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1 Introduction

The present value of future cash flows is a crucial ingredient to investment decisions.

Finding the proper risk-adjusted discount rate for future dividends is therefore one of the

central challenges in asset pricing. Gordon [1962] was among the first to show that the

discounted value of future dividends coincides with the value of an equity asset, while Lucas

[1978] shows that the discounted value of future consumption coincides with total wealth.

Following their logic, the price of an equity asset summarizes information on the different

growth rates and discount factors applicable to all future dividends. Brennan [1998] was

among the first to point out that a theoretical claim on a single dividend paid at a particular

point in the future could be valuable to promote rational pricing, revealing the risk-adjusted

expected growth rate for a specific horizon.

Both financial markets and the academic literature have come a long way since then.

In the early 2000s, several important contributions - see Cornell [1999], Dechow et al. [2000]

and Dechow et al. [2004] for early work - have relied on realized returns in the cross-section

of stocks to estimate a term structure of equity premiums. The central idea in these studies

is based on stocks’ different characteristics regarding their dividend distributions. While

some stocks promise high dividend payments in the near future, others are expected to

pay their dividends in the far future. Under these circumstances, their realized returns

can be an indication on the realized term structure of the equity premium. These early

empirical studies point towards a premium for low-duration stocks, suggesting a higher

discount rate for near-future dividends. At the same time, this finding challenges classical

asset pricing models such as Campbell and Cochrane [1999] and Bansal and Yaron [2004],

while it motivates theoretical work that accommodates this feature, pioneered by Lettau

and Wachter [2007].

Two important contributions in this field have allowed us to get a much more pre-

cise estimate of the term structure of dividend discount rates. One is the introduction

of dividend futures in financial markets. These financial contracts on a certain stream of

future dividends provide us with price information on particular dividends distributed by

major stock market indices and individual stocks. The second important contribution is the

work of Binsbergen et al. [2012], who were the first to provide a measurement of present

values of future dividends from option data. Several studies have since then proposed

measurements of risk-adjusted growth rates, see Golez [2014] and Kragt et al. [2018], to

name a few. Combined with estimates about future dividend growth, see Binsbergen et al.
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[2013] and Binsbergen and Koijen [2017], among others, several studies provide estimates of

the respective dividend risk premiums. Findings are mixed, reflecting the sensitivity of the

results to the different approaches: While some studies argue for a downward sloping term

structure, other studies find an upward slope. Findings about the business cycle behavior

of expected premiums, an important question going back to the influential study of Lettau

and Ludvigson [2001], are also conflicting, we refer to Bansal et al. [2017] and Gormsen

[2018]. My dissertation contributes to this literature. Together with my co-authors, I have

developed novel approaches to allow for a fresh perspective on this highly debated topic.

We contribute to the literature with a new methodology to obtain model-free estimates

of dividend risk premiums from price data and survey estimates on future dividends, thus

removing statistical bias emerging from parametric choices. We apply our work to both the

U.S. and European market, using both option data and dividend futures data, and analyze

the impact of business cycle fluctuations on the respective term structures. Adding to the

term structure literature, we derive no-arbitrage conditions and develop a parsimonious

affine term structure model to jointly price government bonds, dividend assets and the

aggregate equity index.

1.1 Structure of the Thesis

Chapter 2 is based on the working paper ‘A Model-Free Term Structure of U.S. Dividend

Premiums’ of Ulrich et al. [2018]. We introduce a novel approach to obtain an estimate

of the dividend risk premium from option price data and survey estimates, model-free

and available in real-time. The analysis focuses on the U.S. market, including information

about all stocks which have been part in the S&P 500 since January 2004. We evaluate the

predictive power of our premium estimate for future excess returns in dividend assets and

conclude that the combination of both data sets, options and survey estimates, provides

an excellent predictor. Looking at different business cycle variables, we find that investors

demand a larger premium for exposure to uncertain dividends during economic contractions,

but much more so for near-future dividends then for dividends paid far in the future. This

translates into the level of the risk premium term structure moving against the business

cycle, while its slope is pro-cyclical. Our analysis also highlights the accuracy of survey

estimates on dividends, which complements the rich literature on earnings estimates.

After establishing our methodology to obtain a model-free estimate of the dividend

risk premium term structure, we extend our analysis to the European market in chapter 3.

We show how to use price information on dividend futures, instead of options, to obtain
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the risk premium estimates. The index we study is the Euro Stoxx 50, for which dividend

futures are traded since August 2008. Compared to our results presented for the U.S.

economy, we find a significant upward bias in analyst dividend estimates, which translates

into our premium estimate. Yet, the premium estimate turns out to be a strong predictor

of returns on dividend futures. Interestingly, we find that returns on dividend futures are

positively correlated with the aggregate equity market, contrary to our finding for the U.S.

market. Similar to the U.S. market, we show that the term structure of risk premiums is

counter-cyclical in its level and pro-cyclical in its slope. We conclude with a brief discussion

of the differences and similarities in both markets and the advantages of dividend futures

for the analysis of implied dividend risk premiums.

Chapter 4, based on the working paper ‘A Macro-Finance Term Structure Model for

Bond and Dividend Discount Rates’ of Ulrich et al. [2019], introduces a unifying framework

to jointly price government bonds, dividend assets and the aggregate equity market in a

macro-based term structure model. We establish basic no-arbitrage conditions to price the

three asset classes and obtain analytical solutions for the different components of the divi-

dend discount rate, which are the average expected short rate, the bond risk premium and

the dividend risk premium. We find that the short-horizon dividend risk premium cannot

be captured in an affine model, in which market prices of risk are affine in macro-economic

and growth variables alone. With the use of survey estimates as advocated in Kim and

Wright [2005] and Kim and Orphanides [2012], we are able to obtain realistic estimates of

all term structure components with strong predictive power for their realized counterparts,

among them excess returns on dividend assets. As we include a rich set of macro-economic

data, we are able to identify their economic drivers and conclude that a Taylor rule based

monetary policy achieves strong results, even in recent times of unconventional policies.
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2 A Model-Free Estimate of Dividend Risk Premiums

This chapter is based on the working paper ‘A Model-Free Term Structure of U.S. Dividend

Premiums’ of Ulrich et al. [2018], proposing a novel approach to estimate a model-free term

structure of dividend risk premiums and applying it to S&P 500 dividends.

2.1 Introduction

As mentioned in chapter 1, finding the proper risk-adjusted discount rate for dividends

paid at different points in the future is a classical, yet still unresolved, challenge in financial

economics. The seminal work of Binsbergen et al. [2012] has shown how to use European

index options to construct risk-adjusted expected dividend growth rates of the S&P 500

in a model-free way. The authors show that such growth rates coincide with the spread

between expected dividend growth rates and the respective dividend risk premium. In

order to compute the expected dividend risk premium in a model-free way, we propose to

approximate expected dividend growth rates with a value-weighted aggregation of company

specific dividend forecasts. The dividend forecasts are from the Thomson Reuters I/B/E/S

database and cluster at low maturities that do not necessarily match the maturities of

the options-implied dividend growth rates. To overcome the problem of incomplete term

structures, we apply a smooth Nelson and Siegel [1987] interpolation to both growth rates.

Such a model-free identification of the dividend risk premium term structure is new to the

literature and an alternative to existing approaches that rely either on probabilistic model

assumptions or on a short sample of realized returns; see Binsbergen et al. [2012] and

Binsbergen et al. [2013], among others.

The survey-implied dividend growth expectations are strong predictors of future dividend

growth and superior to popular measures in the dividend growth literature. Their accuracy

contributes to the superior predictive power of our expected dividend risk premiums, which

are strong predictors of future excess returns on dividend assets. The term structure of the

dividend risk premium between January 2004 and October 2017 has been hump shaped on

average. Its level increases during business cycle contractions and decreases in expansions.

Yet, the on average negative dividend term premium steepens during contractions and

flattens in expansions, driven by strong variations in short-horizon dividend premiums. Our

new approach allows us to quantify the term structure of dividend growth and the dividend

risk premium without parametric assumptions, in real-time and for arbitrary maturities;

three features new to the literature.
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Our findings relate to different strands of the literature and can be summarized as follows.

First, annual dividend growth rate expectations implied by I/B/E/S dividend estimates

are unbiased predictors and explain roughly half of the variation in future annual dividend

growth. Compared to popular models in recent studies on dividend growth, survey-implied

growth estimates produce the lowest forecast errors and are free of statistical biases.

Options-implied S&P 500 dividend growth rates are, on the other hand, biased predictors,

caused by a strongly time-varying, and economically sizable, dividend risk premium. Sec-

ond, a variance decomposition across maturities unveils that at least 77% of unconditional

variations in options-implied dividend growth rates are due to risk premium shocks, whereas

a maximum of 23% are due to cash flow shocks.

Third, we shed new light on the conditional time-variation of the hump shaped, model-free

dividend risk premium term structure. We find that investors demand a similar premium

for dividends across all maturities during expansionary periods and a higher premium for

exposure to near-future dividends during contractionary periods. Yet, the level of the

dividend risk premium term structure moves counter-cyclically. Fourth, we find that the

implied dividend risk premium is a noteworthy predictor for future returns on dividend

assets. It adds predictive information on top of the corrected dividend yield measure of

Golez [2014], the SVIX measure derived by Martin [2017] and the price-dividend ratio of

dividend strips derived in Binsbergen et al. [2012].

Fifth, we analyze the monthly return profile of a trading strategy that buys the next

twelve months of S&P 500 dividends whenever the respective twelve month dividend risk

premium is positive. In our sample, this investment strategy earns on average an annualized

excess return of 14.95% with a Sharpe ratio of 1.28. We could not find evidence that this

sizable average excess return is explained by any of the five Fama and French [2015] risk

factors; which contributes to the finding in Binsbergen et al. [2012] that short-term dividend

assets are potentially a new asset for cross-sectional asset pricing tests. Once we incorporate

transaction costs and once we trade all options at the quoted CBOE bid and ask prices, the

Sharpe ratio falls to 0.72, still significantly larger than the 0.36 Sharpe ratio of an S&P 500

investment. Sixth, we also compare the respective excess return of strategies that invest

every month into the next 6, 18, 24, 30 and 36 month S&P 500 dividends and find sizable

Sharpe ratios and a downward sloping term structure of average excess returns.

In section 2.2, we derive the dividend risk premium estimate. We discuss our data

in section 2.3 and present our findings in section 2.4. In section 2.5, we compare our
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methodology to alternative approaches in recent literature. Section 2.6 concludes.

2.1.1 Related Literature

Our paper complements the new literature on estimating the term structure of expected

dividend risk premiums, pioneered by Binsbergen et al. [2012] and Binsbergen et al. [2013].

Binsbergen et al. [2013] identify the term structure of conditional expected dividend risk

premiums based on parametric model assumptions.1 Binsbergen et al. [2012] approximate

the unconditional term structure of the dividend risk premium by computing the sample

average excess return of a short-term dividend and a dividend steepener trading strategy.

Our new approach has the advantage that it provides in real-time a model-free, forward-

looking estimate of the full term structure of the conditional expected dividend risk premium.

We also contribute to the literature on equity return predictability (e.g. Fama and

French [1992], Lettau and van Nieuwerburgh [2008], Binsbergen and Koijen [2010], Golez

[2014], Bilson et al. [2015] and Martin [2017]). Martin [2017] derives an options-implied

lower bound on the term structure of the conditional expected equity risk premium and

shows it has superior predictive abilities for future realized equity returns. He also argues

that the options-implied expected equity risk premium is more volatile than previously

thought. Our model-free term structure of expected dividend risk premiums allows a more

nuanced view on how the equity risk premium is distributed across the duration spectrum.

We confirm that option prices contain valuable information about future returns: our

options- and survey-implied dividend risk premium estimate is a superior predictor of future

realized dividend returns. In addition, the conditional expected dividend risk premium is

volatile, especially for exposure to short-duration dividend risk.

Golez [2014] and Bilson et al. [2015] present important evidence for the usefulness of

options-implied dividend yields for predicting equity returns in- and out-of-sample. Our

work relates to these important contributions by showing that the embedded expected

dividend risk premium is a superior predictor of realized dividend returns. We also show

that a correction of options-implied growth expectations by expected dividend growth from

analyst forecasts predicts future dividend returns better than the options-implied growth

expectation alone.

1The first assumption is that the unobserved expected dividend growth rate is a linear function of
two observed options-implied dividend growth rates. The second assumption is that these options-implied
dividend growth rates follow a Gaussian distribution, modeled by means of a VAR(1) model.
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Our paper also contributes to the recent literature that studies time-series variations

of dividend risk premiums across the business cycle. Classical asset pricing theories, such

as Campbell and Cochrane [1999] and Bansal and Yaron [2004], imply an upward sloping

term structure of dividend risk premiums. More recently, theories have been developed that

rationalize a downward sloping term structure of dividend risk premiums (e.g. Lettau and

Wachter [2007], Croce et al. [2014], Belo et al. [2015]).2 Empirical evidence on the business

cycle variations of the term structure of dividend risk premiums is scarce and inconclusive.

Gormsen [2018] presents evidence that the term structure of holding-period equity returns

is downward sloping in good times and upward sloping in bad times. Bansal et al. [2017]

extract the conditional term structure of the dividend risk premium from dividend futures

and a parametric model for dividend growth, to find that the term structure of dividend

risk premiums is upward sloping in normal times and downward sloping in recessions. We

add to this important literature by showing how to use analyst dividend forecasts from

the Thomson Reuters I/B/E/S database to construct a model-free estimate for the term

structure of expected dividend growth, allowing a model-free extraction of the dividend

risk premium term structure. Looking at its business cycle variations, we document three

important features: First, the level of the term structure is counter-cyclical, as both the

long-end and short-end decrease (increase) during business cycle expansions (contractions).

Second, we find an unconditionally negative dividend term premium, or downward slope,

which steepens further during contractions and flattens during expansions. Third, we

document that expected risk premiums for short-duration dividends react stronger to

business cycle shocks than risk premiums for long-duration dividends.

Our methodology of constructing the term structure of conditional expected dividend

risk premiums adds to the implied-cost of capital literature that is actively used by finance

and accounting researchers. Early work has used realized returns or dividend yields to

estimate a firm’s cost of capital (e.g. Foerster and Karolyi [1999], Foerster and Karolyi

[2000], Errunza and Miller [2000]). More recently, that literature has used the dividend

discount model and a firm’s stock price and expected future dividends from analysts to

uncover the implied-cost of capital by means of the internal rate of return (e.g. Hail and

Leuz [2009]).3 Pastor et al. [2008] and Li et al. [2013] show that such internal rate of

returns are indeed useful in capturing conditional variations in expected equity returns. It

is worth noticing that the internal rate of return in the dividend discount model aggregates

2See also Eisenbach and Schmalz [2013], Nakamura et al. [2013], Hasler and Marfe [2016], and Andries
et al. [2018], among others.

3Other influential studies are Claus and Thomas [2001], Gebhardt et al. [2001], Easton [2004], and Ohlson
and Juettner-Nauroth [2005].
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the complete term structure of expected dividend risk premiums into one number. Our

contribution to that literature is to show how to derive in each point in time the model-free

term structure of expected dividend risk premiums. Such data allows for a more nuanced

view on how corporate decisions affect the expected evolution of the firms’ cost of capital.

Our paper also contributes to the literature on biases in analyst forecasts. That lit-

erature has focused on documenting and sub-sequentially rationalizing why average analyst

earnings forecasts are upward biased. Early work has documented that analyst earnings

forecasts are on average optimistically biased (e.g. Brown et al. [1985], Stickel [1990],

Abarbanell [1991], Berry and Dreman [1995], and Chopra [1998]]). There are three

lines of explanation. First, analysts suffer from cognitive failures that lead to over- and

under-reaction to good and bad earnings news (e.g. Easterwood and Nutt [1999]).4 Second,

analysts have pay and career related incentives to publish overly optimistic earnings

forecasts (e.g. Hong and Kubik [2003]).5 Third, analysts trade-off a positive forecast bias

to improve access to management and forecast precision to produce forecasts with the

minimum expected squared prediction error. Abarbanell and Lehavy [2003] shows that

while the average earnings forecast is upward biased, the median earnings forecast is right

on target. Our work relates to this strand of the literature as we focus on analysts dividend

forecasts, as opposed to earnings forecasts. Point estimates for our regression results

confirm that the average I/B/E/S dividend forecast for the S&P 500 is overly optimistic,

yet statistically speaking, we cannot reject a zero bias. The point estimate for the median

forecast error is very close to zero. To the best of our knowledge, we are the first to

document that the upward bias in analyst dividend forecasts for the S&P 500 disappears as

the analyst coverage ratio of the total S&P 500 market capitalization approaches 100%.6

4De Bondt and Thaler [1990] argue that analysts have a behavioral tendency to overreact. Menden-
hall [1991], Abarbanell and Bernard [1992] and Klein [1990] provide evidence that analysts underreact to
past earnings and return information. Easterwood and Nutt [1999] present evidence that analysts have a
behavioral tendency to underreact to negative earnings news and overreact to positive earnings news.

5There has also been empirical evidence that analysts are rewarded by their brokerage houses for overly
optimistic forecasts (e.g. Dugar and Nathan [1995], Dechow et al. [2000], Lin and McNichols [1998], Michaely
and Womack [1999]). Hong and Kubik [2003] analyze earnings forecasts of 12,336 analysts who covered in
total 8,441 firms during the period 1983 and 2000. The authors conclude that while forecasting accuracy
appears to be the main driver of an analyst’s career, optimistic forecasts relative to the consensus are also
rewarded; especially during the stock market boom of the late 1990s.

6Since July 2009, we find I/B/E/S fiscal year one dividend forecasts for companies which together
contribute on average 98.4% to the market capitalization of the S&P 500.
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2.2 Model-Free Dividend Premium Estimates

We follow the exposition in Binsbergen et al. [2013] to show that the dividend risk

premium coincides with the spread between the expected dividend growth rate under P
andQ, where P denotes the physical probability measure andQ denotes the risk-neutral one.

Let n > 0 be the maturity of a dividend payment, denoted as Dn. We denote the P
expectation at time t about an uncertain dividend payout in t+ n, Dt+n, as DP

t,n. Likewise,

the Q expectation at time t about Dt+n is denoted as DQ
t,n. Formally, the definition reads

DP
t,n ≡ EP

t [Dt+n] and DQ
t,n ≡ EQ

t [Dt+n] . (1)

We denote the continuously compounded expected dividend growth rate from t to t + n as

gPt,n and gQt,n, depending on whether the expectation is taken with regard to P or Q:

gPt,n ≡
1

n
ln

(
DP
t,n

Dt

)
and gQt,n ≡

1

n
ln

(
DQ
t,n

Dt

)
. (2)

Let St,n be the time t net present value of Dt+n. Based on risk-neutral pricing, St,n coincides

with

St,n ≡ DQ
t,ne
−nyt,n = Dte

n(gQt,n−yt,n), (3)

where yt,n is the time t value of the continuously compounded risk-free bond yield with time

to maturity n. On the other hand, St,n also coincides with the expected discounted present

value of Dt+n, where the risk-free rate and the corresponding dividend risk premium zt,n

make up the discount rate:

St,n ≡ DP
t,ne
−n(yt,n+zt,n) = Dte

n(gPt,n−yt,n−zt,n). (4)

Matching the last two equations and solving for zt,n reveals

zt,n = gPt,n − g
Q
t,n, (5)

which says that the spread between the P and Q expectation of expected dividend growth

coincides with the respective dividend risk premium. A model-free estimate for zt,n requires

a model-free estimate for gPt,n and gQt,n. We now show that one can use survey forecasts

to estimate gPt,n and index options to estimate gQt,n. Applying a Nelson and Siegel [1987]

interpolation allows us to infer the full maturity spectrum of both quantities. Such a model-

free identification of zt,n is straight-forward, yet, new to the literature and an alternative to
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existing approaches which rely on probabilistic model assumptions, such as Binsbergen et al.

[2012] and Binsbergen et al. [2013].

2.2.1 Dividend Growth Implied by Survey Estimates

The literature relies mainly on time-series models to estimate gPt,n, see Ang and Bekaert

[2007] and Da et al. [2015], among others. In recent work, De la O and Myers [2017]

construct one-year and two-year survey-implied expectations of S&P 500 dividends from the

Thomson Reuters I/B/E/S Estimates Database by aggregating analyst dividend estimates

for individual firms in the S&P 500 on a quarterly basis. This approach has been used before

with earnings estimates in several studies on the implied cost of capital. Among them are

Pastor et al. [2008] and Li et al. [2013], who aggregate single company estimates to a market-

wide measure. We report key statistics of our data in table 1. To illustrate the accuracy of

Table 1: Descriptive Statistics - Analyst Data

January 2004 - October 2017 Q1 Q2 Q3 Q4 FY1 FY2 FY3 Long Term

Number of covered companies 419 412 402 389 469 468 432 472
Coverage of market capitalization 83.44 82.18 80.13 77.52 93.79 93.49 85.84 94.70

July 2009 - October 2017 Q1 Q2 Q3 Q4 FY1 FY2 FY3 Long Term

Number of covered companies 459 455 448 438 492 492 483 470
Coverage of market capitalization 91.66 90.94 89.26 87.73 98.38 98.21 96.40 93.92

This table contains the sample mean for quantities describing the different Thomson Reuters
I/B/E/S dividend estimates made from Jan 2004 - Oct 2017 and the time after the Great
Recession. The number of covered companies states for how many companies in the S&P 500
a respective forecast was reported. Coverage of market capitalization measures the reported
companies’ aggregate contribution in percent to the market capitalization of the S&P 500.

our dividend aggregation, we show in figure 1 that one-year trailing S&P 500 dividends from

return differences between the total return and normal return index match accurately with

our aggregate value of realized dividends from I/B/E/S reports.

We follow the methodology in De la O and Myers [2017] and construct empirical expectations

DP
t,n for dividends paid over the next 12 and 24 months,

DP
t,12 ≡ EIBES

t [Dt+12] and DP
t,24 ≡ EIBES

t [Dt+24] . (6)

10



Figure 1: One-Year Trailing Dividends
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This figure shows one year of trailing S&P 500 dividends obtained from return differences
between the total return and normal return index and our aggregate value from I/B/E/S
reports. The gray shaded area indicates the Great Recession. Values are in U.S. Dollar.

We complement these near-future estimates with the I/B/E/S long term (LT) earnings

growth median estimates as a proxy for the long term dividend growth estimate, assuming

that the aggregate expected payout ratio remains constant over the future. According to

Thomson Reuters, the long term earnings growth estimate is assumed to be realized over a

period corresponding in length to the company’s next full business cycle, in general a period

between three to five years (see Reuters [2010]). We set the corresponding n to 60 months:

gPt,60 ≡ EIBES
t [gt,LT ] .

Next, we apply equation (2) to back out the survey-implied expected dividend growth rates

for horizons 12 and 24 months. In contrast to De la O and Myers [2017], we recover the

full maturity spectrum of gPt,n by means of a smooth Nelson and Siegel [1987] interpolation,

which is a popular interpolation scheme in the fixed-income literature. For each point in

time t, we use four data points to estimate the four parameters of the Nelson and Siegel

[1987] interpolation defined in the equation below. The first data point is current dividend

growth. We define current dividend growth, as it is common in the literature, to coincide

with annual growth in 12-month trailing dividends. We treat current growth as a proxy for
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the one day ahead growth expectation gP
t, 1

30

to calibrate the very short end. The other points

used in the interpolation are growth forecasts implied by the I/B/E/S estimates, gPt,12, gPt,24

and gPt,60:

gPt,n = δ0,t + δ1,t
1− e−nλt
nλt

+ δ2,t

(
1− e−nλt
nλt

− e−nλt
)
. (7)

The free parameters δ0,t, δ1,t, δ2,t and λt are estimated for each time period t using data

on gP
t, 1

30

, gPt,12, gPt,24 and gPt,60. The estimation approach is considered standard in the

fixed-income literature, and summarized in appendix A of our paper.

The advantages of using survey-implied I/B/E/S dividend forecasts instead of tradi-

tional time-series methods are fourfold. First, I/B/E/S forecasts do not rely on probabilistic

model assumptions and are not prone to model risk. Second, these forecasts get updated

monthly and incorporate all quantitative and qualitative information that a forecaster

finds useful for assessing future dividend payments of a firm. Third, I/B/E/S forecasts

are forward-looking. Lastly, aggregate I/B/E/S dividend median estimates are superior to

other popular approaches to predict S&P 500 dividends, as we show in section 2.4.1.

2.2.2 Dividend Growth Implied by Option Prices

Several noteworthy contributions have been made recently to the measurement of expected

dividends under the risk-neutral probability measure Q, we refer to Binsbergen et al. [2012],

Golez [2014] and Bilson et al. [2015], among others. We follow Bilson et al. [2015] and exploit

put call parity to infer the options-implied dividend yield ydt,n. Put call parity in ‘dividend

yield’ representation reads

ct,n − pt,n = Ste
−nydt,n −Ke−nyt,n , (8)

where ct,n and pt,n is the price at time t of a n maturity call and put option on St, respectively.

St is the value of the stock index of interest and K is the strike of both option contracts.

Solving for ydt,n reveals

ydt,n =
1

n

(
ln(St)− ln(ct,n − pt,n +Ke−nyt,n)

)
, (9)

where maturities n, for which we obtain dividend yields ydt,n, coincide with the available

option maturities at time t. In addition to Bilson et al. [2015], we apply a Nelson and Siegel

[1987] interpolation to all observed ydt,n to recover the full maturity spectrum of options-

implied dividend yields. Hence, instead of assuming a constant slope between two observed
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values of ydt,n, we fit for each time point t the following smooth Nelson and Siegel [1987]

interpolation

ydt,n = δ̃0,t + δ̃1,t
1− e−nλ̃t

nλ̃t
+ δ̃2,t

(
1− e−nλ̃t

nλ̃t
− e−nλ̃t

)
. (10)

The parameters δ̃0,t, δ̃1,t, λ̃t and δ̃2,t are estimated by least-square methods, based on all

observed dividend yields. Further details on the estimation are summarized in appendix

A of our paper. We show in section 2.5.1 that our short-horizon estimates are almost the

same if we apply a linear interpolation.

Based on the full maturity spectrum of ydt,n, we determine the respective values for gQt,n as

follows. As in Binsbergen et al. [2012], we let Pt,n be the price of a dividend asset that pays

all future dividends up to t+ n,

Pt,n :=
n∑
i=1

St,i. (11)

Put call parity in ‘present value’ representation reads

ct,n − pt,n = St − Pt,n −Ke−nyt,n . (12)

We now subtract equation (8) from equation (12) and solve for Pt,n to arrive at

Pt,n = St

(
1− e−nydt,n

)
. (13)

Finally, the term structure of DQ
t,n coincides with

DQ
t,n = (Pt,n − Pt,n−1) enyt,n , (14)

which provides us directly with the full maturity spectrum of the options-implied expected

dividend growth rate gQt,n.

2.3 Data and Dividend Trading Strategy

We estimate the term structure of the dividend risk premium with data from the most

common sources found in the empirical literature on dividends. Here we describe in detail

all the ingredients to replicate our results. Furthermore, we show how to set-up a trading

strategy that costs Pt,n and that pays S&P 500 dividends from t to t+ n.
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2.3.1 Data Source and Data Selection

We follow the advice in Hull and White [2013] and proxy the term structure of the risk-free

rate, yt,n, with the U.S. Dollar Overnight Index Swap (OIS) rate. We take the OIS term

structure with maturities of 1 day to 10 years from Bloomberg. Hull and White [2013]

advocate the use of overnight rates for derivatives discounting and note that since the Great

Recession, the OIS curve has increasingly become the new risk-free rate benchmark among

practitioners.

We construct expected S&P 500 dividend growth rates, gPt,n, from single company

dividend estimates as reported in the Thomson Reuters I/B/E/S Estimates Database.

We find the CUSIP identifier of all index constituents for the S&P 500 index on the last

day of each month in Bloomberg. For each CUSIP in our sample, we then use Thomson

Reuters Datastream to download the following quantities: (i) number of shares outstanding

(IBNOSH), (ii) dividends per share (DPS), (iii) price (P), (iv) end dates of quarter one, two,

three and four as well as fiscal year one, two and three (DPSI1YR, DPSI2YR, DPSI3YR,

DPSI4YR, DPS1D, DPS2D, DPS3D), (v) the corresponding dividend per share median

estimates (DPSI1MD, DPSI2MD, DPSI3MD, DPSI4MD, DPS1MD, DPS2MD, DPS3MD)

and (vi) the long term operating earnings growth median estimate (LTMD). As can be seen

from figure 2, the fiscal year one single company I/B/E/S dividend forecasts cover at least

95% of the market capitalization of the S&P 500 since July 2009.

Prior to that, the coverage ratio has increased from 74% in January 2004 to 95% in June

2009. In order to overcome noise in dividend forecasts that arise from a low coverage ratio

at the beginning of our sample, we are going to report selected statistics not only for the

full sample, but also for the time after June 2009.

We construct model-free estimates of options-implied S&P 500 dividend growth fore-

casts, gQt,n, as follows. We use CBOE intra-day trade quotes on S&P 500 index options

with standard monthly expiration to extract the present values of expected dividends over

different horizons for the period between January 2004 and October 2017. The price of

the underlying S&P 500 index level corresponding to each option trade is also provided by

the CBOE. We match options and underlying as follows. We use intra-day data from the

last ten trading days of a month, see Golez [2014] and Bilson et al. [2015] for published

work applying similar filters. Alternative choices such as the last trading day of a month

(Binsbergen et al. [2012]) or end of day quotes have only a minor impact on the resulting

dividend yields and dividend risk premiums. We consider all option trades between 10 am
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Figure 2: S&P 500 Coverage Ratio and Aggregate Dividend Forecast Error
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This figure shows the coverage of the S&P 500 market capitalization by aggregate analyst
forecasts of fiscal year one dividends and the aggregate forecast error. Values are in percent-
age terms. The gray shaded area indicates the Great Recession.

and 2 pm, a moneyness between 0.9 and 1.1, a remaining maturity of at least five days and

a non-negative dividend yield. Then we match call and put prices with the same strike and

maturity if they are traded within the same minute and share the same underlying price.

2.3.2 Earning the Dividend Risk Premium

To earn the dividend risk premium associated with all dividends paid between t and t + n,

one can go long the dividend asset Pt,n. Equation (12) shows how to invest into this asset,

whose only future cash flows are the realized dividends between t and t+ n:

− Pt,n = pt,n − ct,n + St −Ke−nyt,n . (15)

Going long the dividend asset Pt,n is equivalent to buying a put and shorting a call on the

S&P 500, both with strike K and maturity n, as well as buying the index at price St and

taking a short position in the money market with a notional of K. As the pay-off of the

right hand side will be exactly zero upon maturity, the only risk associated with this trade

is linked to the uncertain dividends paid between t and t+n, which the holder of Pt,n receives.
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We test two monthly trading strategies which involve investing into the upcoming 12-month

ahead dividends. Strategy A buys Pt,12 at the end of each month t. Strategy B invests into

Pt,12 at the end of a month if the condition

zt,12 > 0

holds, which is equivalent to a trade execution if gPt,12 > gQt,12. Intuitively, investment strategy

B buys the next 12 months’ dividends if (I/B/E/S) dividend estimates are higher than the

options-implied dividends. We also add transaction costs to both strategies. These costs

take into account bid and ask quotes. For trading the underlying, we assume a total expense

ratio of 0.07% per year and an average bid ask spread of 0.01%, as it is common for large

ETFs on the S&P 500. For options, we include transaction costs by working with the actual

bid and ask prices from the CBOE option database.

2.4 Empirical Analysis

Our findings shed new light on aggregate analyst dividend forecasts and the term structure

of dividend risk premiums. We document that aggregate analyst dividend forecasts are

unbiased and of higher accuracy than other popular measures in the literature. The on

average negative slope of the dividend risk premium steepens further during contractionary

periods and flattens during business cycle expansions. These business cycle variations stem

largely from the short end of the term structure.

2.4.1 Survey- and Options-Implied Dividend Growth Estimates

Table 2 summarizes the sample mean and standard deviation for one-year, two-year and

long term estimates of gPt,n and gQt,n. The average gPt,n has been close to 10% across all

maturities. During the Great Recession, we find a strong decrease in the short end of the

term structure of gPt,n. The one-year expectation decreased by almost two thirds to 3.60%,

while the long term estimate increased slightly to 10.74%. Options-implied growth rates

are on average negative and of decreasing magnitude with increasing maturity. The average

one-year and long term estimate of gQt,n have been -8.91% and -2.67%, respectively. During

the Great Recession, these numbers fell to -39.59% and -5.86%. Looking at the standard

deviations of gQt,n and gPt,n reveals that options-implied growth is on average twice as volatile

as survey-implied growth.
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Table 2: Implied Growth and Risk Premium Estimates

µ gPt,12 gPt,24 gPt,LT gQt,12 gQt,24 gQt,LT zt,12 zt,24 zt,LT

Jan 2004 - Sep 2017 10.07 10.22 9.87 -8.91 -6.10 -2.67 19.00 16.33 12.52
Great Recession 3.60 7.33 10.74 -39.59 -22.35 -5.86 43.19 29.68 16.59

σ gPt,12 gPt,24 gPt,LT gQt,12 gQt,24 gQt,LT zt,12 zt,24 zt,LT

Jan 2004 - Sep 2017 6.33 2.95 1.73 17.29 9.42 1.79 14.08 7.99 2.93
Great Recession 8.45 4.23 0.57 20.03 12.01 2.28 18.50 11.05 1.99

This table contains the sample mean and standard deviation for dividend growth expecta-
tions gPt,n and gQt,n under the empirical and risk-neutral probability measure and the dividend
risk premium zt,n in the period Jan 2004 - Sep 2017 and the Great Recession in Dec 2007 -
Jun 2009. Values are annualized, in percentage terms and rounded to two decimals.

We separately assess whether gPt,12 and gQt,12 are accurate expectations of future annual

dividend growth, denoted as gt,t+12, by the following regressions:

gt,t+12 = ag + bgXt + εgt+12, εgt+12 ∼ i.i.d.(0, σ2
g), Xt ∈ {gPt,12, g

Q
t,12}. (16)

The results of these regressions are summarized in table 3. The amount of lags in the

Newey and West [1987] correction of standard error estimates is based on the heuristic

T 0.25, T being the number of observations; we refer to Greene [2011] for details. Notice, Xt

is an unbiased predictor for gt,t+12 if the respective ag and bg estimates are zero and one,

respectively. While gQt,12 explains 53.2% of variations in gt,t+12, it is a biased predictor, with

a significant estimate of ag = 10.72 and an estimate of bg = 0.39 that is significantly smaller

than one. For gPt,12, we find a R2 of 43.5%, an insignificant estimate of ag = −2.34 and

an estimate of bg = 0.97 that is statistically not different from one. Consistent with asset

pricing theory, gPt,12 captures the conditional and unconditional level of gt,t+12, whereas gQt,12

is biased because it contains the dividend risk premium zt,12.7 All in one, we find that gPt,12

is an unbiased predictor for gt,t+12, while gQt,12 is not. The slightly higher R2 for gQt,12 implies

that zt,12 has predictive information for gPt,12.

We perform a more extensive analysis on forecast biases in section 2.5.2 and compare gPt,12

to other popular measures of dividend growth in section 2.5.3.

7The documented bias is consistent with a different, yet important, literature on the rejection of the
expectation hypothesis for Treasury yields (e.g. Fama and Bliss [1987], Stambaugh [1988], Campbell and
Shiller [1991], Cochrane and Piazzesi [2005], and Piazzesi and Swanson [2008]).
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Table 3: Regression Statistics - Dividend Growth

Xt ag bg R2

gPt,12 -2.34 (2.46) 0.97 (0.19) 43.5

gQt,12 10.72 (0.83) 0.39 (0.06) 53.2

This table reports regression estimates and adjusted R2 values for predictive regres-
sions of future realized dividend growth on survey-implied dividend growth expec-
tations Xt = gPt,12 and options-implied dividend growth expectations Xt = gQt,12:

gt,12 = ag + bgXt + εgt+12, εgt+12 ∼ i.i.d.(0, σ2
g).

Values for ag and R2 are in percentage terms. Newey and West [1987] standard errors with
T 0.25 lags are reported in parenthesis, where T is the number of observations. The predictions
cover the period between Jan 2004 and Oct 2017.

2.4.2 Implied Dividend Risk Premium Estimates

Figure 3 displays our estimate of the average term structure of the dividend risk premium,

which we find to be hump shaped.

The shape is consistent with arguments in Binsbergen et al. [2012] and Golez [2014]. The

hump shape mirrors the term structure of gQt,n and implies that near-term dividends pay

a small dividend premium, while the dividend premium builds up and peaks at 19% for

dividends arriving in 13 months.

Figure 4 plots the time-series estimates for the one-year, two-year and long term div-

idend risk premium.

Especially the short maturity dividend risk premiums vary considerably around their sample

mean. The strongest variation arises at the peak of the Great Recession, where zt,12 peaks

at 89% in November 2008. The respective peak in zt,24 happens at the same point in time,

but less dramatically at 53%, while the estimate of the long term dividend risk premium

spikes at 19%.8

The importance of dividend risk premium variations in options-implied dividend growth

estimates is confirmed in figure 5, which depicts the time-series for gQt,12, gPt,12 and zt,12.

8The SVIX-implied lower bound for the expected equity risk premium (Martin [2017]) peaks at the same
time. We assess the predictive power of the SVIX and our dividend risk premium in section 2.4.3.
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Figure 3: The Term Structure of Expected Growth and Dividend Risk Premium

  

This figure shows the average future dividend growth rate implied by survey forecasts gPt,n
and option-prices gQt,n, together with the expected dividend risk premium zt,n, between Jan
2004 and Oct 2017. Dashed lines indicate two standard errors off the mean estimate. The
horizontal axis displays the maturity in months. Values on the vertical axis are in percentage
terms and annualized.

It is evident that variations in physical growth expectations are rather slow moving, while

variations in dividend risk premiums cause most of the variations in options-implied dividend

expectations. The substantial drop in options-implied dividend growth during the Great

Recession is mainly due to an upward jump in dividend risk premiums. To formalize this

observation, we compute the contribution of both growth expectations gPt,n and zt,n to the

variance in gQt,n,

var(gQt,n) = cov(gQt,n, g
P
t,n)− cov(gQt,n, zt,n). (17)

At the one-year horizon, we find that growth expectations account for 23% of variation in

options-implied dividend growth rates, while variations in the dividend risk premium account

for 77%. The dominance of risk premium shocks increases with the maturity of the dividend

payment. Figure 4 also highlights that the negative slope for maturities beyond 13 months

steepens in times of turmoil. This feature is intuitive, as these business cycle downturns are

relatively short-lived, creating uncertainty particularly around near-future dividends and

an increased compensation for bearing this risk. Despite the average downward slope for
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Figure 4: Dividend Risk Premium Estimates
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This figure shows the one-year, two-year and long term risk premium estimates for S&P 500
dividends. The gray shaded area indicates the Great Recession. Values are in percentage
terms and annualized.

maturities beyond 13 months, there are some instances when the term structure of zt,n

seems to be flat or with a positive slope. We have a closer look on the behavior of the term

structure during business cycle fluctuations in section 2.4.4.

2.4.3 Returns on Dividend Assets

In this section, we will assess the predictability of returns on dividend assets with different

maturities. Dividend assets have a determined maturity, paying the dividends over a certain

horizon n and no dividends thereafter. A standard equity asset entitles the investor to receive

all future dividends over the life of the firm or index, and can therefore be seen as an asset

that pays dividends up to n =∞. We define the return of a dividend asset with maturity n

over holding-period h, where h ≤ n, to be

rnt,t+h := ln

(
Pt+h,n−h +

∑h
i=1Dt+i

Pt,n

)
. (18)

The holder of the dividend asset with price Pt,n is entitled to receive the entire stream of

dividends over the holding period h and the present value of the remaining dividends at the
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Figure 5: One-year Growth and Premium Estimates

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

This figure shows the survey-implied growth, options-implied growth and risk premium esti-
mates for S&P 500 dividends. The gray shaded area indicates the Great Recession. Values
are in percentage terms and annualized.

end of the holding period. If maturity n and holding period h coincide, the holder receives

the entire stream of dividends over the life of the asset, which then matures with a value of

zero. Our analysis focuses on returns of investment strategy A. We also consider returns

of the S&P 500 index, a dividend asset with theoretically infinite (n = ∞) maturity, to

complement our analysis.

Let xr12
t,12 be the excess return of investment strategy A: The investor pays the price of the

one-year dividend asset Pt,12 to receive the t to t+ 12 dividend stream of the S&P 500,

xr12
t,12 := ln

(∑12
i=1Dt+i

Pt,12

)
− yt,12 × 12. (19)

We now compare how well our model-free dividend risk premium estimate zt,12 predicts

excess returns of strategy A, relative to other popular measures in recent literature. Among

the predictive signals we compare is the realized annual market excess return MKTt, which

by construction has a strong correlation with the realized annual return of the S&P 500, see

Fama and French [2015] for details on the time series. We include the one-year corrected
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dividend price ratio dpcorrt,12 , following the derivation in Golez [2014]. Golez [2014] corrects

the standard dividend price ratio of equity for options- and future-implied dividend growth

expectations and finds that this variable predicts equity returns significantly better than

the standard dividend price ratio. As we do not have futures data, we use his approach

to correct the dividend price ratio, but with option data alone. In a third comparison, we

consider the one-year SV IXt,12 measure of the equity premium derived by Martin [2017].

Martin [2017] argues that the SVIX index, a measure of risk-neutral variance derived from

index option prices, provides a lower bound on the equity premium over different investment

horizons. His measure shares a positive correlation of 0.29 with our risk premium estimate,

and both peak in November 2008. We complement the analysis with the one-year log price

dividend ratio of the dividend asset pdstript,12 , which as shown by Binsbergen et al. [2012] is a

strong predictor for returns on dividend assets.

We regress the monthly return series of xr12
t,t+12, separately, onto each of the mentioned

predictive variables,

xr12
t,12 = α + βXt + εdt+12, εdt+12 ∼ i.i.d.(0, σ2

d), (20)

with

Xt ∈ {zt,12, MKTt, dp
corr
t,12 , SV IXt,12, pd

strip
t,12 }. (21)

Table 4 displays that zt,12, pdstript,12 and dpcorrt,12 are the best predictors of the excess return of

strategy A, with predictive R2 values around 70% and mean absolute errors of approximately

6%.

For two reasons, we now analyze separately the 100 months between the Great Re-

cession and the end of our sample. First, we have insufficient coverage in our analyst

forecasts during the first years of our sample, which can lead to inaccurate growth estimates,

as figure 2 highlights. Second, we want to see whether the strong predictive power might

be due to extreme volatility during the Great Recession. In the lower panel of table 4, we

document that survey forecasts substantially add to the predictability of dividend returns,

xr12
t,12 = 0.73 + 1.01 zt,12 + εdt+12, R2 = 92.8%,

(1.13) (0.04)
(22)

as the β of 1.01, the low mean absolute error of 1.76% and large R2 of 92.8% suggest.

While the results in the lower panel of table 4 point towards a negative effect of insufficient
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Table 4: Regression Statistics - One-Year Returns on Dividend Assets

January 2004 - October 2017

α βMKT βdpcorr βSV IX βpdstrip βz MAE R2

xr∞t,12 8.00 (3.68) 0.05 (0.19) 10.68 0.0
xr12

t,12 16.30 (2.08) -0.13 (0.11) 10.59 2.0

xr∞t,12 0.61 (0.43) 0.13 (0.11) 11.64 2.6
xr12

t,12 -1.85 (0.21) -0.50 (0.05) 6.16 69.6

xr∞t,12 5.38 (2.66) 0.77 (0.69) 10.47 1.0
xr12

t,12 8.59 (3.23) 1.67 (0.51) 10.42 10.7

xr∞t,12 8.19 (2.02) -0.02 (0.15) 10.61 0.0
xr12

t,12 9.31 (1.03) -0.65 (0.07) 6.11 70.1

xr∞t,12 10.70 (2.82) -0.12 (0.20) 10.64 0.5
xr12

t,12 0.20 (1.73) 0.79 (0.09) 6.41 71.1

July 2009 - October 2017

α βMKT βdpcorr βSV IX βpdstrip βz MAE R2

xr∞t,12 13.41 (1.61) -0.01 (0.07) 5.83 0.0
xr12

t,12 19.53 (2.33) 0.04 (0.19) 7.37 0.0

xr∞t,12 0.52 (0.26) 0.10 (0.06) 5.79 4.1
xr12

t,12 -1.56 (0.20) -0.43 (0.05) 3.74 69.1

xr∞t,12 10.26 (2.80) 0.82 (0.57) 5.83 2.2
xr12

t,12 30.66 (3.09) -2.83 (0.86) 6.24 24.1

xr∞t,12 13.77 (1.77) 0.04 (0.13) 5.83 0.0
xr12

t,12 11.93 (1.45) -0.77 (0.09) 3.88 64.1

xr∞t,12 13.85 (2.46) -0.03 (0.13) 5.82 0.0
xr12

t,12 0.74 (1.13) 1.01 (0.04) 1.76 92.8

This table reports estimates for predictive regressions of index ex-
cess returns xr∞t,12 and excess returns xr12

t,12 on the one-year as-
set over the next 12 months on different predictive variables Ft:

rnt,12 = α + βFFt + εrt , εrt ∼ i.i.d.(0, σ2
r).

We analyze future annual excess returns for every month between Jan 2004 - Oct 2017
and the time after the Great Recession. The predictive variables Ft comprise the one-year
market excess return MKTt as in Fama and French [2015], the one-year corrected dividend
price ratio dpcorrt,12 according to Golez [2014], the one-year SV IXt,12 measure according to

Martin [2017], the one-year log price dividend ratio of the short term asset pdstript,12 presented
by Binsbergen et al. [2012] and our one-year dividend risk premium zt,12. Values for α, mean
absolute errors and adjusted R2 are in percentage terms. Newey and West [1987] standard
errors with T 0.25 lags are reported in parenthesis, where T is the number of observations.
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data coverage in the early part of the sample, we acknowledge the possibility that 100

observations of overlapping data might result in inflated R2 values.

The previous analysis considered the informational content in zt,12 about the divi-

dend risk premium for dividend payments within one year. We now ask whether zt,12

is useful to predict the return on the S&P 500 over the next 12 months. We define the

one-year excess return on the index as

xr∞t,12 := ln

(
St+12 +

∑12
i=1Dt+i

St

)
− yt,12 × 12.

Table 4 reports the results of this analysis. Regardless of whether we look at the full sample

or the time after the Great Recession, our results document that it is more challenging to

predict returns on the index relative to returns on short-term dividend assets. All respective

R2 values are zero or close to zero and the respective β’s are statistically speaking zero. The

best prediction results are associated with the corrected dividend price ratio (Golez [2014])

with an R2 of 4.1%, and a 1.67 t-statistic for its β estimate.

We also regress both one-year excess returns on the annual five Fama and French

[2015] factors MKTt, SMBt, HMLt, RMWt, and CMAt for our entire sample period

and summarize the outcome in table 5. Notice, here we regress current, not future, excess

Table 5: Regression Statistics - Fama and French [2015] Style Factors

α βMKT βSMB βHML βRMW βCMA R2

xr∞t,12 -1.80 (0.31) 1.04 (0.02) -0.25 (0.03) 0.06 (0.02) 0.01 (0.03) -0.04 (0.02) 99.6
xr12

t,12 12.05 (3.15) 0.26 (0.15) 0.02 (0.32) -0.14 (0.22) 0.21 (0.32) -0.23 (0.29) 4.9

This table reports estimates for regressions of current index excess returns xr∞t,12

and excess returns xr12
t,12 on the annual five Fama and French [2015] factors:

xrnt,12 = α + βMKTMKTt + βSMBSMBt + βHMLHMLt + βRMWRMWt + βCMACMAt + εrt .

We analyze annual excess returns for every month between Jan 2004 - Oct 2017. Values for
α and adjusted R2 are in percentage terms. Newey and West [1987] standard errors with
T 0.25 lags are reported in parenthesis, where T is the number of observations.

returns on the factors. This analysis allows us to see whether excess returns at the different
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ends of the term structure can be explained by one or multiple common style factors. We

find that 99.6% of the variation in realized S&P 500 excess returns, but only 4.9% of the

variation in returns of strategy A are explained by the Fama and French [2015] factors. In

addition, none of those factors is a significant explanatory variable for excess returns of

strategy A.

2.4.4 The Impact of Business Cycle Variations

Does the term structure of expected dividend risk premiums fluctuate with the business

cycle? Several studies on the term structure of the equity risk premium (see Binsbergen

and Koijen [2017] and Gormsen [2018] for recent contributions) consider realized one-year

returns during different stages of the business cycle. Unlike realized one-year excess returns,

our premium estimates represent expected excess returns earned over the entire life of

the dividend asset, similar to the exposition in Bansal et al. [2017]. Our dividend risk

premium is conceptually similar to the risk premium in the term structure of bond yields,

in the sense that the n-year premium represents the expected excess return earned over

the life of the asset.9 To formalize the relation of our premium estimates to business cycle

variations, we characterize expansionary (contractionary) periods by industrial production

growth being above (below) its sample median. For robustness, we complement industrial

production growth ipt with two alternative measures to determine the current state of the

economy: the log dividend price ratio dpt (see Gormsen [2018]) and our survey-implied

growth estimate gPt,12. The results are qualitatively and quantitatively similar, independent

of how we measure business cycle variations. We discuss results for a classification according

to industrial production growth and refer to table 6 for further results.

We find that the level of the term structure of the dividend risk premium moves

counter-cyclically; it falls during expansions and increases during contractions. The top

panel of figure 6 quantifies that the short-end (long-end) of the dividend risk premium term

structure falls by 4.45% (1.16%) during business cycle expansions, whereas it increases by

4.60% (0.96%) during business cycle contractions. These counter-cyclical movements of the

level of the term structure are statistically significant.

9A recent bond market study by Crump et al. [2018] shows how survey-forecasts on future short-rates
can be used to obtain a forward-looking and model-free estimate of bond risk premiums.
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Table 6: The Dividend Risk Premium Term Structure and the Business Cycle

Entire Sample 12 24 36 48 60 72 84 96 108 120

Average Premium 19.00 16.33 14.79 14.00 13.51 13.19 12.95 12.77 12.63 12.52
Standard Deviation 14.08 7.99 5.72 4.59 3.96 3.56 3.30 3.12 3.00 2.93

Expansions 12 24 36 48 60 72 84 96 108 120

Average Premium (ipt) 14.45 13.50 12.63 12.16 11.88 11.70 11.58 11.48 11.41 11.36
Average Premium (dpt) 12.49 12.14 11.48 11.12 10.90 10.76 10.66 10.58 10.53 10.49
Average Premium (gPt,12) 15.37 14.27 13.10 12.52 12.18 11.95 11.80 11.68 11.59 11.52
Standard Deviation (ipt) 9.19 5.08 3.75 3.18 2.89 2.73 2.64 2.59 2.57 2.55
Standard Deviation (dpt) 10.10 5.36 3.82 3.16 2.84 2.67 2.58 2.54 2.53 2.53
Standard Deviation (gPt,12) 10.28 6.09 4.19 3.45 3.07 2.85 2.72 2.65 2.60 2.57

Contractions 12 24 36 48 60 72 84 96 108 120

Average Premium (ipt) 23.60 19.37 16.87 15.71 14.99 14.50 14.14 13.87 13.65 13.48
Average Premium (dpt) 24.19 19.92 17.45 16.29 15.58 15.10 14.75 14.49 14.28 14.11
Average Premium (gPt,12) 24.29 19.59 17.15 15.97 15.24 14.74 14.38 14.10 13.88 13.70
Standard Deviation (ipt) 17.49 10.36 6.69 5.21 4.37 3.83 3.47 3.22 3.05 2.92
Standard Deviation (dpt) 16.93 10.02 6.24 4.71 3.82 3.24 2.85 2.58 2.38 2.24
Standard Deviation (gPt,12) 16.82 10.16 6.58 5.13 4.28 3.74 3.36 3.10 2.91 2.77

This table contains the risk premium estimates for dividends paid up to 120 months in the
future. We report estimates for all data points in the period Jan 2004 - Oct 2017, as well
as during expansionary and contractionary times. Expansionary and contractionary times
are identified by either the current value of the log industrial production growth (ipt), the
log dividend price ratio (dpt) or survey-implied growth expectations (gPt,12) relative to their
sample median. We also report standard deviations. Values are annualized, in percentage
terms and rounded to two decimals.

We measure the dividend term premium as the spread between the ten-year and one-year

premium estimate and find an average of -6.48% over the entire sample. As the dividend

term structure steepens further during contractions, we find an average term premium of

−10.12% during these periods. The term premium narrows down to -3.09% during business

cycle expansions. In order to assess the cyclical behavior of the dividend term premium, we

regress it separately on each of our different economic indicators, Xt ∈ {ipt, dpt, gPt,12},

zt,120 − zt,12 = α + βXt + εt, εt ∼ i.i.d.(0, σ2). (23)

Table 7 reports our different estimates for β. The positive and significant estimate of β = 1.07

for Xt = ipt suggests that the on average negative term premium flattens with an increase in

production growth and steepens during business cycle contractions. The same pro-cyclical
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Figure 6: Fluctuations in Expected Dividend Risk Premiums

           

 

             

 

           

This figure shows the average deviation from the sample average in expected one-year (zt,12)
and ten-year (zt,120) dividend risk premiums during business cycle expansions and contrac-
tions. We classify expansions (contractions) according to the current state of log industrial
production growth (ipt), the log dividend price ratio (dpt) and survey-implied growth expec-
tations (gPt,12) relative to their respective sample median. Values are in percentage terms;
dashed lines represent two standard error bounds.
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Table 7: Regression Statistics - Business Cycle Variables

α β R2

ipt -7.20 (1.82) 1.07 (0.53) 17.0

dpt -14.41 (4.56) -0.35 (0.12) 24.9

gPt,12 -11.14 (4.10) 0.46 (0.30) 5.4

This table shows the relation of the slope of the dividend risk premium to business cycle vari-
ables. It reports the parameter estimates α, β and R2 values from the following regressions:

zt,120 − zt,12 = α + βXt + εt, εt ∼ i.i.d.(0, σ2).

We consider different business cycle variables Xt over our sample period (Jan 2004 - Oct
2017): the log industrial production growth ipt, log-dividend price ratio dpt, and expected
dividend growth gPt,12. Newey and West [1987] standard errors with T 0.25 lags are reported
in parenthesis, where T is the number of observations. Values for α and R2 are reported in
percentage terms.

pattern can be found in the regression on the log dividend price ratio, Xt = dpt, where a

significant β = −0.35 suggests an expected further steepening of the negative term premium

in times of asset market turmoil. The term premium regression estimate for β whenXt = gPt,12

is not significant, but its positive sign is well in line with the other estimates.

2.4.5 The Role of Transaction Costs

The annualized Sharpe ratio of investment strategy A has been 1.08 before transaction

costs. The analogous Sharpe ratio of investment strategy B has been 1.16.

Naturally, Sharpe ratios drop if one accounts for costs from trading and holding the

underlying or for buying and selling options. Table 8 summarizes our findings when

including costs into strategies A and B. We find that adding costs to transact and hold

the underlying (a total expense ratio of 0.07% per year and an average bid ask spread of

0.01% as they can be found for very liquid ETFs during the entire sample period) reduces

the Sharpe ratios of strategy A and B to 0.76 and 0.84, respectively. Sharpe ratios fall

further once we include transaction costs for the call and put positions. Using quoted bid

and ask prices of the respective calls and puts, we find that the Sharpe ratio of investment

strategy A drops to -0.18. Investment strategy B’s Sharpe ratio remains large at 0.72,

which statistically speaking, using Opdyke [2008] standard errors, is significantly larger
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Table 8: The Role of Transaction Costs

Excess Return No Trading Costs Index Replication Index Replication + Option Trading

No signal 14.25 10.46 -3.93

zt,12 > 0 14.95 11.18 6.36

Standard Deviation No Trading Costs Index Replication Index Replication + Option Trading

No signal 13.23 13.75 13.37

zt,12 > 0 12.86 13.34 8.86

Sharpe Ratio No Trading Costs Index Replication Index Replication + Option Trading

No signal 1.08 (0.07) 0.76 (0.07) -0.18 (0.09)

zt,12 > 0 1.28 (0.06) 0.84 (0.07) 0.72 (0.13)

Skewness No Trading Costs Index Replication Index Replication + Option Trading

No signal 0.23 0.16 -0.11

zt,12 > 0 0.32 0.25 -0.30

Trade Executions No Trading Costs Index Replication Index Replication + Option Trading

No signal 154 154 154

zt,12 > 0 149 149 79

This table reports descriptive statistics for investments into the one-year dividend asset over
the period Jan 2004 - Oct 2017. We compare average excess returns, standard deviations,
Sharpe ratios, skewness and the amount of monthly trade executions for two different in-
vestment strategies. The first strategy invests into the short term dividend asset at the end
of each month, the signal based strategy only invests if the implied premium is positive. We
also consider trading costs, both the replication of the index and the actual bid-ask spreads
in necessary option trades. We report Opdyke [2008] standard errors in parenthesis. Returns
and standard deviations are annualized, in percentage terms and rounded to two decimals.

than a buy and hold investment in the index, achieving a Sharpe ratio of 0.36 over the same

period. Investment strategy B produces such high Sharpe ratios even when accounting

for transaction costs because the dividend risk premium is a good predictor of the future

dividend excess return, see section 2.4.3 for details.

Once we use actual bid and ask option prices in its inference, we immediately reflect

trading costs in our investment decision. Including the trading costs leads to fewer trade

executions at the beginning of our sample, when bid ask spreads in options and borrowing

costs were higher than at the end of the sample. Higher bid ask spreads lead to a higher

options-implied present value of future dividends. This translates into higher growth

expectations under the risk neutral measure than with small bid ask spreads and the

implied dividend risk premium is hence more often negative, a signal not to engage in the
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trade. With higher option market liquidity over the past few years, the bid ask spread plays

a minor role and has led to significantly higher returns at the end of our sample. The large

difference between survey-implied and options-implied growth expectations during the crisis

resulted in relatively cheap short-term dividend assets, such that the strategy was able to

generate profits during the financial turmoil of 2008. We also compute the average excess

return, standard deviation and Sharpe ratio for investment strategy A where we invest

into the next k ∈ {6, 12, 18, 24, 36} months of dividends, holding each asset until maturity.

The results are displayed in table 9 and confirm our previous findings. Independent of the

Table 9: The Term Structure of Buy-and-Hold Dividend Returns

6 12 18 24 30 36

Average Excess Return 14.50 14.25 12.68 11.18 9.85 11.12

Standard Deviation 35.69 13.23 10.50 9.69 9.48 10.97

Sharpe Ratio 0.41 1.08 1.20 1.15 1.04 1.01

This table reports descriptive statistics for buy-and-hold excess returns from investments
into dividend assets realized after January 2004 with different investment horizons n. Each
strategy is executed as long as the investment horizon allows for its evaluation. Average
excess returns and standard deviations are annualized and reported in percentage terms.

precise maturity of the investment strategy, the Sharpe ratios are of similar magnitude.

The average excess returns do also provide evidence for a downward sloping term structure

of dividend risk premiums.

2.5 Comparison to Previous Studies

To the best of our knowledge, we are the first to provide a model-free and real-time estimate

of the dividend risk premium for different maturities. To do so, we depart from standard

approaches commonly seen in the literature, such as econometric models for dividend growth

and linear interpolation of options-implied values. In section 2.5.1, we show that the choice of

the interpolation scheme is irrelevant for short-term estimates. We discuss potential biases

in our dividend growth estimates and compare them to findings in previous literature on

earnings biases in section 2.5.2. In section 2.5.3, we compare the survey-implied estimate gPt,n

to popular econometric measures of future dividend growth and conclude that survey-implied

growth estimates are superior in terms of mean absolute prediction errors and variance

explained. We compare our dividend risk premium estimates to Binsbergen et al. [2013] in

section 2.5.4.
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2.5.1 Alternative Interpolation Schemes

Linear regressions or linear interpolations between neighboring points are often sufficient to

infer desired maturities and applied in related work, such as Martin [2017] and Binsbergen

et al. [2012]. If term structures are not simply linear, e.g. characterized by level, slope and

curvature, these approaches might be inaccurate. In addition, these approaches might not

be able to capture information in the available maturities to extrapolate longer maturities

reasonably well. The Nelson and Siegel [1987] interpolation scheme, on the other hand,

succeeds in this and is of similar simplicity, which is why it is well established in the fixed

income literature (see Diebold and Li [2006]) and our method of choice. We compare our

results obtained with this approach to a simple linear interpolation and conclude that the

differences at the short-end, in particular the one year estimates, are negligible. Figure 7

illustrates the implied present values from both approaches for a horizon of one year and

compares these to aggregate survey estimates.

Figure 7: One-Year Dividend Expectations
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This figure shows options-implied present values of future dividends, interpolated linearly
(orange) and with a Nelson and Siegel [1987] approach (blue), next to survey estimates
(gray). The gray shaded area indicates the Great Recession. Values are in U.S. Dollar.

The average present values across the entire sample period are USD 26.85 for the linear

interpolation, USD 26.90 for the Nelson and Siegel [1987] scheme and USD 33.44 for the
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aggregate survey estimates. These values lead to an average difference in implied dividend

risk premiums of 0.03%. We therefore conclude that our hump shaped pattern and magnitude

of options-implied dividend growth over short to mid-term horizons is robust to the choice

of the interpolation scheme.

2.5.2 Biases in Survey Estimates

The magnitude of our dividend risk premium estimate depends on the magnitudes of the

risk-neutral and physical dividend growth expectations. Our model-free estimate of the

latter relies on an aggregation of survey estimates on fiscal year dividends. A potential

bias in survey estimates would directly enter our estimate of the dividend risk premium.

While we find no evidence in existing literature on biases in dividend estimates, a large

body of accounting literature investigates forecast errors and biases in earnings estimates.

Theories suggest that incentives and cognitive biases such as overconfidence lead analysts

to overestimate future earnings, see Brown [1993], Daniel and Titman [1999] and Kothari

[2001], among others. Abarbanell and Lehavy [2003] find that previous evidence on forecast

biases is mixed and inconclusive because distributional asymmetries in forecast errors make

inference of biases problematic. They analyze 33.548 quarterly earnings forecasts and find

that median forecast errors are zero, but that mean forecast errors are large due to tail

asymmetries. Similar results can be found across a range of commercial data providers

(Abarbanell and Lehavy [2002]), among them I/B/E/S. To test for biases in our dividend

estimates, we first calculate forecast errors in all available non-zero fiscal year end estimates

of all companies which have been part of the S&P 500 since January 2004. Then we look

at our interpolated one-year measure gPt,12 of survey-implied growth expectations, which can

be seen as the value-weighted average of single company estimates.

We define the forecast error νnt with horizon n at time t as the percentage deviation

between forecast Et[Dt+n] reported at time t and corresponding dividends Dt+n paid at

time t+ n,

νnt =
Et[Dt+n]−Dt+n

Dt+n

. (24)

A positive forecast error implies that the estimate was higher than actual dividends. Across

all 947 companies in our sample, for which we have 81.419 non-zero estimates, we find a

small median forecast error of -0.24%. If we isolate the period after the Great Recession,

this number barely changes to -0.27%. Similar to Abarbanell and Lehavy [2003], who look

at earnings estimates, we find large mean forecast errors for both periods, 10.72% and 5.58%

respectively, due to a strong tail asymmetry in the error distribution. The implications
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of this finding for our aggregate measure depend on the distribution, as we only select

companies who are current constituents of the S&P 500 and value-weight their estimates.

Figure 2 visualizes the overall finding of our analysis: the estimates relevant for our aggregate

measure have become very accurate since the Great Recession, but exhibit positive errors

before. We find a correlation of -60% between forecast errors and coverage ratio, suggesting

that early errors might, at least to some extent, be due to insufficient coverage. Since the

Great Recession, the median forecast error is at -0.48%. The average forecast error is even

closer to zero at -0.25%. We argue that these errors are fairly small and conclude that an

aggregation of analyst estimates can produce an accurate forecast of dividend growth for

the aggregate index. We will now compare how alternative measures of expected growth

compare to ours and affect our risk premium estimate.

2.5.3 Alternative Measures of Growth Expectations

The literature on dividend growth discusses a great amount of forecasting models with

mixed evidence on growth predictability, see Lettau and Ludvigson [2005], Ang and Bekaert

[2007], Chen [2009], Binsbergen and Koijen [2010], Chen et al. [2012], Binsbergen et al.

[2013], Maio and Santa-Clara [2015] and Golez and Koudijs [2018] for recent studies. In

all of these studies, estimates of usually one-year dividend growth are formed based on a

parametric assumption, which is not the case for the survey-implied growth expectation gPt,12.

Two important studies in this field, Ang and Bekaert [2007] and Binsbergen et al.

[2013], find strong predictability of S&P 500 dividends through bivariate regressions. Ang

and Bekaert [2007] detect significant predictability of future cash flow growth rates by log

dividend yields dyt and log earnings yields eyt (the bivariate Lamont [1998] regression). The

results from a set of predictive regressions in Binsbergen et al. [2013] suggests that a pair of

equity yields, et,n1 and et,n2 , predicts dividend growth better than several other commonly

used linear models. To complement the analysis, we form expectations based on an AR(1)

process in annual dividend growth gt. This way, we include the variables (earnings yield,

dividend yield, equity yields, and past dividends) which we encounter most often in the

recent literature on dividend growth.

We gather data to calculate the log dividend yield dyt and log earnings yield eyt of

the S&P 500 from the S&P 500 Composite Dividend Yield (DS DY) and Price Earnings

Ratio (DS PER) as reported on Thomson Reuters Datastream. We calculate equity yields

with n1 = 12 and n2 = 24 from our option data and complement our sample starting in

2004 with data provided by Binsbergen et al. [2012].
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We estimate the two bivariate and one univariate regressions described above,

gt,t+12 = ag + bgXt + εgt+12, εgt+12 ∼ i.i.d.(0, σ2
g). (25)

Table 10 documents the results of these regressions for the entire sample period and the time

with almost perfect company coverage in our analyst forecasts. We find that survey-implied

Table 10: Alternative Dividend Growth Estimates

January 2004 - October 2017

ag bg MAE R2

gPt,12 0.00 1.00 4.97 59.2

gt 4.10 (2.25) 0.41 (0.16) 5.43 17.2

dyt, eyt -1.87 (0.44) -0.57 (0.10), 0.09 (0.07) 5.48 40.7

et,12, et,24 11.18 (1.14) 0.57 (0.20), -1.50 (0.38) 5.72 27.9

July 2009 - October 2017

ag bg MAE R2

gPt,12 0.00 1.00 1.99 94.7

gt 7.29 (1.46) 0.32 (0.11) 3.71 33.4

dyt, eyt -0.32 (0.55) -0.30 (0.13), 0.25 (0.04) 2.83 30.1

et,12, et,24 10.51 (1.90) 0.01 (0.21), -0.20 (0.38) 4.28 2.1

This table reports parameter estimates and adjusted R2 values for regres-
sions of future realized dividend growth on a set of predictor variables Xt:

gt,12 = ag + bgXt + εgt+12, εgt+12 ∼ i.i.d.(0, σ2
g).

The first row shows the mean absolute error and predictive R2 we obtain when we predict
future dividend growth with our survey-implied growth estimate gPt,12 in a model-free way
and without look-ahead bias, this means postulating ag = 0 and bg = 1. The predictive
variables for the univariate regression is past annual dividend growth gt. For the bivariate
regressions, we follow Ang and Bekaert [2007] and Binsbergen et al. [2013] and rely on the
log dividend yield, the log earnings yield and a pair of equity yields. Values for ag, the mean
absolute error and R2 are in percentage terms. Newey and West [1987] standard errors with
T 0.25 lags are reported in parenthesis. The regressions span T = 166 months in the period
between Jan 2004 and Oct 2017 (upper panel) and T = 100 months in the time with almost
perfect company coverage in our analyst estimates (lower panel).

growth estimates capture 59.2% and 94.7% of the variance in future dividend growth
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respectively, more than any of the parametric models. The mean absolute errors associated

with the survey-implied growth estimate are at least 10% smaller than for the parametric

models.

We find that the estimates based on the Lamont [1998] regression come closest to

survey-implied estimates. The Lamont [1998] regression and the equity yields regression

have a correlation of 67% and 64% with gPt,12 respectively, forecasts based on past growth still

50%. To see which time series variables best predict survey-implied growth expectations, we

regress gPt+1,12 on all five variables dyt, eyt, et,12, et,24 and gt. We find an adjusted R2 value

of 85.1% and significant estimates for the loadings on dyt, eyt and gt. Regressing gPt+1,12 on

gPt,12 alone produces an adjusted R2 value of 83.2% and a significant loading of 0.89.

2.5.4 Alternative Measures of Expected Dividend Risk Premiums

We relate our estimate of the dividend risk premium term structure to the findings of the

influential study by Binsbergen et al. [2013], who propose a VAR(1) structure behind a pair

of equity yields to estimate a term structure of dividend growth. Given the term-structure

of options-implied dividend growth, we compute the dividend risk premium term structure

once with survey-implied growth estimates and once with their parametric estimates. The

parametric estimates for dividend growth begin at a horizon of 12 months. As can be seen

in figure 8, both dividend risk premium term structures are downward sloping beyond a

maturity of one year.

The dividend risk premium we obtain with the help of survey-implied growth forecasts

peaks at 19.0%, while the dividend risk premium we obtain with the help of parametric

growth forecasts peaks at 16.3%. The relative spread of 2.7% is not different from zero at

the 5% significance level and in line with the insignificant 2.34% bias in aggregate one-year

ahead analyst dividend forecasts as documented in table 3.

We now present findings about the predictive power of alternative dividend risk pre-

mium estimates for one-year dividend excess returns. As predictors we are going to consider

gQt,12, zt,12 and the dividend risk premium estimates implied by the three parametric growth

models from equation (25). The estimation results are found in table 11. The analysis

distinguishes between the full sample and the period after the Great Recession to ensure

that results are not affected by insufficient coverage of analyst forecasts or the Great

Recession. Regarding the full sample, we find that the choice of the growth forecast for

constructing the dividend risk premium has a small impact on the predictive R2. This does

35



Figure 8: Comparison to Alternative Term Structure Estimates

  

This figure shows our survey-implied dividend growth (orange) and dividend risk premium
(blue) estimates, together with estimates obtained from a parametric model for dividend
growth (yellow) as proposed by Binsbergen et al. [2013] and the resulting premium estimate
(green). We consider the entire sample period between Jan 2004 and Oct 2017. Dashed
lines indicate two standard errors off the mean estimate. The horizontal axis displays the
maturity in months. Values on the vertical axis are in percentage terms and annualized.

not come as a surprise, as the positive correlations between the different growth estimates

and the inferior role of gPt,12 in the variance decomposition, see equation (17), suggest. For

the period after the Great Recession, we find that the growth estimate matters. The highest

R2 of 92.8% is achieved for our dividend risk premium estimate, whereas the R2 for the

predictor gQt,12 falls to 58.8%. The other predictors generate R2’s in the range of 60% to

80%. These results underline the superiority of zt,12 for predicting one-year dividend excess

returns for the period after the Great Recession.

2.6 Conclusion

We estimate the model-free term structure of the dividend risk premium by combining two

data sets with different information about future dividends. The first data set, the Thomson

Reuters I/B/E/S Estimates Database, provides us with survey-implied expectations on

future dividends for single companies over multiple horizons. We estimate dividend growth
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Table 11: Alternative Dividend Risk Premium Estimates

January 2004 - October 2017

Xt zt,12 zgt,12 zdy,eyt,12 ze12,e24t,12 gQt,12

bz 0.79 (0.09) 0.67 (0.07) 0.83 (0.08) 0.76 (0.09) -0.65 (0.07)

R2 71.1 75.2 67.2 67.1 70.4

July 2009 - October 2017

Xt zt,12 zgt,12 zdy,eyt,12 ze12,e24t,12 gQt,12

bz 1.01 (0.04) 0.73 (0.05) 0.91 (0.16) 0.77 (0.13) -0.72 (0.11)

R2 92.8 77.8 66.9 56.5 58.8

This table reports parameter estimates and adjusted R2 values for regres-
sions of future realized excess returns on a set of risk premium estimates Xt:

xr12
t = az + bzXt + εzt+12, εzt+12 ∼ i.i.d.(0, σ2

z).

The alternative premium estimates are based on options-implied growth gQt,12 and the alter-
native dividend growth estimates implied by the three linear models we consider: based on
past growth gt, based on dividend and earnings yields dyt and eyt, and based on a pair of
equity yields et,12 and et,24. A direct comparison to gQt,12 shows whether a particular growth
estimate adds value in the return predictions. We separately study the entire sample period
(upper panel) and the period with almost perfect company coverage in our analyst estimates
(bottom panel) of alternative growth measures. R2 values are in percentage terms. Newey
and West [1987] standard errors with T 0.25 lags are reported in parenthesis, where T is the
number of observations.

for the aggregate equity index, the S&P 500, and cannot reject the hypothesis that future

realized dividends are survey-implied dividend expectations plus noise. The second data

set, comprised of intra-day CBOE option trade data, provides us with put and call prices on

the S&P 500. We exploit put call parity to infer options-implied dividend expectations over

the life of the respective option pair. A smooth interpolation allows us to infer a spectrum

of maturities for both growth estimates and hence the term structure of the dividend risk

premium. We use this model-free term structure to provide new insights about its shape

and its business cycle behavior.

We find strong evidence for the superior predictive ability of our new dividend risk

premium estimate for future returns on dividend assets. For the period after the Great

Recession, our one-year dividend risk premium estimate is an unbiased predictor of the
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future one-year dividend return and explains 92.8% of its variation. We identify that

this predictive superiority, relative to existing dividend risk premium estimates in recent

literature, stems from the accuracy of aggregate analyst dividend forecasts.

As to business cycle variations, we document that the level of the dividend risk pre-

mium term structure moves counter-cyclically, whereas its slope moves pro-cyclically. This

means that both short- and long-horizon dividend risk premiums increase during business

cycle contractions and fall during expansions. Yet, the on average negative slope (Binsbergen

et al. [2012]), measured as the spread between long-horizon and short-horizon dividend risk

premiums, flattens during business cycle expansions and becomes more negative during

business cycle contractions. Moreover, we find that short-horizon dividend risk premiums

react stronger to business cycle shocks than long-horizon dividend risk premiums.
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3 Implied Premiums in European Dividend Futures

In the previous chapter, we derived a methodology to obtain the term structure of dividend

risk premiums from analyst forecasts on dividends and options-implied present values of

future dividends. In this chapter, we will extend the analysis of the previous chapter from the

U.S. to the European market and show how to incorporate price information from dividend

futures instead of options to obtain present values of future dividends.

3.1 Introduction

The introduction of dividend derivatives followed shortly after the work of Brennan [1998],

who argued for the usefulness of assets written on single future dividends. First dividend

swaps emerged in 2002 and were traded over-the-counter. Early studies, such as Binsbergen

et al. [2013], studied this over-the-counter data with a strong focus on the term structure

of realized returns. In August 2008, dividend futures on the Euro Stoxx 50 started to be

traded at the Eurex Exchange, with maturities of up to ten years. Several studies have

since then extended their scope and analyzed not only the American market, but other

markets such as the European one, which has become the largest and most liquid market for

dividend futures; see Binsbergen and Koijen [2017] and Kragt et al. [2018] for recent studies.

Kragt et al. [2018] conclude that a two-factor model is necessary to accurately describe the

term structure of risk-adjusted dividend growth rates. The authors find that one factor

captures short-term mean reversion, while the second factor reverts at a business cycle hori-

zon, and show that both latent factors are related to various economic and financial variables.

We contribute to this literature with an analysis of model-free premium estimates for

the European market, obtained from analyst estimates and exchange-traded dividend

futures. Trade prices of Euro Stoxx 50 dividend futures provide us with daily estimates of

dividends paid up to ten years in the future. As for S&P 500 constituents, the Thomson

Reuters I/B/E/S Estimates Database provides us with analyst estimates on future dividends

of the different Euro Stoxx 50 constituents. We closely follow the methodology presented

in Ulrich et al. [2018], in which we aggregate single company estimates to a representative

index estimate, and construct the term structures of growth under the risk-neutral and

empirical probability measure. From their difference, we obtain an estimate of the dividend

risk premium term structure.

We aim for a comparison of the European and U.S. dividend market and therefore

follow the empirical analysis in Ulrich et al. [2018], focusing on survey-implied dividend
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growth, return predictability, and the covariation of premium estimates with the broad

equity market and business cycle. We find that analyst estimates on dividends imply

an overly optimistic dividend growth rate of 7.51% for one-year and 7.59% for long term

horizons during the period August 2008 to October 2017. Over the same period, realized

one-year dividend growth has been negative on average at -2.85%, as the Euro Stoxx 50

dividends never recovered to their level prior to the Great Recession. Looking at the 67

individual constituents that have been part of the Euro Stoxx 50 index in our sample period,

we find that the optimistic bias in the aggregate index is not due to a few outliers, but rather

consistent across companies. Contrary to our findings for the S&P 500, one-year dividend

growth implied by the derivatives market turns out to be unbiased, while survey-implied

growth estimates appear to be strongly upward biased.

We find that this upward bias in analyst growth expectations translates into an up-

ward bias in the implied dividend risk premium. Regarding return variation, our premium

estimate turns out to be a strong predictor of future returns in dividend assets, similar

to its counterpart in the U.S. market. The rich data set with several trades a day and

a clean calculation of the respective returns allows us to study returns on a daily basis.

We find that, unlike options-implied dividend assets on the S&P 500, excess returns in

Euro Stoxx 50 dividend futures are positively correlated to returns in the underlying

index. The business cycle behavior of our dividend risk premium term structure estimate

is similar to its U.S. counterpart; we document a counter-cyclical level and pro-cyclical slope.

We summarize our methodology in sections 3.2 and 3.3, describe our data in section

3.4, and present our findings in section 3.5. We conclude with a comparison of our findings

for the European and U.S. market in section 3.6.

3.2 Dividend Growth implied by Dividend Futures

A Euro Stoxx 50 dividend future with maturity n pays the dividends which all index con-

stituents paid in the year preceding the expiry of the future. The exact value investors

receive is determined by the value of the Euro Stoxx 50 Dividend Points (DVP) Index. This

index adds up the dividends paid by all index constituents, without reinvestment, and is re-

set every year at the third Friday in December. Dividend futures expire on the third Friday

in December of a particular year and hence pay all the dividends that were paid between

the third Friday of the year prior to expiry and the actual expiry date. We can relate the

present values or spot prices St,n of investors’ risk-neutral expectations on these dividends
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to dividend future prices Ft,n, as described in Binsbergen et al. [2013],

Ft,n = St,ne
nyt,n , (26)

where yt,n is the risk-free interest rate used to discount a cash flow occurring at time t+n. In

the previous chapter, we established the relation between the present value and risk neutral

dividend (growth) expectations,

St,n = DQ
t,ne
−nyt,n = Dte

n(gQt,n−yt,n), (27)

which reveals that the dividend future price is equal to investors’ dividend expectations

under the risk-neutral probability measure:

Ft,n = DQ
t,n. (28)

Dividend futures are traded on a daily basis and hence provide us with daily observations

of risk-neutral expectations DQ
t,n for different horizons.

In order to estimate a daily measure of dividend growth expectations gQt,n from the

daily observations of DQ
t,n, we need a daily measure of current dividends Dt corresponding

to DQ
t,n,

gQt,n ≡
1

n
ln

(
DQ
t,n

Dt

)
. (29)

We propose two approximations to obtain an estimate for Dt. The first approximation is

the aggregate dividend measure obtained from monthly I/B/E/S data. This measure is,

by construction, constant throughout an entire month, which introduces some measurement

error if we use it on a daily basis. While our empirical findings are robust to this approxi-

mation for Dt, we suggest to calculate a daily measure from the dividends paid by all index

constituents over the 365 calendar days prior to t. We obtain this number from the positive

increments10 in the DVP index,

DDV P
t =

364∑
i=1

[DV Pt−i −DV Pt−i−1]+. (30)

10The index is set to zero on the third Friday in December, which is the only negative change during a
calendar year and the reason why we cannot simply calculate the difference between DV Pt−1 and DV Pt−365

to approximate one year of paid dividends.
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We prefer this choice because of several reasons. First of all, the DVP index is also the

underlying of the dividend future contracts and hence compares well to DQ
t,n. Second, we do

not have to adjust for seasonalities induced by clustered dividend payments, as both DDV P
t

and DQ
t,n consider a full year of dividend payments. Third, we always include the most

recent payment of an index constituent that falls into the last 365 days. We acknowledge

that this approach is also susceptible to measurement error, as some firms change the dates

of their dividend payments and thus might pay twice in a 365 day interval or not at all.

Figure 9 compares the actual DVP Index, which is reset to zero in December of each year,

to our aggregate dividend measure from monthly I/B/E/S data. We can see how the DVP

index starts at 0 close to the end of a calendar year and increases over the course of a year,

approaching the aggregate I/B/E/S measure. The fact that they do not coincide each time

that the DVP index reaches its peak in December is owed to the measurement error in both

aggregation techniques.

Figure 9: Aggregate Euro Stoxx 50 Dividends

   

This figure plots the daily Euro Stoxx 50 Dividend Points (DVP) Index and the aggregate
estimate for Euro Stoxx 50 dividends paid out over the last 12 months from monthly I/B/E/S
reports on single company dividends. Values are in EUR.
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We calculate the implied growth rates according to

gQt,n ≡
1

n
ln

(
DQ
t,n

DDV P
t

)
. (31)

For every trading day with at least four out of ten observable maturities, we apply a Nelson

and Siegel [1987] interpolation to all implied gQt,n to recover the full maturity spectrum,

gQt,n = δ̃0 + δ̃1
1− e−nλ̃

nλ̃
+ δ̃2

(
1− e−nλ̃

nλ̃
− e−nλ̃

)
, (32)

where the parameters δ̃0, δ̃1, δ̃2, and λ̃ are estimated by least-square methods.

3.3 Implied Premiums and Realized Returns

As shown in section 2.2, the implied premium is the difference between empirical growth

expectations gPt,n and risk-neutral growth expectations gQt,n,

zt,n = gPt,n − g
Q
t,n, (33)

which we approximate with survey- and future-implied dividend growth. We obtain growth

expectations gPt,n under the empirical probability measure from survey estimates, using our

approach first implemented with S&P 500 data in the previous chapter. We rely on the

Thomson Reuters I/B/E/S Estimates Database, which supplies us with dividend estimates

for the constituents of the Euro Stoxx 50 index for different forecast horizons. We find a

high coverage ratio for the Euro Stoxx 50, see section 3.4, and hence conclude that our

aggregation and interpolation approach detailed in appendix A is well-suited to obtain

aggregate estimates for Euro Stoxx 50 dividends.

We calculate the ex-post realized return on every future contract in our sample from

the value of the underlying DVP index at maturity t + n and the dividend future price at

time t,

rFt,n = ln

(
DV Pt+n
Ft,n

)
, (34)

which provides us with estimates of the returns the investors received from buy-and-hold

investments.
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3.4 Data Source and Data Selection

We set the term structure of the risk-free rate, yt,n, to coincide with the euro area yield

curve estimated and published by the European Central Bank based on AAA-rated euro

area central government bonds.11 The provided Svensson [1994] parameters allow us to

obtain any necessary maturity between one and ten years.

Regarding the estimation of survey-implied dividend growth rates, we find the CUSIP

identifier of all Euro Stoxx 50 index constituents on the last day of each month in Bloomberg.

For each CUSIP in our sample, we then use Thomson Reuters Datastream to download the

following quantities: (i) number of shares outstanding (IBNOSH), (ii) dividends per share

(DPS), (iii) price (P), (iv) fiscal year one, two and three (DPS1D, DPS2D, DPS3D), (v)

dividend per share median estimate for fiscal year one, two and three (DPS1MD, DPS2MD,

DPS3MD) and (vi) the long term operating earnings growth median estimate (LTMD).

Notice, we assume that the long term earnings growth forecast coincides with the long term

dividend growth forecast and that the one-month ahead expected dividend growth rate

coincides with the currently realized dividend growth rate, which we measure as the annual

growth in twelve-month trailing dividends. Table 12 contains descriptive statistics which

highlight the good coverage in analyst forecasts - on average, more than 98% of the Euro

Stoxx 50’s market capitalization are covered by fiscal year estimates in the period August

2008 to October 2017.

Table 12: Descriptive Statistics - Analyst Data (Euro Stoxx 50)

Aug 2008 - Sep 2017 FY1 FY2 FY3 Long Term

Number of covered companies 49.21 49.21 49.16 48.70
Coverage of market capitalization 98.16 98.16 98.14 97.15

This table contains the sample mean for quantities describing the different Thomson Reuters
I/B/E/S dividend estimates for Euro Stoxx 50 companies. It covers the period from Aug
2008 - Sep 2017, for which we have quotes on dividend futures. The number of covered
companies states for how many companies with the respective forecast horizon a forecast
was reported. Coverage of market capitalization is a measure for the reported companies’
aggregate contribution in percent to the aggregate market capitalization of the Euro Stoxx
50 index.

11https://www.ecb.europa.eu/stats/financial markets and interest rates/euro area yield curves
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We use Eurex Exchange Euro Stoxx 50 Index Dividend Futures (ISIN DE000A0V8MN0)

trade data to obtain future-implied Euro Stoxx 50 dividend growth forecasts gQt,n. We collect

over half a million intra-day trade prices for dividend future contracts during the period

August 4, 2008 to September 29, 2017, which translates into 238 trades per trading day

on average. Compared to the option market studied in the previous chapter, we find much

longer maturities in dividend futures - the longest traded maturity is 3641 days in the Euro

Stoxx 50 dividend futures and 1094 days in the S&P 500 options. We provide detailed

descriptive statistics in table 13. The average trade size is at 689,934 EUR, the median

Table 13: Transaction Data for Euro Stoxx 50 Dividend Futures

0 1 2 3 4 5 6 7 8 9

Total amount of trades (M) 51.81 150.88 127.11 86.16 53.45 28.30 14.25 6.12 5.16 3.86
Average trade volume (MM) 1.05 0.72 0.66 0.60 0.58 0.61 0.59 0.57 0.47 0.44
Average trades per day 23 68 58 39 24 13 6 3 2 2
Non-trading days per year 21 3 4 6 11 19 45 88 117 129

This table contains descriptive statistics regarding Eurex trade data on Euro Stoxx 50 Div-
idend Futures between Aug 2008 and Oct 2017. We split the data set into maturity bands:
0 comprises all traded future contracts with a maturity of up to one year, 1 comprises all
traded future contracts with a maturity between one and up to two years, and so on. The
total amount of trades is quoted in thousands, average trade volume in million EUR. Average
trades per day and days without trading per year are rounded to the nearest integer.

trade size at 165,150 EUR, considering all maturities. The most often traded maturity band

is one to two years, with on average 68 trades per day and only three trading days per year

without a trade. With an average of two trades per day, the longest maturity of ten years

is at the same time the least frequently traded.

We find daily quotes on the DVP index, the underlying to the Euro Stoxx 50 Index

dividend futures, in Bloomberg (SX5ED Index), from which we then determine the

future-implied growth rates gQt,n and future excess returns for every future trade as described

in equation (34).

3.5 Empirical Findings

Our empirical findings for the Euro Stoxx 50 document a strong and positive upward bias in

aggregate dividend forecasts, which translates into an upward bias in the risk premium esti-

mates. Still, the time series variation in realized one-year dividend growth is well captured
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by the aggregate one-year survey-forecast and helps, combined with growth implied by div-

idend futures, to accurately predict their returns. We confirm the on average negative slope

of the dividend risk premium term structure, which steepens further during contractionary

periods and flattens during business cycle expansions, as documented for the S&P 500 in

chapter 2. We also document a strong predictability in hold-to-maturity excess returns on

dividend futures, which are positively correlated to returns in the underlying index.

3.5.1 Growth and Premium Estimates

Before we dedicate this section to the analysis of potential biases, we discuss the different

term structure estimates documented in table 14. Our estimate of the term structure

Table 14: Implied Growth and Risk Premium Estimates (Euro Stoxx 50)

n 1 2 3 4 5 6 7 8 9 10

gPt,n 7.50 7.55 7.57 7.58 7.58 7.58 7.59 7.59 7.59 7.59

gQt,n -8.49 -7.35 -6.34 -5.72 -5.33 -5.06 -4.86 -4.72 -4.60 -4.51
zt,n 15.99 14.90 13.91 13.30 12.91 12.64 12.45 12.30 12.19 12.10

This table contains the estimates for dividend growth expectations gPt,n and gQt,n under the
empirical and risk-neutral probability measure and the dividend risk premium zt,n in the
period Aug 2008 - Sep 2017 for various maturities n. The maturities range from one to ten
years, based on the maturities of the dividend futures. Values are annualized, in percentage
terms and rounded to two decimals.

of survey-implied dividend growth gPt,n is almost flat, starting at 7.50% at the one-year

horizon and reaching 7.59% at the longest reported horizon, five years, from where it stays

flat for longer extrapolated maturities. This almost flat term structure is the reason why

the negative slope in the risk premium term structure is almost only due to the positive

slope in future-implied growth estimates gQt,n. The estimates for gQt,n start at -8.49% for the

one-year horizon and increase to -4.51% for the ten-year horizon. Future-implied growth

thus contributes most to the negative term premium of -3.89%, the difference between the

ten-year, 12.10%, and one-year, 15.99%, dividend risk premium .

Our analysis of S&P 500 constituents and their aggregate values reveals an upward

bias in analyst dividend forecast on the single constituents level, which gets smaller on

the value-weighted aggregate index level. Regressing one-year future dividend growth on

aggregate analyst estimates, we have documented an insignificant regression constant of
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-2.34% for the S&P 500, see table 3. We repeat this exercise for the Euro Stoxx 50. As with

the S&P 500, we focus on the one-year estimates because our sample is not long enough to

test for biases in long term forecasts.

Before we turn to regression results, we briefly look at the constituents of the Euro

Stoxx 50. For 62 of the 67 companies that have been part of the index during our sample

period, we find a positive prediction error in fiscal year one estimates. The average estimate

predicts dividends 10.71% higher than their subsequent realizations. This bias on the com-

pany level has an impact on the aggregate growth forecast, as we can see from the difference

between the average realized one-year growth, -2.85%, and the average one-year growth

estimate, 7.50%. For robustness, we compute the average realized growth from aggregate

I/B/E/S data on realized dividends and conclude that the resulting average growth rates

are reasonably close to each other at -2.85% (DVP Index) and -3.26% (I/B/E/S).

We compare future-implied dividend growth, survey-implied dividend growth and fu-

ture realized growth in figure 10. Contrary to the findings for the S&P 500, the figure

suggests the existence of a strong upward bias in the aggregate analyst forecast and almost

no bias, except for the months that fall into the Great Recession, in future-implied growth.

The following regressions support this finding. We assess whether gPt,12 or gQt,12 are accurate

expectations of future annual dividend growth, denoted as gt,t+12, by the following regres-

sions:

gt,t+12 = ag + bgXt + εgt+12, εgt+12 ∼ i.i.d.(0, σ2
g), Xt ∈ {gPt,12, g

Q
t,12}. (35)

The results of these regressions are summarized in table 15. Given the short period of time

for which we observe future trades, both parameter estimates and adjusted R2 values are

prone to small sample biases. We therefore focus our attention to the intercept estimate ag,

which is insignificant and small (0.35%) for gQt,12, but significant and large (-10.24%) for gPt,12.

This finding is contrary to our findings in chapter 2, where analyst estimates on the S&P

500 appear to be unbiased, and options-implied growth biased. Our survey-implied growth

estimates are therefore likely to introduce a significant bias in the risk premium estimates

zdt,n.

3.5.2 Economic Fluctuations

Figure 11 documents the average shapes of the dividend risk premium term structure during

different states of the economy.
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Figure 10: Comparison of Growth Estimates

  

This figure plots survey-implied growth, future-implied growth and future realized growth
for Euro Stoxx 50 dividends with a one-year horizon. Values are in percentage terms and
annualized.

We classify each month in our sample into expansion or contraction, according to the current

value of annual industrial production growth for the European Union, respective to its sample

median.12 The findings for the Euro Stoxx 50 index are in line with the findings for the

S&P 500 index - we detect a counter-cyclical level and a pro-cyclical slope. We conduct a

difference-in-mean test for each maturity, where we asses whether the mean estimates of the

risk premium are statistically different (our alternative hypothesis) between contractionary

and expansionary times. For maturities up to four years, the two-tailed probability of falsely

rejecting the null hypothesis of equal means is below 1%. For maturities beyond four years,

t-statistics turn out to be too small to reject the null hypothesis with confidence.

3.5.3 Realized Returns and Predictability

Figure 12 contains the future realized excess returns for dividend futures with a maturity

between one and two years.

12OECD (2019), Industrial production (indicator). doi: 10.1787/39121c55-en
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Table 15: Regression Statistics - Dividend Growth (Euro Stoxx 50)

Xt ag bg R2

gPt,12 -10.24 (1.22) 0.86 (0.06) 74.3

gQt,12 0.35 (1.36) 0.40 (0.06) 62.7

This table reports regression estimates and adjusted R2 values for predictive regres-
sions of future realized dividend growth on survey-implied dividend growth expec-
tations Xt = gPt,12 and futures-implied dividend growth expectations Xt = gQt,12:

gt,12 = ag + bgXt + εgt+12, εgt+12 ∼ i.i.d.(0, σ2
g).

Values for ag and R2 are in percentage terms. Newey and West [1987] standard errors with
T 0.25 lags are reported in parenthesis, where T is the number of observations. The predictions
cover the Aug 2008 - Sep 2017.

This maturity band is traded multiple times a day and thus provides us with a high number

of buy-and-hold returns which we calculate from the trade price and the underlying DVP

index. Assuming that survey-implied growth gPt,n is constant throughout a month, we can

approximate the growth expectation corresponding in maturity to every dividend future,

and hence the implied premium zt,n. From a first visual inspection, this figure suggests the

previously mentioned upward bias in the premium estimates, as the implied premium is

above the subsequent realized excess return in almost all occasions. We will formalize this

in a set of regressions, in which we also assess the predictive power of our premium estimate

for subsequent excess returns.

Instead of limiting our analysis to end-of-month data, we consider all trading days in

this maturity band. By using actual returns on realized trades, we have no constant

maturity, but a maturity which decreases constantly throughout the year. At the third

Friday in December, the dividend future gets rolled into the new two-year future. To obtain

one return value per day, we take the median value across all realized trades in the same

day. Note that we first look at hold-to-maturity returns, then look at day-to-day price

changes. Our regressions cover 1503 observations, limited by the amount of trading days

with a consecutive trade on the next day.

Our regression results are documented in table 16, we start our predictability analy-
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Figure 11: The Changing Shape of the Dividend Risk Premium Term Structure

  

This figure shows the average risk premium estimates for dividends paid up to 10 years in
the future. We report average premiums for Aug 2008 - Sep 2017 and split the sample into
expansionary and contractionary times, characterized by the current value of log industrial
production growth above and below its median. The horizontal axis displays the maturity of
the respective dividends. Values on the vertical axis are in percentage terms and annualized.

sis with the following regression:

xrFt,n = α + βzt,n + εFt+n, εFt+n ∼ i.i.d.(0, σ2
F ), (36)

where xrFt,n is the hold-to-maturity excess return of the dividend future with maturity n

between one and two years, calculated according to equation (34) minus the corresponding

risk free rate. We regress xrFt,n on the corresponding risk premium estimate zt,n, which

reveals a significant upward bias of 2.39% across the entire sample and an adjusted R2 value

of 77.6%, implying that our risk premium approximation is a strong, albeit upward biased,

predictor of future returns in dividend futures.

We assess the premium estimates’ predictive power for the total excess return in the

underlying equity index, also reported in table 16:

xrSX5E
t,n = α + βzt,n + εSX5E

t+n , εSX5E
t+n ∼ i.i.d.(0, σ2

SX5E), (37)
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Figure 12: Trade Data - Dividend Premium Estimates and Future Returns

 

The blue dots in this figure represent hold-to-maturity excess returns for 15.772 dividend
future trades in our sample with a maturity between 1 and 2 years. The gray dots represent
the implied dividend risk premium zt,n corresponding to each single trade, the orange dots
the survey-implied growth expectation gPt,n matched to each futures maturity. Values on the
vertical axis are in percentage terms and annualized.

where xrSX5E
t,n is the buy-and-hold total excess return of the Euro Stoxx 50 over holding

period n. For every day with a corresponding trade in dividend futures, we match the

holding period to the one in the dividend future to allow for a comparison of the regression

results. We find an adjusted R2 value of 20.7%, which is compared to the estimates for

the S&P 500 a significantly different result and suggests that our dividend risk premium

estimate has predictive power for the equity index excess return.

We also compute excess returns from day-to-day price changes in the dividend fu-

tures. From all trades in the one- to two-year maturity band, we take the median price

on a given trading day to calculate the realized daily returns. We then regress the excess

returns on the five daily Fama and French [2015] factors for the European market to analyze

the contemporaneous correlation to these popular return factors.13 Table 17 contains the

results, of which we want to highlight the significant correlation between dividend future

excess returns and the overall market excess return, with an adjusted R2 value of 23.0%.

13Fama/French European 5 Factors [Daily],
http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html#International.
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Table 16: Regression Statistics - Equity and Dividend Returns

α β R2

xrFt,n -2.39 (0.63) 0.56 (0.04) 77.6

xrSX5E
t,n 0.91 (2.61) 0.26 (0.08) 20.7

This table reports regression estimates and adjusted R2 values for predictive re-
gressions of future equity excess returns xrSX5E

t,n and excess returns in dividend
futures xrFt,n realized over holding period n, where n corresponds to the matu-
rity of the dividend future traded on a respective trading day. We regress the
future excess returns on the corresponding dividend risk premium estimate zt,n:

rt,n = ar + brzt,n + εrt .

Values for ar and R2 are in percentage terms. Newey and West [1987] standard errors with
T 0.25 lags are reported in parenthesis, where T is the number of observations. The sample
period is from Aug 2008 - Sep 2017 and covers a total of 15.772 trades.

This findings suggests that contemporaneous returns in Euro Stoxx 50 dividend futures are

much closer related to the equity market than returns in S&P 500 dividend assets obtained

from option trades.

3.6 Conclusion

In this chapter, we rely on a large set of Eurex Exchange trade data to extend our work in

Ulrich et al. [2018]. Trade prices of Euro Stoxx 50 dividend futures provide us with direct

estimates of dividends paid up to ten years in the future. As for the American market,

the Thomson Reuters I/B/E/S Estimates Database provides us with analyst estimates

on future dividends of the different Euro Stoxx 50 constituents. We closely follow the

methodology presented in Ulrich et al. [2018], by aggregating single company estimates to

a representative index estimate, and construct the term structures of growth under the

risk-neutral and empirical probability measure. From their difference, we obtain an estimate

of the dividend risk premium term structure.

We conclude this chapter with a brief comparison of the results obtained from op-

tions on the S&P 500 and dividend futures on the Euro Stoxx 50. For both markets, we

find that the implied risk premium term structures are counter-cyclical in their level and

pro-cyclical in their slope. One potential explanation is that investors demand a larger
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Table 17: Regression Statistics - Daily Fama and French [2015] Factors

α βMKT βSMB βHML βRMW βCMA R2

xrSX5E
t 0.00 (0.00) 0.54 (0.02) -1.06 (0.07) 0.31 (0.05) -0.23 (0.09) -0.24 (0.08) 84.9

xrFt 0.00 (0.00) 0.30 (0.06) 0.21 (0.07) 0.07 (0.11) -0.28 (0.15) -0.32 (0.12) 23.0

This table reports estimates for regressions of daily index ex-
cess returns xrSX5E

t and daily excess returns in dividend futures
xrFt on the daily European five Fama and French [2015] factors:

xrt = α + βMKTMKTt + βSMBSMBt + βHMLHMLt + βRMWRMWt + βCMACMAt + εrt .

We analyze daily excess returns for every trading day with sufficient liquidty to compute a
return in dividend futures between Aug 2008 - Sep 2017. Values for α and adjusted R2 are
in percentage terms. Newey and West [1987] standard errors with T 0.25 lags are reported in
parenthesis, where T is the number of observations.

premium for exposure to uncertain dividends in times of economic contractions. Our

difference-in-mean test suggest that this difference in the level is significant for short term

maturities, supporting the idea that investors are more concerned about dividends paid over

a business cycle frequency than about dividends paid beyond, potentially assuming that the

market will recover over three to five years. While aggregate analyst estimates for the S&P

500 seem to be unbiased, we find a significant positive bias for the Euro Stoxx 50, translating

into a bias in the premium estimates. Yet, for both markets, the premium estimate is a

strong predictor of returns on dividend assets, at least for the one- to two-year maturity band.

We also want to highlight the several advantages of dividend future data over option

data when it comes to the estimation of implied dividend risk premiums. The price of

a dividend future corresponds to the expectation on a set of future dividends under the

risk-neutral probability measure. This direct measurement of dividend expectations comes

without the need to match option trades in put call parity. For several reasons, the

matching procedure for option trades is prone to significant measurement error - a slightly

asynchronous match between option and underlying quotes can have a large impact on the

implied present value, as does the choice of the risk free rate used in put call parity. We

can avoid these problems with the use of dividend futures. A second advantage are the

longer maturities in dividend futures, which have become more and more frequently traded

over the last ten years. In addition, the underlying DVP index facilitates the calculation of

53



realized returns. All these advantages lead us to our recommendation of dividend futures

data if one is interested in an estimate of the term structure of risk-adjusted growth or the

dividend risk premium. Since 2015, dividend futures for the S&P 500 are exchange-traded

and provide an interesting opportunity for future research.
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4 A Term Structure Model for Bonds and Dividends

In the previous chapters, we proposed a model-free approach to estimate the term structure

of dividend risk premiums. In this chapter, we will derive an affine term structure model

which allows us to price bond and dividend markets simultaneously, providing us with a

parametric estimate of the dividend risk premium term structure.

4.1 Introduction

Term structure models have a rich history in the bond pricing literature, where they

dominate more than four decades of academic research. The empirical literature on

dividend or equity pricing, on the other hand, lacks term structure models for one particular

reason: a standard equity claim has no determined maturity, less so several maturities which

are the corner stones of a term structure. Over time, with the introduction of derivatives,

it has become feasible to trade particular future dividends and estimate their respective

discount rates. This literature, pioneered by Binsbergen et al. [2012], has made considerable

contributions to provide us with parametric (Binsbergen et al. [2013], Bansal et al. [2017],

among others) and non-parametric (Ulrich et al. [2018]) estimates of the dividend risk

premium term structure. To the best of our knowledge, our paper offers the first affine term

structure model to price Treasury bonds, S&P 500 dividend strips and the S&P 500 equity

index, allowing us to decompose discount rates into interest rate and dividend risk premiums.

Our empirical analysis reveals several new insights and in other occasions confirms

well-known empirical facts. First, our benchmark model describes the asset price, macro

and survey data well. The pricing errors of the bond, equity and short-horizon dividend

data are comparable to state-of-the-art latent factor models which focus on only one of the

asset classes. The reason for the model to fit the data so well is rooted in three reasons.

We use survey data about the underlying economy and on asset prices to ensure that long-

and short-term components of the fundamental risk factors are well identified. The data

on realized asset prices in combination with the macro and survey data ensures that the

market prices of risk are well identified. Lastly, we apply economic restrictions to reduce

the most general framework to a parsimonious setting, with a reasonable amount of pricing

factors to price three asset classes.

Second, we find that a monetary policy rule based on the Federal Reserve’s dual

mandate - price stability and sustainable employment - enables us to price government

bond yields accurately, even in recent times of unconventional monetary policy measures.
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Survey data on inflation and unemployment expectations, published by the Federal Reserve,

contributes to the identification of our pricing factors.

Third, we show how to incorporate dividend growth into an affine term structure model to

obtain a term structure estimate on dividend discount rates. Looking at the full sample for

which we have data on dividend strips, 1996 - 2017, we find that the average term structure

of dividend discount rates is downward sloping. This is due to an on average negative slope

in the dividend risk premium term structure, driven by the two recent recessions. At the

same time, we find that the bond term structure is upward sloping (Lettau and Wachter

[2007]). Looking at the time before 1996, for which we have no signals on near-future

dividends, the term structure of the dividend discount rate cannot be identified. Restricting

our benchmark model to have all market prices of risk to be affine in the economic state

variables, our macro-only model, leads to large pricing errors in both dividend growth and

dividend strips. In order to price dividend strips accurately, we find that the market price

of near-future dividend risk is not affine in the underlying economy. The estimated divi-

dend risk premium turns out to predict future returns on dividend strips with high precision.

Our term structure model provides a potential explanation to the empirical observa-

tion that short-horizon dividend assets, or dividend strips, earn average excess returns that

in a CAPM regression are classified as abnormal, or ‘alpha’, see Binsbergen et al. [2012]

and Ulrich et al. [2018]. Binsbergen et al. [2012] emphasize the implication that dividend

strips could be used as an additional asset class to test asset pricing models. We argue that

this seemingly odd behavior of risk premiums in dividend strips is based on a market price

of dividend risk which is comprised of a long term and a short-term component. The long

term component is earned for exposure to long term dividend risk, while the short-term

component is earned for exposure to near-future dividend risk. Holding a standard equity

claim exposes the investor to short-term, but most of all long term dividend shocks. An

investment into dividend strips, on the other hand, exposes the investor almost entirely to

near-future, or short-term, dividend shocks. We argue that these shocks are priced with

different market prices of risk. While a standard equity investment can be well described

with market prices of risk being affine in the underlying economic growth states, dividend

strips cannot be priced under this assumption. As these two market prices of risk are

weakly correlated, the excess return from an investment in dividend strips is classified as an

abnormal return when regressed against the excess return of a standard equity claim.

Section 4.2 presents well-known present value models that allow to derive arbitrage-
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free discount rates for bonds and dividend assets. Section 4.3 sets up the affine term

structure model and derives several model quantities of interest. Section 4.4 introduces

several economic restrictions that we apply to bring the model to data. We dedicate section

4.5 to a discussion of our data and estimation methodology and present our findings in

section 4.6. We conclude in section 4.7.

4.1.1 Related Literature

Our paper is the first to provide an affine term structure model for options- and survey-

implied dividend discount rates, embedded into a state-of-the-art macro-factor term

structure model for Treasury bonds and aggregate equity. As such, our model and empirical

findings contribute to separate strands of the literature. First, Binsbergen et al. [2012] and

Binsbergen et al. [2013] rely on regression tools and realized returns to uncover the average

term structure of the dividend risk premium. Our model provides a new tool to extract

this term structure. Our approach generalizes the approach of Ang and Liu [2004], who

calibrate a quadratic Gordon Growth model to equity data.

We also contribute to the macro-finance bond literature (including Ang and Piazzesi

[2003], Ang et al. [2011], Ang et al. [2008], Bauer et al. [2014], Joslin et al. [2013], Joslin

et al. [2014], Ludvigson and Ng [2009] and Rudebusch and Wu [2008], among others), show-

ing that an affine bond model with macro risks is very well able to price the U.S. Treasury

yield curve with high accuracy, even in recent times of unconventional monetary policy

measures. Our strong predictive values for future short rates and bond returns reconcile

our work with the work of Kim and Orphanides [2012], who rely on survey expectations to

accurately identify dynamics under the empirical and risk-neutral probability measure.

Our work is closest related to Binsbergen et al. [2012], Binsbergen et al. [2013], Binsbergen

and Koijen [2017] and Ulrich et al. [2018], who extract the term structure of the dividend

risk premium from derivative prices and dividend growth expectations. Relative to these

papers, we propose a macro-based no-arbitrage framework with a simple monetary policy

rule to explain prices of bonds, equity and dividend strips in a single unifying model.

Also related to our work is the contribution of Kragt et al. [2018], who estimate a

term structure of dividend growth using dividend futures; and Filipović and Willems [2017],

who jointly estimate interest rate and dividend term structures with a latent discount rate

factor and a latent dividend factor. Kragt et al. [2018] show that a two-factor structure,

one factor with quick mean reversion and one at business cycle frequency, can explain
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discount rates implied by dividend futures, but not reconcile the aggregate stock price with

dividend strips. Filipović and Willems [2017] estimate a downward sloping term structure

for the dividend risk premium embedded in Euro Stoxx 50 dividend derivatives. In contrast

to these contributions, our model is based on an economic environment with a monetary

policy rule and prices bonds, dividend strips and equity simultaneously.

For the joint modeling of bonds and equity, our model also relates to Ang and Ul-

rich [2012] and Lemke and Werner [2009], who set-up an affine latent factor model for

the term structure of Treasury bonds and the aggregate price of equity. Adding to

these contributions, we work with survey expectations to separate between physical and

risk-neutral expectations and incorporate dividend strips to study the term structure of the

dividend risk premium.

4.2 The Dividend Discount Model

We define the time t present value of a future dividend expected to be distributed in time

t+ n by

St,n ≡ EQ
t

[
Dt+ne

−ny$t,n
]

(38)

where y$
t,n is the risk free bond yield applicable between t and t+ n, and Q denotes that we

take expectations under the risk neutral probability measure. Dividends are uncertain and

expected to grow at a stochastic rate between t and t+ n, which we define as

gdt,n ≡
1

n
ln

(
EP [Dt+n]

Dt

)
. (39)

We introduce the dividend discount rate ydt,n, which, in addition to the bond yield, compen-

sates investors for exposure to this uncertainty in form of a dividend risk premium zdt,n,

ydt,n ≡ y$
t,n + zdt,n. (40)

This allows us to express the present value under the empirical probability measure P :

St,n = Dte
n(gdt,n−ydt,n). (41)

A relatively well understood special case of St,n is the price of a risk-free zero-coupon bond.

A risk-free zero-coupon bond with maturity n pays a certain dividend Dt+n = 1$ and zero
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in all other periods. We denote the price of such a risk-free zero-coupon bond as S$
t,n,

S$
t,n ≡ e−ny

$
t,n . (42)

The fundamental value of an equity asset coincides with the expected discounted value of

all future dividends,

St =
∞∑
n=1

St,n. (43)

By splitting the sum into two components, we can express the equity asset as the sum over

near-future dividends and far-future dividends. We characterize near-future dividends as

dividends which are expected to be distributed before and at t+n∗, and far-future dividends

as dividends which are expected to be paid out after t+ n∗:

St =
n∗∑
n=1

St,n +
∞∑

n=n∗+1

St,n. (44)

For near-future dividends, derivative markets provide us with rich information on their

present values. Regarding the U.S. market, we obtain price signals from put-call-parity,

while other studies use dividend swaps and futures with maturities up to seven years in

the future. Several studies have used this information to estimate the term structures of

expectations on dividend growth and dividend risk premiums, among them Binsbergen

et al. [2012], Binsbergen et al. [2013], and Ulrich et al. [2018], to name a few. The present

values of far-future dividends are much less explored, because financial markets do not

provide us with information on particular dividends paid far in the future. So far, we only

find information about the present values of particular near-future dividends in derivative

markets, and the aggregate present value of all future dividends in form of stock prices.

In order to price equity assets, one faces then the challenge to determine present val-

ues for dividends paid far in the future, without clear signals on corresponding growth rates

gdt,n and discount rates ydt,n for n > n∗. A common approach to avoid this problem is to

assume the existence of a growth and discount rate ḡdt and ȳdt which are applicable to all

future dividends. This facilitates the infinite sum to a geometric series and overcomes the

necessity to estimate term-structures for very long (or infinite) horizons. This approach

leads to the so-called Gordon growth formula:

St ≈ Dt

∞∑
n=1

(1 + ḡdt )
n

(1 + ȳdt )
n

= Dt
1 + ḡdt
ȳdt − ḡdt

. (45)
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Our paper shows that this simple approach to price equity is able to reconcile the price

information on near-future dividends from derivative markets with equity prices in the ag-

gregate stock market and the underlying economy. To decide on values for ḡdt and ȳdt , we

refer to anecdotal evidence in recent literature about long term estimates of risk-adjusted

growth rates or equity yields. Gormsen [2018] shows that five- and seven-year equity yields

almost coincide across different equity indices, and Bansal et al. [2017] present the term

structure of equity yields for the S&P 500 being essentially flat for five years and beyond.

Kragt et al. [2018] estimate mean reversion in risk-adjusted growth rates to their long-run

mean is broadly measured in half-lives of two to four years across different equity indices,

a space of time that comes close to that of a typical business cycle. In chapter 3 of this

thesis, we obtain a model-free estimate of the dividend risk premium term structure based

on Euro Stoxx 50 dividend futures and find no significant difference between five- and ten-

year estimates. We therefore decide to set ḡdt = gdt,60 and ȳd = ydt,60 in the Gordon growth

formula, assuming that the five-year values implied by the term-structure estimates are a

reasonable proxy for the risk-adjusted growth rate applicable to all future dividends. Our

identification of the dividend discount rates relies on present values of near-future dividends

extracted from option prices with maturities of up to three years, realized dividend growth

and one-year growth estimates, and the dividend yield.

4.2.1 Bond and Equity Yields

As in Binsbergen et al. [2013], we define the equity yield at time t with maturity in t+ n as

et,n := − 1

n
ln

(
St,n
Dt

)
. (46)

Consistent with the bond literature, et,n collapses to the time t value of a zero-coupon bond

yield y$
t,n with maturity in t+ n if Dt+n = 1 and zero otherwise,

y$
t,n = − 1

n
lnS$

t,n. (47)

Prices of zero-coupon claims are directly related to the respective yield,

St,n = Dte
−net,n and S$

t,n = $1e−ny
$
t,n . (48)
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The price of a standard equity claim can be expressed in terms of

St = Dt

n∗∑
n=1

e−net,n + Dt

∞∑
n=n∗+1

e−net,n , (49)

which highlights two insights. First, the zero-coupon equity yield et,n aggregates information

about the expected dividend discount rate and the expected dividend growth rate, both for

t to t + n. Second, derivatives with price information on dividends paid before time t + n∗

identify the short-end of the equity yield term structure (up to n∗), whereas the aggregate

stock prices summarizes information about both the short and long-end of the equity yield

term structure.

4.3 A Term Structure Model for Bond and Equity Yields

We build our model around a strictly positive pricing kernel with an affine short rate, an

affine market price of risk vector and a VAR(1) state dynamic. Let mt,t+1 be the log pricing

kernel. It takes the form

mt,t+1 = −rt −
1

2
λ′tλt − λ′tεPt+1, m0 = 0, εPt+1 ∼ N(0, I), (50)

with λt being the column vector of market prices of risk and specified further below, whereas

rt is the short rate which itself is a linear function of the state vector Xt,

rt = α + β′Xt (51)

where α is a scalar and β is column vector of dimension K × 1, Xt is the time t realization

of the K × 1 dimensional state vector.

We assume that Xt follows a Gaussian VAR(1) process under the physical probabil-

ity measure P ,

Xt = cP + ΦPXt−1 + ΣεPt , (52)

where cP is a K × 1 column vector, ΦP is of dimension K × K and Σ is a K-dimensional

diagonal volatility matrix. We assume dividend growth dt to be spanned by the state vector,

dt = e′dXt, (53)
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where ed is a K × 1 column vector that selects dividend growth from the state vector. The

column vector of market prices of risk, λt, is assumed to be affine in the states

λt = Σ−1 (λ0 + λ1Xt) , (54)

where λ0 is of dimension K × 1 and λ1 is of dimension K ×K. The affine market price of

risk together with the VAR(1) dynamic for the state vector implies, that the Q dynamic of

the state vector follows a VAR(1),

Xt = cQ + ΦQXt−1 + ΣεQt , ε
Q
t ∼ N(0, I), (55)

where cQ is a K × 1 column vector and ΦQ is of dimension K ×K.

Before we decompose bond and equity yields into their cash-flow and risk premium

components, we first derive their equilibrium values.

Proposition (1) [Equity Yield]

The arbitrage-free zero-coupon equity yield at time t with maturity in n periods, for an

economy that is characterized by equations (51), (52), (53) and (55), is equal to

et,n =ae(n) + b′e(n) Xt, (56)

where for n > 0, the scalar ae(n) and the column vector be(n) are deterministic functions of

the underlying economy and fully specified in appendix B.

A zero-coupon bond yield is a special type of equity yield. The following corollary

states that explicitly.

Corollary (1) [Bond Yield]

The arbitrage-free zero-coupon bond yield at time t with maturity in n periods, for an

economy that is characterized by equations (51), (52), (53) and (55), is equal to

y$
t,n =ay(n) + b′y(n) Xt (57)

where ay(n) and by(n) are deterministic functions of the underlying economy and fully spec-

ified in appendix B.
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4.3.1 Decomposing the Term Structure of Equity Yields

Any zero-coupon equity yield contains information about expected dividend growth and

about the respective dividend discount rate. The next corollary summarizes the respective

decomposition.

Corollary (2) [Decomposing Equity Yields]

Any zero-coupon equity yield is equal to

et,n = ydt,n − gdt,n with gdt,n =
1

n

n∑
i=1

EP
t [dt+i] (58)

where gdt,n is the time t term structure of the expected continuously compounded dividend

growth rate with maturity n and ydt,n is the respective term structure of the continuously

compounded dividend discount rate. Both, gdt,n and ydt,n are deterministic functions of the

underlying economy from equations (51), (52), (53), (55). Appendix B contains a detailed

derivation of both quantities.

Since a zero-coupon bond pays a constant (zero) coupon, its respective value for gdt,n

is zero and its respective discount rate equals y$1
t,n. This highlights that an equity yield

does only coincide with the discount rate if its expected dividend growth rate equals zero.

On the other hand, an equity yield is only an unbiased forecast of dividend growth if the

dividend discount rate is constant.

The term structure of dividend discount rates, ydt,n, is the sum of three components.

First, ydt,n compensates for the expected average value of the short rate from t to t+ n− 1,

which we denote as rt,n,

rt,n ≡
1

n

n−1∑
i=0

EP
t [rt+i].

Second, it compensates for the risk that the realized path of the short rate differs from rt,n.

This compensation is well-known in the fixed-income literature and is usually called interest

rate risk premium, which we denote as z$
t,n,

z$
t,n ≡ y$

t,n − rt,n.14

14Alternative expressions for the interest rate risk premium are ’duration premium’ and ’term premium’.
For our context of equity modeling, we prefer the term ’interest rate risk premium’ because there is a term
/ duration structure not only in interest rates but also in dividend growth and the dividend premium.
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The sum of rt,n and z$
t,n coincides15 with the n-maturity default-free zero-coupon bond yield,

y$
t,n = rt,n + z$

t,n. (59)

Third, ydt,n also compensates for the risk that the realized path of future dividends from t

to t+ n− 1 differs from the ex-ante expectation gdt,n. This compensation coincides with the

zero-coupon dividend risk premium, which we denote as zdt,n,

zdt,n ≡ ydt,n − y$
t,n. (60)

The following corollary summarizes the decomposition of the zero-coupon dividend discount

rate curve.

Corollary (3) [Decomposing Dividend Discount Rates]

The arbitrage-free term structure of the dividend discount rate coincides with the sum of

three components

ydt,n = rt,n + z$
t,n + zdt,n, n > 0 (61)

where rt,n, z$
t,n and zdt,n coincide with the term structures of the expected average value of the

future short rate, the zero-coupon interest rate risk premium and the zero-coupon dividend

risk premium; respectively. Each of these term structures is a deterministic function of

the underlying economy, characterized by the equations (51), (52), (53), (55) , and fully

specified in appendix B.

The next chapter imposes economic restrictions onto our most general pricing model

to set-up an economy that can be tested empirically.

4.4 Economic Setup

We now explain the economic restrictions that our empirical analysis imposes onto our most

general model specification of section 4.3. Starting from an economic setup where all factors

have a macro-economic interpretation - our macro-only model - we find that short-term

dividend discount rates are not captured and fail to price dividend strips. We respond by

introducing one latent variable which allows the market-price of short-term cash flow risk to

move independent from the macro-economy - our benchmark model - and succeed in pricing

15The negligible convexity term is assigned to z$t,n.
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the term structure of discount rates. Our economy follows the macro-finance tradition of Ang

and Piazzesi [2003] and Ang et al. [2011], among others, to account for monetary policy that

sets the short-rate of the economy as a function of macro-economic fundamentals. It consists

of a real, a nominal and an equity financed corporate sector. We capture these sectors via

the realized unemployment rate ut, the realized inflation rate πt and the realized dividend

growth rate dt. Each growth rate i ∈ {u, π, d} consists of a predictable trend component,

xi, and an uninformative noise component νi. The noise components νπ and νu will not

affect prices and are therefore not put into the state vector. This is consistent with the bond

and equity modeling in Lettau and Wachter [2007] and lead to endogenous financial yields

that are unspanned by macro risks, an empirical feature of the data that Joslin et al. [2013]

have motivated in great detail. Similar to Campbell et al. [2016], we allow the predictable

components of unemployment, inflation and dividend growth to be driven by a transitory

and a permanent element, ξ and θ, respectively,

ut ≡ u0 + xut−1 + νu,t, xut−1 ≡ ξut−1 + θut−1, νu,t ∼ N(0, σ2
u); (62)

πt ≡ π0 + xπt−1 + νπ,t, xπt−1 ≡ ξπt−1 + θπt−1, νπ,t ∼ N(0, σ2
π); (63)

dt ≡ d0 + xdt−1 + νd,t, xdt−1 ≡ ξdt−1 + θdt−1, νd,t ∼ N(0, σ2
d); (64)

where ξπt−1, ξut−1 and ξdt−1 are the t − 1 values of the transitory growth rate components

in inflation, unemployment and dividends while θπt−1, θut−1 and θdt−1 are the respective

permanent growth components in inflation, unemployment and dividends. The respective

dynamics are specified further below. The terms π0, u0, d0, σπ, σu and σd are positive

constants.

We assume that the U.S. central bank (Fed) sets the economy’s policy rate rt as a

function of real and nominal trend growth,

rt = r0 + δπxπt + δuxut , (65)

where δπ and δu capture the central bank’s unconditional inflation and unemployment policies

(Ang and Piazzesi [2003]).

4.4.1 The Macro-Only Model

Both the conditional P and Q distribution of bond and equity yields are driven by macro-

economic risks in form of xπt and xut as well as corporate sector specific risks xdt , which we

summarize into the state-vector Mt. For convenience of notation and as required by the
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pricing equations, we introduce a seventh state variable which is mechanically set to be the

sum of d0, ξdt−1 and θdt−1:

Mt ≡
[
ξπt θπt ξut θut ξdt θdt dt

]′
. (66)

According to the VAR(1) dynamic proposed in (52), we describe the parametric restrictions

we apply to allow for a robust and well-identified model. As our state variables have a mean

of zero, cP is a vector of zeros, except for the seventh element, which is set to d0:

cPM =
[
0 0 0 0 0 0 d0

]
. (67)

The vector cQ is free to be non-zero,

cQM =
[
cQξπ cQθπ cQξu cQθu cQ

ξd
cQ
θd

d0

]
, (68)

to allow for non-zero market prices of risk which are affine in the state variables:

λt = λ0 + λ1Xt with λ0 = Σ−1(cP − cQ), λ1 = Σ−1(ΦP − ΦQ). (69)

Regarding ΦP , we impose a near-unit root on the persistent components θπt , θut and θdt to

identify long-run dynamics, see Campbell et al. [2016] for a similar design. Off-diagonal

elements, which allow for Granger-causality among macro-economic states, are set to zero

for a convenient estimation. In unreported results, we find that a rich Granger-causality

does not improve the pricing of bond or equity term structures.

ΦP
M =



φPξπ 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 φPξu 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 φP
ξd

0 0

0 0 0 0 0 1 0

0 0 0 0 0 1 1


. (70)
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Again, to allow for affine market prices of risk, we allow the corresponding elements in ΦQ

to vary,

ΦQ
M =



φQξπ 0 0 0 0 0 0

0 φQθπ 0 0 0 0 0

0 0 φQξu 0 0 0 0

0 0 0 φQθπ 0 0 0

0 0 0 0 φQ
ξd

0 0

0 0 0 0 0 φQθπ 0

0 0 0 0 0 1 1


. (71)

We estimate the diagonal elements of the covariance matrix ΣM and keep off-diagonal ele-

ments at zero.

4.4.2 The Benchmark Model

Our benchmark model adds one state variable to our macro-only model: an indepen-

dent market price of risk ψt for near-future dividend growth. This feature is motivated

by the work of Ulrich et al. [2018], who show that survey-expectations (P) cannot

explain options-implied expectations (Q) about near-future dividend growth. For a simi-

lar design in a bond pricing application, we refer to the work of Bauer and Rudebusch [2017].

We extend the state vector from our macro-only model,

Xt =
[
Mt ψt

]′
, (72)

and adjust the VAR(1) parameters accordingly. We extend the vectors cPM and cQM to

cPX =
[
0 0 0 0 0 0 d0 0

]
(73)

and

cQX =
[
cQξπ cQθπ cQξu cQθu cQ

ξd
cQ
θd

d0 cQψ

]
, (74)
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and add the dynamics of ψt to ΦQ
M , resulting in

ΦP
X =



φPξπ 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 φPξu 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 φP
ξd

0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 φPψ


. (75)

To ensure the interpretation of ψt as a market price of near-future dividend growth risk, we

adjust the dynamics under the risk-neutral measure accordingly:

ΦQ
X =



φQξπ 0 0 0 0 0 0 0

0 φQθπ 0 0 0 0 0 0

0 0 φQξu 0 0 0 0 0

0 0 0 φQθπ 0 0 0 0

0 0 0 0 φQ
ξd

0 0 −1

0 0 0 0 0 φQθπ 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 φQψ


. (76)

As in the macro-only model, our benchmark model sets Σ to be a diagonal matrix.

4.5 Data and Estimation Methodology

Our sample of monthly data covers the period between January 1965 and December 2017.

We confront the model with a rich cross-section of macro-economic, interest rate and equity

data. The affine bond literature agrees nowadays that a robust identification of premiums

requires the addition of expectations under the physical probability measure P to the set of

measurement equations on which the model is tested.16 The following thought experiment

highlights the issue. Imagine a drop in long term government bond yields. The reason

for that drop could be either (i) a reduction of rt,n capturing the expected path of future

monetary policy, (ii) a decline in z$
t,n from an increased risk appetite or (iii) a combination

of both. Reason (i) is most likely to occur if the economy moves into a recession, whereas

16See, among others, Kim and Orphanides [2012], Chernov and Mueller [2012], Chun [2011], Crump et al.
[2016].
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reason (ii) is most likely accompanied by an economy that recovers.

Including survey forecasts for macro-economic and interest rate quantities into the

empirical estimation of the model allows us to identify whether a change in a yield is

due to a revision in the expected future path of the economy or whether it is due to a

change in risk appetite. We include survey expectations for future inflation, unemployment,

dividend growth and Treasury yields in our estimation framework. Survey data for inflation,

unemployment and interest rates come from the Survey of Professional Forecasters (SPF).

Ang et al. [2008] and Faust and Wright [2013] conclude that these surveys are superior to

econometric forecasting methods. The survey data on dividends is constructed from the

Reuters I/B/E/S forecast data on dividend growth of S&P 500 constituents, as suggested

and tested in De la O and Myers [2017] and Ulrich et al. [2018]. Both studies show

independently that these dividend forecasts provide a term structure of unbiased forecasts

of future S&P 500 dividend growth rates. Overall, we have 26 measurement equations to

identify six state variables.

Our measurement equations for the macro-economy are the SPF forecast on average

U.S. CPI inflation with a forecast horizon of one and ten years, which we complement

with realized U.S. CPI inflation. We capture the real economy with SPF forecasts on the

average U.S. unemployment rate over the next year and the realized U.S. unemployment

rate. For unemployment, we did not find long term forecasts such as ten years into the future.

Our financial data covers both survey expectations and data obtained from asset

prices. Regarding survey expectations, we add the SPF forecasts for the three-month and

ten-year U.S. Treasury zero-coupon bond yields with forecast horizons of one month, one

year and ten years as well as aggregate analyst dividend expectations on the S&P 500 with

a forecast horizons of one year. The latter is constructed from survey forecasts following

the methodology first proposed by De la O and Myers [2017] and modified by Ulrich et al.

[2018]. We complement that dividend data with realized dividend growth.

Asset price information are reflected by the one-year, three-year, five-year, seven-year

and ten-year U.S. Treasury zero-coupon bond yields, the aggregate S&P 500 dividend yield

and prices of short-term dividend assets with maturities of 6, 12, 18, 24, 30 and 36 months

obtained from put call parity for CBOE European index options on the S&P 500 (see

Binsbergen et al. [2012] and Ulrich et al. [2018]).
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All asset price data, except for short-term dividend prices and ten-year bond yields,

start in January 1965 and end in December 2017, spanning 636 months. The time series for

the ten-year bond yield starts in September 1971. Short-term dividend prices are available

since January 1996. The dividend price data of Binsbergen et al. [2012] is available for

the period January 1996 to October 2009. We extend the panel of short-term S&P 500

dividend prices, using the methodology proposed by Ulrich et al. [2018], up to September

2017. Survey expectations start later and at different points in time in our sample. Survey

data on inflation expectations is available since August 1981 (one-year horizon) and August

1991 (ten-year horizon). The earliest record of unemployment expectations is in November

1968. We include one-year dividend expectations,see Ulrich et al. [2018], starting in June

2003.

We describe the macro, survey and asset market data with six state variables Mt in

our macro-only model and seven state variables Xt in our benchmark model. Ang and

Piazzesi [2003] compare different specifications in their affine term structure model and

conclude that five pricing factors - two macro variables together with three latent factors -

are best suited to price the Treasury yield curve while still ensuring robust identification.

Adrian et al. [2013] advocate the use of five latent pricing factors to best describe the

Treasury yield curve and predict bond returns. Kragt et al. [2018] find that a two-factor

structure in dividend growth is necessary to describe the time series dynamic of priced

dividend growth in major stock markets. In a principal component analysis, we consider the

13 of the 26 time series for which we have a complete history since January 1996 and find

that five factors explain 94% of the cross-sectional variation, six factors explain 97%, and

seven factors explain 99%. In the light of these results and previous findings in the term

structure literature, we argue that six and seven pricing factors are a reasonable choice. Our

results support this choice, with an increased accuracy in our benchmark model compared

to the macro-only model, and a robust identification of the model parameters.

4.5.1 Biases in Survey Forecasts

In our empirical design, we rely on information in survey forecasts to improve the identifi-

cation of parameters describing the empirical dynamics of our pricing factors, we refer to

Kim and Wright [2005] and Kim and Orphanides [2012] for important contributions. A

large literature is dedicated to the various types of biases in survey forecasts, among them

cognitive biases in forecasters and statistical biases through their aggregation. We refer to

Lambros and Zarnowitz [1987] and Keane and Runkel [1990] for early work, Abarbanell

[1991] and Abarbanell and Lehavy [2003] for work on earnings forecasts, Capistrán and
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Timmermann [2009] for work on SPF inflation forecasts, and Kim and Orphanides [2012]

for an analysis of the efficiency and biasedness in SPF interest rate forecasts. We briefly

discuss statistical properties and evaluate potential biases in the survey data used in our

empirical design to the extent that they might be relevant for the interpretation of our

results. Regression results are summarized in table 18.

Table 18: Regression Statistics - Biases in Survey Forecasts

y$
t,t+1,120 ay by R2

ySPF1
t,120 -0.06 (0.12) 1.01 (0.02) 93.3

y$
t,t+12,120 ay by R2

ySPF12
t,120 -0.61 (0.17) 1.05 (0.04) 87.5

dt,t+12 ad bd R2

dIBESt,12 -2.34 (2.46) 0.97 (0.19) 43.5

πt,t+12 aπ bπ R2

πSPF12
t 0.77 (0.28) 0.62 (0.08) 31.3

ut,t+12 au bu R2

uSPF12
t 0.54 (0.30) 0.92 (0.05) 65.0

This table reports regression estimates and adjusted R2 values for predictive regressions of
future realizations corresponding to survey estimates. The first panel shows results for one-
year survey-implied dividend growth, the second panel for one-month and one-year forecasts
on average ten-year Treasury yields, the third panel for one-year inflation estimates and the
fourth panel for one-year unemployment estimates. Values for intercept terms and R2 are
in percentage terms. Newey and West [1987] standard errors with T 0.25 lags are reported
in parenthesis, where T is the number of observations. The predictions cover the period for
which the respective forecast is available.

We asses the accuracy of the one-month and one-year forecasts of the average ten-

year Treasury yield. Ten-year forecasts exist since 1982 on an annual basis and offer only a

few data points. A regression of the average future 10-year Treasury yield y$
t,t+12,120 on the

SPF one-year forecast ySPF12
t,120 ,

y$
t,t+12,120 = ay + byySPF12

t,120 + εyt+12, εyt+12 ∼ i.i.d.(0, σ2
y), (77)
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results in a significant negative intercept estimate of -61 basis points, which suggests that

the median forecaster did not fully anticipate the decline in long term rates that materialized

since the 1980s. The one-month forecast horizon has no significant bias during our sample.

Regarding dividend growth expectations, we refer to the findings in Ulrich et al.

[2018], who rely on the same panel of analyst dividend forecasts to construct their aggregate

dividend growth expectation on the S&P 500. They regress one-year future realized growth

dt,t+12 on their estimate dIBESt,12 for the period January 2004 to September 2017,

dt,t+12 = ad + bddIBESt,12 + εdt+12, εdt+12 ∼ i.i.d.(0, σ2
d), (78)

and find a statistically insignificant intercept value of 234 basis points and a slope estimate

βd = 0.97. Chapter 2 discusses their findings in greater detail.

Turning to inflation, we assess the accuracy and biasedness in the median one-year

inflation forecast πSPF12
t ,

πt,t+12 = aπ + bππt,12 + εdt+12, εdt+12 ∼ i.i.d.(0, σ2
d), (79)

for which we have 142 quarterly observations. We find an intercept estimate of 77 basis

points, suggesting that the median forecaster under-predicted one-year inflation on average

by 77 basis points. This potential bias decreases to 4 basis points once we discard the first

20 observations, which fall into the high inflation regime of the 1980s.

Since the former Federal Reserve’s chairman Ben Bernanke announced a two percent

inflation rate target in January 2012, the ten-year (long term) inflation expectation has been

very stable with a sample mean of 2.23% and a standard deviation of 0.08%, despite some

negative values for realized inflation rates in this period of time. Prior to 2012, volatility

in long term inflation expectations was at 0.47%. Both findings suggest that the Federal

Reserve has been successful in anchoring inflation expectations close to their quantita-

tive aim for price stability and reducing uncertainty around long term inflation expectations.

Turning to unemployment, we find that one-year forecasts are accurate expectations

on future unemployment. The intercept estimate of 54 basis points is not statistically

significant and the slope estimate bu = 0.92 cannot be rejected to be different from one at

the 5% significance level.
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4.5.2 Likelihood

We estimate the model with a combination of Maximum Likelihood and the Extended

Kalman Filter. This econometric design has become a standard tool for models like ours,

see Chernov and Mueller [2012], Kim and Orphanides [2012] and Feldhuetter and Lando

[2008], among others.

We collect all model parameters and volatilities of the measurement errors in a vec-

tor θ and all time t measurements in a vector yt. We further assume pairwise orthogonal

Gaussian measurement errors. The resulting log of the joint model-implied likelihood

function f(θ) coincides with

T∑
t=1

log (f(θ|yt)) = −T × n
2

log(2π)− 1

2

T∑
t=1

log|Vt(θ)| −
1

2

T∑
t=1

(yt − ŷt(θ))V −1
t(θ)(yt − ŷt(θ)) (80)

with n = 26 measurement equations per time period. Notice, ŷt(θ) denotes the model-

implied quantities that we contrast with the data counterpart yt, and Vt(θ) denotes the

covariance matrix of the fitting errors. Both ŷt and Vt depend on parameters θ and are

computed using the model and the well-known recursions from the Kalman Filter. All model

parameters and state variables are estimated by a combination of Maximum Likelihood, the

Extended Kalman Filter and a global optimization routine, which together run in C++ on

the bwUniCluster, a high performance computing cluster.

4.6 Empirical Findings

Our analysis is centered around the decomposition of the dividend discount rate, as

implied by our benchmark model, into its three components: these are short rate ex-

pectations, the duration premium and the cash flow premium, as outlined in section

4.3.1. In a first step, we assess how well our model describes the data and highlight

two findings. First, a simple Taylor rule setup seems able to reconcile macro-economic

developments and the short-rate in times of Quantitative Easing. This suggests that the

Federal Reserve’s dual mandate of ensuring price stability and sustainable employment

has been in line with its monetary policy even in times of unconventional policy measures

such as large-scale asset purchases. Second, we find that the average term structure of

the dividend discount rate ydt,n has been downward sloping because of a strong increase

in short-term risk premiums zdt,n, a feature which we cannot recover in the macro-only model.

In a second step, we assess the predictive power of our model for each of the in-
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volved quantities and conclude that our model provides a realistic decomposition: our model

predicts future short-rates well and implies expected returns which are a strong predictor

of future bond returns. The future return on the one-year dividend assets is well captured

by our dividend risk premium estimate. A decomposition of forecast errors allows us to

quantify the contribution of each economic variable to forecast errors in the components of

dividend discount rates. We conclude with an impulse response analysis, which quantifies

the impact of a shock in an economic variable to each component. Parameter estimates for

the benchmark model can be found in table 19.

4.6.1 Empirical Fit and Filtered States

Overall, our benchmark model explains the data, both survey expectations and financial

quantities, very well and captures the spikes in short-term dividend prices during the past

recessions. Table 20 contains the mean absolute pricing errors for all estimated quantities

in both the macro-only and the benchmark model.

Across all maturities, the average absolute pricing error in bond yields is at 7 basis

points. To put this into perspective, we refer to Adrian et al. [2013], who price the term

structure with five principal components over the period 1987 to 2011 and find an average

absolute pricing error of 4 basis points. We argue that both approaches achieve a very

good fit - while the focus of Adrian et al. [2013] is on return predictability, we provide an

arbitrage-free model for both bonds and equity and focus on economic interpretation. If

we isolate the period after the Great Recession, the Taylor rule model leads to very similar

pricing errors relative to the entire sample period - the error in the short rate is smaller and

bond yield errors increase by 1 basis point on average. Figures 13 and 14 emphasize that our

model does not only capture bond yields (Q), but also the survey-based yield expectations

(P) to an acceptable degree. The 1-month and 10-year SPF survey forecasts on the average

10-year bond yield are accurately described, and the 10-year and 1-month bond yields, y$
t,120

and y$
t,1, from secondary market data are well priced. Following the analysis in Kim and

Orphanides [2012], we expect to be able to decompose bond yields into expected short rates

and duration premiums, which we confirm in a later analysis.

As we illustrate in figure 15, our benchmark model achieves a remarkable fit to both short-

term dividend assets and the classical dividend yield. The simple Gordon growth model we

use to price the dividend yield reconciles dynamics in dividend growth and equity markets

well, as the mean absolute pricing error of 5 basis points suggests. There is an apparent

mismatch of survey expectations on dividend growth during the years 2004 to 2008, as figure
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Table 19: Parameter Estimates

Taylor rule parameters r0 δπ δu

3.88E-03 1.4978 -0.8213

- (158.41) (-63.52)

cP ξπ θπ ξu θu ξd θd d ψ

- - - - - - 4.68E-03 -

- - - - - - - -

cQ ξπ θπ ξu θu ξd θd d ψ

-1.29E-06 4.98E-06 9.76E-05 -3.55E-05 -8.03E-04 -8.63E-05 4.68E-03 9.00E-04

(-0.20) (5.14) (1.17) (-3.57) (-0.09) (-14.80) - (-0.17)

ΦP ξπ θπ ξu θu ξd θd d ψ

ξπ 0.9693 - - - - - - -
(1672.45) - - - - - - -

θπ - 1 - - - - - -
- - - - - - - -

ξu - - 0.9671 - - - - -
- - (280.09) - - - - -

θu - - - 1 - - - -
- - - - - - - -

ξd - - - - 0.9510 - - -
- - - - (629.45) - - -

θd - - - - - 1 - -
- - - - - - - -

d - - - - 1 1 - -
- - - - - - - -

ψ - - - - - - - 0.9988
- - - - - - - (2228.93)

ΦQ ξπ θπ ξu θu ξd θd d ψ

ξπ 0.9604 - - - - - - -
(678.85) - - - - - - -

θπ - 1 - - - - - -
- (4316.33) - - - - - -

ξu - - 0.7802 - - - - -
- - (12.16) - - - - -

θu - - - 0.9897 - - - -
- - - (1357.17) - - - -

ξd - - - - 0.0113 - - -1
- - - - (0.03) - - -

θd - - - - - 1 - -
- - - - - (6964.69) - -

d - - - - 1 1 - -
- - - - - - - -

ψ - - - - - - - 0.0107
- - - - - - - (0.03)

ΣΣ> ξπ θπ ξu θu ξd θd d ψ

σ2
i (5.78E-08) (2.60E-08) (9.61E-08) (3.96E-08) (9.03E-07) (1.51E-08) (3.51E-07) (1.27E-03)

(13.48) (15.74) (12.44) (10.62) (11.38) (20.83) (0.00) (13.13)

This table reports parameter estimates of the benchmark model, obtained for the full sam-
ple period Jan 1965 to Dec 2017. Bold values are not estimated. T-statistics, calculated
according to appendix E, are given in parentheses and rounded to two decimals.
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Table 20: Mean Absolute Pricing Errors

Economic Variables and Survey Forecasts

πt πSPF12
t πSPF120

t ut uSPF12
t dt dIBESt ySPF1

t,3 ySPF12
t,3 ySPF120

t,3 ySPF1
t,120 ySPF12

t,120 ySPF120
t,120

1965 MO 123 77 51 24 34 233 264 24 36 125 25 39 69
BM 121 73 48 27 39 87 330 20 33 112 27 40 67

1996 MO 85 59 48 17 34 417 264 24 32 116 24 41 74
BM 84 56 44 20 38 165 330 18 30 99 25 42 73

2009 MO 98 70 60 22 36 603 232 31 27 166 21 46 117
BM 94 70 61 25 39 197 278 19 26 140 22 46 112

Bond Yields, Strip Yields and Dividend Yield

rt y$
t,12 y$

t,36 y$
t,60 y$

t,84 y$
t,120 yst,6 yst,12 yst,18 yst,24 yst,30 yst,36 ydt

1965 MO 48 10 8 7 6 9 26 14 9 7 7 6 5
BM 45 9 8 7 6 8 7 3 3 3 2 2 5

1996 MO 38 8 8 7 5 8 26 14 9 7 7 6 6
BM 31 7 8 7 6 8 7 3 3 3 2 2 9

2009 MO 52 9 9 8 6 11 36 20 14 11 9 7 8
BM 36 7 10 9 6 11 10 3 3 3 3 3 9

This table reports mean absolute pricing errors for all modeled quantities in the macro-only
model (MO) and the benchmark model (BM) for the full sample sample period (Jan 1965 to
Dec 2017), the time with option data (Jan 1996 to Sep 2017) and the time after the Great
Recession (Jul 2009 to Dec 2017). The upper panel reports errors for economic quantities
and survey forecasts, the bottom panel contains secondary market data on bond yields and
equity quantities. Errors are reported in basis points.

16 shows. This mismatch coincides with a strong upward bias in analyst estimates during

the years 2004 to 2008, documented in Ulrich et al. [2018].

Short-term dividend assets are well priced in the benchmark model, with an average

absolute error of 3 basis points across all maturities. Restricting market prices of risk to

be affine in the economic state variables does not allow such a good fit, as we can see from

the pricing errors in the macro-only model. There, the average absolute error in dividend

strip yields amounts to 12 basis points, missing to capture the spikes during the two recent

recessions. The mismatch is particularly pronounced at the short-end, with 26 basis points

for the six-month maturity. Dividend growth is also barely captured, as the pricing errors

are more than twice as large as in the benchmark model (233 versus 87 basis points) -

pointing towards the problem of simultaneously matching growth and risk premiums with

affine market prices of risk.
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Figure 13: Bond Yield Estimates - Market Data

 

 

This figure shows the one-year (top) and ten-year (bottom) U.S. Treasury bond yield as in
our data (orange dashed line) and implied by our model (blue solid line). Gray shaded areas
indicate NBER recessions. Values are in annualized percentage terms.

Figure 14: Bond Yield Estimates - Survey Expectations

 

 

This figure shows the one-month (top) and one-year (bottom) expectations on the average
future ten-year U.S. Treasury bond yield as in our data (orange dashed line) and implied
by our model (blue solid line). Gray shaded areas indicate NBER recessions. Values are in
annualized percentage terms.
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Figure 15: Estimates of Dividend Yields

 

 

This figure plots the one-year dividend strip yield and dividend yield as in our data (orange
dashed line) and implied by our model (blue solid line). Gray shaded areas indicate NBER
recessions. Values are in annualized percentage terms.

Figure 16: Estimates of Dividend Growth

 

 

This figure shows the realized dividend growth and one-year dividend growth expectation as
in our data (orange dashed line) and implied by our model (blue solid line). Gray shaded
areas indicate NBER recessions. Values are in annualized percentage terms.

The filtered state variables show intuitive features and allow conclusions about the

evolution of economic expectations and market prices of risk. As can be seem from figure
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17, the permanent component of inflation, θπ, is tent-shaped with a global peak during the

high inflation period of the early 1980s and declines ever since.

Figure 17: State Estimates - Inflation Components

 

 

This figure shows the estimates of the transitory (top) and permanent (bottom) components
ξπ and θπ of inflation. Gray shaded areas indicate NBER recessions. Values are in annualized
percentage terms.

The cyclical inflation component, ξπ, is highest during the recessions prior to the tenure

of Paul Volcker and tends to fall during recessions, suggesting that prices are expected to

drop temporarily during recessions. In figure 18 we can see that the permanent component

in unemployment, θu, has been highest shortly after recessions and highest after the Great

Recession. The cyclical component in unemployment, ξu, shows increased volatility during

recessions, times when short-term labor market uncertainty might increase. Turning to figure

19, the model estimates assign the sharp declines in dividend growth during the past two

recessions to sharp and unprecedented drops in the transitory growth component ξd.

On the other hand, increases in the permanent component θd in times of dividend cuts might

be an indication that the two past recessions were expected to only have a short-term impact

on corporate dividends. In figure 20, we see how ψ shoots up into positive territory during

the recent two stock market crashes, highlighting large market prices of risk for taking-on

short-duration dividend risk.
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Figure 18: State Estimates - Unemployment Components

 

 

This figure shows the estimates of the transitory (top) and permanent (bottom) components
ξu and θu of unemployment. Gray shaded areas indicate NBER recessions. Values are in
annualized percentage terms.

Figure 19: State Estimates - Dividend Growth Components

 

 

This figure shows the estimates of the transitory (top) and permanent (bottom) components
ξd and θd of dividend growth. Gray shaded areas indicate NBER recessions. Values are in
annualized percentage terms.

80



Figure 20: State Estimates - Market Price of Dividend Risk

 

This figure shows the estimate of the market price of short-term dividend risk ψ. Gray
shaded areas indicate NBER recessions.

4.6.2 Term Structure Estimates

We present the mean estimates of all components of the dividend discount rate, rt,n, z$
t,n and

zdt,n, together with expected dividend growth gdt,n, for different periods within our sample.

Table 21 summarizes all the results. Figure 21 illustrates the one-year estimates over the

entire sample period for bond related quantities, figure 22 for dividends.

Figure 21: Term Structure Components - Bond Yield Components

 

 

This figure shows the estimates of the one-year average expected short rate rt,12 (top) and
interest rate risk premium z$

t,12 (bottom), whose sum is the one-year bond yield. Gray shaded
areas indicate NBER recessions. Values are in annualized percentage terms.
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Table 21: Equity Yield Components

(1) Entire Sample (3) Great Recession

T 1y 3y 5y 7y 10y 1y 3y 5y 7y 10y

r 4.83 5.07 5.22 5.31 5.40 1.56 1.79 1.94 2.04 2.13
z$ 0.41 0.60 0.72 0.85 1.03 -0.22 0.27 0.77 1.18 1.67
zd 1.33 1.64 2.60 3.70 5.42 41.56 13.08 9.11 8.27 8.61
gd 5.79 5.54 5.42 5.35 5.29 5.59 7.88 9.05 9.69 10.22

e 0.75 1.74 3.11 4.50 6.56 37.62 7.44 2.90 1.90 2.26

(2) Option Sample (4) Quantitative Easing

T 1y 3y 5y 7y 10y 1y 3y 5y 7y 10y

r 2.40 2.61 2.75 2.84 2.93 0.45 0.62 0.73 0.81 0.88
z$ 0.07 0.36 0.64 0.88 1.19 -0.08 0.38 0.83 1.22 1.69
zd 10.50 5.76 5.22 5.05 6.19 16.87 7.25 6.11 6.17 7.16
gd 6.40 6.07 5.86 5.81 5.73 6.64 5.84 5.43 5.21 5.02

e 7.04 2.66 2.75 2.95 4.58 10.50 2.34 2.26 2.96 4.70

This table reports the decomposition of model-implied equity yields into risk-free rate r,
interest rate risk premium z$, cash flow premium zd and dividend growth gd for four different
periods in the benchmark model: (1) the entire sample from Jan 1996 to Dec 2017, (2) the
entire option sample from Jan 1996 to Sep 2017, (3) the Great Recession between Dec 2007
and Jun 2009 and (4) the time after the Great Recession from Jul 2009 to December 2017.
All numbers are expressed in percentage terms.

While both expected short rates and interest rate risk premiums have been upward

sloping in all samples under consideration, we find clear differences in their levels. The

Federal Reserve has undertaken several measures, commonly referred to as Quantitative

Easing, such as the acquisition of mortgage debt and government bonds, to stimulate the

economy and stabilize the financial sector. During this period, the 1- and 10-year Treasury

bond yields fell to 0.37% and 2.57%. One of the reasons for these low values are the

low expected short-rates at 0.45% and 0.88%, more so the interest rate risk premiums

at -0.08% and 1.69%. Expected short rates across all maturities have been more than

4 percentage points lower over the years since the Great Recession than their sample averages.

Options-implied present values of near-future dividends are only available since 1996.

As they provide us with the information to identify short-horizon dividend risk premiums,
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Figure 22: Term Structure Components - Dividends

   

This figure shows the estimates of the one-year dividend risk premium zdt,12 (top) and the av-
erage expected dividend growth gdt,12 (bottom). Gray shaded areas indicate NBER recessions.
Values are in annualized percentage terms.

we focus on the respective period in our analysis. The point estimates suggest a downward

sloping term structure of dividend risk premiums for the time with option data availability,

from 10.50% for the one-year horizon to 6.19% for the ten-year horizon. The pronounced

downward slope is driven by the two most recent recessions, of which the last one was

accompanied by a 41.56% premium over the one-year horizon.

4.6.3 Predicting the Economic Environment

While the previous analysis helped to understand the model’s capability of matching the

data and how it allows us to decompose yields into premium components and short rate

expectations, we turn to the question which economic factors drive the different components

and how well we can actually predict them. We predict certain model quantities of interest

and decompose their forecast errors, which allows us to evaluate each variables contribution,

as described in appendix D.

Based on the economic setup described in section 4.4, our model is able to describe

economic developments, bond yields and dividend assets. The tractable VAR(1) structure

behind our state variables allows us to obtain term structures not only for all the components

of the dividend discount rate, but also for expectations on inflation, unemployment and

growth. The following analysis will help us to assess the accuracy of our model-implied

expectations. We focus on annual forecast horizons and calculate the R2 values according

to Harvey [1989],

R2 = 1− var(wt − ŵt)
var(wt)

, (81)
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where wt is the data counterpart to the model-implied value ŵt.

Our model turns out to be an accurate predictor of macro-economic time-series. The

model-implied estimate of future annual inflation results in a R2 value of 29.8%, where

future annual inflation is measured as the log-change in the CPI over the next 12 months.

We find a R2 value of 83.1% for future annual unemployment, where we measure future

annual unemployment as the average unemployment rate over the next 12 months. This

choice comes closest to the methodology behind the Survey of Professional Forecasters.

Turning to dividend growth, we measure future annual dividend growth as the log-ratio

between dividends paid over the next 12 months and dividends paid over the past 12

months. We find a R2 value of 21.2% for the entire sample period. We relate this finding

to a previous study of Binsbergen and Koijen [2010], who find that their filtered estimates

of dividend growth predict annual cash-invested dividends with a similar R2 value of 13.9%

for the period 1946 to 2007.

4.6.4 Predicting Returns in Bond and Dividend Investments

One of the benefits of our Taylor rule model is the straightforward decomposition of bond

yields into future expected short rates and the interest rate risk premium. To empirically

validate the model-implied rt,12, derived from our linear term structure model and VAR(1)

dynamic in the state variables (see equation (120) in appendix B), we compute the realized

rt,12 from the average of short rates over the next 12 months. We find a large R2 value of

93.4%, which we see as support for the ability of our model to decompose bond yields into

rt,n and z$
t,n. Besides the high auto-correlation of 96.4% in monthly data, we attribute part

of this predictability to the use of survey expectations. On one hand, we use survey data on

interest rate expectations to identify the interest rate dynamic under the empirical measure.

On the other hand, we relate the short rate to economic expectations, for which we also

find survey data. In a next step, we assess the ability of our model to predict returns in

bond and equity markets.

We derive the expression for the expected buy-and-hold return over k periods from a

zero-coupon bond with maturity n in appendix C,

Et[R
n
t,t+k] = n

(
ay(n) + b>y (n)Xt

)
− (n− k)

(
ay(n− k) + b>y (n− k)Et[Xt+k]

)
. (82)

The trivial case of a holding period corresponding to the bond’s maturity, n = k, results in

it’s yield to maturity as expected return. We predict returns for a bond with a maturity
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of five years and two different holding periods, for one month and one year, to asses the

predictive power. We compare the expected returns to the realized returns in figure 23. We

find that our expected returns share a correlation of 15.3 % for the one-month horizon and

54.0% over the one-year horizon. In addition, the sample averages of expected returns and

realized returns are very close to each other, with 6.5% (expected) and 6.7% (realized) in

the one-month horizon and 6.4% (expected) and 6.6% (realized) in the one-year horizon.

Turning to dividend assets, we consider both an investment into a one-year dividend strip

and the S&P 500. The recent literature has provided empirical evidence on the strong

predictability of returns in dividend strips, see Binsbergen et al. [2012] and Ulrich et al.

[2018]. Regarding standard equity investments, the S&P 500 has always been the focus of

many empirical studies which try to reconcile the dividend price ratio with future returns

or dividend growth, starting with Campbell and Shiller [1988]’s accounting identity. A

more recent study of Dybvig and Zhang [2018] provides strong empirical evidence that

the dividend price ratio is indeed a strong signal for future dividend growth, but not for

future equity returns. The empirical findings of our prediction exercise are in line with the

findings in these papers. We follow Ulrich et al. [2018] and compare the realized returns

from a buy-and-hold investment into the one-year dividend strip to the implied dividend

discount rate ydt,12. To earn the return on a one-year dividend strip, the authors propose

to replicate the exposure to S&P 500 dividends which will be distributed over the next

year by an option strategy. Alternatively, with the introduction of dividend futures, the

investment strategy has become much simpler in recent years, as discussed in chapter 3

of this thesis. The return from this strategy is earned by receiving the dividends which

get paid throughout the year, and assuming they do not get reinvested for simplicity.

We find returns for this strategy since January 1996, the earliest date for which we

have option data available. Figure 24 shows the strong similarity between the dividend

discount rate and the realized return of the dividend strip. The correlation of 82.9%

is in line with estimates in Ulrich et al. [2018], who derive a model-free estimate of the

dividend discount rate and report similar predictability results. While our average dividend

discount rate estimate has been 12.8% since 1996, the average annual return has been 12.2%.

Regarding the S&P 500, we derive the formula for buy-and-hold returns in appendix

C. We find little to none predictability over the one-month, one-year or five-year horizon.

While the average return estimates at 9.0%, 8.7% and 8.4%, respectively, are close to the

average realized returns at around 9.4%, the correlations are at 0.1%, 4.6% and 18.8%

over the entire sample period. Figure 25 compares the different estimates to their realized

counterparts.
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Figure 23: Return Expectations - Five-Year Treasury Bond Investments

 

 

 

This figure shows the model-implied return expectations (blue) for a five-year Treasury bond
and the corresponding future realizations (orange) for holding periods of one month (top),
one year (middle) and five years (bottom). Gray shaded areas indicate NBER recessions.
Values are in annualized percentage terms.
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Figure 24: Return Expectations - Dividend Strip Investments

   

This figure shows the one-year dividend discount rate estimate and the future one-year return
on the one-year dividend strip (orange). Gray shaded areas indicate NBER recessions. Values
are in annualized percentage terms.

4.6.5 Forecast Error Variance Decompositions

We decompose forecast errors in the term structure components to better understand which

macro factors drive short-term and long term forecast errors in rt,n, z$
t,n, zdt,n and gdt,n. For a

derivation of our forecast error variance decomposition, we refer to appendix D. We focus

on one-month and one-year forecast horizons. Results for selected quantities presented here

are summarized in table 22.

We first analyze the forecast error variances in bond yields y$
t,n and their components

rt,n and z$
t,n. Across all maturities and forecast horizons, we find that bond yield forecast

errors stem to approximately two thirds from shocks to inflation expectations and one third

from shocks to unemployment expectations. Intuitively, the longer the forecast horizon or

maturity of the bond yield, the more contribute long term components θπ and θu. The

error in interest rate risk premium forecasts seems to be largely due to unemployment

expectations, as more than 95% of their variance is explained by ξu and θu. Errors in short

rate expectations, on the other hand, are driven similarly across the four macro states for

short horizons and maturities, with a gradual shift towards the long term inflation and

unemployment component.

The forecast error variance decomposition for zdt,n highlights that short horizons and

maturities are almost exclusively driven by ψ. Shocks to ξd gain importance as the forecast

horizons and maturity increases. This finding underlines the importance of an additional

factor, which allows for market prices of risk that are not affine in economic fundamentals.
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Figure 25: Return Expectations - Equity Index Investments

   

   

   

This figure shows the model-implied return expectations (blue) for an investment into the
S&P 500 and the corresponding future realizations (orange) for holding periods of one month
(top), one year (middle) and five years (bottom). Gray shaded areas indicate NBER reces-
sions. Values are in annualized percentage terms.

We end this subsection by studying the forecast error variance of the dividend dis-

count rate ydt,n. The results reflect that the dividend discount rate is the sum of the Treasury

bond yield and the dividend risk premium, as it is largely driven by ψ for short horizons

and short maturities, with increasing contributions of macro variables for longer horizons

and maturities.
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Table 22: Forecast Error Variance Decompositions

One-month forecast horizon

ξπ θπ ξu θu ξd θd ψ

r12 0.28 0.19 0.21 0.31 0.00 0.00 0.00
r60 0.03 0.36 0.02 0.60 0.00 0.00 0.00

z$
12 0.04 0.01 0.92 0.04 0.00 0.00 0.00
z$

60 0.04 0.00 0.72 0.24 0.00 0.00 0.00

y$
12 0.42 0.21 0.07 0.30 0.00 0.00 0.00
y$

60 0.19 0.41 0.01 0.39 0.00 0.00 0.00

zd12 0.00 0.00 0.00 0.00 0.04 0.00 0.96
zd60 0.00 0.00 0.00 0.00 0.16 0.00 0.84

yd12 0.01 0.00 0.00 0.01 0.04 0.00 0.94
yd60 0.04 0.08 0.00 0.07 0.13 0.00 0.68

One-year forecast horizon

ξπ θπ ξu θu ξd θd ψ

r12 0.23 0.30 0.11 0.35 0.00 0.00 0.00
r60 0.02 0.45 0.01 0.53 0.00 0.00 0.00

z$
12 0.05 0.03 0.84 0.08 0.00 0.00 0.00
z$

60 0.05 0.00 0.84 0.08 0.00 0.00 0.00

y$
12 0.33 0.31 0.02 0.33 0.00 0.00 0.00
y$

60 0.13 0.52 0.00 0.35 0.00 0.00 0.00

zd12 0.00 0.00 0.00 0.00 0.07 0.00 0.93
zd60 0.00 0.00 0.00 0.00 0.24 0.00 0.76

yd12 0.01 0.00 0.00 0.01 0.06 0.00 0.92
yd60 0.02 0.09 0.00 0.06 0.20 0.00 0.64

This table reports estimates for the forecast error variance decomposition for selected finan-
cial quantities estimated over the full sample from Jan 1965 to Dec 2017. Values are relative
contributions of each state variable to the respective forecast error variance and rounded to
two decimals.

4.6.6 Impulse Response Functions

We closely follow the analysis in Ang and Piazzesi [2003] to report the responses in the

different discount rate components to movements in the state variables. The methodology

is outlined in appendix F. We are interested in the question by how many basis points a

financial variable moves following an isolated movement of one standard deviation in one of

the state variables. The variables we consider in this analysis are short rate expectations rt,n

and interest rate risk premiums z$
t,n, whose responses add up to the responses of Treasury

bond yields y$
t,n. Then we add an analysis of dividend risk premiums zdt,n, which added to
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Treasury bond yields give us the responses in dividend discount rates ydt,n. We focus our

analysis on the responses in one- and five-year maturities. Table 23 contains selected results

which we discuss below.

Table 23: Impulse Responses

Impact one month after impulse

h = 1 ξπ θπ ξu θu ξd θd ψ

r12 32 25 -23 -17 0 0 0

r60 16 25 -12 -17 0 0 0

z$
12 -3 -2 13 2 0 0 0
z$

60 -3 -1 9 4 0 0 0

y$
12 29 23 -10 -15 0 0 0
y$

60 13 24 -3 -14 0 0 0

zd12 0 0 0 0 69 1 301
zd60 0 0 0 0 28 1 58

yd12 29 23 -10 -15 69 1 301
yd60 13 24 -3 -14 28 1 58

Impact twelve months after impulse

h = 12 ξπ θπ ξu θu ξd θd ψ

r12 24 25 -17 -17 0 0 0
r60 13 24 -8 -16 0 0 0

z$
12 -2 -2 10 2 0 0 0
z$

60 -2 -1 6 4 0 0 0

y$
12 22 23 -7 -15 0 0 0
y$

60 11 23 -2 -11 0 0 0

zd12 0 0 0 0 48 1 288
zd60 0 0 0 0 20 1 52

yd12 22 23 -7 -15 48 1 288
yd60 11 23 -2 -11 20 1 52

This table reports estimates of impulse responses for selected financial quantities estimated
over the full sample from Jan 1965 to Dec 2017. Values represent the impact in basis points
after a one standard deviation impulse in a particular state variable and are rounded to full
basis points.

In accordance with Ang and Piazzesi [2003], we find that short-term Treasury yields

are more sensitive to shocks in macro-economic variables than long term Treasury yields.

Comparing the one-year to the five-year Treasury yield, we find that the impact of ξπ and ξu
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is at least twice as large for the one-year yield across horizons. We find that an increase in

inflation expectations affects Treasury yields almost only because of increased expectations

about future short rates. A positive shock to unemployment expectations leads intuitively

to lower expectations on future short rates, but increases interest rate risk premiums. As

the negative effect on short rate expectations is stronger, Treasury yields tend to decrease

with an increase in unemployment expectations.

Regarding the dividend risk premium, we find that short maturities are strongly af-

fected by an increasing market price of short-term dividend risk. A shock of one standard

deviation in ψ translates into an immediate increase of 301 basis points in the one-year

dividend risk premium. The impact on the five-year premium is only about a fifth as large

at 58 basis points. The dividend discount rate ydt,n, which is the sum of Treasury bond yield

y$
t,n and dividend risk premium zdt,n, shows intuitively the same behavior as its constituents.

While the one-year discount rate ydt,12 reacts strongest to shocks in ψ, the impact of ψ on the

five-year discount rate ydt,60 is closer in magnitude to the impact of other economic variables.

4.7 Conclusion

We have derived and estimated the first affine term structure model that jointly prices

Treasury bonds, equity and options-implied dividend strips. We have applied the model

to U.S. data and find it describes the economy, survey forecasts and asset price data very

well. From a pricing perspective, our model fits the asset price data as good as latent

factor models that focus on one of the three asset classes, with a reasonable amount of

economically meaningful pricing factors. From an economic point of view, our model allows

to study the interplay of the economy and price data and to decompose dividend discount

rates within an affine term structure model into their economically meaningful components.

Our application to U.S. data reveals several new learning points. We find that a

monetary policy rule based on the Federal Reserve’s dual mandate - price stability and

sustainable employment - allows for an accurate description of government bond yields.

Survey data on inflation and unemployment expectations, published by the Federal

Reserve, provide us with valuable information about the pricing factors. Based on our

predictive exercise regarding economic variables and future short rates, we conclude that

the auto-regressive structure behind the state variables is well identified.

The inclusion of dividend growth into our affine term structure model allows us to
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price claims on dividends. While survey-expectations on dividend growth allow us to

identify dynamics under the empirical probability measure, price data on dividends, paid

at different points in the future, allows us to estimate risk-adjusted growth rates. In a

macro-only specification, where market prices of dividend growth risk are affine in the

dividend growth variables, we are not able to reconcile the prices of near-future dividends

and the equity index. An additional state variable for the market price of near-future

dividend growth risk, on the other hand, improves the pricing and enables us to predict

returns on dividend strips with high accuracy.

We leave many interesting further developments to future research. For example, we

have analyzed only one special case of our most general model framework. It could be

interesting to add stochastic volatility to the model as in Creal and Wu [2017], in particular

as volatility in dividend discount rates increases in difficult economic times and as a

mechanism to learn about the links between second moment and first moment shocks.

Allowing for Granger causality among fundamental risk factors might enable us to better

understand interactions between bond and equity markets. Another interesting avenue is

the application to the cross-section of equity, as dividend derivatives are also available for

individual companies. We leave all of these three interesting extensions to future research.
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5 Summary and Outlook

In this thesis, we quantify and analyze the term structure of dividend risk premiums. In

chapter 2, we derive a novel approach to quantify the dividend risk premium in the aggregate

U.S. stock market, represented by the S&P 500, based on option prices and analyst estimates

on future dividends. Our approach is novel in the sense that it is based on real-time and

forward-looking data and does not assume a parametric structure in the dividend growth

process. Our first important finding contributes to the literature on dividend growth

predictability. We cannot reject the hypothesis that our model-free one-year estimate of

S&P 500 dividend growth is an unbiased predictor of future realized dividend growth.

Combining the growth measure derived from analyst estimates with growth estimates

implied by put call parity, we obtain an estimate of the term structure of the dividend risk

premium. We use this model-free term structure to provide new insights about its shape

and its business cycle behavior. As to business cycle variations, we document that the level

of the dividend risk premium term structure moves counter-cyclically, whereas its slope

moves pro-cyclically. This means that both short- and long-horizon dividend risk premiums

increase during business cycle contractions and fall during expansions. Yet, the on average

negative term structure slope flattens during business cycle expansions and becomes more

negative during business cycle contractions.

In chapter 3, we extend our analysis to the European market. A rich set of intra-

day data on Euro Stoxx 50 dividend futures provides us with present values, and hence

implied growth rates, of future dividends. We find that growth rates implied by analyst

forecasts are upward biased for this market, whose realized growth rates have been negative

on average between August 2008 and September 2017. The upward bias in the aggregate

growth estimate is not due to a few outliers among the index constituents, we rather find an

upward bias for most of the constituents. This introduces an upward bias in our estimate

of the dividend risk premium, which nonetheless is a strong predictor of future returns

in dividend assets and exhibits a similar business cycle behavior as its U.S. counterpart.

While returns on S&P 500 dividend assets earned through put call parity show very little

correlation with the equity market, returns on Euro Stoxx 50 dividend futures are positively

correlated with the equity index.

In chapter 4, we derive an affine term structure model which jointly prices govern-

ment bonds and dividend-paying assets. While the affine model is well-established for

government bonds, we derive an affine pricing structure for dividend-paying assets by
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incorporating the dividend growth rate into the state vector. While our model allows for

several specifications regarding pricing factors and price signals, we decided to build on the

work of Ang and Piazzesi [2003] and Kim and Wright [2005] in our implementation. We

use survey-expectations on macro-economic variables, interest rates and dividend growth

together with price data to estimate the dynamics of our economic risk factors: inflation,

unemployment and dividend growth. The use of survey data and price data allows us to

determine the dynamics under the empirical and risk-neutral probability measure, revealing

the market prices of risk for each risk factor. Our analysis shows that an affine specification

of market prices of risk allows for excellent fits to both price and survey data regarding

bond interest rates, but fails to accommodate dividend strips. In an extension to our

macro-only model, we show how an independent process for the market price of short-horizon

dividend growth risk improves the pricing substantially. Within this benchmark model, the

implied return on dividend strips turns out to be a strong predictor of future realized returns.

Our findings open new avenues for future research, in particular regarding the cross-

section of stocks. While we dedicated ourselves to the aggregate measures of the U.S.

and European stock market, the approaches derived in this thesis can easily be applied to

single stocks or industry portfolios, as long as both analyst growth estimates and dividend

derivatives or options on the individual companies are available. Our affine term structure

model allows us to estimate the common risk factors among bond and equity markets and

can easily be applied to regions other than the United States. Several straightforward

extensions to our benchmark model, such as Granger causality among risk factors or

additional price data, might shed light on the drivers behind the time-varying correlation

between bond and equity markets.
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A Term Structure of Aggregate Dividend Forecasts

Regarding the aggregation of single stock dividend forecasts to the index level, we closely

follow the work of De la O and Myers [2017]. They provide an excellent description of

the aggregation in their appendix, which we summarize in section A.1. The Nelson and

Siegel [1987] estimations to infer the term structure of dividend growth and options-implied

dividend yields are outlined in sections A.2 and A.3 .

A.1 Aggregate Dividend Estimation

The market capitalization of an index constituent i is the product of shares outstanding Si,t

and price per share Pi,t. The aggregate market capitalization Mt of all index constituents

reads

Mt =
∑
i

Pi,tSi,t. (83)

The dividends paid by all S&P 500 constituents are calculated from Si,t and ordinary divi-

dends per share Di,t,

Dt =
∑
i

Di,tSi,t. (84)

Standard & Poor’s adjust the market capitalization Mt by a divisor, such that the index value

is not affected by changes in the constituents or number of shares outstanding. Observing

the index level and market capitalization of all constituents, one can back out the divisor

and calculate adjusted dividends, corresponding to the index level:

Divisort = Mt/S&P500t, Divt = Dt/Divisort. (85)

The same logic applies to the calculation of an aggregate dividend expectation. Let

EP
t [Di,t+n] denote the expectation for ordinary dividends paid by company i at time t + n

under the physical probability measure. The aggregate expectation, adjusted by the divisor,

reads

EP
t [Divt+n] = EP

t


∑
i

Di,t+nSi,t+n

Divisort+n

 . (86)

Assuming that people do not expect changes in constituents or shares outstanding to affect

the price-dividend ratio allows one to use current shares outstanding Si,t and the current
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divisor Divisort in the previous formula

EP
t [Divt+n] =

∑
i

EP
t [Di,t+n]Si,t

Divisort
. (87)

Table 1 highlights that dividend estimates are available for a large subset of all constituents.

Since July 2009, the fiscal year estimates in particular cover approximately 98% of the total

market capitalization of the S&P 500 on average. This leads to the second assumption: firms

with an expected dividend are a representative sample for the aggregate index. Based on

these two assumptions, the above formulas can be used to infer aggregate dividend expec-

tations from time t share prices, shares outstanding and available dividend expectations on

the single stock level.

A.2 Dividend Growth Term Structure Estimation

Based on the previously mentioned aggregation of single stock dividend forecasts to an index

dividend forecast, we find ourselves with estimates for two specific horizons: 12 months and

24 months as described in De la O and Myers [2017]. In addition, we consider the long term

earnings growth estimate and set it to a horizon of 60 months. The estimated term structure

is very robust to a choice beyond 60 months, as different estimations have shown. To achieve

a reasonable estimate of the very short end, we approximate the 1 day expectation with

current dividend growth, defined as the annual growth in 12 month trailing dividends. These

four point estimates, all defined in terms of daily maturities, gPt = (gPt,1 g
P
t,360 g

P
t,720 g

P
t,1800)>,

provide us with information about different points of the term structure of dividend growth

- in total for 166 months between January 2004 and October 2017. For every t, we estimate

the following equation for all available n simultaneously:

gPt,n ≡ δ0,t + δ1,t
1− e−nλt
nλt

+ δ2,t

(
1− e−nλt
nλt

− e−nλt
)
. (88)

The estimation is performed as a grid search for parameter λt. For every point in the grid, or

every value of λt, we obtain a closed form solution for parameters δt = (δ0,t δ1,t δ2,t)
> which

minimizes the root mean squared pricing error between model implied growth rates ĝPt,n and

observed growth rates gPt,n. To ease notation, we rewrite the model

gPt ≡ δ>Lt with Lt = (L1,t, L360,t, L720,t, L1800,t) (89)
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and

Ln,t ≡
(

1
1− e−nλt
nλt

1− e−nλt
nλt

− e−nλt
)>

for n ∈ {1, 360, 720, 1800} (90)

to obtain the ordinary least squares solution

δt = (L>t Lt)
−1L>t g

P
t . (91)

Average estimates for our sample can be found in table 24.

Table 24: Average Nelson Siegel Estimates

λ̄ δ̄0 δ̄1 δ̄2

Survey-Implied Dividend Growth 0.2672 10.3640 1.3215 -6.9261

Options-Implied Dividend Yields 0.0182 0.0206 -0.0098 3.5601

This table reports the average estimates for the two Nelson and Siegel [1987] interpolations
we use to infer the full term structure of survey-implied dividend growth rates and options-
implied dividend yields. The sample period is Jan 2004 - Oct 2017.

A.3 Implied Dividend Yield Term Structure Estimation

The estimation of the parameters λt, δ0,t, δ1,t and δ2,t, which describe the term structure of

dividend yields at time t,

ydt,n ≡ δ0,t + δ1,t
1− e−nλt
nλt

+ δ2,t

(
1− e−nλt
nλt

− e−nλt
)
, (92)

follows the same approach, the grid search, as outlined in section A.2. The main difference is

in the data. While we face a set of fixed maturities n in the estimation of growth rates, the

maturities when estimating options-implied dividend yields varies with t. This is because

the maturities of outstanding options vary from day to day. In addition, we filter option

trades according to the criteria outlined in section 2.3, tailored to our empirical analysis.

Average estimates for our sample and option filter can be found in table 24.
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B Proofs

B.1 Proof of Proposition (1): Equity Yield

We want to show that

et,n = ae(n) + b′e(n)Xt. (93)

The proof is by induction. First, for n = 1, we define the one period equity yield

et,1 ≡ − ln

(
St,1
Dt

)
(94)

with

St,1
Dt

≡ EQ
t

[
e−rt

Dt+1

Dt

]
= e−rt EQ

t

[
ee
′
dXt+1

]
= eac(1)+b′c(1)Xt (95)

where

ac(1) = −α + e′dc
Q and bc(1) = −δ +

(
ΦQ
)′
ed. (96)

Hence,

ae(1) = −ac(1) and be(1) = −bc(1). (97)

Second, for arbitrary n > 0,

et,n ≡ −
1

n
ln

(
St,n
Dt

)
. (98)

We show by induction that if
St,n
Dt

= eac(n)+b′c(n)Xt , (99)

it holds that
St,n+1

Dt

= eac(n+1)+b′c(n+1)Xt . (100)

Note,

St,n+1

Dt

≡ EQ
t

[
Dt+n+1

Dt

n∏
i=0

e−rt+i

]

= EQ
t

[
e−rt

Dt+1

Dt

× EQ
t+1

[
Dt+n+1

Dt+1

n∏
i=1

e−rt+i

]]
= EQ

t

[
e−α−δ

′Xt+e′dXt+1 × eac(n)+b′c(n)Xt+1

]
,

(101)
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where the second equality follows from the law of iterated expectations. Insert the VAR(1)

dynamic for Xt+1, multiply out terms and put Ft-measurable variables out of the expectation

operator:

St,n+1

Dt

= e−α−δ
′Xt+ac(n)+(ed+bc(n))′(cQ+ΦQXt) × EQ

t

[
e(ed+bc(n))′ΣεQt+1

]
. (102)

Taking the expectation of the exponential of a normally distributed variable, we obtain

EQ
t

[
e(ed+bc(n))′ΣεQt+1

]
= e

1
2

(ed+bc(n))′ΣΣ′(ed+bc(n)). (103)

We collect terms that are constant and linear in Xt and match coefficients to solve for the

unknown loadings:

ac(n+ 1) =− α + ac(n) + (ed + bc(n))′cQ +
1

2
(ed + bc(n))′ΣΣ′(ed + bc(n)),

bc(n+ 1) =− δ + ΦQ(ed + bc(n)).
(104)

Hence,

ae(n+ 1) = −ac(n+ 1)

n+ 1
be(n+ 1) = −bc(n+ 1)

n+ 1
. (105)

We proved by induction that

et,n = ae(n) + b′e(n)Xt (106)

where the deterministic loadings follow the recursions from above.

B.2 Proof of Corollary (1): Bond Yield

Assume a firm was to pay a dividend of $1 at time t+n. The respective equity yield coincides

with the time t value of a n-maturity risk-free zero-coupon bond yield

y$
t,n ≡ −

1

n
ln

(
S$1
t,n

$1

)
(107)

where

S$1
t,n

$1
≡ EQ

t

[
$1 ×

n−1∏
i=0

e−rt+i

]
. (108)
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The solution to the last equation can be derived by using Equation (93) and setting ed to

zero. Doing so reveals

y$
t,n = ay(n) + b′y(n)Xt (109)

with

ay(n) ≡ ae(n)|ed≡0 and by(n) ≡ be(n)|ed≡0. (110)

B.3 Proof of Corollary (2): Decomposition of Equity Yields

We want to show that

et,n = ydt,n − gdt,n (111)

and start from Proposition (1), which has established that

et,n = ae(n) + b′e(n)Xt. (112)

We decompose ae(n) + b′e(n)Xt into gdt,n and ydt,n, for all n > 0. We first derive gdt,n using the

VAR(1) dynamic under P , followed by getting ydt,n.

We define gdt,n to be the average future expected dividend growth rate

gdt,n ≡
1

n

n∑
i=1

EP
t [dt+i]

=
e′d
n
×

n∑
i=1

EP
t [Xt+i]

=
e′d
n
×

n∑
i=1

[
(I − (ΦP ))−1 (I − (ΦP )i)× cP + (ΦP )iXt

]
(113)

which in our model coincides with

gdt,n = Ag(n) +B′g(n)Xt (114)

where

B′g(n) ≡ e′d ×
1

n

n∑
i=1

(
ΦP
)i

and Ag(n) ≡ e′d ×
1

n

n∑
i=1

[
(I − (ΦP ))−1 (I − (ΦP )i)× cP

]
.

(115)
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Turning to ydt,n, such that the following identity holds:

ydt,n − gdt,n
!︷︸︸︷

= ae(n) + b′e(n)Xt, (116)

which implies

ydt,n = ayd(n) + b′yd(n)Xt (117)

with

ayd(n) ≡ [ae(n) + Ag(n)] and byd(n) ≡ [be(n) +Bg(n)] . (118)

B.4 Proof of Corollary (3): Decomposing Dividend Discount

Rates

We want to show

ydt,n = rt,n + z$
t,n + zdt,n (119)

where rt,n is the expected average future path of the policy rate, z$
t,n is the interest rate risk

premium and zdt,n is the dividend risk premium. We solve sequentially for rt,n, z$
t,n and zdt,n.

Starting from rt,n, note that rt ≡ α + δ′Xt and Xt ≡ cP + ΦPXt−1 + ΣεPt , εt ∼ N(0, I). We

define

rt,n ≡
1

n

n−1∑
i=0

EP
t [rt+i] = α +

1

n

n−1∑
i=0

δ′
(
(I − ΦP )−1(I − (ΦP )i)cP + (ΦP )iXt

)
, (120)

which can be rewritten as

rt,n = ar(n) + b′r(n)Xt, (121)
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where

ar(n) ≡ α +
1

n

n−1∑
i=0

δ′
(
(I − ΦP )−1(I − (ΦP )i)cP

)
b′r(n) ≡ 1

n

n−1∑
i=0

δ′(ΦP )iXt.

(122)

Turning to z$
t,n, we define the interest rate risk premium as

z$
t,n ≡ y$

t,n − rt,n, (123)

where the first term on the right hand side is derived in Corollary (1). Hence, we conclude

z$
t,n = az(n) + b′z(n)Xt +X ′thz(n)Xt, (124)

with

az(n) ≡ ay(n)− ar(n)

bz(n) ≡ by(n)− br(n).
(125)

Finally, we derive zdt,n. The term structure of the dividend risk premium follows from

zdt,n ≡ ydt,n − rt,n − z$
t,n. (126)

Corollary (2) derived the expression for ydt,n while we have derived the expressions for rt,n

and z$
t,n above. Hence,

zdt,n = azd(n) + b′zd(n)Xt (127)

with

azd(n) ≡ ayd(n)− ay(n) bzd(n) ≡ byd(n)− by(n). (128)
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C Implied Return Expectations

In this section, we derive the expected buy-and-hold returns on equity and bond investments

as implied by our term structure model and economic setup.

C.1 Expected Bond Returns

The price S$
t,n of a zero-coupon bond with maturity n at time t is a function of the respective

yield to maturity y$
t,n,

S$
t,n = e−ny

$
t,n . (129)

The expected cumulative return over the next k periods is defined as

Et[R
n
t,t+k] ≡ Et

[
k∑

m=1

ln

(
S$
t+m,n−m

S$
t+m−1,n−m+1

)]
, (130)

which, as we find a telescoping sum, can be simplified to

Et[R
n
t,t+k] = Et

[
ln
(
S$
t+k,n−k

)]
− ln

(
S$
t,n

)
= ny$

t,n − (n− k)Et
[
y$
t+k,n−k

]
(131)

A solution for the zero-coupon bond yield exists, in form of a linear function of the state

vector,

Et[y
$
t+m,n] = ay(n) + b>y (n)Et[Xt+m], (132)

such that we can calculate the model implied expected return on the n−maturity zero-coupon

bond over multiple periods k at each point in time t as

Et[R
n
t,t+k] = n

(
ay(n) + b>y (n)Xt

)
− (n− k)

(
ay(n− k) + b>y (n− k)Et[Xt+k]

)
. (133)

C.2 Expected Equity Returns

Both the future dividends Dt+m and prices St+m of a dividend-paying asset define its future

returns. The expected cumulative return over the next k periods is defined as

Et[Rt,t+k] ≡ Et

[
k∑

m=1

ln

(
St+m +Dt+m

St+m−1

)]
, (134)
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which we can express more conveniently as

Et[Rt,t+k] =
k∑

m=1

(
Et

[
ln

(
St+m
St+m−1

)
+ ln

(
1 +

Dt+m

St+m

)])
. (135)

We rewrite the first term in the expectation,

Et

[
ln

(
St+m
St+m−1

)]
= Et

[
ln

(
St+m
Dt+m

Dt+m
Dt+m−1

St+m−1

1

Dt+m−1

)]
= Et

[
ln

(
St+m
Dt+m

)
− ln

(
St+m−1

Dt+m−1

)
+ ln

(
Dt+m

Dt+m−1

)]
,

(136)

to conclude our formula for the expected equity return:

Et[Rt(k)] =
k∑

m=1

(
Et

[
ln

(
Dt+m

Dt+m−1

)
+ ln

(
St+m
Dt+m

)
− ln

(
St+m−1

Dt+m−1

)
+ ln

(
1 +

Dt+m

St+m

)])
.

(137)

The first term on the right hand side, dividend growth, can easily be obtained from the state

vector,

Et

[
ln

(
Dt+m

Dt+m−1

)]
= d0 + edEt[Xt+m]. (138)

The three remaining terms in equation (137) contain all expectations on the future dividend

yield or its inverse, which in the Gordon growth formula can be written as

Et

[
ln

(
St+m
Dt+m

)]
= Et

[
ln

(
1 + ḡdt+m

ȳdt+m − ḡdt+m

)]
, with ȳdt+m > ḡdt+m > −1. (139)

Based on the assumption that a medium- to long term estimate of dividend growth and

dividend discount rates with horizon n∗ are a good approximation for the Gordon growth

formula, ȳdt = ydt,n∗ and ḡdt = gdt,n∗ with ydt,n∗ > gdt,n∗ > −1, we obtain

Et

[
ln

(
St+m
Dt+m

)]
= Et

[
ln

(
1 + d0 + e′dXt+m

ae(n∗) + b′e(n
∗)Xt+m

)]
(140)

which we can express as a difference instead of a quotient:

Et

[
ln

(
St+m
Dt+m

)]
= Et [ln(1 + d0 + e′dXt+m)]− Et [ln(ae(n

∗) + b′e(n
∗)Xt+m)] . (141)
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To approximate a random variable E[ln(x)], we use a second-order Taylor expansion around

µ = E[x], which we can do as long as x� 0, see Teh et al. [2006] for details:

E[ln(x)] ≈ ln(µ)− σ2
x

2µ2
. (142)

Applied to equation (141), we obtain the following approximation

Et

[
ln

(
St+m
Dt+m

)]
≈ ln (1 + d0 + e′dE [Xt+m])− e′dΣed

2 (1 + d0 + e′dE [Xt+m])2

− ln (ae(n
∗) + b′e(n

∗)E [Xt+m]) +
b′e(n

∗)Σb′e(n
∗)

2 (ae(n∗) + b′e(n
∗)E [Xt+m])2 .

(143)

Turning to the last term, we proceed in the same way to solve for the expectation. First, we

rewrite the term based on the Gordon growth formula,

Et

[
ln

(
1 +

Dt+m

St+m

)]
= Et

[
ln

(
1 +

ae(n
∗) + b′e(n

∗)Xt+m

1 + d0 + e′dXt+m

)]

= Et

[
ln

(
1 + d0 + ae(n

∗) + (e′d + b′e(n
∗))Xt+m

1 + d0 + e′dXt+m

)]

= Et [ln (1 + d0 + ae(n
∗) + (e′d + b′e(n

∗))Xt+m)]

− Et [ln (1 + d0 + e′dXt+m)]

(144)

and then use equation (142) to solve for the expectation:

Et

[
ln

(
1 +

Dt+m

St+m

)]
≈ ln (1 + d0 + ae(n

∗) + (e′d + b′e(n
∗))E [Xt+m])

− (e′d + b′e(n
∗))Σ(ed + be(n

∗))

2 (1 + d0 + ae(n∗) + (e′d + b′e(n
∗))E [Xt+m])2

− ln (1 + d0 + e′dE [Xt+m]) +
e′dΣed

2 (1 + d0 + e′dE [Xt+m])2 .

(145)
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D Variance Decomposition of Forecast Errors

We decompose the variance of the model-implied forecast errors into the contribution of each

state variable for the financial quantities discussed in chapter 4.6. For all relevant quantities

y
(i)
t , we find a linear dependence on the state vector Xt,

y
(i)
t = a(i) + b(i)Xt, (146)

where both a(i) and b(i) are derived in appendix B for all relevant financial quantities. The

k period ahead forecast error of the state vector is

εX,kt = Xt+k − EP
t [Xt+k] = Xt+k −

(
(I − ΦP )−1

(
I − (ΦP )k

)
cP + (ΦP )kXt

)
, (147)

with a posteriori state estimates being used for Xt. The corresponding covariance matrix is

Cov(εX,kt ) =
1

T − k − 1

T−k∑
t=1

εX,kt (εX,kt )>. (148)

The k period ahead forecast error of model quantity i at time t is given by

εy,k,it = y
(i)
t+k − E

P
t

[
y

(i)
t+k

]
≈ a(i) + b(i)Xt+k − a(i) + b(i)EP

t [Xt+k]

= b(i)εX,kt .

(149)

The variance operator yields

V ar(εy,k,it ) ≈ b(i)Cov(εX,kt )(b(i))>. (150)

If we assume the shocks to the J state variables to be orthogonal to each other, which implies

that the forecast errors of the state vector are uncorrelated, the variance simplifies to

V ar(εy,k,it ) ≈
J∑
j=1

(b
(i,j)
t−1 )2Cov(εX,kt )(j,j) (151)
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and the contribution of the state variable in the l-th position of the state vector to the

variance of the k period ahead forecast error of model quantity i is given by

(b(i,l))2Cov(εX,kt )(l,l)

J∑
j=1

(b(i,j))2Cov(εX,kt )(j,j)

. (152)

E Standard Errors

We calculate standard errors for the maximum likelihood parameter estimates θ̂ as outlined

in Hamilton [1994] from the numerically derived observed information matrix Î. The log of

the Gaussian likelihood function has the following form,

T∑
t=1

log (f(yt|xt, θ)) = −Tn
2
log(2π)− 1

2

T∑
t=1

log|Vt(θ)|−
1

2

T∑
t=1

(yt− ŷt(θ))V −1
t(θ)(yt− ŷt(θ)), (153)

with n data points comprising yt, model-implied data ŷt, state variables xt and error covari-

ance Vt. Both ŷt and Vt depend on parameters θ. The information matrix for a sample of

size T from the second derivatives of the log likelihood function is

I = − 1

T
E

[
T∑
t=1

∂2logf(yt|xt, θ)
∂θ∂θ′

|θ = θ0

]
. (154)

To obtain standard errors, we make use of Engle and Watson [1981] who show that the

element (i, j) of I is given by

Ii,j =
1

T

T∑
t=1

[
1

2
tr

(
V −1
t(θ)

∂Vt(θ)
∂θi

V −1
t(θ)

∂Vt(θ)
∂θj

)
+ E

(
∂ŷt(θ)
∂θi

V −1
t(θ)

∂ŷt(θ)
∂θj

)]
(155)

and then drop the expectation operator,

Îi,j =
1

T

T∑
t=1

[
1

2
tr

(
V −1
t(θ)

∂Vt(θ)
∂θi

V −1
t(θ)

∂Vt(θ)
∂θj

)
+
∂ŷt(θ)
∂θi

V −1
t(θ)

∂ŷt(θ)
∂θj

]
, (156)

which allows us to obtain standard errors from the square root of the diagonal elements of

1

T
(Î)−1. (157)
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F Model Implied Impulse Responses

We derive impulse response functions for every state variable and the financial quantities

discussed in chapter 4.6. Our state variables summarized in Xt follow a VAR(1)

Xt = cP + ΦPXt−1 + Σεt. (158)

To assess the impact of a one standard deviation shock Σ(,k) (being the k-th column in Σ)

in variable k on the entire state vector over the next H periods, we compute the difference

between two expectations

IRFX
t,k,h ≡ Et[X

sk
t+h]− Et[Xt+h] h ∈ [1, ..., H] (159)

where Xsk
t+h denotes the state vector at time t + h after a one standard deviation shock in

variable k at time t. Solving for the expectations, we obtain

Et[X
sk
t+h]− Et[Xt+h] = (ΦP )h(Xt + Σ(,k))− (ΦP )hXt = (ΦP )hΣ(,k). (160)

Any financial quantity y
(i)
t with a linear dependence on Xt can be written in terms of

y
(i)
t = a(i) + b(i)Xt, (161)

we refer to appendix B for detailed derivations regarding all relevant financial quantities. To

asses the impact of a one standard deviation shock in state variable k on y
(i)
t over the next

H periods, we once again compute the difference in expectations

IRF Y
t,k,h ≡ Et[(y

(i,sk)
t+h ]− Et[y(i)

t+h] ≈ b(i)Et[X
sk
t+h]− b

(i)Et[Xt+h] = b(i)(ΦP )hΣ(,k) (162)

and obtain the h ∈ [1, ..., H] period impulse responses.
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