the bounded tube CR 
we consider first the analog of problem (35) of Part A and solve the boundary value problem 
in the exterior of CR explicitly.

Theorem 4.1.  Let α ∈ [−1/2, 1/2] and fα ∈ L2
σ(C∞ \ CR) for some σ > 1 and 

gα ∈ H1/2
α (γR). The function

v(r,ϕ, x3) =
1

2π

∑
�,m∈Z

[∫ ∞

R
Gα(r, ρ; m, �) f�,m(ρ) ρ dρ +

H(1)
m (k�r)

H(1)
m (k�R)

g�,m

]
eimϕ+i(�+α)x3� (26)

for r  >  R, ϕ ∈ [0, 2π], and x3 ∈ (0, 2π), is the unique solution v ∈ H1
α,loc(C∞ \ CR) of the  

α−quasi-periodic boundary value problem

∆v + k2v = −fα in C∞ \ CR, v = gα on γR,� (27)

satisfying the one-dimensional radiation condition (4) for all �, m ∈ Z. Here, f�,m(ρ) and g�,m 
are the Fourier coefficients of fα(ρ, ·, ·) and gα, respectively, and Gα is given by (see (38) of 
part A)

Gα(r, ρ; m, �) =
iπ
2

[
H(1)

m (k�r+)Jm(k�r−) − H(1)
m (k�ρ)

H(1)
m (k�R)

H(1)
m (k�r)Jm(k�R)

]
,

�

(28)

for r, ρ � R and m, � ∈ Z where r+ = max{r, ρ} and r− = min{r, ρ}. Set 
A =

{
α ∈ [−1/2, 1/2] : there exists � ∈ Z with |α+ �| = k

}
. Then the mapping α �→ v is 

continuous on [−1/2, 1/2] and continuously differentiable on [−1/2, 1/2] \ A as a mapping 
into H1

α(CR̂ \ CR) for every R̂ > R.

The proof uses the same arguments as the proof of theorem 4.1 of part A and is omitted.

For fα = 0 this theorem provides the Dirichlet-to-Neumann map Λα : H1/2
α (γR) → H−1/2

α (γR) 
by

(Λαgα)(ϕ, x3) =
1

2π

∑
�,m∈Z

g�,m
k� H(1)′

m (Rk�)

H(1)
m (Rk�)

ei[mϕ+(�+α)x3],� (29)

where g�,m = 1
2π

∫ 2π
0

∫ 2π
0 g(R,ϕ, x3) e−i[mϕ+(�+α)x3]dϕ dx3 are again the Fourier coefficients 

of gα. Let, furthermore, vα ∈ H1
α,loc(C∞ \ CR) solve (27) and (4) with gα = 0 on γR. Existence 

of vα is again assured by theorem 4.1. Then (25) and (4) is equivalent to the following α−
quasi-periodic boundary value problem (see lemma 4.2 below):
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∆uα + k2nuα = −fα in CR,
∂uα
∂ν

∣∣∣∣
−
= Λαuα +

∂vα
∂ν

∣∣∣∣
+

on γR.

The variational form of this boundary value problem is to find uα ∈ H1
α(CR) with

∫

CR

[
∇uα · ∇ψ − k2n uα ψ

]
dx −

∫

γR

(Λαuα)ψ ds =

∫

CR

fα ψ dx +

∫

γR

∂vα

∂ν
ψ ds� (30)

for all ψ ∈ H1
α(CR). Later we will study the dependence on α. Therefore, it is convenient to 

eliminate the dependence of the solution space on α by replacing the α−quasi-periodic func-
tion uα by ũα(x) = exp(−iαx3)uα(x) and, analogously for fα, vα, and the test functions ψ. 
We indicate the periodic functions by using the tilde sign on top of the symbol. Therefore, we 
search for ũα ∈ H1

per(CR) with
∫

CR

[
∇ũα · ∇ψ − 2iαψ

∂ũα
∂x3

+ (α2 − k2n) ũα ψ

]
dx −

∫

γR

(Λ̃αũα)ψ ds

=

∫

CR

f̃α ψ dx +

∫

γR

[
∂ṽα

∂ν
+ iαṽα

]
ψ ds for all ψ ∈ H1

per(CR).

Here,

(Λ̃αg)(ϕ, x3) = e−iαx3 Λα(eiαx3 g)(ϕ, x3) =
1

2π

∑
�,m∈Z

g�,m
k� H(1)′

m (Rk�)

H(1)
m (Rk�)

ei[mϕ+�x3],

denotes the corresponding periodic Dirichlet–Neumann operator which is bounded from 

H1/2
per (γR) into H−1/2

per (γR). Recall that k� =
√

k2 − (�+ α)2 and g�,m denote the Fourier 
coefficients of the periodic function g. As in part A we write this variational equation  as 
(ũα,ψ)∗ − aα(ũα,ψ) = �α(ψ) where

(u,ψ)∗ =

∫

CR

[
∇u · ∇ψ + uψ

]
dx −

∫

γR

(Λ̃0,iu)ψ ds, u,ψ ∈ H1
per(CR),

� (31)

defines an inner product in H1
per(CR) which is equivalent to the ordinary inner product and

aα(u,ψ) := −
∫

CR

[
iα

(
u
∂ψ

∂x3
− ψ

∂u
∂x3

)
+ (α2 − k2n − 1) uψ

]
dx

−
∫

γR

[
Λ̃0,iu − Λ̃αu

]
ψ ds, u,ψ ∈ H1

per(CR),
�

(32)

�α(ψ) =

∫

CR

f̃α ψ dx +

∫

γR

[
∂ṽα
∂ν

+ iαṽα

]
ψ ds, ψ ∈ H1

per(CR).� (33)

Here, Λ̃0,i  denotes the operator Λ̃α for α = 0 and k  =  i. Recall that ̃vα(x) = e−iαx3 vα(x) where 
vα ∈ H1

α,loc(C∞ \ CR) solves (27), (4) with gα = 0 on γR.
Furthermore, by the representation theorem of Riesz there exists a unique operator Kα from 

H1
per(CR) into itself and rα ∈ H1

per(CR) such that 
(
Kαu,ψ

)
∗ = aα(u,ψ) and 

(
rα,ψ

)
∗ = �α(ψ) 

for all u,ψ ∈ H1
per(CR). Therefore, (25) and (4) is equivalent to the equation (24). Indeed, as 

shown as for lemma 2.12 of part A (i.e. [2]) we have the following result.
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Lemma 4.2. 

	(a)	�Let uα ∈ H1
α,loc(C∞) satisfy (25) and (4). Then the restriction ̃uα(x) := exp(−iαx3)uα(x), 

x ∈ CR, is in H1
per(CR) and satisfies the operator equation

ũα − Kαũα = rα in H1
per(CR),� (34)

		 where Kα : H1
per(CR) → H1

per(CR) and rα ∈ H1
per(CR) are defined by 

(
Kαu,ψ

)
∗ = aα(u,ψ) 

and 
(
rα,ψ

)
∗ = �α(ψ) for all u,ψ ∈ H1

per(CR) and aα(u,ψ) and �α are defined in (32) and 
(33), respectively

	(b)	�Let ̃uα ∈ H1
per(CR) satisfy (34). Then the function uα(x) =

{
exp(iαx3)ũα(x) in CR,
vα(x) + uext(x) in C∞ \ CR,

 

solves (25) and (4) where

uext(r,ϕ, x3) =
1

2π

∑
�,m∈Z

u�,m
H(1)

m (rk�)

H(1)
m (Rk�)

ei[mϕ+(�+α)x3], r > R.

We note that I − Kα is one-to-one (and thus also onto) if, and only if, α is not an excep-
tional value. Properties of Kα and rα are collected in the following lemma.

Lemma 4.3.  Let assumption 2.2 hold and let again A =
{
α ∈ [−1/2, 1/2] :  

there exists � ∈ Z with |α+ �| = k
}

. The mappings α �→ rα and α �→ Kα are continuous on 
[−1/2, 1/2] and continuously differentiable on [−1/2, 1/2] \ A as mappings into H1

per(CR) and 
L
(
H1

per(CR)
)
, respectively. Furthermore, I − Kα has Riesz number one for every exceptional 

value α; that is, N
(
(I − Kα)

2
)
= N (I − Kα).

Proof.  The smoothness with respect to α follows from the definitions of rα and Kα, see also 
theorem 4.1. To show the last statement let ũ ∈ N

(
(I − Kα)

2
)
 and set w̃ = (I − Kα)ũ. Then 

w̃ − Kαw̃ = 0; that is, (w̃,ψ)∗ − aα(w̃,ψ) = 0 for all ψ ∈ H1
per(CR). Therefore, the exten-

sion of the corresponding w(x) = eiαx3 w̃(x) into R3 is an evanescent α−quasi-periodic solu-

tion of ∆w + k2nw = 0 in C∞. Since k� H(1)′
m (Rk�)

H(1)
m (Rk�)

 is real valued for |�+ α| � k  we observe 

that aα(w̃,ψ) = aα(ψ, w̃) for all ψ ∈ H1
per(CR). We rewrite the equations w̃ = (I − Kα)ũ and 

w̃ − Kαw̃ = 0 again as (ũ,ψ1)∗ − aα(ũ,ψ1) = (w̃,ψ1)∗ and (w̃,ψ2)∗ − aα(w̃,ψ2) = 0, re-
spectively, for all ψ1,ψ2 ∈ H1

per(CR). Taking ψ1 = w̃ and ψ2 = ũ yields

‖w̃‖2
∗ = (ũ, w̃)∗ − aα(ũ, w̃) = (w̃, ũ)∗ − aα(w̃, ũ) = 0

by using aα(w̃,ψ) = aα(ψ, w̃) for all ψ. Therefore, w̃ = (I − Kα)ũ = 0; that is, 
ũ ∈ N (I − Kα).� □ 

The next theorem proves a Fredholm property of the quasi-periodic source problem (25) 
and (4).

Theorem 4.4.  Let assumption 2.2 hold and α ∈ [−1/2, 1/2] and fα ∈ L2
σ(C∞) for some 

σ > 1. There exists uα ∈ H1
α,loc(C∞) with (25) and (4) if, and only if,

∫

C∞

fα φ dx = 0 for all φ ∈ H1
α(C∞)

with ∆φ+ k2nφ = 0 in C∞
satisfying the Rayleigh expansion.

�

(35)
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Proof.  Let first uα ∈ H1
α,loc(C∞) satisfy (25) and (4). We write u and f  instead of uα and 

fα, respectively, for brevity. If α is not an exceptional value then condition (35) is trivi-
ally satisfied because there are no such nontrivial φ. Therefore, let α be an exceptional 
value and φ ∈ H1

α(C∞) be a solution of ∆φ+ k2nφ = 0 in C∞ which satisfies the Ray-
leigh expansion. By lemma 2.3 φ is evanescent. Let φ�,m(r) and u�,m(r), �, m ∈ Z, be the 

Fourier coefficients of φ and u, respectively. We split the integral 
∫

C∞
f φ dx into the sum ∫

C∞
f φ dx =

∫
CR

f φ dx +
∫

C∞\CR
f φ dx . For the first integral we use first Green’s second 

theorem and then Parseval’s identity for the boundary term which yields
∫

CR

f φ dx = −
∫

CR

(∆u + k2nu)φ dx = −
∫

γR

[
φ
∂u
∂r

− u
∂φ

∂r

]
ds

= −R
∑
�,m∈Z

[
φ�,m(R) u′�,m(R)− u�,m(R)φ′

�,m(R)
]

.
�

(36)

For the second integral we use Parseval’s identity directly which yields
∫

C∞\CR

f φ dx =
∑
�,m∈Z

∫ ∞

R
f�,m(r)φ�,m(r) r dr.� (37)

We compute the one dimensional integrals. First we note that u�,m(r) and φ�,m(r) satisfy the 
ordinary differential equations of Bessel type

1
r

(
r u′�,m(r)

)′
+

(
k2
� −

m2

r2

)
u�,m(r) = −f�,m(r), r > R,

1
r

(
r φ′

�,m(r)
)′

+

(
k2
� −

m2

r2

)
φ�,m(r) = 0, r > R,

where again k� =
√

k2 − (�+ α)2. Multiplying the first equation by rφ�,m(r) and the second 
by ru�,m(r), integrating from R to some R̂ > R, and using partial integration yields

−
∫ R̂

R
f�,m(r)φ�,m(r) r dr =

[
r φ�,m(r) u′�,m(r)− r φ′

�,m(r) u�,m(r)
]∣∣R̂

R.

Now we let R̂ tend to infinity and use the boundedness of 
√

r|u�,m(r)| and 
√

r|u′�,m(r)| (see 
lemma A.2 of the appendix) and the fact that φ�,m(r) and φ′

�,m(r) tend to zero exponentially 
when r tends to infinity. This yields

∫ ∞

R
f�,m(r)φ�,m(r) r dr = R

[
φ�,m(R) u′�,m(R)− φ′

�,m(R) u�,m(R)
]
.� (38)

Substituting this into (37) and combining it with (36) yields 
∫

C∞
f φ dx = 0.

For the reverse part we assume that 
∫

C∞
fα φ dx = 0 for all α−quasi-periodic solutions 

of ∆φ+ k2nφ = 0 in C∞ which satisfy the Rayleigh expansion. By lemma 4.2 we have to 
show existence of uα ∈ H1

α(CR) which solves the variational equation (30). Recall the defini-
tion of vα ∈ H1

α,loc(C∞ \ CR) as a solution of (27) and (4) for boundary data gα = 0. Using 
Fredholm’s alternative for the equivalent form (34) it is straight forward to show that (30) is 
solvable in H1

α(CR) if, and only if,
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∫

CR

fα φ dx +

∫

γR

∂vα

∂ν
φ ds = 0 for all φ ∈ H1

α(CR) with� (39)

∫

CR

[
∇ψ · ∇φ− k2nψ φ

]
dx −

∫

γR

(Λαψ)φ ds = 0 for all ψ ∈ H1
α(CR).

� (40)

If α is not an exceptional value then the only solution φ of (40) is the trivial one and, therefore, 
(39) is trivially satisfied. If α is an exceptional value then we set ψ = φ in (40) and use (29) 
to show again that φ has an extension to an evanescent solution of ∆φ+ k2nφ = 0 in C∞. 
Green’s theorem yields
∫

CR

fα φ dx +

∫

γR

∂vα

∂ν
φ ds =

∫

CR

fα φ dx +

∫

γR

[
∂vα

∂ν
φ− ∂φ

∂ν
vα

]
ds

=

∫

CR

fα φ dx −
∫

C∞\CR

[
φ∆vα − vα∆φ

]
dx =

∫

C∞

fα φ dx = 0.

This ends the proof.� □ 

Now we are able to prove existence of a solution to ∆u + k2nu = −f  satisfying the radia-
tion condition of definition 2.5. From the considerations at the beginning of this section we 
have to study solvability of the equations (23) and (4).

Theorem 4.5.  Let assumption 2.2 hold and let k  >  0 be regular in the sense of defini-
tion 2.4. Then, for every f ∈ L2(R3) with compact support there exists a unique solution 
u ∈ H2

loc(R3) of (1); that is,

∆u + k2n u = −f in R3,

satisfying the radiation condition of definition 2.5. The coefficients are given by

a�,j =
2πi
|λ�,j|

∫

R3
f (x) φ̂�,j(x) dx, � = 1, . . . , mj, j ∈ J.� (41)

Proof.  We define a�,j  by (41) and consider equation  (23) with the radiation condition 
(4) where the right hand side Fh  +  Ff is now given. By theorem 4.4 we have to show that 
(Fh)(·,α) + (Ff )(·,α) is orthogonal to all radiating α−quasi-periodic solutions φα of the ho-
mogeneous equation ∆φα + k2nφα = 0 in C∞. For α /∈

{
α̂j : j ∈ J

}
 this is obvious. Let now 

α = α̂j  for some j ∈ J. From the form (19) of h and lemma 3.2 we conclude that

(Fh)(x, α̂j) =
∑
j′∈J

mj′∑
�=1

sign(λ�,j′) a�,j′
(
∆+ k2n(x)

)[
φ̂�,j′(x)ρ(x3, α̂j − α̂j′)

]

+

mj∑
�=1

sign(λ�,j) a�,j
1
π

∂φ̂�,j(x)
∂x3

= ∆w(x, α̂j) + k2n(x)w(x, α̂j) +

mj∑
�=1

sign(λ�,j) a�,j
1
π

∂φ̂�,j(x)
∂x3
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with w from (21) for α = α̂j . Then, for any � ∈ {1, . . . , mj},
∫

C∞

[
(Ff )(·, α̂j) + (Fh)(·, α̂j)

]
φ̂�,j dx

=

∫

C∞

[
(Ff )(·, α̂j) + (∆ + k2n)w(·, α̂j)

]
φ̂�,j dx +

mj∑
�′=1

sign(λ�′,j) a�′,j
1
π

∫

C∞

∂φ̂�′,j

∂x3
φ̂�,j dx

=

∫

C∞

(Ff )(·, α̂j) φ̂�,j dx + sign(λ�,j) a�,j
1

2π
iλ�,j

=
∑
m∈Z

∫

C∞

f
(
x + 2πme(3)) φ̂�,j

(
x + 2πme(3)

)
dx + sign(λ�,j) a�,j

1
2π

iλ�,j

=

∫

R3
f (y) φ̂�,j(y) dy + sign(λ�,j) a�,j

1
2π

iλ�,j = 0

by the definition of a�,j . Here we have used Green’s second theorem in C∞ and the normaliza-
tion of the eigenfunctions φ̂�,j (see (7) and (8)). Therefore, the equation (23) has a radiating 
solution for all α.

Therefore, we have shown that the operator equation (34) is solvable in H1
per(CR) for all 

α ∈ [−1/2, 1/2]. The smoothness properties of α �→ Kα and α �→ rα are shown in lemma 4.3. 
In the same lemma it has been shown that the Riesz number of I − Kα̂j  is one. Therefore, all 
of the assumptions of theorem A.1 of the appendix has been shown except of the injectivity 

of the projected operator PK′
α̂j

∣∣
N : N → N  where N = N (I − Kα̂j) and P : H1

per(CR) → N  
is the projection with respect to the direct sum H1

per(CR) = N ⊕R(I − Kα̂j). We fix α̂j for 
some j ∈ J and let α be in a small neighborhood of α̂j. Let u,ψ ∈ N

(
I − Kα̂j

)
. We recall that

(Kαu,ψ)∗ = aα(u,ψ) = −
∫

CR

[
iα

(
u
∂ψ

∂x3
− ψ

∂u
∂x3

)
+ (α2 − k2n − 1) uψ

]
dx

−
∫

γR

[
Λ̃0,iu − Λ̃αu

]
ψ ds, u,ψ ∈ H1

per(CR)

and

∫

γR

ψ Λ̃αu ds = R
∑

|�+α̂|>k

∑
m∈Z

ψ�,m u�,m
k�H

(1)′
m (k�(α)R)

H(1)
m k�(α)R)

where k�(α) =
√

k2 − |�+ α|2  and ψ�,m and u�,m are the Fourier coefficients of the periodic 
functions ψ|γR and u|γR, respectively. We extend the α−quasi-periodic functions eiαx3 u(x) and 
eiαx3ψ(x) as in lemma 4.2 into all of C∞. Then, by Green’s formula,

∫

γR

ψ Λ̃αu ds =
∫

γR

(
ψ(x)eiαx3

) ∂

∂r

(
u(x)eiαx3

)
ds(x)

= −
∫

C∞\CR

(
∇u + iαu ê(3)) · (∇ψ + iαψ ê(3)

)
− k2uψ dx

= −
∫

C∞\CR

∇u · ∇ψ + iα
(

u
∂ψ

∂x3
− ψ

∂u
∂x3

)
+ (α2 − k2) uψ dx.
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Therefore,

(Kαu,ψ)∗ = −
∫

C∞

[
iα

(
u
∂ψ

∂x3
− ψ

∂u
∂x3

)
+ (α2 − k2n) uψ

]
dx

−
∫

C∞\CR

∇u · ∇ψ dx +

∫

CR

uψ dx −
∫

γR

ψ Λ̃0,iu ds.

Differentiating this with respect to α yields for α = α̂j

d
dα

(Kα̂j u,ψ)∗ = 2i
∫

C∞

(
∂u
∂x3

+ iα̂ju
)
ψ dx =

∫

C∞

(
ψ(x)eiα̂jx3

) ∂

∂x3

(
u(x)eiα̂jx3

)
dx.

From this we observe that P d
dαKα̂j u vanishes for some nontrivial u ∈ N

(
I − Kα̂j

)
 if, and 

only if, for some � ∈ {1, . . . , mj} the eigenvalue λ�,j of (7) vanishes. Therefore, the regularity 
of k (definition 2.4) implies injectivity of P d

dαKα̂j on N
(
I − Kα̂j

)
. Application of theorem 

A.1 yields the continuous extension of of α �→ uα into α̂j. For this extension the mapping 

α �→
∫ 1/2
−1/2 uα dα is continuous which proves the assertion.� □ 

Remark 4.6.  Again, as already mentioned in remark 3.4, the proof of existence does not 
use the particular form of the decomposition {1, . . . , mj} = {� : λ�,j > 0} ∪ {� : λ�,j < 0}. 

Any prescribed decomposition of {1, . . . , mj} into disjoint sets L(1)
j  and L(2)

j  will also provide 

existence.
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Appendix

The following result is a special case of a slightly more general result of Colton and Kress (see 
section 1.4 in [1]).

Theorem A.1.  Let X be a Banach space, I ⊂ R an open interval and rα ∈ X  and Kα : X → X  
for α ∈ I  families of linear and compact operators such that α �→ rα and α �→ Kα are con-
tinuously differentiable from a neighborhood of some α̂ ∈ I  into X and L(X, X), respectively.

Let I − Kα be bijective for α �= α̂ but N
(
I − Kα̂

)
�= {0}. Let the Riesz number of I − K(α̂) 

be one; that is, N
(
(I − Kα̂)

2
)
= N

(
I − Kα̂

)
 and P : X → N := N

(
I − Kα̂

)
 be the projec-

tion operator onto the null space with respect to the direct sum X = N ⊕R
(
I − Kα̂

)
. As-

sume, furthermore, that P d
dαKα̂

∣∣
N : N → N  is one-to-one and rα̂ ∈ R

(
I − Kα̂

)
.

Then the unique solution uα ∈ X  of 
(
I − Kα

)
uα = rα for α �= α̂ converges to a solution 

u(α̂) of 
(
I − Kα̂

)
uα̂ = rα̂. In other words, the mapping α �→ uα from I \ {α̂} into X has a 

continuous extension into α̂.

The following lemma estimates the growth of the Fourier coefficients of a function u satis-
fying the radiation condition (4).
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Lemma A.2.  For some R  >  0 let f ∈ L2(R,∞) such that also 
∫∞

R |f (s)|
√

s ds < ∞. Let 
t ∈ C \ {0} with Ret � 0 and Imt � 0 and w ∈ H1

loc(R,∞) a solution of

1
r

(
r w′(r)

)′
+

(
t2 − m2

r2

)
w(r) = −f (r), r > R,� (A.1)

satisfying the radiation condition

lim
r→∞

√
r
[
w′(r)− i t w(r)

]
= 0.

Then there exists c  >  0 such that 
√

r
[
|w(r)|+ |w′(r)|

]
� c for all r � R.

Proof.  Set εr = r
∣∣w′(r)− itw(r)

∣∣2 = r
[
|tw(r)|2 + |w′(r)|2

]
− 2rIm

[
tw(r)w′(r)

]
. Then ε(r) 

tends to zero and is thus bounded on (R,∞) by some constant c1  >  0. This implies the estimate

r
[
|t w(r)|2 + |w′(r)|2

]
� c1 + 2rIm

[
t w(r)w′(r)

]
.� (A.2)

Multiplying (A.1) for variable s instead of r by sw(s)  and integrating from R to some r  >  R 
yields

∫ r

R

(
s w′(s)

)′
w(s) ds +

∫ r

R

(
t2 − m2

s2

)
s |w(s)|2ds = −

∫ r

R
s f (s)w(s) ds.

We use partial integration of the first term, multiply by t and take the imaginary part. This 
yields

−Im
[

t
∫ r

R
s f (s)w(s) ds

]
= r Im

[
t w(r)w′(r)

]
− R Im

[
t w(R)w′(R)

]

+ Imt
∫ r

R
s |w′(s)|2 ds + Imt

∫ r

R

(
|t|2 + m2

s2

)
s |w(s)|2ds

� r Im
[
t w(r)w′(r)

]
− c2

with c2 = R Im
[
t w(R)w′(R)

]
. Therefore,

r Im
[
t w(r)w′(r)

]
� c2 + |t| max

R�s�r

[√
s |w(s)|

] ∫ ∞

R
|f (s)|

√
s ds � c2 + c3 ψ(r)

where c3 =
∫∞

R |f (s)|
√

s ds and ψ(r) = |t|maxR�s�r
[√

s |w(s)|
]
. Substituting this estimate 

for R � r � ρ into (A.2) and taking the supremum for r ∈ [R, ρ] yields

ψ(ρ)2 � c1 + 2c2 + 2c3 ψ(ρ); that is,
[
ψ(ρ)− c3

]2
� c1 + 2c2 + c2

3

which shows boundedness ψ(ρ) � c3 +
√

c1 + 2c2 + c2
3 . Boundedness of 

√
r|w′(r)| follows 

now from (A.2).� □ 
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