KIT | KIT-Bibliothek | Impressum | Datenschutz

Air-Core–Liquid-Ring (ACLR) Atomization Part II: Influence of Process Parameters on the Stability of Internal Liquid Film Thickness and Resulting Spray Droplet Sizes

Wittner, Marc O.; Ballesteros, Miguel A.; Link, Frederik J.; Karbstein, Heike P.; Gaukel, Volker

Abstract:
Air-core–liquid-ring (ACLR) atomization presents a specific type of internal mixing pneumatic atomization. It can be used for disintegration of high viscous feed liquids into small droplets at relatively low gas consumptions. However, the specific principle of ACLR atomization is still under research and no guidelines for process and atomizer design are available. Regarding literature on pre-filming atomizers, it can be hypothesized for ACLR atomization that the liquid film thickness inside the exit orifice of the atomizer, as well as the resulting spray droplet sizes decrease with increasing air-to-liquid ratio (ALR) and decreasing feed viscosity. In this study, the time dependent liquid film thickness inside the exit orifice of the atomizer was predicted by means of computational fluid dynamics (CFD) analysis. Results were compared to high speed video images and correlated to measured spray droplet sizes. In conclusion, the hypothesis could be validated by simulation and experimental data, however, at high viscosity and low ALR, periodic gas core breakups were detected in optical measurements. These breakups could not be predicted in CFD simulations, as the simplification of an incompressible gas phase was applied in order to reduce computational costs and time. ... mehr

Open Access Logo


Verlagsausgabe §
DOI: 10.5445/IR/1000098721
Veröffentlicht am 08.10.2019
Coverbild
Zugehörige Institution(en) am KIT Institut für Bio- und Lebensmitteltechnik (BLT)
Publikationstyp Zeitschriftenaufsatz
Jahr 2019
Sprache Englisch
Identifikator ISSN: 2227-9717
KITopen-ID: 1000098721
Erschienen in Processes
Band 7
Heft 9
Seiten 616
Vorab online veröffentlicht am 10.09.2019
Schlagworte ACLR, atomization, two phase flow, high viscosity, liquid film thickness, CFD
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page