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We discuss nonfactorizable QCD corrections to Higgs boson production in vector boson fusion at the
Large Hadron Collider. We point out that these corrections can be computed in the eikonal approximation
retaining all the terms that are not suppressed by the ratio of the transverse momenta of the tagging jets to
the total center-of-mass energy. Our analysis shows that in certain kinematic distributions the non-
factorizable corrections can be as large as a percent making them quite comparable to their factorizable
counterparts.
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Vector boson fusion (VBF) is one of the two key
channels for Higgs boson production at the Large
Hadron Collider (LHC) [1,2]. Studies of Higgs boson
properties in this process require accurate theoretical
prediction for its cross section and kinematic distributions.
Radiative corrections, both QCD and electroweak, are
important for the reliable description of these processes.
Current understanding of QCD corrections to the VBF
Higgs boson production is highly advanced: following the
original calculation of the next-to-leading (NLO) correc-
tions [3], both the next-to-next-to-leading (NNLO) [4–6]
and the next-to-next-to-next-to-leading (N3LO) [7] correc-
tions were computed in the so-called structure function
approximation [8]. The cross section of the electroweak
Higgs boson production in association with three jets is
known to the NLO approximation [9]. The electroweak
corrections to VBF were computed in Ref. [10]. Other
interesting effects such as loop-induced interference
between Higgs production in gluon fusion and in vector
boson fusion, and the gluon-initiated VBF Higgs produc-
tion were studied in Refs. [11,12], respectively.
The structure function approximation—the centerpiece

of the current studies of QCD effects in VBF—neglects
interactions between incoming QCD partons and retains
QCD effects confined to a single fermion line. There are
good reasons for doing this. Indeed, at NLO the gluon
exchanges between different quark lines do not change the
VBF cross section as a consequence of color conservation
in t channel. At NNLO, two gluons exchanged between

two fermion lines can be in a color-singlet state and for this
reason do contribute to the VBF cross section. Such
nonfactorizable corrections, however, are necessarily color
suppressed, making it plausible that they are small. This
argument was used as the justification for computing
higher-order QCD corrections to VBF Higgs boson pro-
duction in the structure function approximation [4].
However, it is interesting to ask just for how long does it

make sense to improve the precision on the factorizable
contributions while ignoring the nonfactorizable ones. This
question appears to be quite relevant since computations of
factorizable contributions have advanced to very high
orders in perturbative QCD [7]. Answering this question
is difficult since not much is known about nonfactorizable
corrections beyond their color suppression. As we already
mentioned, these corrections do not contribute at NLO
while at NNLO they require two-loop five-point functions
that depend on many kinematic variables and the masses of
vector bosons and the Higgs boson. Thus, the technical
complexity of perturbative computations required to obtain
the two-loop nonfactorizable contribution appears to be
overwhelming to expect significant advances in the foresee-
able future. An estimate of nonfactorizable corrections that
makes use of QCD dynamics and in this sense goes beyond
the color-suppression argument is highly desirable, in our
opinion.
In this Letter we will show that it is possible and in fact

rather simple to compute the dominant contribution to
nonfactorizable corrections, making use of the particular
kinematics of the VBF process. Indeed, this process is
identified by the presence of two forward tagging jets
whose transverse momenta are small compared to
their energies. Thus, we can try to compute the non-
factorizable corrections in an approximation where we
only retain contributions that are leading in pj;⊥=

ffiffiffi
s

p
,

where pj;⊥ is a transverse momentum of a tagging jet,
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and s is the center-of-mass energy squared of the colliding
partons. Since in the VBF process

ffiffiffi
s

p ≳ 600 and pj;⊥ ∼
100 GeV [1,2] this approximation is justified in large part
of the phase space.
It is well known that the computation of cross sections at

leading power in the small ratio p⊥;j=
ffiffiffi
s

p
, can be performed

within the eikonal approximation for the colliding particles
[13–15]. To explain this approximation, we consider a
collision of two quarks that leads to the production of the
Higgs boson in VBF

q1ðp1Þ þ q2ðp2Þ → q1ðp3Þ þ q2ðp4Þ þHðp5Þ:

The leading order contribution to this process is shown in
Fig. 1(a). The eikonal approximation separates dynamics in
the plane spanned by the two four-momenta of the
incoming quarks p1;2 from dynamics in the plane that is
transversal to it. We will refer to a component of a four-
vector kμ in the transversal plane as kμ⊥ or k. We choose the
reference frame in such a way that p1 and p2 have only a
single light-cone component p−

1 and pþ
2 , respectively. Then

in the eikonal approximation a gauge boson coupling to the
quark line with momentum p1 (p2) is obtained by replacing
the corresponding current jμ with its light-cone component
j− (jþ) while the quark propagators are replaced as follows:

1

=p1;2 þ =kþ iϵ
→

γ�

2k� þ iϵ
; ð1Þ

where γ� are the light-cone components of the Dirac γ
matrices.
In the VBF process Higgs bosons are produced at central

rapidities so that they are well separated from the tagging
jets. In this kinematical configuration one of the light-cone
components of each momentum transfer q3 ¼ p3 − p1 and
q4 ¼ p4 − p2 is suppressed by p3;4;⊥=

ffiffiffi
s

p
while the second

light-cone component scales as the Higgs boson mass
mH ∼ p3;4;⊥ ≪

ffiffiffi
s

p
. Thus, the Higgs boson emission does

not spoil the applicability of the eikonal approximation.
Moreover up to the power suppressed terms q2i ≈ −q2i and
one can neglect the light-cone momentum components in
the vector boson propagators.

We continue with the discussion of the nonfactorizable
QCD corrections. In the one-loop approximation the
relevant diagrams are shown in Figs. 1(b), 1(c). Since
electroweak vector bosons do not carry color, the one-loop
contribution to the cross section vanishes at NLO by t-
channel color conservation. Nevertheless, the square of the
one-loop amplitude contributes to the NNLO cross section
along with the generic two-loop nonfactorizable correc-
tions. In both cases the two gluons connecting the different
quark lines must be in a color-singlet configuration. Thus
we can compute the corrections by replacing gluons by
Abelian gauge bosons with the effective coupling α̃s ¼
ðN2

c − 1=4N2
cÞ1=2αs, where Nc ¼ 3 and the prefactor arises

from averaging over colors. Considering the sum of the
planar and nonplanar diagrams in Figs. 1(b), 1(c), we
find that the eikonal quark propagators add up to
1=ð2k� þ iϵÞ − c:c: ¼ −iπδðk�Þ. Hence, when the two
diagrams are combined, the virtual quark propagators are
replaced by δðkþÞ and δðk−Þ and the light-cone dynamics
decouples. Thus the computation of the nonfactorizable
one-loop contribution is reduced to the analysis of the
effective Feynman diagram shown in Fig. 2(a) in the two-
dimensional transversal space. In the eikonal approxima-
tion QCD corrections are diagonal in the chiral basis. This
implies that (for a given type of electroweak gauge bosons
that fuse into the Higgs boson) the Born amplitude Mð0Þ
factors out. Hence, the expression for the one-loop ampli-
tude can be written as follows:

Mð1Þ ¼ iα̃sχð1Þðq3; q4ÞMð0Þ; ð2Þ

with

χð1Þðq3; q4Þ ¼
1

π

Z
d2k

k2 þ λ2

×
q23 þM2

V

ðk − q3Þ2 þM2
V

q24 þM2
V

ðkþ q4Þ2 þM2
V
; ð3Þ

whereMV ¼ MZ;W is an electroweak boson mass. We note
that the function χð1Þ is ultraviolet finite but infrared
divergent. To regulate the infrared divergence, we intro-
duced an auxiliary gluon mass λ. Moreover, the function
χð1Þ is explicitly real, so that the entire one-loop correction
is imaginary. This is yet another reason, in addition to color
conservation, that leads to vanishing interference between

(a) (b) (c)

FIG. 1. The Feynman diagrams for the Higgs boson production
in VBF: (a) the Born amplitude, and (b),(c) the one-loop
nonfactorizable QCD corrections. The solid, dashed, wavy,
and loopy lines stay for quark, Higgs, vector boson, and gluon
fields, respectively.

(a) (b)

FIG. 2. One- and two-loop transversal space Feynman dia-
grams.
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the one-loop amplitude computed in the eikonal approxi-
mation and the leading order amplitude.
At two loops the structure of the corrections is similar.

In the color-singlet configuration the gluon vertices com-
mute and the factorization property of the eikonal approxi-
mation [16] can be applied. As a result the sum over all
the permutations of the gluon and vector-boson vertices
reduces to the effective transversal space diagram in
Fig. 2(b) [13]. The corresponding expression for the
amplitude reads

Mð2Þ ¼ −
α̃2s
2!

χð2Þðq3; q4ÞMð0Þ; ð4Þ

where 1=2! factor results from the symmetrization of two
identical gluons and

χð2Þðq3;q4Þ ¼
1

π2

Z �Y2
i¼1

d2ki
k2i þ λ2

�

×
q23þM2

V

ðk1þk2−q3Þ2þM2
V

q24þM2
V

ðk1þk2þq4Þ2þM2
V
:

ð5Þ

Squaring the sum of tree-, one- and two-loop contributions
to the scattering amplitude, we obtain the NNLO QCD
correction to the cross section due to nonfactorizable
contributions

dσNNLOnf ¼
�
N2

c − 1

4N2
c

�
α2sχnfdσLO: ð6Þ

In Eq. (6) dσLO is the leading-order differential cross
section for VBF and

χnfðq3; q4Þ ¼ ½χð1Þðq3; q4Þ�2 − χð2Þðq3; q4Þ ð7Þ

is the nonfactorizable correction.
The nonfactorizable correction has peculiar properties. It

is independent of the vector boson couplings to quarks and
to the Higgs boson; these couplings are accommodated in
the leading order cross section in Eq. (6). In the large-Nc
limit the color factor in Eq. (6) remains finite while for the
factorizable corrections it grows as N2

c providing the color
suppression of the nonfactorizable contribution. Finally, the
two terms in Eq. (7) are separately infrared divergent. These
divergences, however, are not related to the usual (non-
factorizable) real soft gluon emissions that, in fact, are
suppressed as p⊥=

ffiffiffi
s

p
and, therefore, do not contribute to

the VBF cross section at leading power. The infrared
divergencies in nonfactorizable corrections originate from
the exchange of static Glauber gluons [17] propagating in
the transversal space. It is well known that when Abelian
gauge bosons are exchanged, the amplitudes acquire a
factor eiϕ, where ϕ is the infrared-divergent Glauber phase

ϕ ¼ −α̃s ln λ2 [13]. This phase factor disappears in the
cross section, which means that the infrared-divergent parts
of the first and the second term in Eq. (7) must cancel
each other.
To show this cancellation explicitly, we consider the

λ → 0 limit, extract the infrared singularities from the two
functions χð1;2Þ and write them as follows;

χð1Þ ¼ − ln

�
λ2

M2
V

�
þ fð1Þ;

χð2Þ ¼ ln2
�

λ2

M2
V

�
− 2 ln

�
λ2

M2
V

�
fð1Þ þ fð2Þ: ð8Þ

The functions fð1Þ;ð2Þ read

fð1Þ ¼
Z1

0

dx
Δ3Δ4

r212

�
ln

�
r212

r2M2
V

�
þ r1 − r2

r2

�
;

fð2Þ ¼
Z1

0

dx
Δ3Δ4

r212

��
ln

�
r212

r2M2
V

�
þ r1 − r2

r2

�
2

− ln2
�
r12
r2

�
−
2r12
r2

ln

�
r12
r2

�
− 2Li2

�
r1
r12

�

−
�
r1 − r2
r2

�
2

þ π2

3

�
; ð9Þ

where we used the notations

r1 ¼ q23xþ q24ð1 − xÞ − q2Hxð1 − xÞ;
r2 ¼ q2Hxð1 − xÞ þM2

V;

r12 ¼ r1 þ r2;

Δi ¼ q2i þM2
V: ð10Þ

In Eq. (10) qH ¼ −q4 − q3 is the Higgs boson transverse
momentum. This result can be obtained by using the
Feynman parameter representation for one- and two-loop
two-dimensional triangle diagrams corresponding to the
functions χð1Þ and χð2Þ, respectively.
We note that it should be possible to compute the two

functions analytically. (It is well known that in the two-
dimensional space-time three-point functions can be
described by linear combinations of two-point functions.
The one-loop case is explicitly discussed in Ref. [18].)
However, the one-dimensional integral representations in
Eqs. (9), (10) are perfectly suitable for the numerical
evaluation of the nonfactorizable corrections so that we
decided not to pursue the analytic calculation further.
Using representations Eq. (8) in Eq. (7), we obtain the

finite result

χnfðq3; q4Þ ¼ ½fð1Þðq3; q4Þ�2 − fð2Þðq3; q4Þ; ð11Þ
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for the two-loop nonfactorizable correction to the VBF
cross section. It can be used for the numerical evaluation of
the correction factor for values of the transverse momenta
that are much smaller than the energy of the two colliding
partons.
It is instructive to compute the function χnf in a few

limiting cases. The simplest case is when all the transverse
momenta are small compared to the vector boson mass
jq3;4j ≪ MV . In this limit r1 ¼ 0, r2 ¼ M2

V and we find

lim
q3;4→0

χnf ¼ 1 −
π2

3
: ð12Þ

Another interesting case is when the Higgs boson momen-
tum is small q2H ≪ M2

V , q
2
3;4. In this limit r1 ¼ q23, r2 ¼ M2

V ,
and we obtain

lim
qH→0

χnf ¼ ln2
�
1þ x
x

�
þ 2Li2

�
1

1þ x

�
−
π2

3

þ 2
1þ x
x

ln
�
1þ x
x

�
þ
�
1 − x
x

�
2

; ð13Þ

with x ¼ M2
V=q

2
3. In the opposite limit when the transverse

momentum q3 of one of the tagging jets is small compared
to q4 ≈ qH the result reads

lim
q3→0

χnf ¼ ln2
�
1þ x
x

�
þ 2Li2

�
1

1þ x

�
−
π2

3
: ð14Þ

The coefficient of the quadratic logarithm in Eq. (13) can be
read off from the infrared divergences of the one- and two-
loop massless amplitudes at zero Higgs boson momentum.
We have verified this coefficient by exact evaluation of the
scattering amplitudes in dimensional regularization as
functions of q23=s with subsequent expansion of the result
at small transverse momentum; this calculation provides a
nontrivial test of the eikonal approximation used in the
above analysis.
One can use these asymptotic formulas to discuss

characteristic features of the nonfactorizable contribution.
For example, taking αs ∼ 0.1, we find that the zero-
momentum limit Eq. (12) implies minus one percent
correction to the differential cross section Eq. (6). At the
same time, the limit of the small Higgs transverse momen-
tum Eq. (14) suggests that positive corrections as large as a
few percent occur when the transverse momentum of the
tagging jets exceeds 100 GeV.
It follows from the above discussion that the nonfactor-

izable corrections can reach a few percent in differential
distributions. However, since the corrections appear with
opposite signs at low and high transverse momenta, they
may cancel in quantities that are inclusive with respect to
kinematic features of the tagging jets.

The reason behind sizable nonfactorizable effects can be
traced to their connection to the Glauber scattering phase.
This connection leads to a π2 enhancement of the non-
factorizable contribution characteristic to the imaginary
phase, which partially overcomes the effect of the color
suppression, cf. Eq. (6). Interestingly, previous attempts to
estimate nonfactorizable corrections were based on the
analysis of real radiation [19] or the real part of the one-
loop amplitude [20] which are insensitive to contributions
of this type.
Having discussed features of the nonfactorizable con-

tribution, we can now evaluate its impact on the VBF Higgs
production cross section. We consider proton-proton colli-
sions at the LHC with the center-of-mass energy 13 TeV. To
select VBF events, we require that tagging jets have
transverse momenta larger than 25 GeV and their invariant
mass exceeds 600 GeV. Besides that, jets’ rapidities should
satisfy the conditions jyj1;j2 j < 4.5 and jyj1 − yj2 j > 4.5;
i.e., the jets are required to be in opposite hemispheres
yj1yj2 < 0. To compute the leading order cross section and
the nonfactorizable corrections we adopt the following
factorization and renormalization scales:

μF ¼
�
mH

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H

4
þ p2

h;⊥

r �1=2

; μR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pj1;⊥pj2;⊥

p
:

ð15Þ

Note that our choice of the factorization scale is identical to
that of Ref. [5] which ensures that our leading order
cross sections and kinematic distributions are in agree-
ment with that reference. For numerical simulations
we use the NNPDF 3.0 parton distribution function
(NNPDF_nnlo_as_0118) with the default value
αsðmZÞ ¼ 0.118. Electroweak parameters are determined
from the Fermi constant GF ¼ 1.16637 × 10−5 GeV−2 and
masses of electroweak gauge bosons MW ¼ 80.398 and
MZ ¼ 91.1876 GeV. We take the mass of the Higgs boson
to be mH ¼ 125 GeV. Within the above setup we obtain
the VBF cross section and the nonfactorizable contribution
at the 13 TeV LHC

σLOVBF ¼ 957 fb; σNNLO;NFVBF ¼ −3.73 fb; ð16Þ

which implies a negative nonfactorizable correction

ΔNF ¼
σNNLO;NFVBF

σLOVBF
× 100% ¼ −0.39%: ð17Þ

While the nonfactorizable correction is small, it is quite
comparable to the N3LO QCD factorizable corrections
computed in Ref. [7]. We note that the choice of a proper
renormalization scale for the computation of nonfactori-
zable corrections is an interesting problem. Indeed, as
follows from our computation, they appear for the first time
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at NNLO and so their scale dependence is not compen-
sated. If we simply decrease (increase) the renormalization
scale in Eq. (15) by a factor of 2, then ΔNF changes to
−0.5% (−0.3%), respectively.
The situation becomes even more interesting when we

consider differential distributions. For example, in Fig. 3
the nonfactorizable QCD corrections to the transverse
momentum distributions of the two jets and the Higgs
boson as well as various rapidity distributions are shown.
For each plot, the upper panel displays leading order
distributions whereas the lower panel shows the correction
ΔNF, cf. Eq. (17), in dependence of a relevant kinematic
variable. As it follows from the plots, the corrections to the
jet transverse momenta distributions depend strongly on
pj;⊥ and can even exceed 1% in certain cases. By contrast,
the correction to Higgs transverse momentum is rather flat
and, for this reason, is comparable to the correction to the
VBF cross section Eq. (17). Correction to the rapidity
distribution of the Higgs boson is rather flat too but some
dependence on the rapidity is present in the corrections to
the leading jet rapidity distribution and to the distribution in
the rapidity difference of the two jets. The correction to the
rapidity distribution of the second jet is similar to that of the
first and we therefore do not show it separately.
We emphasize that in the numerical simulation we keep

the full dependence of the leading order cross section on the
kinematic variables without expanding in transverse
momenta. The plots in Fig. 3 show that kinematic dis-
tributions peak below pj;⊥ ¼ 100 GeV, which suggests
that the leading Oðp2

j;⊥=sÞ power corrections to our result
for σNNLOnf are in a few percent range and, for this reason,
negligible. The plots also indicate that the Higgs boson is

predominantly produced in the central rapidity region with
a large rapidity gap with respect to the tagging jets, which
justifies the momentum scaling used in our analysis.
Thus we have obtained analytic results for the non-

factorizable NNLO QCD corrections to the Higgs boson
production in the vector boson fusion valid in the phe-
nomenologically most interesting kinematic region where
the characteristic transverse momenta are much smaller
than the center-of-mass energy of the process and a rapidity
gap between the Higgs boson and the tagging jets is
present. The leading in pj;⊥=

ffiffiffi
s

p
correction is related to

the Glauber phase and has a natural π2 enhancement along
with the color suppression relative to the factorizable ones.
It exhibits nontrivial dependence on the transverse
momenta and rapidities of the tagging jets. Numerically,
the corrections are found to be close to half of a percent
although they can become as large as a percent in certain
kinematic regions.
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