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Abstract
Scattering of time-harmonic waves from periodic structures at some fixed 
real-valued wave number becomes analytically difficult whenever there arise 
surface waves: These non-zero solutions to the homogeneous scattering 
problem physically correspond to modes propagating along the periodic 
structure and clearly imply non-uniqueness of any solution to the scattering 
problem. In this paper, we consider a medium, described by a refractive index 
which is periodic along the axis of an infinite cylinder in R3 and constant 
outside of the cylinder. We prove that there is a so-called limiting absorption 
solution to the associated scattering problem. By definition, such a solution is 
the limit of a sequence of unique solutions for artificial complex-valued wave 
numbers tending to the above-mentioned real-valued wave number. By the 
standard one-dimensional Floquet–Bloch transform and the introduction of 
the exterior Dirichlet–Neumann map we first reduce the scattering problem 
to a class of periodic problems in a bounded cell, depending on the wave 
number k and the Bloch parameter α. We use a functional analytic singular 
perturbation result to study this problem in a neighborhood of a singular pair 
(k,α). This abstract result allows us to derive explicitly a representation for 
the limiting absorption solution as a sum of a decaying part (along the axis of 
the cylinder) and a finite sum of propagating modes.
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1. Introduction

Periodic non-absorbing surface structures allow surface waves that propagate along the struc-
ture without decaying. These waves do physically arise at certain exceptional values of the 
Bloch parameter, and mathematically they are eigenfunctions of a certain periodic eigenvalue 
problem involving the periodic structure. The corresponding eigenvalue determines the sur-
face wave’s frequency, and the surface wave itself is the periodically extended eigenfunction.

Since the eigenfunction is a non-zero solution to a corresponding periodic scattering prob-
lem from the periodic structure, the latter scattering problem cannot be uniquely solvable 
at any of these eigenfrequencies. For this reason, such frequencies are often excluded from 
the analysis (see, e.g. [4]) by proper assumptions on the refractive index. In the past decade, 
however, the study of surface waves, also known as resonant scattering, has attracted a lot 
of attention. For an overview we suggest the interesting paper [24] by S. Shipman. From the 
mathematical point of view the formulation of a correct radiation condition is challenging 
which ensures both, uniqueness and the existence of surface waves.

In this paper we extend the paper [15] to the scattering problem in R3 by an infinite inho-
mogeneous cylinder involving a periodic (with respect to the axis of the cylinder) refractive 
index. We believe that the so-called limiting absorption principle is the natural approach for 
finding the physically correct solution of the scattering problem. By construction, this solution 
is, in a certain topology, limit of the unique solutions to a family of coercive problems with 
artificial complex-valued wave numbers.

This limiting absorption solution consists of two parts that we determine via the Floquet–
Bloch transform: The first part belongs to H1 in any cylinder of finite radius and the sec-
ond part is made up of surface waves or propagative modes. This second part vanishes if no 
propagative mode exists. However, if such modes exist then the direction of propagation is 
determined through a finite-dimensional eigenvalue problem in the finite dimensional space 
of propagating modes. This paper seems to be a first instance of such a limiting absorption 
principle for a scattering problem by an infinite tube. There exist, however, several contrib-
utions concerning problems in R3 which are periodic with respect to two or all three variables, 
see, e.g. [24]. Our problems serves as a simple model how tubes in R3 are scattered by, e.g. 
point sources.

The structure of the spectrum, the limiting absorption principle, and the construction of 
radiation conditions for frequency scattering problems in free space, in closed waveguides, 
and in stratified media has a long history. We refer to [2, 3, 7–9, 13, 17, 22, 23, 25–27] for a 
few references. Further, in [10] (see also [14]) a limiting absorption principle for scattering in 
a closed waveguide has recently been shown that relies fundamentally on the Floquet–Bloch 
transform and has substantially motivated our first paper [15]. In [10], the authors decompose 
fields via the eigenfunctions of the generalized quasi-periodic Laplacian in the unit cell. This 
technique cannot be applied in our case—not even in the two-dimensional case—, as such 
decompositions cannot be directly transferred to structures that form open instead of closed 
waveguides. Our analysis is indeed rather different compared to the one in [10], and also com-
pared to the independent study in [12].
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Precisely, we consider the scattering of an incident field uinc by an infinite cylinder 
TR := B2(0, R)× R ⊂ R3 where B2(0, R) ⊂ R2 denotes the disc centered at the origin with 
radius R  >  0. We assume that the index of refraction n ∈ L∞(R3) is positive and 2π-periodic 
with respect to x3 and equals to one for x �∈ TR and construct a (weak) limiting absorption 
solution us ∈ H2

loc(R3) such that the total field ut = uinc + us solves

∆ut + k̂2n ut = 0 in R3. (1)

Here, k̂ > 0 denotes the wave number.
The limiting absorption principle leads to a special decomposition of the solution into a 

field u(1) which decays along the axis of the tube and a second field u(2) which consists of a 
finite combination of propagative modes. Outside of the cylinder TR the field u(1) is a solution 
of the exterior boundary value problem ∆u(1) + k̂2u(1) = −h for some h ∈ L2(R3 \ TR) with 
H1/2-boundary data on the boundary ΓR = ∂TR. This limiting absorption solution u(1) can be 
explicitly expressed by the (generalized) Fourier transform in terms of Hankel functions of 
the first kind.

Both parts, the decomposition of the field u into a decaying field u(1) along the axis and 
a propagating field u(2) and the particular form of u(1) outside of the cylinder allows the for-
mulation of a radiation condition which we carry out in the second part of this paper. There, 
we will prove uniqueness under this radiation condition and also existence by a direct method; 
that is, without using the limiting absorption principle.

The methods we apply are all well-known and in principle simple enough to extend our 
analysis to more involved scattering problems in linear elasticity or electromagnetics. This, 
however, has to be done and is planed for the future.

To briefly comment on this paper’s structure, the following section 2 discusses the scatter-
ing problem in more detail and transforms it into a family of periodic problems with the help 
of the Floquet–Bloch transform. We reduce the problems to a bounded cell by introducing 
the Dirichlet–Neumann operator for the exterior of the cylinder TR. In section 3 we prove 
the limiting absorption principle and exhibit the particular form of u(1) in the exterior of TR. 
Finally, in the appendix we prove several properties of Hankel functions with complex argu-
ments and solve an exterior boundary value problem for the Helmholtz equation with the use 
of the Fourier transform.

2. Formulation of the scattering problem and the Floquet–Bloch transform

We begin by setting up some notations (see figure 1). Let k ∈ C with Rek > 0 and Imk � 0 
be the wave number, BN(y, R) = {x ∈ RN : |x − y| < R} the ball in RN  with center y  and 
radius R  >  0, and TR = B2(0, R)× R ⊂ R3 the tube (or infinite cylinder) in x3-direction 
with boundary ΓR := ∂TR = ∂B2(0, R)× R. Furthermore, we define the finite cylinder by 
CR := B2(0, R)× (0, 2π) ⊂ R3 and C∞ := R2 × (0, 2π) ⊂ R3 and the vertical part of the 
boundary by γR := ΓR ∩ CR . We consider in the following the case that a point source at some 
point y ∈ R3 is scattered by a tube TR0 ⊂ R3 of radius R0 which is filled by some medium with 
index of refraction n ∈ L∞(R3) which is assumed to be 2π-periodic with respect to the vari-
able x3 and equals to one outside of TR0. The incident field uinc is given by the fundamental 
solution Φk of the Helmholtz equation in R3; that is,

uinc(x) = Φk(x; y) =
exp(ik|x − y|)

4π |x − y|
, x �= y,

A Kirsch Inverse Problems 35 (2019) 104004
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for some fixed y ∈ R3. The scattering problem is to determine the total field ut ∈ H1
loc

(
R3 \ {y}

)
 

with

∆ut + k2n ut = 0 in R3 \ {y}, (2)

and such that the scattered field us = ut − uinc is more regular than the incident field, in par-
ticular us ∈ H1

loc(R3). In other words, we wish to determine the Green’s function of the differ-
ential operator ∆+ k2n. The solution is not uniquely determined by (2) because some kind 
of radiation condition for the scattered field is required. It is the purpose of this paper to 
derive a correct form of a radiation condition from the limiting absorption principle. First, 
we transform this problem into an inhomogeneous equation in H1

loc(R3) with a source term 
of bounded support. Indeed, choose ε > 0 and a function χ ∈ C∞(R3) with χ(x) = 0 for 
|x| � ε/2 and χ(x) = 1 for |x| � ε and set u(x) = us(x) + χ(x − y) uinc(x). Then u coincides 
with us for |x − y| � ε/2 and coincides with ut for |x − y| � ε. Setting χy(x) = χ(x − y) we 
observe that u solves

∆u + k2n u = −f in R3 (3)

where f := −[k2(1 − n)(1 − χy) + ∆χy] uinc − 2∇χy · ∇uinc. We note that f ∈ L2(R3) 
has support in the ball B3(y, ε) ⊂ R3 and depends analytically on k. From now on we treat 
f = fk ∈ L2(R3) as an arbitrary function with compact support in the disc B3(y, ε) ⊂ R3 such 
that k �→ fk ∈ L2

(
B3(y, ε)

)
 is holomorphic in some (complex) neighborhood of some ̂k ∈ R>0. 

We enlarge the radius R0 of the tube to include the support of the source function f . In the case 
of the scattering problem the scattered field is then given by us = u − χy uinc and the total field 
by ut = u + (1 − χy)uinc. The solution of (3) is understood in the variational sense:

Definition 2.1. A function u ∈ H1
loc(R3) is called variational solution of (3) if

∫

R3

[
∇u · ∇ψ − k2n uψ

]
dx =

∫

TR0

f ψ dx (4)

for all ψ ∈ H1(R3) with compact support.

By choosing ψ ∈ H1(R3) in (4) with compact support in R3 \ TR0  we note that u is a clas-
sical solution of the Helmholtz equation ∆u + k2u = 0 for x2

1 + x2
2 > R2

0. The solution u is 
therefore analytic in the exterior of the tube TR0.

In the following we will consider the source problem (3) for arbitrary functions f ∈ L2(R3) 
with compact support and make the following assumption on the data.

Assumption 2.2. Let k ∈ C with Rek > 0 and Imk � 0 and let n ∈ L∞(R3) which is as-
sumed to be 2π-periodic with respect to the variable x3 and equals to one outside of TR0. Fur-
thermore, we assume that there exists n0  >  0 with n(x) � n0 for all x ∈ R3. Finally, we assume 
that f ∈ L2(R3) has compact support which is also contained in TR0 and depends analytically 
on k in the neighborhood of some k̂ > 0.

As mentioned above, a further condition is needed to assure uniqueness. It is one of the 
main goals of this paper to develop a proper radiation condition for real wave numbers. For 
wave numbers with positive imaginary part we simply require that u ∈ H1(R3).

Theorem 2.3. Let assumption 2.2 hold. If Imk > 0 then there exists a unique variational 
solution u = uk ∈ H1(R3) of problem (4).
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Proof. This is a standard application of the Lax–Milgram theorem. □ 

We will show in the first part of this paper that the solution u  =  uk converges (in some 

topology specified later) to some solution uk̂  of the Helmholtz equation ∆uk̂ + k̂2n uk̂ = −fk̂  
in R3 when k tends to some real valued k̂ > 0; that is, the limiting absorption principle holds.

We use the (periodic) Floquet–Bloch transform to reformulate the problem as a 
family of 2π-periodic problems. Recall that the periodic Floquet–Bloch transform 
F : L2(R) → L2

(
(0, 2π)× (−1/2, 1/2)

)
 is defined by

(Ff )(t,α) = f̃ (t,α) =
∑
m∈Z

f (t + 2πm) e−iα(t+2πm), t ∈ (0, 2π), α ∈ [−1/2, 1/2].

This formula directly shows that for smooth functions f  and fixed α the transformed function 
t �→ (Ff )(t,α) = f̃ (t,α) is 2π-periodic; while for fixed t the function α �→ (Ff )(t,α) = f̃ (t,α) 
satisfies f̃ (t,α+ 1) = eit f̃ (t,α). It is hence sufficient to consider L2

(
(0, 2π)× (−1/2, 1/2)

)
 

as image space of F.
The inverse transform is given by

(F−1h)(t) =

∫ 1/2

−1/2
h(t,α) eiαtdα, t ∈ R, (5)

where we extended h(·,α) to a 2π-periodic function in R .

Figure 1. The geometry with its notations.
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In view of our scattering problem, we apply the Floquet–Bloch transforms to the variable 
x3 and consider (x1, x2) as a parameter. We use the same symbol F for this extension. Then one 
can show that F is an isometry from L2(TR) onto L2

(
CR × (−1/2, 1/2)

)
; that is,

‖f̃‖2
L2(CR×(−1/2,1/2)) =

∫ 1/2

−1/2

∫

CR

|f̃ (x,α)|2 dx dα =

∫

TR

|f (x)|2 dx = ‖f‖2
L2(TR)

.

Further, the restriction of F to H1(TR) is an isomorphism from H1(TR) onto the space 
L2
(
(−1/2, 1/2), H1

per(CR)
)
 where H1

per(CR) =
{

g ∈ H1(CR) : x3 �→ g(x) is 2π-periodic
}

 
(see [20, section 6]).

We transform (3) using the Floquet–Bloch transform

f̃α(x) =
∑
m∈Z

f (x + 2πme(3)) e−iα(x3+2πm) and

ũk,α(x) =
∑
m∈Z

u(x + 2πme(3)) e−iα(x3+2πm) for x ∈ R3 and α ∈ R,

where e(3) = (0, 0, 1)� denotes the third coordinate unit vector. We note that f̃α depends ana-
lytically on α because the series reduces to a finite sum. We arrive at the problem to determine 

for every α ∈ [−1/2, 1/2] a solution ũk,α ∈ H1
per,loc(C∞) of

∆ũk,α + 2iα
∂ũk,α

∂x3
+ (k2n − α2) ũk,α = −f̃α in C∞. (6)

Here, H1
per,loc(C∞) is just the local space corresponding to H1

per(C∞); that is, 
H1

per,loc(C∞) =
{

g : C∞ → C : g|CR ∈ H1
per(CR) for all R > 0

}
. The trace space corre-

sponding to H1
per(CR) with respect to the vertical boundary is denoted by H1/2

per (γR). The spaces 
H±1/2

per (γR) are defined as the completion of C∞
per(γR) with respect to the norms

‖g‖2
H±1/2(γR)

= R
∑
�,m∈Z

(
1 +

m2

R2 + �2
)±1/2 ∣∣g�,m

∣∣2 (7)

where g�,m = 1
2π

∫ 2π
0

∫ 2π
0 g(ϕ, x3) e−i[mϕ+�x3] dϕ dx3, �, m ∈ Z, are the Fourier coefficients of 

g ∈ L2(γR) (see [5]). Then g(ϕ, x3) =
1

2π

∑
�,m∈Z g�,m ei[mϕ+�x3].

Analogously to theorem 2.3 the Lax–Milgram theorem yields:

Theorem 2.4. Let assumption 2.2 hold. If Imk > 0 then for every α ∈ [−1/2, 1/2] there 
exists a unique variational solution ũk,α ∈ H1

per(C∞) of (6).

The solutions for Imk > 0 necessarily satisfy a Rayleigh expansion. From now on we fix 
R  >  R0.

Definition 2.5. Let Imk � 0. A solution ũ ∈ H1
per,loc(C∞ \ CR) of ∆ũ + 2iα ∂ũ

∂x3
+

(k2 − α2)ũ = 0 in C∞ \ CR satisfies the Rayleigh expansion if there exists R1  >  R and 

a�,m ∈ C such that ũ is given in cylindrical coordinates by

ũ(r,ϕ, x3) =
1

2π

∑
�,m∈Z

a�,m
H(1)

m
(
r
√

k2 − (�+ α)2
)

H(1)
m

(
R1

√
k2 − (�+ α)2

) ei[mϕ+�x3] (8)

A Kirsch Inverse Problems 35 (2019) 104004
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for r � R1, ϕ, x3 ∈ (0, 2π). Here, H(1)
m (z) denote the Hankel functions of the first kind and 

order m ∈ Z. The branch of the square root 
√

z  for z ∈ C with Imz � 0 is chosen such that 
Rez � 0 and Imz � 0. The series converges in H1(CR2 \ CR1) for every R2 > R1.

Remark. The series for ũ(r,ϕ, x3) and for ∂ũ(r,ϕ, x3)/∂r converge uniformly for r � R1 + δ  
for every δ > 0. Indeed, we write (8) in the form

ũ(r,ϕ, x3) =
1

2π

∑
�,m∈Z

b�,m
H(1)

m
(
r
√

k2 − (�+ α)2
)

H(1)
m

(
(R1 + δ)

√
k2 − (�+ α)2

) ei[mϕ+�x3], r � R1 + δ,

with b�,m = a�,m
H(1)

m

(
(R1+δ)

√
k2−(�+α)2

)
H(1)

m

(
R1

√
k2−(�+α)2

) . Then |ũ(r,ϕ, x3)| � 1
2π

∑
�,m∈Z |b�,m| because of the 

boundedness of 

∣∣H(1)
m

(
r
√

k2−(�+α)2
)∣∣∣∣H(1)

m

(
(R1+δ)

√
k2−(�+α)2

)∣∣ (see part (a) of lemma A.2). Furthermore, b�,m are 

the Fourier coefficients of ũ(R1 + δ, ·, ·). Since this function is analytic we have convergence 
of 

∑
�,m∈Z(1 + �2 + m2) p|b�,m|2 for all p ∈ N. Therefore, also 

∑
�,m∈Z |b�,m| converges. The 

same argument holds for the derivative.
For Imk > 0 the (unique solution) ũk,α ∈ H1

per(C∞) of (6) satisfies the Rayleigh expansion. 

Since g = ũk,α
∣∣
γR

∈ H1/2
per (γR) this follows from the first part of the following lemma.

Lemma 2.6. Let assumption 2.2 hold and let g ∈ H1/2
per (γR) with Fourier coefficients 

g�,m = 1
2π

∫ 2π
0

∫ 2π
0 g(ϕ, x3) e−i[mϕ+�x3] dϕ dx3, �, m ∈ Z.

 (a)  If Imk > 0 then there exists a unique solution ũ ∈ H1
per(C∞ \ CR) of the following  

Dirichlet boundary value problem

∆ũ + 2iα
∂ũ
∂x3

+ (k2 − α2)ũ = 0 in C∞ \ CR, ũ = g on γR. (9)

  The solution is given by

ũ(r,ϕ, x3) =
1

2π

∑
�,m∈Z

g�,m
H(1)

m
(
r
√

k2 − (�+ α)2
)

H(1)
m

(
R
√

k2 − (�+ α)2
) ei[mϕ+�x3], (10)

  for r  >  R and ϕ, x3 ∈ (0, 2π). The solution ũ and its derivative ∂ũ/∂r decay exponen-
tially; that is, there exist c  >  0 and σ > 0 such that |ũ(r,ϕ, x3)| � c exp(−σr) for all 
r  >  R (and the same for the derivative).

 (b)  If Imk � 0 then the series (10) converges in H1(CR1 \ CR) for every R1  >  R to some 

ũ ∈ H1
per,loc(C∞ \ CR). Furthermore, ũ is the unique solution solution of (9) satisfying the 

Rayleigh expansion (8).

 (c)  For every R1  >  R and k ∈ C with Imk � 0 the operator ̃Sk,α : H1/2
per (γR) → H1

per(CR1 \ CR), 

given by g �→ ũ|CR1\CR , is bounded.

Proof. 

 (a)  Existence and uniqueness of a solution ũ ∈ H1
per(C∞ \ CR) follows again by the Lax–

Milgram theorem. The uniqueness and the proof of part (b) imply that ũ has to be of the 
form (10). To show the exponential decay we set k� =

√
k2 − (�+ α)2 and use part (a) of 

lemma A.2 which yields that, for any R1  >  R,

A Kirsch Inverse Problems 35 (2019) 104004
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∣∣ũ(r,ϕ, x3)
∣∣ � 1

2π

∑
�,m∈Z

∣∣a�,m
∣∣
∣∣∣∣∣

H(1)
m (rk�)

H(1)
m (Rk�)

∣∣∣∣∣ =
1

2π

∑
�,m∈Z

∣∣a�,m
∣∣
∣∣∣∣∣
H(1)

m (R1k�)

H(1)
m (Rk�)

∣∣∣∣∣
︸ ︷︷ ︸

=: |b�,m|

∣∣∣∣∣
H(1)

m (rk�)

H(1)
m (R1k�)

∣∣∣∣∣

�
1

2π

∑
�,m∈Z

∣∣b�,m
∣∣ e−(Imk�)(r−R1) �

1
2π

e−σ(r−R1)
∑
�,m∈Z

∣∣b�,m
∣∣, r � R1,

  where σ = min{Imk� : � ∈ Z} which is positive because Imk > 0. This yields the esti-
mate because 

∑
�,m∈Z

∣∣b�,m
∣∣ < ∞. The estimate for the derivative is obtained by the same 

argument.
 (b), (c)  Let Imk � 0 and ũ given by (10). We define

ψ�,m(r,ϕ) =
H(1)

m (r k�)

H(1)
m (R k�)

eimϕ, r � R, �, m ∈ Z,

  where again k� =
√

k2 − (�+ α)2, � ∈ Z. Then

ũ(r,ϕ, x3) =
1

2π

∑
�,m∈Z

g�,m ψ�,m(r,ϕ) ei�x3 .

  By lemma A.4 of the appendix there exists c  >  0 such that

‖ψ�,m‖2
L2(B2(0,R1)\B2(0,R)) �

c√
1 + �2

and ‖ψ�,m‖2
H1

per(B2(0,R1)\B2(0,R)) � c
√

1 + �2 + m2

  for all �, m ∈ Z. Therefore, by the orthogonality of 
{
exp(imϕ+ i�x3) : �, m ∈ Z

}
,

‖ũ‖2
H1

per(CR1\CR)
=

1
2π

∑
�,m∈Z

∣∣g�,m
∣∣2 [‖ψ�,m‖2

H1
per(B2(0,R1)\B2(0,R)) + (�+ α)2‖ψ�,m‖2

L2(B2(0,R1)\B2(0,R))

]

� c
∑
�,m∈Z

∣∣g�,m
∣∣2
[√

1 + �2 + m2 +
(�+ α)2
√

1 + �2

]
� c′ ‖g‖2

H1/2
per (γR)

.

  This proves that the function given by (10) provides a solution of (9). The solution is also 

unique. Indeed, let g  =  0 and ũ ∈ H1
per,loc(C∞ \ CR) be a solution satisfying the Rayleigh 

expansion (8). The Fourier coefficients u�,m(r) = 1
2π

∫ 2π
0

∫ 2π
0 ũ(r,ϕ, x3) e−imϕ−i�x3 dϕ dx3 

satisfy Bessel’s differential equation

1
r

(
r u′�,m(r)

)′
+

(
k2 − (�+ α)2 − m2

r2

)
u�,m(r) = 0, r > R,

  and the initial condition u�,m(R) = 0. By the Rayleigh expansion, u�,m is given by 

u�,m(r) = a�,m
H(1)

m

(
r
√

k2−(�+α)2
)

H(1)
m

(
R1

√
k2−(�+α)2

)  for r  >  R1 and some a�,m ∈ C. By analyticity, u�,m(r) 

is given by this formula for all r  >  R. The initial condition yields a�,m = 0. □ 

Now we consider the source problem (6) also for the case of real wave numbers k = k̂ > 0 
and include the Rayleigh expansion.

Problem (Pα): Determine ũk̂,α ∈ H1
per,loc(C∞) as a solution of (6) for k = k̂ > 0 which  

satisfies also the Rayleigh expansion (8) for k = k̂ > 0; that is,
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∆ũk̂,α + 2iα
ũk̂,α

∂x3
+ (k̂2n − α2) ũk̂,α = −f̃α in R3, and (11)

ũk̂,α(r,ϕ, x3) =
1

2π

∑
�,m∈Z

a�,m
H(1)

m
(
r
√

k̂2 − (�+ α)2
)

H(1)
m

(
R1

√
k̂2 − (�+ α)2

) ei[mϕ+�x3], r � R1,

 (12)
for some R1  >  R and a�,m ∈ C.

As the example of a constant index n shows for given ̂k > 0 there might exist certain values 
of α such that the Problem (Pα) does not have a unique solution.

Definition 2.7. The values of α ∈ [−1/2, 1/2] for which the homogeneous form of Prob-
lem (Pα); that is, (11), (12), with f̃α = 0, admits non-trivial solutions are called exceptional 

values or propagative wave numbers. The corresponding periodic solutions φ̃ ∈ H1
per,loc(C∞) 

of the homogeneous problem are called propagating modes.

We define the set

A =
{
α ∈ [−1/2, 1/2] : there exists � ∈ Z with |α+ �| = k̂

}

of cut-off values and note that A consists of one or two elements. We make the following 
assumption for the rest of the paper.

Assumption 2.8. The cut-off values α ∈ A are not exceptional values; that is, for α ∈ A 
the only solution of (11) and (12) for f̃α = 0 is the trivial one.

The name ‘propagating mode’ is justified by the following.

Lemma 2.9. Let assumption 2.8 hold and choose R1  >  R.

 (a)  If α is an exceptional value with corresponding propagating mode φ̃ ∈ H1
per,loc(C∞) then 

φ̃ is evanescent; that is, there exists σ > 0 and c  >  0 with 
∣∣φ̃(x)∣∣ � c exp

(
−σ

√
x2

1 + x2
2

)
 

for all x ∈ C∞. In particular, φ̃ ∈ H1
per(C∞).

 (b)  If α is exceptional with propagating mode φ̃ ∈ H1
per,loc(C∞) then −α is exceptional with 

propagating mode φ̃.

Proof. 

 (a)  Let φ̃ ∈ H1
per,loc(C∞) be a non-trivial solution of (Pα) with f̃α = 0. Green’s formula in 

CR1 and the Rayleigh expansion (12) yields
∫

CR1

[∣∣∇φ̃
∣∣2 − 2iα

∂φ̃

∂x3
φ̃+ (α2 − k̂2n) |φ̃|2

]
dx

=

∫

γR1

φ̃
∂φ̃

∂ν
ds = R1

∑
�,m∈Z

∣∣a�,m
∣∣2 k� H(1)′

m (R1k�)

H(1)
m (R1k�)

= R1

∑
m∈Z

∑

|�+α|<k̂

∣∣a�,m
∣∣2 k� H(1)′

m (R1k�)

H(1)
m (R1k�)

+ R1

∑
m∈Z

∑

|�+α|>k̂

∣∣a�,m
∣∣2 i|k�|H(1)′

m (iR1|k�|)
H(1)

m (iR1|k�|)

= R1

∑
m∈Z

∑

|�+α|<k̂

∣∣a�,m
∣∣2 k� H(1)′

m (R1k�)

H(1)
m (R1k�)

+ R1

∑
m∈Z

∑

|�+α|>k̂

∣∣a�,m
∣∣2 |k�|K′

m(R1|k�|)
Km(R1|k�|)
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  with k� =
√

k̂2 − |�+ α|2 . The terms with |�+ α| = k̂  do not appear because of assump-

tion 2.8. Here, Km are the modified Hankel functions which are related to the Hankel 
functions by H(1)

m (it) = 2
π i−m−1Km(t) and are real valued (see [1]). The left hand side 

and the second series on the right hand side are real valued. Furthermore, for s  >  0

Im
s H(1)′

m (s)

H(1)
m (s)

=
s
[
−J′m(s)Ym(s) + Y ′

m(s)Jm(s)
]

∣∣H(1)
m (s)

∣∣2 =
2

π
∣∣H(1)

m (s)
∣∣2 > 0

  by the Wronskian relationship. This implies that a�,m = 0 for all (�, m) ∈ Z2 with 
|�+ α| < k̂ . Finally, we use part (a) of lemma A.2 which yields as in the proof of lemma 
2.6 that, for any R2 > R1,

∣∣ũk̂,α(r,ϕ, x3)
∣∣ � 1

2π

∑
m∈Z

∑

|�+α|>k̂

∣∣a�,m
∣∣
∣∣∣∣∣

H(1)
m (rk�)

H(1)
m (R1k�)

∣∣∣∣∣

=
1

2π

∑
m∈Z

∑

|�+α|>k̂

∣∣a�,m
∣∣
∣∣∣∣∣
H(1)

m (R2k�)

H(1)
m (R1k�)

∣∣∣∣∣
︸ ︷︷ ︸

=: |b�,m|

∣∣∣∣∣
H(1)

m (rk�)

H(1)
m (R2k�)

∣∣∣∣∣

�
1

2π

∑
m∈Z

∑

|�+α|>k̂

∣∣b�,m
∣∣ e−|k�|(r−R2)

�
1

2π
e−σ(r−R2)

∑
m∈Z

∑

|�+α|>k̂

∣∣b�,m
∣∣, r � R2,

  where σ = min{|�+ α| − k̂ : |�+ α| > k̂, � ∈ Z}. This proves part (a) because the 
series over |b�,m| converges.

 (b)  This is clear from the definition. □ 

Next, we reduce the problem to a boundary problem in the bounded cell CR using the 
Dirichlet–Neumann operator.

Definition 2.10. Let Rek > 0 and Imk � 0. The periodic Dirichlet–Neumann operator 

Λ̃k,α : H1/2
per (γR) → H−1/2

per (γR) is defined by

(Λ̃k,αg)(ϕ, x3) =
1

2π

∑
�,m∈Z

g�,m
k� H(1)′

m (k�R)

H(1)
m (k�R)

eimϕ+i�x3 for ϕ, x3 ∈ (0, 2π),

 (13)

where again k� =
√

k2 − (�+ α)2 for � ∈ Z. Here we cut the complex plane along the nega-
tive imaginary axis so that the square root is holomorphic in C \ (iR�0). Furthermore,

g�,m =
1

2π

∫ 2π

0

∫ 2π

0
g(ϕ, x3) e−i[mϕ+�x3] dϕ dx3, �, m ∈ Z,

are the Fourier coefficients of g ∈ H1/2
per (γR). The operator is well defined and bounded by part 

(b) of lemma A.2.
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We can even extend this operator Λ̃k,α to (k,α) ∈ C× C in a neighborhood of real values 
(k̂, α̂) ∈ R>0 × [−1/2, 1/2] ⊂ R× R. This and other properties are shown in the following 
theorem.

Theorem 2.11. 

 (a)  The operators Λ̃k,α are well defined and bounded from H1/2
per (γR) into H−1/2

per (γR) for all 
k ∈ C and α ∈ [−1/2, 1/2] with Rek > 0 and Imk � 0.

 (b)  Let k̂ > 0 and α̂ ∈ [−1/2, 1/2] such that |�+ α̂| �= k̂  for all � ∈ Z. Choose δ > 0 such

P =
{
(k,α) ∈ C× C : |α− α̂|+ |k − k̂| < δ

}

  satisfies |�+ α| �= k  and k2 − (�+ α)2 /∈ iR�0 for all (k,α) ∈ P  and � ∈ Z. Then 
the mapping (k,α) �→ Λ̃k,α is well defined and strongly holomorphic from P into 

L
(
H1/2

per (γR), H−1/2
per (γR)

)
.

 (c)  ̃Λk,α − Λ̃i,0 is compact from H1/2
per (γR) into H−1/2

per (γR). Here, Λ̃i,0 denotes the Dirichlet–
Neumann operator for k  =  i and α = 0.

 (d)  ̃Λi,0 is self-adjoint and negative; that is, 〈Λ̃i,0g, g〉 < 0 for all g ∈ H1/2
per (γR) with 

g �= 0. Here, 〈·, ·〉 denotes the dual form; that is, the extension of the L2-inner product to 

H−1/2
per (γR)× H1/2

per (γR).

Proof. 

 (a)  This follows directly from the estimate of part (b) of lemma A.2 of the appendix.
 (b)  Boundedness of Λ̃k,α for every (k,α) ∈ P  follows again by the estimate of lemma A.2 of 

the appendix. For the analyticity of the mapping (k,α) �→ Λ̃k,α it is sufficient to show that 
this mapping is weakly holomorphic; that is, the mapping (k,α) �→

〈
Λ̃k,αg, h

〉
 is holo-

morphic in P for every g, h ∈ H1/2
per (γR). The fact that every weakly holomorphic function 

is strongly holomorphic is shown, e.g. in Chapter 8 of [6] for operator valued functions 
of one complex variable. Since the proof uses only Cauchy’s integral formula - which is 
valid also in C2 - this property holds also for functions of two complex variables. The 
series

〈Λ̃k,αg, h
〉
= R

∑
�,m∈Z

g�,m h�,m
k� H(1)′

m (k�R)

H(1)
m (k�R)

  converges uniformly by lemma A.2 which proves analyticity of this function.
 (c)  Let Λ̃k,αg = ∂u/∂r|γR and Λ̃i,0g = ∂v/∂r|γR where u and v solve

∆u + 2iα
∂u
∂x3

+ (k2 − α2) u = 0, ∆v − v = 0 in C∞ \ CR

  and u = v = g on γR and the Rayleigh expansions. The difference u − v satisfies

∆(u − v) + 2iα
∂(u − v)

∂x3
+ (k2 − α2) (u − v) = −2iα

∂v
∂x3

− (k2 − α2 + 1) v

  for r  >  R and u − v vanishes on γR. Now we choose φ ∈ C∞(R3) which is equal to 
one in the cylinder {x ∈ R3 : x2

1 + x2
2 � R̂2, −1 < x3 < 2π + 1} and vanishes outside of 

the larger cylinder {x ∈ R3 : x2
1 + x2

2 � (R̂ + 1)2, −2 < x3 < 2π + 2} for some R̂ > R. 
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We define the shell S := {x ∈ R3 : R2 < x2
1 + x2

2 < (R̂ + 1)2, −2 < x3 < 2π + 2}. The 
product w = φ(u − v) satisfies

∆w + 2iα
∂w
∂x3

+ (k2 − α2)w = −h in S

  and vanishes on the boundary of S. Here,

h =

[
2iα

∂v
∂x3

+ (k2 − α2 + 1) v
]
φ− 2∇φ · ∇(u − v)− (u − v)∆φ− 2iα (u − v)

∂φ

∂x3
.

  We notice that h ∈ L2(S) and the mapping g �→ h is bounded from H1/2
per (γR) into L2(S) (by 

the continuous dependence of u and v on g). Standard regularity results for elliptic partial 
differential equations imply continuity of h → w from L2(S) into H2(S). This shows conti-

nuity of g �→ w from H1/2
per (γR) into H2(S) and thus compactness as a mapping into H1(S). 

The trace theorem yields compactness of g �→ ∂w/∂r = ∂(u − v)/∂r = (Λ̃k,α − Λ̃i,0)g.
 (d)  Let again Λ̃i,0gj = ∂vj/∂r|γR for j = 1, 2 where vj ∈ H1

per(C∞ \ CR) solves ∆vj − vj = 0 
in C∞ \ CR and vj = gj on γR. Then, for any R1  >  R,

〈Λ̃i,0g1, g2〉 =

∫

γR

∂v1

∂r
v2 ds =

∫

r=R1

∂v1

∂r
v2 ds −

∫

CR1\CR

∇v1 · ∇v2 + v1v2 dx

  which converges to the hermitean form −
∫

C∞\CR

[
∇v1 · ∇v2 + v1v2

]
dx  as R1 → ∞ 

because vj and ∂vj/∂r  decay exponentially by part (a) of lemma 2.6. This shows that 
Λ̃i,0 is selfadjoint. Furthermore, for g = g1 = g2 we observe that Λ̃i,0 is negative because 
〈Λ̃i,0g, g〉 = 0 holds only for v = 0 which implies g  =  0.

  We recall the bounded cell CR = B2(0, R)× (0, 2π) and formulate the source problem for 
ũk,α ∈ H1

per(CR) as the variational equation
∫

CR

[
∇ũk,α · ∇ψ + 2iα ũk,α

∂ψ

∂x3
+ (α2 − k2n) ũk,α ψ

]
dx − 〈Λ̃k,αũk,α,ψ〉 =

∫

CR

f̃α ψ dx (14)

for all ψ ∈ H1
per(CR).

The proof of the following lemma is simple and left to the reader.

Lemma 2.12. Let k ∈ C with Rek > 0 and Imk � 0.

 (a)  If ũk,α ∈ H1
per,loc(C

∞) is a solution of the scattering problem (6) and Rayleigh expansion 
(8) then the restriction ũk,α|CR ∈ H1

per(CR) solves (14).
 (b)  If ũk,α ∈ H1

per(CR) is a solution of (14) then the extension

ũk,α(x) =

{
ũk,α(x), x ∈ CR,

S̃k,α
(
ũk,α|ΓR

)
(x), x ∈ C∞ \ CR,

  with the operator S̃k,α introduced in lemma 2.6 is the solution of the scattering problem 
(6) and Rayleigh expansion (8).

We show that the equation (14) is of Fredholm type. Indeed, we first decompose Λ̃k,α into 
Λ̃k,α = Λ̃i,0 + [Λ̃k,α − Λ̃i,0]. From theorem 2.11 we observe that
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(v,ψ)∗ :=
∫

CR

[
∇v · ∇ψ + vψ

]
dx − 〈Λ̃i,0v,ψ〉, v,ψ ∈ H1

per(CR), (15)

defines an inner product in H1
per(CR) which is equivalent to the ordinary norm in H1

per(CR). 
Therefore, (14) is equivalent to

(ũk,α,ψ)∗ − ak,α(ũk,α,ψ) =

∫

CR

f̃α ψ dx, ψ ∈ H1
per(CR),

where

ak,α(v,ψ) := −
∫

CR

[
iα

(
v
∂ψ

∂x3
− ψ

∂v
∂x3

)
+ (α2 − k2n − 1) vψ

]
dx

−
〈
[Λ̃i,0 − Λ̃k,α] v,ψ

〉
, v,ψ ∈ H1

per(CR).
 

(16)

We note that the source term f̃α in (14) can also depend on k (as in the original scattering 
problem (3)), and we write f̃k,α from now on.

Let again k ∈ C with Rek > 0 and Imk � 0. By the theorem of Riesz, the compact imbed-
ding of H1

per(CR) in L2(CR), and the compactness of Λi,0 − Λk,α there exists a compact opera-

tor Kk,α from H1
per(CR) into itself with ak,α(u,ψ) = (Kk,αu,ψ)∗ for all u,ψ ∈ H1

per(CR). 

Furthermore, there exists rk,α ∈ H1
per(CR) with 

∫
CR

f̃k,α ψ dx = (rk,α,ψ)∗ for all ψ ∈ H1
per(CR). 

Then we can rewrite the variational equation (14) as an operator equation in the form

ũk,α − Kk,αũk,α = rk,α in H1
per(CR). (17)

The operator equation is well defined for all k ∈ C with Rek > 0 and Imk � 0. For Imk > 0 
we have uniqueness and existence by theorem 2.4.

For real values k = k̂ > 0, however, we expect non-uniqueness at certain values of α that 
we called exceptional values (see definition 2.7) . In other words, we expect that for some 
α ∈ [−1/2, 1/2] there is an eigenvalue λ = 1 of the non-selfadjoint operator Kk̂,α. We note 
that by lemma 2.12 the corresponding eigenfunctions are exactly the propagating modes of 
definition 2.7.

Lemma 2.13. Let k̂ > 0 and assume that assumptions 2.2 and 2.8 hold. Then there exist 
at most finitely many exceptional values {α̂j : j ∈ J} ⊂ [−1/2, 1/2] for some finite index set 
J ⊂ Z. By part (b) of lemma 2.9 we can assume that J is symmetric with respect to the origin 
and α̂−j = −α̂j for all j ∈ J.

Proof. Assume on the contrary that there exists an (infinite) sequence (α̂j)j in [−1/2, 1/2] and a 
sequence (wj)j in H1

per(CR) of corresponding normalized functions such that (I − Kk̂,α̂j
)wj = 0 

for all j . Let again A = {α ∈ [−1/2, 1/2] : |�+ α| = k̂ for some � ∈ Z}. We can assume 
that the sequence belongs to one of the at most three intervals of [−1/2, 1/2] \ A, say to 
I = [−1/2, τ) where |�+ τ | = k̂  for some � ∈ Z. By theorem 2.11 there exists an open set 
U such that I ⊂ U  and the mapping α �→ Kk̂,α is analytic from U into L(H1

0,per(CR)). From 
[11, theorem 5.1] it follows that the equation (I − Kk̂,α)w = 0 has the same number of linearly 
independent solutions at every parameter α ∈ I  except for finitely many. Since for the infinite 
sequence α̂j this number is at least one, it has to be at least one for all α ∈ I  except for finitely 

many. From the continuity of α �→ K̃k̂,α and the injectivity of K̃k̂,τ by assumption 2.8 the op-
erators K̃k̂,α have to be injective for all α in a neighborhood of τ . This is a contradiction. The 
other cases of I  are treated in the same way. □ 
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3. The limiting absorption principle

In this section we fix an arbitrary wave number k̂ ∈ R>0 and investigate the operator equa-
tion (17) in a neighborhood of the exceptional values α̂j for j ∈ J. (Of course, such excep-
tional values do not need to exist for every k̂ > 0.) The following lemma is obvious by the 
Fredholm property of the operator Kk,α and the definition of an exceptional value.

Lemma 3.1. For any fixed δ > 0 the solutions ̃uk,α ∈ H1
per(CR) of (17) for Imk > 0 converge 

to ̃uk̂,α in H1
per(CR) as k → k̂ uniformly with respect to 

{
α ∈ [−1/2, 1/2] : |α− α̂j| � δ ∀j ∈ J

}
.

It remains to study the convergence of ũk,α in neighborhoods of the exceptional values α̂j. 
To this end, we formulate the following result from abstract functional analysis.

Theorem 3.2. Let H be a (complex) Hilbert space, Iε = (−ε0, ε0) ⊂ R and 
Iα = (−α0,α0) ⊂ R open intervals containing 0. Let K(ε,α) : H → H  and 
f (ε,α) ∈ H , (ε,α) ∈ Iε × Iα, be families of compact operators and elements, respectively, 
such that (ε,α) �→ K(ε,α) is twice continuously differentiable on Iε × Iα and (ε,α) �→ f (ε,α) 
is Lipschitz continuous on Iε × Iα. Set L(ε,α) = I − K(ε,α) and assume the following:

 (a)  The null space N := N
(
L(0, 0)

)
 is not trivial and the Riesz number of L(0, 0) is one; that 

is, the algebraic and geometric multiplicities of the eigenvalue 1 of K(0, 0) coincide; that 
is, N

(
L(0, 0)2

)
= N

(
L(0, 0)

)
. Let P : H → N ⊂ H  be the projection operator onto N  

corresponding to the direct decomposition H = N ⊕R
(
L(0, 0)

)
,

 (b)  L(ε,α) is one-to-one; that is, also onto, for all (ε,α) ∈ Iε × Iα, (ε,α) �= (0, 0),
 (c)  A := 1

i P ∂
∂εK(0, 0)|N : N → N  is selfadjoint and positive definite and 

B := P ∂
∂αK(0, 0)|N : N → N  is selfadjoint and one-to-one.

Let u(ε,α) ∈ H be the unique solution of L(ε,α)u(ε,α) = f (ε,α) for all (ε,α) ∈ Iε × Iα, 
ε > 0. Then there exists ε1 ∈ (0, ε0) and δ ∈ (0,α0) such that u(ε,α) has the form

u(ε,α) = u(1)(ε,α) −
m∑

�=1

f�
iε− λ� α

φ� for (ε,α) ∈ (0, ε1)× (−δ, δ).

Here, ‖u(1)(ε,α)‖H  is uniformly bounded with respect to (ε,α), and 
{
λ�,φ� : � = 1, . . . , m

}
 

is an orthonormal eigensystem of the following generalized eigenvalue problem in the finite 
dimensional space N  (where m = dimN ):

−Bφ� = λ� Aφ� in N with normalization
(
Aφ�,φ�′

)
H = δ�,�′ (18)

for �, �′ = 1, . . . , m. Finally, f� =
(
Pf (0, 0),φ�

)
H  are the expansion coefficients of A−1Pf(0,0) 

with respect to the inner product (A·, ·)H.

For the proof we refer to [16].
We want to apply this theorem to the equation  (17) and set K(ε,α) = Kk̂+iε,α̂j+α and 

f (ε,α) = rk̂+iε,α̂j+α where k̂ > 0 is fixed and α̂j, j ∈ J, is one of the exceptional values. 
In the following we assume always that assumptions 2.2 and 2.8 are satisfied. We have to 

show the assumptions of the previous theorem. Let X̃j = N (I − Kk̂,α̂j
) denote the kernel of 

I − Kk̂,α̂j
. By lemma 2.12 it is given by
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X̃j =

{
φ̃j|CR : φ̃j ∈ H1

per(C∞) satisfies
∆φ̃j + 2iα̂j ∂φ̃j/∂x3 + (k̂2n − α̂2

j )φ̃j = 0 in C∞,
φ̃j is evanescent

}

and recall that X̃j ⊂ H1
per(CR) is finite dimensional. The space H1

per(CR) is again equipped with 
the inner product (·, ·)∗ from (15). We set mj = dimX̃j.

Lemma 3.3. Fix j ∈ J.

 (a)  The decomposition H1
per(CR) = X̃j ⊕R(I − Kk̂,α̂j

) is orthogonal with respect to (·, ·)∗. 
Therefore, the projection operator Pj : H1

per(CR) → X̃j  is the orthogonal projection.
 (b)  The Riesz number of I − Kk̂,α̂j

 is one.

 (c)  1i Pj
∂
∂εK(0, 0)

∣∣
X̃j
= Pj

∂
∂k Kk̂,α̂j

∣∣∣
X̃j

: X̃j → X̃j is selfadjoint and positive definite and 

Pj
∂
∂αKk̂,α̂j

∣∣∣
X̃j

: X̃j → X̃j is selfadjoint.

 (d)  The eigenvalue problem (18) takes the form

∫

C∞

[
−i

∂φ̃�,j

∂x3
+ α̂j φ̃�,j

]
ψ dx = λ�,j k̂

∫

C∞

n φ̃�,j ψ dx for all ψ ∈ X̃j (19)

  and � = 1, . . . , mj . The normalization takes the form

2k̂
∫

C∞

n φ̃�,j φ̃�′,j dx = δ�,�′ .

  Here, φ̃�,j ∈ X̃j is identified with its extension in C∞.

Proof. Since j ∈ J is fixed we drop j  from the notation.

 (a)  First we note that for v ∈ X̃ and ψ ∈ H1
per(CR) the dual form takes the form (see proof of 

lemma 2.9)

〈Λk̂,α̂v,ψ〉 = R
∑

|�+α̂|>k̂

∑
m∈Z

v�,m ψ�,m
k�H

(1)′
m (k�R)

H(1)
m (k�R)

= R
∑

|�+α̂|>k̂

∑
m∈Z

v�,m ψ�,m
|k�|K′

m(|k�|R)
Km(|k�|R)

= 〈v,Λk̂,α̂ψ〉

  because the ratio is real valued. Again, Km are the modified Bessel functions and 

k� = k�(k̂, α̂) =
√

k̂2 − (�+ α̂)2 . Therefore, for v ∈ X̃ and ψ ∈ H1
per(CR) we have by 

partial integration

ak̂,α̂(v,ψ) = −
∫

CR

[
2iα̂ v

∂ψ

∂x3
+ (α̂2 − k̂2n − 1) vψ

]
dx − 〈Λk̂,α̂v,ψ〉

= −
∫

CR

[
−2iα̂ ψ

∂v
∂x3

+ (α̂2 − k̂2n − 1) vψ
]

dx − 〈v,Λk̂,α̂ψ〉 = ak̂,α̂(ψ, v).

  From this we conclude for v ∈ N (I − Kk̂,α̂) and ψ ∈ H1
per(CR) that

(
(I − Kk̂,α̂)ψ, v

)
∗ = (ψ, v)∗ − ak̂,α̂(ψ, v) = (v,ψ)∗ − ak̂,α̂(v,ψ) =

(
(I − Kk̂,α̂)v,ψ

)
∗ = 0.
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 (b)  Let u ∈ N
(
(I − Kk̂,α̂)

2
)
 and set v = (I − Kk̂,α̂)u. Then v ∈ N (I − Kk̂,α̂). Therefore

‖v‖2
∗ =

(
v, (I − Kk̂,α̂)u

)
∗ =

(
(I − Kk̂,α̂)u, v

)
∗ = ak̂,α̂(u, v)

= ak̂,α̂(v, u) =
(
(I − Kk̂,α̂)v, u

)
∗ = 0

  because (I − Kk̂,α̂)v = 0. This implies v = 0; that is, u ∈ N (I − Kk̂,α̂).
 (c)  We note that ak̂,α̂ has the following form on X̃ × X̃

ak̂,α̂(v,ψ) = −
∫

C∞

[
2iα̂ v

∂ψ

∂x3
+ (α̂2 − k̂2n − 1) vψ

]
dx, v,ψ ∈ X̃,

  because v and ψ decay exponentially as x2
1 + x2

2 tends to infinity. On the right hand side 
v,ψ ∈ X̃ are again identified with their extensions in C∞. Therefore,

∂

∂k
ak̂,α̂(v,ψ) = 2k̂

∫

C∞

n vψ dx, v,ψ ∈ X̃,

∂

∂α
ak̂,α̂(v,ψ) = −2

∫

C∞

[
i v

∂ψ

∂x3
+ α̂ vψ

]
dx, v,ψ ∈ X̃.

  This proves part (c) because X̃  is finite dimensional.

 (d)  This is obvious of the forms of ∂∂k ak̂,α̂ and ∂
∂αak̂,α̂ of part (c). □ 

Therefore, all of the assumptions of theorem 3.2 are satisfied if λ�,j �= 0 for all � = 1, . . . , mj  
and j ∈ J.

For a more convenient formulation we translate the spaces X̃j  into the (isomorphic) spaces 
X̂j  of α̂j-quasi-periodic solutions of the homogeneous Helmholtz equation; that is, we replace 
the periodic function φ̃j by φ̂j(x) = eiα̂jx3 φ̃(x). Then φ̃j ∈ X̃j if, and only if, φ̂j ∈ X̂j where

X̂j =
{
φ̂j|CR : φ̂j ∈ H1

α̂j
(C∞) satisfies ∆φ̂j + k̂2nφ̂j = 0 in C∞, φ̂j is evanescent

}
. (20)

Here, H1
α̂j
(C∞) denotes the space of α̂j-quasi-periodic functions (wrt x3); that is, the subspace 

of H1(C∞) consisting of functions φ̂ such that φ̂(x1, x2, 2π) = eiα̂j2πφ̂(x1, x2, 0) for all x1, x2. 
The eigenvalue problem (19) is equivalent to

−i
∫

C∞

∂φ̂�,j

∂x3
ψ dx = λ�,j k̂

∫

C∞

n φ̂�,j ψ dx for all ψ ∈ X̂j and � = 1, . . . , mj.

 (21)

Again, φ̂�,j are normalized by

2k̂
∫

C∞

n φ̂�,j φ̂�′,j dx = δ�,�′ .

Therefore, all of the assumptions of theorem 3.2 are satisfied if k̂ > 0 is regular in the follow-
ing sense.

Definition 3.4. k̂ > 0 is called regular, if λ�,j �= 0 for all � = 1, . . . , mj  and j ∈ J where 
λ�,j ∈ R, � = 1, . . . , mj , are the eigenvalues of the selfadjoint eigenvalue problem (21) in the 
finite dimensional space X̂j .

We fix j ∈ J and consider α in a neighborhood of an exceptional point α̂j. Application of 
theorem 3.2 to the equation (17) for k = k̂ + iε; that is, writing ũε,α, Kε,α, and rε,α for ũk̂+iε,α, 
Kk̂+iε,α, and rk̂+iε,α, respectively,
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ũε,α − Kε,αũε,α = rε,α in H1
per(CR),

yields the decomposition

ũε,α = ũ(1)
ε,α + ũ(2)

ε,α (22)

of ũε,α for α in a neighborhood 
{
α : |α− α̂j| < δ

}
 of an exceptional point α̂j where 

ũ(1)
ε,α ∈ H1

per(CR) is bounded uniformly in (ε,α) and

ũ(2)
ε,α = −

mj∑
�=1

f�,j

iε− λ�,j(α− α̂j)
φ̃�,j for (ε,α) ∈ (0, ε1)× (α̂j − δ, α̂j + δ).

Here, λ�,j denote the eigenvalues of (19) with corresponding eigenfunctions φ̃�,j ∈ X̃j. 

Furthermore, f�,j =
(
Pjr0,α̂j , φ̃�,j

)
∗ =

(
r0,α̂j , φ̃�,j

)
∗ =

∫
CR

f̃k̂,α̂j
φ̃�,j dx  by the definition of rk̂,α̂j

 
and part (a) of lemma 3.3. We note that ũ(2)

ε,α ∈ X̃j has an extension to all of R3.

We set ũ(2)
ε,α = 0 and ũ(1)

ε,α = ũε,α for α ∈ Iδ :=
{
α ∈ [−1/2, 1/2] : |α− α̂j| � δ ∀j ∈ J

}
. 

Then we have the decomposition ũε,α = ũ(1)
ε,α + ũ(2)

ε,α for all α ∈ [−1/2, 1/2] and ε ∈ (0, ε1).
We need to investigate convergence of the inverse Floquet–Bloch transformations

uε(x) =
∫ 1/2

−1/2
ũ(1)
ε,α(x) eiαx3 dα +

∑
j∈J

∫ α̂j+δ

α̂j−δ

ũ(2)
ε,α(x) eiαx3 dα

=

∫ 1/2

−1/2
ũ(1)
ε,α(x) eiαx3 dα −

∑
j∈J

mj∑
�=1

f�,j φ̃�,j(x)
∫ α̂j+δ

α̂j−δ

1
iε− λ�,j (α− α̂j)

eiαx3 dα

=

∫ 1/2

−1/2
ũ(1)
ε,α(x) eiαx3 dα −

∑
j∈J

mj∑
�=1

f�,j φ̂�,j(x)
∫ δ

−δ

1
iε− λ�,j α

eiαx3 dα

=

∫ 1/2

−1/2
ũ(1)
ε,α(x) eiαx3 dα +

∑
j∈J

mj∑
�=1

f�,j φ̂�,j(x)
∫

δ<|α|<1/2

1
iε− λ�,j α

eiαx3 dα

−
∑
j∈J

mj∑
�=1

f�,j φ̂�,j(x)
∫ 1/2

−1/2

1
iε− λ�,j α

eiαx3 dα

= u(1)
ε (x) + u(2)

ε (x)

where

u(2)
ε (x) = −

∑
j∈J

mj∑
�=1

f�,j φ̂�,j(x)
∫ 1/2

−1/2

1
iε− λ�,jα

eiαx3 dα (23)

and u(1)
ε = uε − u(2)

ε . Note that we switched from φ̃�,j(x) to φ̂�,j(x) = eiα̂jx3 φ̃�,j(x).
The functions ̃u(1)

ε,α converge to ̃u(1)
0,α in H1

per(CR) as ε tends to zero for every α /∈ {α̂j : j ∈ J} 

because I − Kk̂,α is an isomorphism for all such α. Furthermore, ‖ũ(1)
ε,α − ũ(1)

0,α‖H1
per(CR) is uni-

formly bounded for α ∈ Iδ and also for α ∈
⋃

j∈J(α̂j − δ, α̂j + δ) by theorem 3.2. Therefore, 

Lebesgue’s theorem on dominated convergence yields 
∫ 1/2
−1/2 ‖ũ(1)

ε,α − ũ(1)
0,α‖2

H1
per(CR)

dα → 0 as 

ε → 0. The boundedness of the inverse Floquet–Bloch transform yields convergence u(1)
ε  to 

u(1)
0  in H1(TR) as ε → 0. Therefore, it remains to study the convergence of u(2)

ε .
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Lemma 3.5. Let λ ∈ R , λ �= 0. Then

lim
ε→0

∫ 1/2

−1/2

1
iε− λα

eiαx3 dα = − iπ
|λ|

[
1 + sign(λ)

2
π

∫ x3/2

0

sin t
t

dt

]
 (24)

uniformly with respect to |x3| � a for every a  >  0. Also, the derivative of the integral with 
respect to x3 converges uniformly for |x3| � a for every a  >  0.

Proof. We compute
∫ 1/2

−1/2

1
iε− λα

eiαx3 dα =

∫ 1/2

−1/2

−iε− λα

ε2 + λ2α2 eiαx3 dα

= −iε
∫ 1/2

−1/2

cos(αx3)

ε2 + λ2α2 dα − iλ
∫ 1/2

−1/2

α sin(αx3)

ε2 + λ2α2 dα.

In the first integral we substitute α = tε/|λ| and in the second integral t = αx3. This yields
∫ 1/2

−1/2

1
iε− λα

eiαx3 dα =
−i
|λ|

∫ |λ|/(2ε)

−|λ|/(2ε)

cos(tεx3/|λ|)
1 + t2 dt − iλ

∫ x3/2

−x3/2

t sin t
x2

3ε
2 + λ2t2

dt.

For ε → 0 the expression on the right converges to

− i
|λ|

∫ ∞

−∞

1
1 + t2 dt − 2i

λ

∫ x3/2

0

sin t
t

dt = − iπ
|λ|

[
1 + sign(λ)

2
π

∫ x3/2

0

sin t
t

dt

]

uniformly with respect to |x3| � a, for arbitrary a  >  0. The derivative of the integral with re-
spect to x3 converges uniformly for |x3| � a for every a  >  0 as well. □ 

Remark 3.6. As lima→∞
∫ a

0 sin(t)/t dt = π/2 we observe that ψ± ∈ C∞(R), defined by

ψ±(x3) =
1
2

[
1 ± 2

π

∫ x3/2

0

sin t
t

dt

]
, x3 ∈ R, (25)

tends to 1 as x3 → ±∞ while it converges to 0 for x3 → ∓∞. Thus, as ε tends to zero, u(2)
ε  

from (23) converges to

u(2)
0 (x) = ψ+(x3)

∑
j∈J

u+j (x) + ψ−(x3)
∑
j∈J

u−j (x), x ∈ TR, (26)

where

u±j (x) = 2πi
∑
λ�,j≷0

f�,j

|λ�,j|
φ̂�,j(x), x ∈ R3. (27)

This separates u(2)
0  into groups of modes propagating to the left and the right.
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Setting a�,j = 2πi f�,j

|λ�,j|  in (27) yields the following main result.

Theorem 3.7 (The limiting absorption principle). Let assumptions 2.2 and 2.8 hold 
and let k̂ > 0 be regular in the sense of definition 3.4. Then the solution uk̂+iε of (3) for 

k = k̂ + iε has a decomposition in the form uk̂+iε = u(1)
ε + u(2)

ε  where u(1)
ε ∈ H1

loc(R3) and 

u(2)
ε ∈ W2,∞(R3) is given by (23). Furthermore, for every R  >  R0 we have that u(1)

ε ∈ H1(TR) 
converges in H1(TR) to some u(1) ∈ H1(TR) and u(2)

ε ∈ W2,∞(R3) converges for every a  >  0 
in W2,∞(

R2 × (−a, a)
)
 to u(2) ∈ W2,∞(R3) which has the form

u(2)(x) = ψ+(x3)
∑
j∈J

∑
λ�,j>0

a�,j φ̂�,j(x) + ψ−(x3)
∑
j∈J

∑
λ�,j<0

a�,j φ̂�,j(x), x ∈ R3,

 (28)

for a�,j ∈ C given by

a�,j =
2πi
|λ�,j|

∫

C∞

(Ff )(x, α̂j) φ̂�,j(x) dx =
2πi
|λ�,j|

∫

R3
f (x) φ̂�,j(x) dx, (29)

� = 1, . . . , mj , j ∈ J. Here, the functions ψ± are defined in (25), and φ̂�,j are the α̂j-quasi-pe-
riodic solutions of ∆φ̂�,j + k2nφ̂�,j = 0 in R3, given by the eigenvalue problem (21). The func-
tion u = u(1) + u(2) ∈ H1

loc(R3) is a solution of the source problem ∆u + k̂2nu = −f  in R3.

Proof. Only the second equality in (29) has to be shown. But this follows directly from
∫

C∞

(Ff )(x, α̂j) φ̂�,j(x) dx =
∑
m∈Z

∫

C∞

f (x + 2πme(3)) e−2πimα̂j φ̂�,j(x) dx

=
∑
m∈Z

∫

C∞

f (x + 2πme(3)) φ̂�,j(x + 2πme(3)) dx =

∫

R3
f (x) φ̂�,j(x) dx.

 □ 

This result holds for any R  >  R0. Therefore, the solution u = u(1) + u(2) is defined in all of 
R3 and a solution of the differential equation (3) for k = k̂.

Remarks 3.8. 

 (a)  We note that we can replace the functions ψ± by any functions with ψ+(x3) = 1 +O(1/x3) 

as x3 → ∞ and ψ+(x3) = O(1/|x3|) as x3 → −∞ and d
dx3

ψ+(x3) = O(1/|x3|) as 
x3 → ±∞ (and ψ− analogously) because the difference of this choice of ψ± and the 
one of (25) differ only by a H1-function. In particular, one can choose ψ+ such that 
ψ+(x3) = 0 for x3 � −τ  and ψ+(x3) = 1 for x3 � τ  for some τ > 0 (and ψ− analo-
gously) or

ψ+(x3) =
1√
2π

∫ x3

−∞
e−t2/2dt, x3 ∈ R, ψ− = 1 − ψ+.

 (b)  The representation (28) (with (29)) corresponds to the asymptotic formulas for closed 
waveguides TR; that is, with boundary condition u  =  0 on ∂TR see, e.g. theorem 7 in [10].

 (c)  From part (b) of lemma 2.9 and the eigenvalue problem [21) we note that we can assume 

that φ̂�,−j = φ̂�,j  for all � and j ∈ J and thus λ�,−j = −λ�,j. Therefore, there exist as many 
propagating modes propagating upwards as ones propagating downwards.
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 (d)  In the special case that X̂j  is one-dimensional with basis {φ̂j} such that 2k̂
∫

C∞
n|φ̂j|2dx = 1  

the wave number is regular if λj = −2i
∫

C∞

∂φ̂j

∂x3
φ̂jdx �= 0. In particular λj

2 = Im
∫

C∞

∂φ̂j

∂x3
φ̂jdx 

corresponds to the group velocity of this eigenfunction and measures its energy flux in 
vertical direction: In the the case λj > 0 the energy of the wave is traveling upwards, in 
the case λj < 0 the energy of the wave is traveling downwards (see [18]).

As a corollary we apply this result to the special case of the scattering of a point source 
uinc(x) = Φk(x, y) by the periodic waveguide. In this case the total field ut = uinc + us is the 
Green’s function of the differential operator ∆+ k2n and is given by ut = u + (1 − χy)uinc 
where χy(x) = χ(x − y) and χ ∈ C∞(R3) is such that χ(x) = 0 for |x| � ε/2 and χ(x) = 1 
for |x| � ε for some ε > 0 and u solves (3) with f := (∆+ k2n)

[
(1 − χy) uinc

]
. In this case 

we can compute the coefficients a�,j  explicitly.

Corollary 3.9. Let assumptions 2.2 and 2.8 hold and let k̂ > 0 be regular in the sense of 
definition 3.4. Then the Green’s function G(x, y) has the form

G(x, y) = Φk(x, y) + G(1)(x, y) + 2πiψ+(x3)
∑
j∈J

∑
λ�,j>0

1
|λ�,j|

φ̂�,j(x) φ̂�,j(y)

+ 2πiψ−(x3)
∑
j∈J

∑
λ�,j<0

1
|λ�,j|

φ̂�,j(x) φ̂�,j(y), x, y ∈ R3, x �= y,

 (30)

where ψ± are as in theorem 3.7 and G(1)(·, y) ∈ H1(TR) for all R  >  0 and y ∈ R3.

Proof. We have to compute a�,j  from (29) for the special form 
f := (∆+ k2n)

[
(1 − χy) Φk(·, y)

]
. By Green’s theorem we have for any δ ∈ (0, ε/2) (note 

that f  has compact support and χy(x) = χ(x − y) = 0 for |x − y| = δ)
∫

|x−y|>δ

f (x) φ̂�,j(x) dx =

∫

|x−y|>δ

(∆x + k2n)
[
(1 − χy) Φk(·, y)

]
φ̂�,j dx

= −
∫

|x−y|=δ

[
∂Φk(x, y)
∂ν(x)

φ̂�,j(x)−
∂φ̂�,j(x)

∂ν
Φk(x, y)

]
ds(x)

=

∫

|x−y|<δ

Φk(x, y)
[
∆φ̂�,j(x) + k2 φ̂�,j(x)

]
dx + φ̂�,j(y)

= k2
∫

|x−y|<δ

Φk(x, y)
(
1 − n(x)

)
φ̂�,j(x) dx + φ̂�,j(y)

and this converges to φ̂�,j(y) as δ tends to zero. Therefore, a�,j =
2πi
|λ�,j| φ̂�,j(y) . The assertion 

follows from the decomposition

G(x, y) = u(x) +
(
1 − χ(x − y)

)
Φk(x, y) = Φk(x, y) +

[
u(1)(x)− χ(x − y) Φk(x, y)

]
︸ ︷︷ ︸

=: G(1)(x,y)

+ u(2)(x)

and the form of u(2). □ 
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4. The radiation condition

It is obvious that u(1) from theorem 3.7 is a solution of the following boundary value problem

∆u(1) + k̂2u(1) = −h0 in R3 \ TR, u(1) = g0 on ΓR, (31)

with h0 := ∆u(2) + k̂2u(2) in R3 \ TR and g0 := u(1) = u − u(2) on ΓR. The solution of this 
boundary value problem is not unique without a condition away from the waveguide. We will 
derive such a radiation condition below. First we note that h0 ∈ L2(R3 \ TR). Indeed, from 
(26) we observe that for x /∈ TR the right hand side h0 is given by

h0(x) = ∆u(2)(x) + k̂2u(2)(x)

=
∑
j∈J

[
2

d
dx3

ψ+(x3)
∂u+j (x)

∂x3
+ u+

j (x)
d2

dx2
3
ψ+(x3)

]

+
∑
j∈J

[
2

d
dx3

ψ−(x3)
∂u−j (x)

∂x3
+ u−

j (x)
d2

dx2
3
ψ−(x3)

]

=
1

2π

∑
j∈J

[
sin(x3/2)

x3/2

(
∂u+

j (x)

∂x3
−

∂u−
j (x)

∂x3

)
+

d
dx3

sin(x3/2)
x3/2

(
u+j (x)− u−

j (x)
)
]

,

 

(32)

where u±
j  are linear combinations of the evanescent modes φ̂�,j, � = 1, . . . , mj , see (27). From 

this we observe that not only h0 ∈ L2(R3 \ TR) but even h0 ∈ L2
σ(R3 \ TR) for any σ � 0 where 

L2
σ(R3 \ TR) =

{
h ∈ L2(R3 \ TR) : h̃σ ∈ L2(R3 \ TR)

}
 and h̃σ(x) = (1 + x2

1 + x2
2)

σ/2h(x), 
x /∈ TR. This space is equipped with the canonical norm ‖h‖L2

σ(R3\TR) = ‖h̃σ‖L2(R3\TR).
In order to formulate a correct radiation condition for u(1) normal to the axis of the cylinder 

we need the cylindrical Fourier transform Fg : Z× R → C of g which is given by

(Fg)(m, ξ) =
1

2π

∫

R

∫ 2π

0
g(ϕ, y3) e−i(mϕ+ξy3)dϕ dy3, m ∈ Z, ξ ∈ R.

Here, ϕ ∈ (0, 2π) and y3 ∈ R are the cylindrical coordinates of y ∈ ΓR. Then F  is well 
defined and bounded from L2(ΓR) into

L2(Z× R) :=

{
ĝ : Z× R → C : ĝ(m, ·) ∈ L2(R) for all m and

∑
m∈Z

∫

R

∣∣ĝ(m, ξ)
∣∣2dξ < ∞

}
.

The inverse transform is then

g(ϕ, x3) =
1

2π

∑
m∈Z

∫

R
(Fg)(m, ξ) ei(mϕ+ξx3) dξ.

Also, Parseval’s identity holds in the form
∫

ΓR

∣∣g(x)∣∣2 ds = R
∫

R

∫ 2π

0

∣∣g(φ, x3)
∣∣2dφ dx3 = R

∑
m∈Z

∫

R

∣∣(Fg)(m, ξ)
∣∣2dξ.

 (33)
The one-dimensional Fourier tranform F1 is related to the Floquet–Bloch transform F by
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(F1f )(ξ + �) =
1√
2π

∫

R
f (s) e−is(ξ+�) ds =

1√
2π

∑
m∈Z

∫ 2π(m+1)

2πm
f (s) e−is(ξ+�) ds

=
1√
2π

∑
m∈Z

∫ 2π

0
f (s + 2πm) e−i(s+2πm)(ξ+�) ds =

1√
2π

∫ 2π

0
(Ff )(s, ξ) e−i�s ds

for � ∈ Z and ξ ∈ (−1/2, 1/2]. This translates to the cylindrical Fourier transform F  as

(F f )(r, m, ξ + �) =
1

2π

∫ 2π

0

∫ 2π

0
(Ff )(x, ξ) e−i(mϕ+�x3) dx3 dϕ (34)

for r  >  0, �, m ∈ Z, ξ ∈ (−1/2, 1/2] where r,ϕ, x3 are the cylindrical coordinates of x ∈ R3. 
Analogously, the inverse of F  is expressed as

(F−1g)(x) =
1

2π

∑
m∈Z

∫

R
g(r, m, ξ) ei(mϕ+ξx3) dξ =

1
2π

∑
m,�∈Z

∫ �+1/2

�−1/2
g(r, m, ξ) ei(mϕ+ξx3) dξ

=
1

2π

∫ 1/2

−1/2

∑
m,�∈Z

g(r, m, ξ + �) ei(mϕ+(ξ+�)x3) dξ

where r,ϕ, x3 are the cylindrical coordinates of x ∈ R3. Therefore, by (5),

(FF−1g)(x,α) =
1

2π

∑
m,�∈Z

g(r, m,α+ �) ei(mϕ+�x3). (35)

The Fourier transform is, in particular, useful to define the trace space H1/2(ΓR) by

H1/2(ΓR) =

{
g ∈ L2(ΓR) :

∑
m∈Z

∫

R

(
1 + (m/R)2 + ξ2)1/2|(Fg)(m, ξ)|2dξ < ∞

}
.

Then the trace theorem holds for u ∈ H1(TR) or u ∈ H1(TR̂ \ TR) for R̂ > R (see [5]).
We will now study the following exterior boundary value problem for the Helmholtz equa-

tion in the exterior of the cylinder TR

∆v + k2v = −h in R3 \ TR, v = g on ΓR, (36)

such that the Fourier transform satisfies the family of one-dimensional radiation conditions

lim
r→∞

√
r
(

∂

∂r
(Fv)(r, m, ξ)− i k(ξ) (Fv)(r, m, ξ)

)
= 0 (37)

for all m ∈ Z and almost all ξ ∈ R  where k(ξ) =
√

k2 − ξ2.

Theorem 4.1. Let h ∈ L2
σ(R3 \ TR) for some σ > 1 and g ∈ H1/2(ΓR) and k ∈ C with 

Rek > 0 and Imk � 0. The function

v(r, θ, x3) =
1

2π

∫

R

∑
m∈Z

[∫ ∞

R
G(r, ρ; m, ξ) (Fh)(ρ, m, ξ) ρ dρ

+
H(1)

m (k(ξ)r)

H(1)
m (k(ξ)R)

(Fg)(m, ξ)

]
eimθ+iξx3 dξ

 

(38)

A Kirsch Inverse Problems 35 (2019) 104004



23

for r  >  R, θ ∈ [0, 2π], and x3 ∈ R, is the unique solution of the boundary value problem (36), 
(37). Again, k(ξ) =

√
k2 − ξ2, and G is given by

G(r, ρ; m, ξ) =
iπ
2

[
H(1)

m (k(ξ)r+)Jm(k(ξ)r−) − H(1)
m (k(ξ)ρ)

H(1)
m (k(ξ)R)

H(1)
m (k(ξ)r)Jm(k(ξ)R)

]
, (39)

for r, ρ � R, m ∈ Z, and ξ ∈ R  where r+ = max{r, ρ} and r− = min{r, ρ}. Further-
more, the solution depends continuously on h, g, and k, in the sense that for any R̂ > R and 
σ > 1 the mapping (h, g, k) �→ v|TR̂\TR is continuous from L2

σ(R3 \ TR)× H1/2(ΓR)× C+ to 
H1(TR̂ \ TR). Here C+ = {k ∈ C : Rek > 0, Imk � 0}.

Proof. In this—and only this—proof we abbreviate the (cylindrical) Fourier transform by 
writing f̂  instead of F f . Let k0  >  0 be arbitrary, but fixed, and k ∈ C with Rek > 0 and 
Imk � 0 and |k| � k0. The proof is divided into five parts.

 (a)  We show that v is well defined and depends continuously on h and g. The function v 
consists of two parts; i.e. v = v1 + v2 with Fourier transforms

v̂1(r, m, ξ) =
∫ ∞

R
G(r, ρ; m, ξ) ĥ(ρ, m, ξ) ρ dρ, v̂2(r, m, ξ) =

H(1)
m (k(ξ)r)

H(1)
m (k(ξ)R)

ĝ(m, ξ).

  First we discuss v̂1. We have ∂
∂r v̂1(r, m, ξ) =

∫∞
R

∂
∂r G(r, ρ; m, ξ) ĥ(ρ, m, ξ) ρ dρ by the 

continuity of G. From part (d) of lemma A.2 we conclude that
(

1 +
m2

r2 + ξ2
) ∣∣v̂1(r, m, ξ)

∣∣2 +
∣∣∣∣
∂v̂1(r, m, ξ)

∂r

∣∣∣∣
2

� c
[∫ ∞

R

∣∣ĥ(ρ, m, ξ)
∣∣ ρ dρ

]2

= c
[∫ ∞

R

1
ρσ−1/2

∣∣ĥ(ρ, m, ξ)
∣∣ ρσ+1/2 dρ

]2

� c
∫ ∞

R

dρ
ρ2σ−1

∫ ∞

R

∣∣ĥ(ρ, m, ξ) ρσ
∣∣2ρ dρ =

c
2(σ − 1)R2(σ−1)

∫ ∞

R

∣∣ĥ(ρ, m, ξ) ρσ
∣∣2 ρ dρ

 

(40)

  and thus by Parseval’s identity

‖v1‖2
H1(TR̂\TR)

=

∫

R

∑
m∈Z

[∫ R̂

R

(
1 +

m2

r2 + ξ2
) ∣∣v̂1(r, m, ξ)

∣∣2r dr +

∫ R̂

R

∣∣∣∣
∂v̂1(r, m, ξ)

∂r

∣∣∣∣
2

r dr

]
dξ

� c
∫

R

∑
m∈Z

∫ ∞

R

∣∣ĥ(ρ, m, ξ) ρσ
∣∣2ρ dρ dξ � c

∫

R3\TR

∣∣h̃σ(x)
∣∣2dx = c ‖h‖2

L2
σ(R3\TR)

  where c depends only on k0, R, and R̂. This shows the estimate ‖v1‖H1(TR̂\TR) � c ‖h‖L2
σ(R3\TR).

  Now we discuss v̂2 as in [5]. Part (a) of lemma A.2 yields 
∣∣v̂2(r, m, ξ)

∣∣ � ∣∣ĝ(m, ξ)
∣∣. 

Furthermore,
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ξ2
∫ R̂

R

∣∣v̂2(r, m, ξ)
∣∣2r dr � ξ2

∫ R̂

R
e−2Imk(ξ)(r−R) r dr

∣∣ĝ(m, ξ)
∣∣2

�
∣∣ĝ(m, ξ)

∣∣2
{
ξ2R̂

∫ R̂
R e−|ξ|(r−R) dr, |ξ| � 2|k|,
4|k|2R̂2/2, |ξ| � 2|k|,

� c
√

1 + ξ2
∣∣ĝ(m, ξ)

∣∣2

  where we used the elementary estimate Imk(ξ) � |ξ|/2 for |ξ| � 2|k| (see lemma A.5). 
Furthermore, with lemma A.4,

∫ R̂

R

[(
1 +

m2

r2

) ∣∣v̂2(r, m, ξ)
∣∣2 +

∣∣∣∣
∂v̂2(r, m, ξ)

∂r

∣∣∣∣
2
]

r dr =
1

2π

∥∥ψξ,m
∥∥2

H1(B2(0,R̂)\B2(0,R))

∣∣ĝ(m, ξ)
∣∣2

� c
√

1 + ξ2 + m2
∣∣ĝ(m, ξ)

∣∣2.

  Altogether we have shown that

∫ R̂

R

[(
1 + ξ2 +

m2

r2

) ∣∣v̂2(r, m, ξ)
∣∣2 +

∣∣∣∣
∂v̂2(r, m, ξ)

∂r

∣∣∣∣
2
]

r dr � c
√

1 + ξ2 + m2
∣∣ĝ(m, ξ)

∣∣2. (41)

  Taking the inverse Fourier transform proves that v2 ∈ H1(TR̂ \ TR) and 
‖v2‖H1(TR̂\TR) � c‖g‖H1/2(ΓR) where c depends only on k0, R, and R̂.

 (b)  Now we show that v from (38) satisfies the differential equation. Let h ∈ C∞(R3 \ TR) 
and g ∈ C∞(ΓR) have compact supports. Then ĥ = Fh and ĝ = Fg are smooth with 
respect to ρ  and ξ and ĥ vanishes for large values of ρ . The partial sections

wN(r, θ, x3) =
1

2π

∫ N

−N

∑
|m|�N

[∫ ∞

R
G(r, ρ; m, ξ) ĥ(ρ, m, ξ) ρ dρ+

H(1)
m (k(ξ)r)

H(1)
m (k(ξ)R)

ĝ(m, ξ)

]
eimθ+iξx3 dξ

  satisfy ∆wN + k2wN = −hN  in R3 \ TR and wN = gN  on ΓR where

hN(r, θ, x3) =
1

2π

∫ N

−N

∑
|m|�N

ĥ(r, m, ξ) eimθ+iξx3 dξ and

gN(θ, x3) =
1

2π

∫ N

−N

∑
|m|�N

ĝ(r, m, ξ) eimθ+iξx3 dξ

  as it is shown by using (A.7). Let ψ ∈ C∞(R3 \ TR) have compact support in some 
TR̂ \ TR . Then

∫

TR̂\TR

[
∇wN · ∇ψ − k2wNψ

]
dx =

∫

TR̂\TR

hNψ dx.

  Both sides converge as N tends to infinity which shows that
∫

TR̂\TR

[
∇w · ∇ψ − k2wψ

]
dx =

∫

TR̂\TR

hψ dx;

  that is, w satisfies ∆w + k2w = −h in R3 \ TR. For arbitrary h ∈ L2
σ(R3 \ TR) and 

g ∈ H1/2(ΓR) we approximate h and g by smooth functions with compact support and 
repeat the argument. This ends the second part of the proof.
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 (c)  Now we study the dependence of the solution on k. Here we use Lebesgue’s theorem on 
dominated convergence. Concerning v1 estimate (40) provides an integrable bound uni-
formly with respect to k. Furthermore, the integrand (left hand side of (40)) is continuous 
with respect k. Lebesgue’s theorem, applied to the integration with respect to r and ξ and 
to the summation with respect to m yields the continuous dependence of v1 on k. The same 
arguments applies to v2 using estimate (41). This ends the proof of part (c).

 (d)  Next we show that v̂ = Fv satisfies (37). For v̂2 this follows from 
H(1)′

m (z)− i H(1)
m (z) = O(1/|z|3/2) as |z| → ∞, see [1]. Furthermore,

v̂1(r, m, ξ) = H(1)
m (k(ξ)r)

∫ r

R
Jm(k(ξ)ρ) ĥ(ρ, m, ξ) ρ dρ+ Jm(k(ξ)r)

∫ ∞

r
H(1)

m (k(ξ)ρ) ĥ(ρ, m, ξ) ρ dρ

  and thus

∂

∂r
v̂1(r, m, ξ)− i k(ξ) v̂1(r, m, ξ)

= k(ξ)
[
H(1)′

m (k(ξ)r)− i H(1)
m (k(ξ)r)

] ∫ r

R
Jm(k(ξ)ρ) ĥ(ρ, m, ξ) ρ dρ

+ k(ξ)
[
J′m(k(ξ)r)− i Jm(k(ξ)r)

] ∫ ∞

r
H(1)

m (k(ξ)ρ) ĥ(ρ, m, ξ) ρ dρ.

  Now we use again that H(1)′
m (z)− i H(1)

m (z) = O(1/|z|3/2) and also 
J′m(z), Jm(z) = O(1/|z|1/2) as |z| tends to infinity. This ends the proof of this part because 

also 
∫∞

r H(1)
m (k(ξ)ρ) ĥ(ρ, m, ξ) ρ dρ → 0 as r → ∞.

 (e)  Finally, we show uniqueness under this radiation condition. Let h  =  0 and g  =  0 and 
v ∈ H1(R3 \ TR) be a solution of (36) satisfying (37). We take the Fourier transform 
v̂(r) = (Fv)(r, m, ξ) of v. Then v̂ solves the Bessel differential equation

1
r

∂

∂r

(
r
∂v̂(r, m, ξ)

∂r

)
+

(
k2 − ξ2 − m2

r2

)
v̂(r, m, ξ) = 0, r > R,

  and v̂(R, m, ξ) = 0 for all parameters m ∈ Z and almost all ξ ∈ R . The general solution is 

given by ̂v(r) = a H(1)
m (k(ξ)r) + b H(2)

m (k(ξ)r) for r  >  R and some a, b ∈ C. The boundary 
condition and the one-dimensional radiation condition v̂′(r)− ik(ξ)v̂(r) = o(1/

√
r) 

yields (Fv)(r, m, ξ) = v̂(r) = 0 for all r  >  R, m ∈ Z and almost all ξ ∈ R . This yields 
v = 0 and ends the proof. □ 

Theorem 4.2. Let u = u(1) + u(2) be the solution of the source problem ∆u + k̂2nu = −f  
in R3 derived by the limiting absorption principle of theorem 3.7. Then the Fourier transform 
(Fu(1))(r, m, ξ) of u(1) satisfies the one-dimensional radiation condition (37) for all m ∈ Z 
and almost all ξ ∈ R .

Proof. First we consider the case k = k̂ + iε for ε > 0. The unique solution 
u(1)
ε ∈ H1(R3 \ TR) of (36) for h = hε = ∆u(2)

ε + k2u(2)
ε  in R3 \ TR and g = gε = u(1)

ε  on γR 
satisfies the radiation condition (37) because they decay exponentially as r → ∞. Therefore, 
by the previous theorem it suffices to show convergence of hε and gε to h0 = ∆u(2) + k̂2u(2) 
and g0 := u(1) = u − u(2), respectively, in L2

σ(R3 \ TR) and H1/2(ΓR), respectively. For gε this 
is clear by the trace theorem and the convergence of u(1)

ε  to u(1) in H1(TR) (theorem 3.7). For 
hε and h0 we compute, using (23) and (26), (27),
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hε(x) = ∆u(2)
ε (x) + (k̂ + iε)2u(2)

ε (x)

=
∑
j∈J

mj∑
�=1

f�,j

[
(
(k̂ + iε)2 − k̂2) φ̂�,j(x)

∫ 1/2

−1/2

1
iε− λ�,jα

eiαx3 dα

+ 2i
∂φ̂�,j(x)
∂x3

∫ 1/2

−1/2

α

iε− λ�,jα
eiαx3 dα − φ̂�,j(x)

∫ 1/2

−1/2

α2

iε− λ�,jα
eiαx3 dα

]
, x /∈ TR,

h0(x) = ∆u(2)(x) + k̂2u(2)(x)

= −i
∑
j∈J

mj∑
�=1

f�,j

λ�,j

[
4
∂φ̂�,j(x)
∂x3

sin(x3/2)
x3

+ 2 φ̂�,j(x)
d

dx3

sin(x3/2)
x3

]

= −
∑
j∈J

mj∑
�=1

f�,j

λ�,j

[
2i

∂φ̂�,j(x)
∂x3

∫ 1/2

−1/2
eiαx3 dα − φ̂�,j(x)

∫ 1/2

−1/2
α eiαx3 dα

]
, x /∈ TR.

For the proof that hε converges to h0 we observe that we have to estimate three terms corresponding 

to the three integrals of hε. For the first we set ϕ(0)
ε (x3) =

(
(k̂ + iε)2 − k̂2

) ∫ 1/2
−1/2

1
iε−λαeiαx3 dα 

for the moment (where λ ∈ R  is one of the λ�,j). Then, with Parseval’s identity,

‖ϕ(0)
ε ‖2

L2(R) � c ε2
∫ 1/2

−1/2

dα
|iε− λα|2

= c ε2
∫ 1/2

−1/2

dα
ε2 + λ2α2 =

c ε
|λ|

∫ |λ|/(2ε)

−|λ|/(2ε)

dt
1 + t2 �

cπ ε

|λ|
.

Analogously, with ϕ( j)
ε (x3) =

∫ 1/2
−1/2

α j

iε−λαeiαx3 dα for j = 1, 2 and ε � 0 we compute 

ϕ
( j)
ε (x3)− ϕ

( j)
0 (x3) =

iε
λ

∫ 1/2
−1/2

α j−1

iε−λαeiαx3 dα and thus

‖ϕ( j)
ε − ϕ

( j)
0 ‖2

L2(R) �
ε2

λ2

∫ 1/2

−1/2

α2j−2

ε2 + λ2α2 dα �

{
πε/|λ|3, j = 1,
ε2/|λ|4, j = 2.

Furthermore, we have an estimate of the form 
∣∣φ̂�,j(x)

∣∣+ ∣∣∂φ̂�,j(x)/∂x3
∣∣ � c e−µr for r � R 

where r =
√

x2
1 + x2

2  because φ̂�,j is evanescent. This shows that there exists c  >  0 with
∫

R3\TR

∣∣hε(x)− h0(x)
∣∣2 (x2

1 + x2
2)

p dx =

∫ ∞

R

∫ 2π

0

∫

R

∣∣hε(r, θ, x3)− h0(r, θ, x3)
∣∣2 r2p+1 dx3 dθ dr

� c ε
∫ ∞

R
e−2µrr2p+1 dr

for every p � 0 and ε > 0. Therefore, hε converges to h0 in L2
σ(R3 \ TR) for every σ � 0. □ 

Therefore, we have shown that the limiting absorption solution satisfies the following radi-
ation condition.

Definition 4.3 (Radiation condition). Let assumptions 2.2 and 2.8 hold and let 
k  >  0 be regular in the sense of definition 3.4. Let ψ± ∈ C∞(R) be any functions with 
ψ±(t) = 1 +O(1/|t|) as t → ±∞ and ψ±(t) = O(1/|t|) as t → ∓∞ and d

dtψ
±(t) = O(1/|t|) 

as |t| → ∞. The solution u ∈ H2
loc(R3) of (3) has a decomposition in the form u = u(1) + u(2) 

where:
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 (a)  u(1)|TR̂
∈ H1(TR̂) for every R̂ > R, and u(2) ∈ W2,∞(R3) is given by

u(2)(x) = ψ+(x3)
∑
j∈J

∑
λ�,j>0

a�,j φ̂�,j(x) + ψ−(x3)
∑
j∈J

∑
λ�,j<0

a�,j φ̂�,j(x), x ∈ R3,

  for some a�,j ∈ C.
 (b)  The cylindrical Fourier transform (Fu(1))(r, m, ξ) of u(1) satisfies the one-dimensional 

radiation condition (37); that is,

lim
r→∞

√
r
(

∂

∂r
(Fu(1))(r, m, ξ)− i k(ξ) (Fu(1))(r, m, ξ)

)
= 0

  for all m ∈ Z and almost all ξ ∈ R . Here again, k(ξ) =
√

k2 − ξ2.

We note that the coefficients a�,j  are given by (29). Again, the representation of (a) cor-
responds to the well known radiation condition for closed waveguides as in definition 5 of 
[10]. Part (b) is needed for open waveguides to describe the behavior normal to the axis of the 
cylinder.

We will show in Part (B) that this radiation condition assures uniqueness and existence 
directly; that is, without using the limiting absorption property.
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Appendix

We collect some properties of Hankel functions.

Lemma A.1. Let C+ := {z ∈ C : Rez > 0, Imz > 0}. Then
∣∣∣∣∣
H(1)

m (ρz)

H(1)
n (rz)

∣∣∣∣∣ � e−Imz(ρ−r)

for all ρ � r > 0, m, n ∈ Z with |m| � |n|, and z ∈ C+.

Proof. It suffices to consider the case 0 � m � n. We use the representation of the modified 
Hankel functions

Km(w) =

∫ ∞

0
e−w cosh(s) cosh(ms) ds, Rew > 0, m ∈ N0, (A.1)

(see [21], 6.22, formula (5)) and Nicholson’s formula

∣∣H(1)
m (a)

∣∣2 =
8
π2

∫ ∞

0
K0

(
2a sinh(s)

)
cosh(2ms) ds, a > 0, m ∈ N0. (A.2)

([21], 13.73, formula (1)).

A Kirsch Inverse Problems 35 (2019) 104004



28

We define for fixed 0 � m � n and ρ � r > 0 the function f  by

f (z) =
H(1)

m (ρz)

H(1)
n (rz)

eiz(r−ρ), z ∈ C+.

Then f  is holomorphic in C+ and continuous in C+, in particular at the origin. The latter is 
seen by the asymptoticis of the Hankel functions for small arguments, see, e.g. [1]. Now we 
show boundedness of f  on ∂C+.

 (a)  Let z  =  t  >  0. Then

∣∣f (z)∣∣ =

∣∣∣∣∣
H(1)

m (ρt)

H(1)
n (rt)

∣∣∣∣∣ � 1

by the monotonicity properties of (A.1) and (A.2).

 (b)  Let z = it with t  >  0. Then, because H(1)
m (it) = 2

π i−m−1Km(t) (see, e.g. [1])

∣∣f (z)∣∣ =

∣∣∣∣
Km(ρt)
Kn(rt)

e−t(r−ρ)

∣∣∣∣ =

∫∞
0 e−ρt(cosh(s)−1) cosh(ms) ds∫∞
0 e−rt(cosh(s)−1) cosh(ns) ds

� 1

again by the monotonicity properties of (A.1). Therefore, 
∣∣f (z)∣∣ � 1 on ∂C+. Now we con-

sider f (z) for large values of |z|. We have (see again, e.g. [19], section 5.11)

H(1)
m (z) =

√
2
πz

ei(z−mπ/2−π/4)[1 +O
(
1/|z|

)]
, |z| → ∞,

uniformly with respect to z ∈ C+. This yields

f (z) =

√
r
ρ

eiz(ρ−r) eiz(r−ρ)
[
1 +O

(
1/|z|

)]
=

√
r
ρ

[
1 +O

(
1/|z|

)]
, |z| → ∞,

and thus lim|z|→∞
∣∣ f (z)

∣∣ =
√

r
ρ � 1. The maximum principle for holomorphic functions 

yields the assertion. □ 

Lemma A.2. Let k(ξ) =
√

k2 − ξ2 for ξ ∈ R  and k ∈ C with Rek > 0 and Imk � 0. Here, 
the branch of the square root is taken such that the square root is holomorphic in C \ iR�0. 
Then

 (a)  
∣∣∣∣∣
H(1)

m
(
k(ξ)ρ

)

H(1)
n

(
k(ξ)r

)
∣∣∣∣∣ � e−Imk(ξ)(ρ−r)

for all m, n ∈ Z with |m| � |n|, ξ ∈ R , ρ � r > 0 and k ∈ C with Rek > 0 and Imk � 0.
 (b)  For all k0  >  0 there exists c  >  0 such that

∣∣∣∣∣
k(ξ)H(1)′

m
(
k(ξ)ρ

)

H(1)
n

(
k(ξ)r

)
∣∣∣∣∣ � c

[∣∣k(ξ)∣∣+ |m|
]

e−Imk(ξ)(ρ−r)
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for all m, n ∈ Z with |m| � |n|, ξ ∈ R , ρ � r > 0, and k ∈ C with |k| � k0 and Rek > 0 and 
Imk � 0.
 (c)  For all k0  >  0 and 0 < R < R̂ there exists c  >  0 with

∣∣Jm
(
k(ξ)r

)
H(1)

m

(
k(ξ)r

)∣∣ �
c√

1 + m2 + ξ2

for all m ∈ Z \ {0}, ξ ∈ R , R � r � R̂, and k ∈ C with |k| � k0 and Rek > 0 and 
Imk � 0.

 (d)  Define

G(r, ρ; m, ξ) =
iπ
2

[
H(1)

m (k(ξ)r+)Jm(k(ξ)r−) − H(1)
m (k(ξ)ρ)

H(1)
m (k(ξ)R)

H(1)
m (k(ξ)r)Jm(k(ξ)R)

]

for r, ρ � R > 0 where r+ = max{r, ρ} and r− = min{r, ρ}. Then, for every k0  >  0 and 
R̂ > R > 0 there exists c  >  0 such that

(
1 +

m2

r2 + ξ2
) ∣∣G(r, ρ; m, ξ)

∣∣2 +

∣∣∣∣
∂

∂r
G(r, ρ; m, ξ)

∣∣∣∣
2

� c2

for all r, ρ � R with r− � R̂, m ∈ Z, ξ ∈ R , and k ∈ C with |k| � k0 and Rek > 0 and 
Imk � 0. Furthermore, (r, ρ, ξ) �→ G(r, ρ; m, ξ) is continuous on [R,∞)× [R,∞)× R 
for every m ∈ Z.

Proof. 

 (a)  The estimate follows directly from lemma A.1 (set z = k(ξ) and note that k(ξ) ∈ C+ ).

 (b)  Again, we assume that n � m � 0. The recursion formula zH(1)′
m (z) = zH(1)

m−1(z)− mH(1)
m (z) 

and the estimate of (a) yields for m � 1
∣∣∣∣∣
k(ξ)H(1)′

m
(
k(ξ)ρ

)

H(1)
n

(
k(ξ)r

)
∣∣∣∣∣ �

∣∣∣∣∣k(ξ)
H(1)

m−1

(
k(ξ)ρ

)

H(1)
n

(
k(ξ)r

)
∣∣∣∣∣+

∣∣∣∣∣
m
ρ

H(1)
m

(
k(ξ)ρ

)

H(1)
n

(
k(ξ)r

)
∣∣∣∣∣

�

[∣∣k(ξ)∣∣ +
|m|
R

]
e−Imk(ξ)(ρ−r).

For m  =  0 we have that H(1)′
0 = −H(1)

1 . Therefore, the same estimate holds for n � 1. If 
n  =  m  =  0 then

∣∣∣∣∣
k(ξ)H(1)′

0

(
k(ξ)ρ

)

H(1)
0

(
k(ξ)r

)
∣∣∣∣∣ =

∣∣k(ξ)∣∣
∣∣∣∣∣
H(1)

1

(
k(ξ)ρ

)

H(1)
0

(
k(ξ)ρ

)
∣∣∣∣∣

∣∣∣∣∣
H(1)

0

(
k(ξ)ρ

)

H(1)
0

(
k(ξ)r

)
∣∣∣∣∣ .

The last factor can be estimated by e−Imk(ξ)(ρ−r). The second factor is bounded because 

lim|z|→∞

∣∣∣∣H(1)
1 (z)

H(1)
0 (z)

∣∣∣∣ = 1, and lim|z|→0

∣∣∣∣H(1)
1 (z)

H(1)
0 (z)

∣∣∣∣ = 0 uniformly for z ∈ C+.

 (c)  By [1], formula 9.6.4, we have π2
∣∣H(1)

m
(
k(ξ)r

)∣∣ = π
2

∣∣H(1)
m

(
ir
√

ξ2 − k2
)∣∣ = ∣∣Km(mzr)

∣∣ 
and 

∣∣Jm
(
(k(ξ)r

)∣∣ = ∣∣Im(mzr)
∣∣ with zr =

r
m

√
ξ2 − k2 . Since arg

√
ξ2 − k2 ∈ (−π,π/2] 

we can use formulas 9.7.8 and 9.7.8 of [1] and have the asymptotic forms
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π

2

∣∣H(1)
m

(
k(ξ)r

)∣∣ =
√

π

2m

∣∣∣∣
e−mηr

(1 + z2
r )

1/4

∣∣∣∣
∣∣1 + ρ1(zr, m)

∣∣,
∣∣Jm

(
k(ξ)r

)∣∣ =
√

1
2mπ

∣∣∣∣
emηr

(1 + z2
r )

1/4

∣∣∣∣
∣∣1 + ρ2(zr, m)

∣∣

where

ηr = (1 + zr)
1/2 + ln

zr

1 + (1 + zr)1/2 and

∣∣ρj(zr, m)
∣∣ � c1

m
√
|1 + z2

r |
=

c1√
|m2 + r2(ξ2 − k2)|

, j = 1, 2,

for some c1  >  0 which is independent of r, ξ, and m. Substituting the form of zr we arrive at

∣∣H(1)
m

(
k(ξ)r

)
Jm
(
k(ξ)r

)∣∣ = 1
mπ |1 + z2

r |1/2

∣∣1 + ρ1(zr, m)
∣∣ ∣∣1 + ρ2(zr, m)

∣∣

=
1

π
√∣∣m2 + r2

(
ξ2 − k2

)∣∣
∣∣1 + ρ3(r, ξ, m)

∣∣

where 
∣∣ρ3(r, ξ, m)

∣∣ � c2√
|m2+r2(ξ2−k2)|

. We choose M and Ξ � 2k0 such that 
∣∣ρj(ξ, m)

∣∣ � 1
2  for 

|ξ| � Ξ and |m| � M and j = 1, 2, 3. Then also ξ2 − k2
0 � 3

4 ξ
2 for |ξ| � Ξ and |m| � M.

  We distinguish between four cases:
 Case 1:  |ξ| � Ξ and |m| � M. From the above asymptotic form we conclude that

∣∣H(1)
m

(
k(ξ)r

)
Jm
(
k(ξ)r

)∣∣ �
c√

m2 + r2(ξ2 − k2
0)

�
2c√

m2 + 3
4 R2 ξ2

�
c1√

1 + m2 + ξ2
.

 Case 2:  |ξ| � Ξ and |m| � M. Now we use the asymptotic formulas for the Hankel functions 
for large arguments (see [1], formulas ?)

H(1)
m (z) =

√
2
πz

ei(z−mπ/2−π/4)[1 +O(1/|z|)
]
, (A.3)

Jm(z) =

√
1
πz

[
ei(z−mπ/2−π/4) + e−i(z−mπ/2−π/4)

] [
1 +O(1/|z|)

]
, (A.4)

as |z| tends to infinity uniformly with respect to |m| � M and thus
∣∣Jm

(
k(ξ)r

)
H(1)

m

(
k(ξ)r

)∣∣ �
c

r|t(ξ)|
[
e−2r|k(ξ)| + 1

]
�

c
R |t(ξ)|

.

This proves the estimate because |k(ξ)| �
√

ξ2 − k2
0 �

√
3

2 ξ � c1
√

1 + ξ2 + m2  for 

all |ξ| � Ξ and |m| � M. We note that this holds also for m  =  0!
 Case 3:  |ξ| � Ξ and |m| � M. Now we use the asymptotics for large order:

H(1)
m (z) =

√
2
πi

(m − 1)!
(

2
z

)m [
1 +O(1/m)

]
, (A.5)
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Jm(z) =
1
m!

( z
2

)m [
1 +O(1/m)

]
, (A.6)

for m → ∞ uniformly with respect to |z| � R
√
Ξ2 + k2

0 . This yields
∣∣Jm

(
k(ξ)r

)
H(1)

m

(
k(ξ)r

)∣∣ �
c
m

�
c1√

1 + m2 + ξ2

for m � M  uniformly with respect to |ξ| � Ξ and R � r � R̂.
 Case 4:  |ξ| � Ξ and 0 < |m| � M. We have to estimate finitely many terms. Each of them is 

continuous with respect to ξ and k, also in cases where ξ2 = k2. This proves part (c).
 (d)  For m �= 0 this follows easily from (a), (b), and (c). Indeed, by (a) and (c) we have
∣∣G(r, ρ; m, ξ)

∣∣ �
π

2

∣∣H(1)
m (k(ξ)r−)Jm(k(ξ)r−)

∣∣+ π

2

∣∣H(1)
m (k(ξ)R)Jm(k(ξ)R)

∣∣ �
c√

1 + (m/r)2 + ξ2
.

Furthermore, if r � ρ we have by the same arguments
∣∣∣∣
∂

∂r
G(r, ρ; m, ξ)

∣∣∣∣ �
π

2
|k(ξ)|

∣∣J′m(k(ξ)r)H(1)
m (k(ξ)r)

∣∣ +
π

2
|k(ξ)|

∣∣H(1)′
m (k(ξ)r)Jm(k(ξ)R)

∣∣

�
π

2
|k(ξ)|

∣∣Jm(k(ξ)r)H(1)′
m (k(ξ)r)

∣∣ +
1
r

+
π

2
|k(ξ)|

∣∣H(1)′
m (k(ξ)r)Jm(k(ξ)R)

∣∣

�
1
R
+

π

2

∣∣∣∣∣
k(ξ)H(1)′

m (k(ξ)r)

H(1)
m (k(ξ)r)

∣∣∣∣∣
(∣∣H(1)

m (k(ξ)r)Jm(k(ξ)r)
∣∣ +

+

∣∣∣∣∣
H(1)

m (k(ξ)r)

H(1)
m (k(ξ)R)

∣∣∣∣∣
∣∣H(1)

m (k(ξ)R)Jm(k(ξ)R)
∣∣
)

�
1
R

+ c
[∣∣k(ξ)∣∣ +

|m|
R

]
1√

1 + m2 + ξ2
� c1.

Here we used the Wronskian zJ′m(z)H
(1)
m (z) = zJm(z)H

(1)′
m (z)− 2i

π  and the estimates of parts 
(a) and (b) of lemma A.2. For r > ρ we argue analogously. If m  =  0 and ξ � Ξ we can argue 
analogously (see remark in the proof of part (c) at the end of case 2). Finally, in the case m  =  0 
and ξ � Ξ we use the asymptotics of the Bessel and Hankel functions for small arguments 
and find that

lim
t→0

∣∣∣∣∣H
(1)
0 (tr+)J0(tr−) −

H(1)
0 (tρ)

H(1)
0 (tR)

H(1)
0 (tr)J0(k(ξ)R)

∣∣∣∣∣ =
2
π
ln

r+
r

�
2
π
ln

R̂
R

.

For the derivative we argue analogously using limt→0
[
tH(1)′

0 (t)
]
= 2i

π . □ 

Remark A.3. We note that G is essentially a Green’s function of the ordinary differential 
operator

1
r

∂

∂r

(
r
∂

∂r

)
− m2

r2 + k2 − ξ2.
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More precisely, for any h ∈ L2(R,∞) with compact support in [R,∞),

v(r) =

∫ ∞

R
G(r, ρ, m, ξ) h(ρ) ρ dρ, r � R,

satisfies the boundary value problem

1
r

d
dr

(
r

dv(r)
dr

)
+

(
k2 − ξ2 − m2

r2

)
v(r) = −h(r), r > R, v(R) = 0. (A.7)

This is seen by a direct calculation using the Bessel differential equation and the Wronskian 

of the Bessel functions in the form H(1)′
m (z)Jm(z)− H(1)

m (z)J′m(z) =
2i
πz.

Lemma A.4. Let k ∈ C with Rek > 0 and Imk � 0. For ξ ∈ R  and m ∈ Z define

ψξ,m(r,ϕ) =
H(1)

m
(
r k(ξ)

)

H(1)
m

(
R k(ξ)

) eimϕ, r � R, �, m ∈ Z,

where k(ξ) =
√

k2 − ξ2, ξ ∈ R . Then, for all k0  >  0 and R̂ > R there exists c  >  0 such that

‖ψξ,m‖2
L2(B2(0,R̂)\B2(0,R)) �

c√
1 + ξ2

and ‖ψξ,m‖2
H1(B2(0,R̂)\B2(0,R)) � c

√
1 + ξ2 + m2

for all ξ ∈ R  and m ∈ Z and k ∈ C with |k| � k0 and Rek > 0 and Imk � 0.

Proof. We follow closely the proof in [5]. We set AR,R̂ = B2(0, R̂) \ B2(0, R) and use the 

elementary estimate Imk(ξ) = Im
√

k2 − ξ2 �
√

3
2
√

2
|ξ| � 1

2 |ξ| for |ξ| � 2|k| (see lemma A.5). 
First we have

‖ψξ,m‖2
L2(AR,R̂)

= 2π
∫ R̂

R

∣∣∣∣∣
H(1)

m
(
r k(ξ)

)

H(1)
m

(
R k(ξ)

)
∣∣∣∣∣
2

r dr � 2π
∫ R̂

R
e−2Imk(ξ)(r−R)r dr

by part (a) of the previous lemma. If |ξ| � 2|k| then we use e−2Imk(ξ)(r−R) � 1 for r � R, and 
‖ψξ,m‖L2(AR,R̂)

 is bounded uniformly with respect to ξ and m. If |ξ| � 2|k| then, by the above 
elementary estimate

‖ψξ,m‖2
L2(AR,R̂)

� 2π
∫ R̂

R
e−|ξ|(r−R)r dr �

2π
|ξ|

(
R +

1
2k0

)
.

This proves the assertion for ‖ψξ,m‖L2(B2(0,R̂)\B2(0,R)). For the gradient we use Green’s formula 
and have
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‖∇ψξ,m‖2
L2(A(R,R̂)) =

∫

A(R,R̂)

∣∣∇ψξ,m
∣∣2 dx

= −
∫

A(R,R̂)
ψξ,m ∆ψξ,m dx +

∫

r=R̂
ψξ,m

∂ψξ,m

∂r
ds −

∫

r=R
ψξ,m

∂ψξ,m

∂r
ds

� |k(ξ)|2 ‖ψξ,m‖2
L2(A(R,R̂))

+ 2π |k(ξ)|


R̂

∣∣∣∣∣∣
H(1)

m
(
R̂ k(ξ)

)
H(1)′

m
(
R̂ k(ξ)

)

|H(1)
m

(
R̂ k(ξ)

)
|2

∣∣∣∣∣∣
+ R

∣∣∣∣∣∣
H(1)

m
(
R k(ξ)

)
H(1)′

m
(
R k(ξ)

)

|H(1)
m

(
R k(ξ)

)
|2

∣∣∣∣∣∣




� c1
|k(ξ)|2√

1 + ξ2
+ c2

[
|k(ξ)|+ |m|

]
� c

√
1 + ξ2 + m2

for all ξ ∈ R  and m ∈ Z. Here we used (a) and (b) of the previous lemma. This ends the proof.
 □ 

Lemma A.5. For k ∈ C with Rek > 0 and Imk � 0 we have

Im
√

k2 − ξ2 �
1
2
|ξ| for all |ξ| � 2|k|.

Proof. We have k2 − ξ2 = |k2 − ξ2| exp(iα) with some α ∈ [0,π]. Taking the real part 
yields |k2 − ξ2| cosα = (Rek)2 − (Imk)2 − ξ2 � |k|2 − ξ2 < 0. Therefore, α ∈ [π/2,π]. 
Then

Im
√

k2 − ξ2 =
√
|k2 − ξ2| sin α

2
�

√
|k2 − ξ2| sin π

4
�

1√
2

√
ξ2 − |k|2

�
1√
2

√
3
4
|ξ| �

1
2
|ξ| for |ξ| � 2|k|.

 

□ 
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