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Abstract. Widespread flooding events are among the major natural hazards in Central Europe. Such events are usually related

to intensive, long-lasting precipitation. Despite some prominent floods during the last three decades (e. g. 1997, 1999, 2002,

and 2013), extreme floods are rare and associated with estimated long return periods of more than 100 years. To assess the

associated risks of such extreme events, reliable statistics of precipitation and discharge are required. Comprehensive obser-

vations, however, are mainly available for the last 50–60 years or less. This shortcoming can be reduced using stochastic data5

sets. One possibility towards this aim is to consider climate model data or extended reanalyses.

This study presents and discusses a validation of different century-long data sets, a large ensemble of decadal hindcasts,

and also projections for the upcoming decade. Global reanalysis for the 20th century with a horizontal resolution of more

than 100 km have been dynamically downscaled with a regional climate model (COSMO–CLM) towards a higher resolution

of 25 km. The new data sets are first filtered using a dry–day adjustment. The simulations show a good agreement with ob-10

servations for both statistical distributions and time series. Differences mainly appear in areas with sparse observation data.

The temporal evolution during the past 60 years is well captured. The results reveal some long-term variability with phases

of increased and decreased heavy precipitation. The overall trend varies between the investigation areas but is significant. The

projections for the upcoming decade show ongoing tendencies with increased precipitation for upper percentiles. The presented

RCM ensemble not only allows for more robust statistics in general, in particular it is suitable for a better estimation of extreme15

values.

1 Introduction

Ongoing climate change affects not only the global scale but also impacts the regional climate. Regarding air temperature, there

is a more or less clear trend in the recent past, which reveals a clear anthropogenic signal. However, various climate simulations

show distinct spatial differences for precipitation trends especially for heavy precipitation (e. g. Moberg et al., 2006; Zolina20

et al., 2008; Toreti et al., 2010). What is known is a theoretical increase of the water vapor capacity according to the Clausius–

Clapeyron (CC) equation of about 6–7 % per degree of temperature increase (e. g. Trenberth et al., 2003; Berg et al., 2009). For

instance, Lenderink et al. (2011), Berg et al. (2013), or O’Gorman (2015) showed that this CC rate can be surpassed up to a

factor 2 (Super–Clausius–Clapeyron scaling). In contrast, Stephens and Ellis (2008) found a change of precipitation below the
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theoretical CC rate. Nevertheless, the CC rate generally thought to be a good proxy for future precipitation projections (Westra25

et al., 2013).

Easterling et al. (2000) showed that a linear trend in heavy precipitation varies for different countries and depends also

on the considered time period. Moberg and Jones (2005) evaluated observational data from about 80 rain gauges in central

and western Europe for the time period 1901–1999 revealing an increase in extreme winter precipitation. A recent review

of observed variability and trends in extreme climate events states that it is difficult to find significant relations between the30

greenhouse gas-enhanced climate change and increases or decreases in extreme precipitation events (Field et al., 2012). This

is attributed to their rare occurrence, the general high spatial variability of precipitation, and due to a lack of long-term high-

quality observations. Feldmann et al. (2013) found an increase of both areal mean precipitation and extremes in central Europe

in order of 5–10 % which will continue with almost same magnitude for the next decades. Moreover, the use of high resolution

regional climate models (RCM) instead of global data sets revealed a more detailed and orographically related spatial structure35

of the precipitation fields and trends. Global tendencies towards more intense precipitation throughout the 20th century were

also revealed by Donat et al. (2016).

In summary, these studies partly document contrasting results. Following Field et al. (2012), this can have different reasons.

One major point are the underlying choice of data sets (model runs, reanalysis, and/or observations). The definition of extreme

events varies between certain thresholds, percentile-based indices, or return periods (e. g. Maraun et al., 2010). Other crucial40

points are that different time periods and areas were investigated as well as different model resolutions.

Spatially extended intensive rainfall events are frequently related to widespread flooding along the main river networks

of central Europe causing major damage in the order of several billion euro (EUR) per event (e. g. Uhlemann et al., 2010;

Kienzler et al., 2015; Schröter et al., 2015; MunichRe, 2017). Mudelsee et al. (2003) investigated the trends in the occurrence

of extreme floods related to heavy precipitation events along the Oder and Elbe rivers. They found a decrease for winter floods45

in both river catchments, while there seems to be no significant trend for summer floods. In contrast, Dittus et al. (2016) found

an increasing trend between 1951 and 2005 in extreme total precipitation amounts for e.g. Europe in global climate model

simulations (CMIP5). Similar trends were found in reanalyses (e. g. ERA–20C, Poli et al., 2016), but not in observations.

Moreover, Mudelsee et al. (2004) and Nissen et al. (2013) highlighted a strong dependency of central European flood events

on the specific weather pattern of cyclone pathway “Vb” like the severe flood event of 2002 along the rivers Elbe and Danube50

(Ulbrich et al., 2003a, b). Such outstanding events are by definition extremely rare, which makes the risk estimation difficult

or almost impossible due to the limited time period with available area-wide observations (e. g. Pauling and Paeth, 2007;

Hirabayashi et al., 2013). Nevertheless, the estimation of flood risk and related trends for the past and the future are of great

importance for insurance purposes or flood protection (e. g. Merz et al., 2014; Schröter et al., 2015; Ehmele and Kunz, 2019).

A possible way of dealing with the unsatisfactory data availability are century-long simulations using climate models (e. g.55

Stucki et al., 2016) or stochastic approaches (e. g. Peleg et al., 2017; Singer et al., 2018; Ehmele and Kunz, 2019).

Several previous studies have investigated long-term trends and variability of extreme precipitation using century-long re-

analysis data sets. For instance, Brönnimann et al. (2013) or Brönnimann (2017) analyzed historical extreme events and con-

cluded that the quality of the reanalysis strongly depends on the number and type of the assimilated observations, mainly sea
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level pressure and monthly mean sea surface temperature. The investigated historical events were reproduced, but the magni-60

tudes were underestimated. A possible reason is the decreasing number and quality of observations in the early century and

therefore a lack of assimilation data. The suitability of reanalysis data to investigate extreme precipitation for England and

Wales was investigated by Rhodes et al. (2015). While time series of daily precipitation totals are well represented in both data

sets, timing errors of heavy precipitation events were identified as one of the major problems. Stucki et al. (2012) investigated

historical flooding events in Switzerland and indicate that the reanalyses underestimate precipitation in Switzerland which65

may result from the insufficient representation of the alpine topography. In addition, timing and the exact location of heavy

precipitation were also found to be inaccurate.

In this study, a set of different realizations with one RCM is used and combined to the new ensemble LAERTES-EU (LArge

Ensemble of Regionla climaTe modEl Simulations for EUrope). Basis is the global reanalysis data set 20CR (Compo et al.,

2011), which was dynamically downscaled for Europe. Several studies highlighted the improvements of using high resolution70

RCMs for the investigation of climate extremes (e. g. Feser et al., 2011; Feldmann et al., 2008, 2013; Schewe et al., 2019),

especially over complex terrain (e. g. Torma et al., 2015). LAERTES-EU consists of a handful of 20th century reanalysis data

sets and a large ensemble of decadal hindcast simulations mainly for the second half of the century. Although all simulations

were performed with the same RCM version and set-up, LAERTES-EU is a combination of different external forcings, bound-

ary conditions, and/or assimilation. Projections for the upcoming decade will round up our analysis. The investigative focus75

lies on heavy precipitation in central Europe. LAERTES-EU is validated in terms of coincidence with observations, possible

long-term trends and temporal variability.

The following research questions will be addressed.

(1) How well is extreme precipitation represented in the RCM ensemble LAERTES-EU?

(2) What is the added value of LAERTES-EU compared to other available data sets?80

(3) Which temporal evolution and variability of extreme precipitation over central Europe manifest during the past and what

are the differences between the simulations and observations?

(4) Which tendency is expected for the upcoming decade?

A better interpretation of RCM data and a more profound understanding of extreme precipitation may have several applications

such as risk assessments. However, potential mechanisms behind temporal variances and trends as well as spatial and seasonal85

differences are not part of this paper and will be discussed in continuative studies.

This paper is structured as follows: The data sets which were used in this study are introduced in Sect. 2. Section 3 sums up

the methods used for the analysis and the validation. In Sect. 4 LAERTES-EU is validated with observations for a reference

period. The investigation of temporal variabilities and trends is given in Sect. 5. Finally, Sect. 6 gives a summary and lists our

main conclusions.90
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2 Data sets

Two different types of data sets are applied in this study: gridded precipitation data based on observations and, partly century-

long, climate model simulations (LAERTES-EU). The observational data sets are primarily available for the second half of the

20th century and serve as reference data for the validation of the ensemble. For validation we compare LAERTES-EU with

the global reanalysis data set of 20CR (Compo et al., 2011) as well, which were used as initial data for some of the RCM95

simulations.

2.1 Observations

The main reference for this study is the European observational data set E–OBS version v17 for daily precipitation (Haylock

et al., 2008; van den Besselaar et al., 2011) with a horizontal resolution of 0.22◦ (≈ 25 km), covering the years 1950 to 2017.

This version shows some improvements towards older versions, since updated algorithms and new stations have been included100

in some areas (e. g. for Poland). The E–OBS algorithm interpolates observations from weather stations to a regular grid using

geostatistical methods (e. g. Journel and Huijbregts, 1978; Goovaerts, 2000). Note that E–OBS is a land-only data set, and

ocean grid points are set to a missing value. Haylock et al. (2008) stated that rainfall totals in E–OBS are reduced by up to

almost one third compared to the raw station data. Regarding extremes, the deviation of E–OBS is even more pronounced

(Hofstra et al., 2009).105

Additionally, we compare the RCM simulations with the high-resolved HYRAS data set provided by the German Weather

Service (DWD; Rauthe et al., 2013). HYRAS is a gridded precipitation data set with a horizontal resolution of up to 1 km

for the time period 1951–2006 and covers Germany and the surrounding river catchments. The HYRAS algorithm also uses

ground based measurements and interpolates the point observations to the regular grid.

2.2 Regional climate model simulations110

LAERTES-EU consists of a combined large downscaling ensemble of simulations with one RCM. There are two different

types: long-lasting simulations of 45–110 years and simulations over one decade. In the latter, only a period of 10 years (e. g.

1961–1970) was simulated with a specific number of ensemble members. Then, the initialization point was shifted by one

year (e. g. 1962–1971) and so on until the end of the covered time period. In total, LAERTES-EU consists of 1183 more or

less independent simulations (sample size) with approximately 12.500 simulated years. The number of ensemble members at a115

specific time varies from 6 at the beginning of the century to a maximum of 188 members between 1970 and 2000 (see Fig. S1

in Supplementary).

LAERTES-EU is divided into four different data blocks (Table 1). All regional simulations used the non-hydrostatic model

of the Consortium for Small-scale Modeling (COSMO) in climate mode model version 5 (CCLM5; Rockel et al., 2008) and

have a spatial resolution of 0.22◦ (≈ 25 km). The model covers the EURO–CORDEX1 domain (Jacob et al., 2014). All the120

1http://www.euro-cordex.net
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Table 1. Overview of the RCM ensemble LAERTES-EU with the name of the simulation, the classification into data blocks, the underlaying

set-up (experiment), the covered time period, and the number of simulation years. For data blocks 2 and 4, period means the range of the

initialization years; XX stand for the ensemble number and YYYY for the initialization year.

name block experiment period years comment

as20ncepXX 1 20CR via MPI–ESM–LR 1900–2009 330 3 members of 110 years each

decXXoYYYY 2 MPI–ESM–LR DROUGHTCLIP 1910–2009 3000 3 members with 100 decades each

historical_rXi1p1-HR 3 MPI-ESM–HR HISTORICAL 1900–2005 410 run 1–3 each with 106 years,

run 4–5 each with 46 years (1960–2005)

preop 4 MPI–ESM–HR CMIP5 1960–2016 2850 5 members with 57 decades each

dcppA-hindcast 4 MPI–ESM–HR CMIP6 1960–2018 5900 10 members with 59 decades each

simulations were performed within the BMBF (Federal Ministry of Education and Research of Germany) project MiKlip II2

(Marotzke et al., 2016). For all simulations the same domain, model version and set-up, adapted from EURO–CORDEX, were

used.

The boundary forcing was derived from the Max–Planck Institute of Meteorology coupled Earth System Model (MPI–ESM).

This model consists of the atmospheric component ECHAM6 (Stevens et al., 2013), the ocean component MPI–OM (Jungclaus125

et al., 2013), and the land-surface model JSBACH (Hagemann et al., 2013). The differences between the four different data

blocks stems from the setup, external forcing and initialization of the MPI–ESM simulations. The data blocks 1 and 2 of the

RCM ensemble (cf. Table 1) obtained it boundary values from the MPI–ESM–LR simulations using a T63 resolution and 47

vertical layers. Data block 3 and 4 used the MPI–ESM–HR version (Müller et al., 2018) as their driving model. In this version,

the horizontal resolution is T127 and 95 vertical layers are applied.130

The MPI–ESM forcing data used for the three long-term simulations in data block 1 assimilated the 20th Century Reanalysis

(20CR; Compo et al., 2011; Mueller et al., 2014) over the period 1900–2009. 20CR has a spatial resolution of approximately

2◦ (T62) and was generated using the Global Forecast System (GFS; Kanamitsu et al., 1991; Moorthi et al., 2001) of the

National Centers for Environmental Prediction (NCEP)3. It used a 56 member Ensemble Kalman Filter approach to assimilate

surface pressure, monthly sea surface temperature and sea-ice observations. From these simulations the starting conditions for135

a decadal hindcast ensemble (data block 2) has been derived (Mieruch et al., 2014; Mueller et al., 2014; Reyers et al., 2019;

Feldmann et al., 2019). Each year three initialized decadal simulations were started, to study the long-term predictive skill on

decadal time scales.

Data block 3 contains the downscaling of five un-initialized (historical) simulations of MPI–ESM–HR with CMIP5 observed

natural and anthropogenic external forcing (Taylor et al., 2012). Data block 4 encompasses two sets of decadal hindcasts over140

2https://www.fona-miklip.de/
3http://www.ncep.noaa.gov/
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the period since 1960 (Müller et al., 2012; Marotzke et al., 2016). The preop–ensemble has five members each year. The

climate forcing for these simulations stems also from CMIP5, whereas for the 10 member per year dcppA–ensemble the

CMIP6 external forcing was applied (Eyring et al., 2016; Boer et al., 2016).

The simulation in all four data blocks are affected by the observed climate forcing, but differ with respect to the representation

of the observed climate variability, whereas data block 1 uses assimilated 20CR reanalysis data, block 2 and 4 contain initialized145

hindcasts and block 3 only uses the external forcing information. Nonetheless, the four groups of downscaling simulations can

be grouped into a large ensemble, since the regional simulations were all performed with the same setup. The validity of this

combination approach is tested within Sect. 4.

In order to reduce well-known limitations of climate model simulation, the ensemble data first were filtered using a dry–day

adjustment. According to Feldmann et al. (2008), a dry–day correction is essential as climate models tend to overestimate the150

number of wet days with low intensities below 0.1 mm (Berg et al., 2012), known as the drizzle effect. The dry–day correction

was performed using the E–OBS data, as it has the same spatial extension and resolution.

3 Methods

The capability of LAERTES-EU to simulate realistic precipitation amounts and distribution is an important requirement. More-

over, temporal variability and possible trends should also be well represented for trustworthy data sets. The methods were155

applied to different investigation areas and time periods. Equations and additional information can be found in Appendix A–C.

As the focus of this study is heavy precipitation, we concentrate on high percentiles of spatially aggregated daily rainfall totals,

namely 99 %, and 99.9 %.

3.1 Validation methods

LAERTES-EU is analyzed and validated using various methods. The intensity spectrum gives the statistical probability of160

each precipitation amount by taking into account all grid points and all time steps within the investigation area. Therefore, the

range of occurred values is divided into evenly spaced histogram classes, which then are normalized with the total sample size.

The resulting intensity–probability–curve (IPC) is a good indicator, if the model is capable to simulate realistic precipitation

intensity distributions.

The quantile–quantile (Q–Q) plot compares the simulated distribution with the observed one using different percentiles of165

daily spatial mean precipitation. The Q–Q distributions are used to calculate the coefficient of determination R2 with R being

the Pearson correlation coefficient (Eq. A1 in Appendix A).

The added value of the ensemble size is analyzed by using the signal–to–noise ratio S2N (Eq. A4). Therefore, we determine

a Gumbel distribution (cf. Appendix A) for different sample sizes and the corresponding 90 % confidence interval. The S2N ,

then, is the ratio of the return value of the Gumbel distribution divided by the 90 % confidence interval (Früh et al., 2010).170
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3.2 Decadal variability and trend analysis

For the analysis of the temporal evolution of heavy precipitation we use time series of different percentiles of spatial mean pre-

cipitation and quantities introduced and recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI;

Karl et al., 1999; Peterson, 2005). Currently, 27 indices for temperature and precipitation are defined by the ETCCDI. These

indices can be used from local to global scales. Additionally, they combine extremes with a mean climatological state (Zwiers175

et al., 2013). In this study, we use the two indices R95pTOT and R99pTOT (Eq. B1–B2 in Appendix B), which indicate the

amount of precipitation above the 95 % or 99 % percentile, respectively.

In terms of trend analysis, a Mann–Kendall test (Mann, 1945; Kendall, 1955) is performed with related significance investi-

gations (Appendix C). Regarding possible oscillations, the complete time series is split into sub-series with a minimum length

of 10 years and up to 130 years (trend matrix). The Mann–Kendall test is applied to each of this sub-series.180

3.3 Investigation areas and time periods

The focus of this study is central Europe, implying the countries Germany, Switzerland, the Netherlands, Belgium, Luxem-

bourg, and parts of France, Poland, Austria, the Czech Republic, and Italy. Following Christensen and Christensen (2007),

these countries are mostly coincident with two of the areas defined in the PRUDENCE project (prediction of regional scenarios

and uncertainties for defining European climate change risks and effects), namely the PRUDENCE regions (PR) Mid–Europe185

(ME) and Alps (AL; Fig. 1).

The data sets are investigated on different time periods (TP): TP1 covers the past from 1900 to 2017, which is divided into a

sub-period TP1b containing only the period with available observations from 1950 to 2017 (E–OBS). The time period TP2 is

used for the predictions from 2018 to 2028. For climatological aspects, we use the time period 1961–1990, hereafter referred

to as climTP.190

4 Validation of the RCM ensemble

In the following, the above described methods are applied in order to validate LAERTES-EU concerning its representativeness

with observations. With this aim, data for the investigation period TP1b is used.

4.1 Statistics

The IPCs give the range of simulated (observed) precipitation intensities at any grid point in the investigation area and its195

corresponding probability (Fig. 2). For both investigation areas, the IPCs reveal a distinct added value of the RCM compared

to the global model. Due to the coarse resolution, the GCM is incapable of simulating intensities greater than approximately

60 mm d−1 and underestimates by a large degree the probability of a wide range of intensities. On the other hand, the RCM

tend to overestimate precipitation intensities and the IPCs lie above those of the observations but cover the entire range of

values. For Mid–Europe (Fig. 2a), the IPCs of the RCM are close to HYRAS, but there is a systematic difference between200
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Figure 1. Topographic map of Europe at model resolution 0.22◦ with the PRUDENCE regions ME and AL (red boxes) and state borders

(black contours).

HYRAS and E–OBS. As already mentioned by Haylock et al. (2008), E–OBS has a certain negative bias up to –30 %. The

given deviation between HYRAS and E–OBS is in between this range. For the Alpine region (Fig. 2b), the IPCs of E–OBS and

HYRAS are almost identical with values up to 200 mm d−1. The difference between the RCM simulations and the observations

at a given probability again is in order of 20 %, thus within the E–OBS uncertainty. For both investigation areas the range of

simulated values is much higher with up to 470 mm d−1. Note that only a small part of AL is covered by HYRAS which might205

be a reason for the vanished differences between E–OBS and HYRAS and the resulting specious deviations to the RCM.

A direct linkage between observed and simulated precipitation is given by a Q–Q plot (Fig. 3). Therefore, daily spatial

mean precipitation fields for both investigation areas are used. Then, the distributions for these values are calculated. Generally

speaking, the distribution of the RCM is in better agreement with the observations, at least with E–OBS, with little deviations

from the optimum (diagonal line) for most of the spectrum and differences at around 10 % for the upper part of the distribution.210

In comparison to HYRAS, the maximum deviation is higher with around 20 %. For AL (Fig. S2), the RCM data differs more

and over a wider range of the spectrum compared to HYRAS than for ME. Even though HYRAS was aggregated to the E–

OBS / RCM grid, the more pronounced differences especially for the extremes might be a result of the higher resolution of the

HYRAS data, which, in particular, is of greater relevance in the mountainous region of AL.
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Figure 2. Intensity–probability–curve (IPC) of daily rainfall totals of the RCM simulations (dry–day adjusted), observations (E–OBS and

HYRAS) and global reanalysis (20CR) for (a) Mid–Europe (ME) and (b) the Alps (AL) during the investigation period TP1b.

Table 2. Coefficients of determination R2 between the RCM and observations for the quantile–quantile contemplation of Fig. 3 for Mid–

Europe (ME) and the Alps (AL).

RCM E–OBS HYRAS

ME AL ME AL

Data block 1 0.9914 0.9924 0.9876 0.9835

Data block 2 0.9914 0.9925 0.9878 0.9848

Data block 3 0.9963 0.9976 0.9936 0.9930

Data block 4 0.9966 0.9981 0.9943 0.9938

The findings of Fig. 3 are confirmed by the determination coefficients R2 (Table 2). For both E–OBS and HYRAS the215

coefficient is very high with R2 > 0.98. There is a slightly higher R2 for E–OBS than for HYRAS, which is an artificial effect

of the data resolution. The region AL shows a minimal higher skill compared to ME in E–OBS and slightly lower values

in HYRAS. Table 2 also reveals higher correlations of the CCLM simulations driven by the high resolution MPI–ESM–HR

compared to those driven by the lower resolved MPI–ESM–LR data.
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Figure 3. Quantile–quantile plot of spatial mean daily precipitation for investigation period TP1b comparing the RCM simulations (data

block 1–4) with E–OBS (solid lines) and HYRAS (dashed lines) for Mid–Europe (ME).

4.2 Time series220

Beside overall statistics, other properties of LAERTES-EU like the temporal variability should cover the range of observations

as well. Therefore, we analyze the time series of yearly values of different percentiles of the spatial mean precipitation for

the investigation areas. In Fig. 4 the time series of the 99 % percentile for ME is shown. Both observational data sets have a

high year–to–year variability with similar shape but the mean over TP1b is about 10 % higher in HYRAS than in E–OBS. The

ensemble mean value is very close to the E-OBS mean with relative deviations between –5 % and 4 %, and 0.6 % on average225

during TP1b. Compared to HYRAS the differences are –14 to –5 % with –8 % on average. The spread of both observational

data sets is covered by the ensemble spread except for few extreme peaks (e. g. 1985 in E–OBS or 1998 in HYRAS). In AL,

the HYRAS mean is about 15 % higher than E–OBS but both time series have again a similar shape (Fig. S3). The ensemble

mean in this area lies within both observation means and a little closer to HYRAS. The relative deviation is 6–15 % (10 % on

average) to E–OBS and –8 to 0.2 % (–5 % on average) to HYRAS. The ensemble spread also covers the observed variability.230

Regarding more extreme values, namely the 99.9 % percentile, similar results can be found. E–OBS shows a certain bias to

HYRAS of approx. 10 % for ME and 25 % for AL (Fig. S4 and S5). The ensemble mean is close to E–OBS with a deviations of

–10 to 1 % (–3 % on average) for ME, and 6 to 16 % (10 % on average) for AL. Compared to HYRAS, LAERTES-EU differs
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Figure 4. Time series of the yearly 99 % percentile of spatial mean precipitation for Mid–Europe (ME) during TP1b of the LAERTES-EU

ensemble mean (black), the ensemble spread (minimum to maximum; gray), E–OBS (red), and HYRAS (blue). The dotted lines symbolize

the mean values of the observations throughout TP1b.

between –19 and –7 % (–11 % on average) in ME, and between –18 and –10 % (–15 % on average) in AL. Furthermore, there

is a distinctly higher spread and variability of the 99.9 % for both, the observations and LAERTES-EU. Again, the minimum235

values of the ensemble spread seem to be constant over time, while there is an increase in the maximum values for ME but no

clear signal for AL. Except for a few peaks, LAERTES-EU covers the spread of the observations.

4.3 Added value of the sample size

In order to demonstrate the added value of the presented LAERTES-EU we use the signal–to–noise ratio (S2N , Eq. A4) for

different sample sizes and return periods (cf. Appendix A). Sample size, in this case, means the number of data which is240

equivalent with the number of simulation runs. Observations have a sample size of 1. For both ME and AL, the S2N increases

with the sample size meaning a more statistically robust estimate of the return values (Fig. 5). At the beginning there is a strong

increase of S2N until a sample size of approximately 10. Between a sample size of 10 to 100 the increase of S2N is weak.

This range is typically used as ensemble size. For a sample size of 100 and more S2N increases rapidly.

Furthermore, the S2N is lower for higher return periods which is a result of less or even no data for very high return245

periods. However, S2N also increases with sample size for the very high return periods. The robustness of a 2–year return
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Figure 5. Signal–to–noise ratio for different return periods T (colored lines) dependent on the sample size for (a) ME and (b) AL.

value estimate of a sample of size 20 is about the same as the 1000–year estimate for a sample of size 1000. This means that

even for extremes, which have not been observed yet, some robust statistical analysis can be carried out.
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5 Long-term variability and trends

The temporal evolution and variability of extreme precipitation throughout the entire time period TP1 and also for predictions250

of the upcoming decade (TP2) is evaluated in this section. Beside time series of percentiles, we use climate change indices and

statistical distributions.

5.1 Precipitation distributions

Figure 6 shows the evolution of the distribution of spatial mean precipitation throughout TP1 and TP2 by treating each decade

independently. For the core of the distributions, namely medians, interquartile ranges, and upper whiskers, only small variances255

can be found between the different decades which means that there is almost no change for the majority of the precipitation

amounts. Nevertheless, a marked positive trend for the uppermost extremes of the distributions appears with maximum values

around 18 mm d−1 at the beginning of the 20th century and about 24 mm d−1 in the 21st century. The distribution for the

upcoming decade 2020–2028 (Figure 6, green boxplot) shows only minimum differences to those of the present decade since

2010 with an almost equal median and interquartile range, but slightly higher maximum values.260

Figure 6. Boxplot of the distribution of daily spatial mean precipitation values for ME. Each decade during TP1 (blue) was considered

separately. The centerline of a box marks the median; the lower and upper end of the box mark the 25th and 75th percentile (interquartile

range); the whiskers represent approximately the 99.9 % percentile; TP2 is marked in green.
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The boxplot for AL is shown in Fig. S6 and illustrates that not only the high percentiles reveal a decrease in the middle of the

century, but the entire distribution is shifted towards lower values. Nevertheless, there is no clear tendency for the maximum

values. For TP2 (Fig. S6, green boxplot) the distribution is similar to that of the present decade in case of median and the upper

part of the distribution. The interquartile range is reduced due to a increased lower boundary of the boxplot.

5.2 Temporal evolution of yearly percentiles265

5.2.1 Overview

The overall trend during TP1 and TP2 using a linear regression for both areas and percentiles is given in Table 3. While the

ensemble mean shows a significant positive trend for ME for both percentiles, a small but significant negative trend can be

found for the 99 % of AL, while there is almost no change in the 99.9 % of AL. In all cases the ensemble spread increases due

to both a decrease of the minimum values and an increase of the maximum values both being highly significant. The change of270

the maximums is stronger than the reduction of the minimums and more pronounced in AL than in ME.

Table 3. Overall trend during TP1 and TP2 using a linear regression of the yearly series of the 99 % and 99.9 % percentile (pct) for ME

and AL; Given are absolute values and the relative changes (RC) compared to the climatological mean (climTP) for the minimum (min), the

mean, and the maximum (max) percentile values, and the related significance (p–value).

area pct variable trend RC climTP pα

(mm) (%) (mm)

min –0.4 –5.3 7.5 0.9966

ME 99 mean 0.7 7.0 10.0 1.0

max 2.6 19.0 13.7 1.0

min –0.7 –7.8 9.0 0.9974

ME 99.9 mean 1.1 8.2 13.4 1.0

max 7.2 33.2 21.7 1.0

min –2.6 –17.8 14.6 1.0

AL 99 mean –0.3 –1.5 20.2 0.9381

max 4.4 15.9 27.7 1.0

min –3.8 –21.3 17.8 1.0

AL 99.9 mean –0.0 –0.0 27.3 0.0

max 8.3 18.9 44.0 1.0
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Figure 7. Time series of the yearly 99 % percentile of spatial mean precipitation for Mid–Europe (ME) of the LAERTES-EU ensemble mean

(solid line), and the ensemble spread (dots and shaded area) during TP1 (black/gray) and TP2 (reddish).

Analogous to Table 3 we analyze the trend for TP1b only (Table S1 in Supplementary). The tendencies are the same for all

cases but less pronounced except for the mean 99.9 % of AL where the negative trend during TP1b is slightly stronger than for

the whole time series.

Figure 7 shows the temporal evolution of the 99 % percentile during the 20th and the beginning of the 21st century for the275

whole LAERTES-EU. As given in Table 3, the lower boundary changes are small, while there is a visible positive trend of the

ensemble mean and the upper boundary of the ensemble spread. Note that the larger spread from the 1960s onwards might be

artificial due to the decisively larger number of members of data block 4. Nevertheless, there is a clear consistency in the time

series for ME.

Some differences emerge for the Alpine region AL (Fig. S7). At first, there is a distinct decrease of the ensemble mean280

between 1960 and 1970 which might reveal from the rising number of members. As the ensemble matches well with the

observations, we presume an overestimation of precipitation in the first half of the 20th century in that region, which could be

a result of missing data for the applied dry–day correction. Due to the more complex terrain, the structure of the precipitation

fields is more complex, and therefore more sensitive for different types of effects such as the dry–day correction.

The results for the 99.9 % percentile are similar for both areas (Fig. S8 and S9). The positive trend for ME is even more285

pronounced, while the drop in the 1960s for AL is less visible and therefore the time series is more constant.
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Table 4. Climatological mean 1961–1990 (climTP) of days per year exceeding the 99 % and 99.9 % percentile (pct) for ME and AL, linear

regression (LR) and relative change (RC) compared to climTP for different investigation periods (TP), and related significance (p–value).

area pct climTP TP LR RC pα

ME 99 3.77 1+2 1.39 37 % 1.0

1b 1.11 29 % 1.0

99.9 0.62 1+2 0.36 57 % 1.0

1b 0.27 43 % 1.0

AL 99 3.81 1+2 –0.26 –7 % 0.9618

1b –0.58 –15 % 0.9964

99.9 0.62 1+2 –0.01 –2 % 0.6825

1b –0.01 –1 % 0.3775

Taking a look into the evolution of the number of days exceeding the climatological mean percentile, a strong positive and

significant trend appears for ME for both the 99 % (Fig. 8, top) and 99.9 % percentile (Fig. S10). The exact values of the climTP

mean, the linear regression, the relative change, and the significance can be found in Table 4 (top numbers). For the Alpine

region, the year–to–year variability is higher and the overall trend is slightly negative (Fig. 8, bottom, and S11) and at least290

significant for the 99 % percentile. Again, we analyze the trend for TP1b separately (Table 4, bottom numbers). the tendencies

for TP1b are the same but less pronounced except for the days exceeding the 99 % percentile in AL, where there is a stronger

trend signal in TP1b compared to the whole time series, which is also significant to a high degree.

5.2.2 Past trends and oscillations

For a more detailed analysis of trends, the method described in Sect. 3.2 is applied to the time series of daily spatial mean295

precipitation. Figure 9a shows the number of LAERTES-EU members (relative) with a positive or negative trend of the 99 %

percentile for ME. Only cases in which more than 60 % of the complete ensemble members reveal the same tendency are

then considered for further investigations. For these cases the mean trend is calculated (Fig. 9b) and the relative amount of

significant members is displayed (Fig. 9c). All cases in which the ensemble reveals ambiguous tendencies are neglected (gray

areas).300

To a high degree the single members show the same behavior, especially for the longer time series where positive trends are

dominant. On a decadal time scale (diagonal line in Fig. 9) some oscillations appear with phases of increasing and decreasing

precipitation. This signal might be smoothed as it is not expected that the decadal simulations of data blocks 2 and 4 cover

the natural variability at this time scale in detail. Furthermore, these simulations are not expected to be in phase with the long

lasting simulations of data blocks 1 and 3. The trends on this time scale reach rates of up to 0.1 mm a−1 or 1 mm per decade,305
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Figure 8. Deviation of the mean yearly number of days above the 99 % percentile compared to the climatology (1961–1990; climTP) for ME

(top) and AL (bottom). Red bars indicate negative anomalies (less days), blue bars positive anomalies (more days). The predictions (TP2)

are given in green. The black line indicates a linear regression.

respectively. The overall trend is weaker with rate of 0–0.02 mm a−1 or 0–2 mm per century, respectively. Positive trends are

more often significant than the negative, while only a small part of the ensemble shows significant trends. Similar results can

be found for the Alpine region (Fig. S12). The trends on the decadal time scale reach higher rates but the oscillation is less
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Figure 9. Trend analysis of the 99 % percentile for ME with (a) the relative amount of members of LAERTES-EU with a positive (blue) or

negative (red) trend; (b) the trend in mm per year averaged over the members from (a), and (c) relative amount of members from (a) that have

a significant trend; cases with no distinct number (less than 60 %) of members with same trend sign are marked in gray in (a)–(c).

pronounced than in ME. Again, most of the positive trends are significant, while just a few members with negative trends are

significant.310

For the 99.9 % percentile of ME (Fig. S13) large parts of LAERTES-EU show positive trends. On the decadal time scale a

clear sequence of positive and negative trends is visible. Both the increases and decreases are more pronounced than for the

99 % percentile but only a few members are significant. In the Alpine region (Fig. S14) even more parts of the ensemble have

the same tendency of heavy precipitation and a higher number of members have a significant trend. These trends exceed rates of

decisively more than± 0.1 mm a−1. In contrast to the results above, the 99.9 % percentile for AL seems to have a multidecadal315

oscillation, while the overall trend of the complete time series is negative.

5.2.3 Future projections

With respect for the upcoming decade (TP2), LAERTES-EU predicts an continuation of the current trend with an increase

especially for the 99.9 % percentile (Fig. 7, and S6–S8; reddish area). In comparison to the last decade (2007–2017), the

RCM mean of the 99 % percentile increases of about 0.6 % for ME and about 2.1 % for AL. The 99.9 % percentile increases320

about 2.0 % for ME and 3.0 % for AL. Further to this absolute change, the number of days exceeding the climatological 99 %

percentile shows an increase of 4.9 % for ME and 8.4 % for AL, and 6.7 % (ME) and 22.4 % (AL) in case of the 99.9 %

compared to the mean of 2007–2017. This also manifests in the relative anomaly (Fig. 8, and S9–S10; green bars).
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Figure 10. Relative deviation of (a) the R95pTOT index and (b) the R99pTOT index of the LAERTES-EU mean compared to the climatology

(climTP) for ME. Red bars indicate negative (dry) anomalies, blue bars positive (wet) anomalies. The predictions (TP2) are given in green.

The black line indicates a linear regression.

Nevertheless, a more detailed trend analysis illustrated in Fig. 9 and also Fig. S12–14 reveals that LAERTES-EU shows no

clear tendency for the 99 % for TP2. Just in a few cases more than 60 % of the members have a similar mainly positive trend325

signal, which however is not significant. In case of the 99.9 % percentile, 60–70 % of the members show a strong positive

trend of more than 0.1 mm a−1 with 20–40 % of them being significant. Although the tendency for TP2 is ambiguous and less

significant, it shows continuity to the present decade and so we conclude that a positive trend is likely.

5.3 Climate change indices

The results described in the previous section also manifest in the considered ETCCDI climate change indices (Table 5).330

R95pTOT shows a positive trend for ME (Fig. 10a) with a relative change of about 17 % and a strong negative trend of

approximately –15 % for AL (Fig. S15). Remarkably, there is a high positive deviation in the early 20th century compared

to the climTP amount for AL which might be artificial due to the mentioned problems of the dry–day correction. R99pTOT

shows a positive change for ME (Fig. 10b) and slightly negative trend for AL (Fig. S16). The overemphasis for AL in the early

century is less pronounced for this index. Considering only the TP1b, the tendencies are the same in all cases. The positive335

trends for ME are less pronounced, while the negative trends for AL are stronger. The estimated trends are highly significant

except for the R99pTOT of AL for the whole time series.

Compared to the present decade, the projections show a continuation of the positive trend for ME with an increase of 2 % for

R95pTOT and 5 % for R99pTOT. In contrast, both indices show a positive trend for AL with an increase of 7 % for R95pTOT

and 8 % for R99pTOT, which is a complete reversion of the overall trend.340
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Table 5. Climatological mean 1961–1990 (climTP) of ETCCDI quantities for ME and AL, linear regression (LR) and relative change (RC)

compared to climTP for different investigation periods (TP), and related significance (p–value).

area ETCCDI climTP TP LR RC pα

(mm) (mm) (%)

ME R95pTOT 162.7 1+2 28.4 17 1.0

1b 20.1 12 1.0

R99pTOT 46.3 1+2 15.6 34 1.0

1b 12.2 26 1.0

AL R95pTOT 304.9 1+2 –46.3 –15 1.0

1b –54.3 –18 1.0

R99pTOT 88.9 1+2 –4.5 –5 0.8953

1b –10.8 –12 0.9891

6 Summary and Conclusions

We have presented a novel combined ensemble LAERTES-EU of various regional climate model simulations to better estimated

heavy precipitation across central Europe. The whole RCM ensemble was divided into four data blocks depending on forcing

data, assimilation schemes, or the initialization of the driving global MPI–ESM. In total, the presented LAERTES-EU consists

of over 1100 simulation runs with approximately 12.500 simulated years on a 25 km horizontal resolution.345

The focus of investigation was laid on the PRUDENCE regions Mid–Europe (ME) and Alps (AL). Regarding heavy pre-

cipitation we concentrated on high percentiles, namely 99 % and 99.9 %. It was not expectable that the simulations are able

to reproduce precipitation events on a daily base in detail, but have a better performance regarding long-term variations, and

statistical distributions. Furthermore, the given resolution restricts the consideration of convective processes, so we analyzed

time series of spatial mean precipitation.350

With respect to our research questions, the following main conclusions can be drawn out of the presented results:

(1) Extreme precipitation is well represented in LAERTES-EU. The four data blocks are consistent and have similar precipi-

tation distributions (IPCs), which are within the uncertainty of the observations. The ensemble range covers the observed

temporal evolution.

(2) The added-value of the large ensemble size manifests in a strong increase of the signal–to–noise ratio beyond the typically355

used ensemble sizes and in high statistical significances of estimated trends for the ensemble mean.
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(3) Long-term trends reveal spatial differences in sign and strength and between the members. These tendencies are partly

significant. Distinct oscillations can be found on shorter time scales (e. g. decades).

(4) The projections for the upcoming decade show a continuation of past tendencies with increasing heavy precipitation

without any discontinuity. However, LAERTES-EU shows no clear signal and less significance for the projections.360

Regarding the validation (1), intensity–probability–curves (IPCs) and Q–Q distributions have been analyzed. In all cases

the IPCs of the simulations show an overestimation of precipitation compared to E–OBS of about one third. Haylock et al.

(2008) found out that E–OBS has a certain negative bias of up to 30 % compared to raw observations. Taking this into account

the IPCs are almost coincident. Nevertheless, the IPCs of LAERTES-EU show only small deviation compared to the high

resolution HYRAS data set. Distinct differences mainly appear in the Alpine Mountains, which can be explained by less365

spatial coverage of observations. Furthermore, the IPCs and Q–Q distributions of all four data blocks are coincident which was

a prerequisite for the combination to one large ensemble. The Q–Q distributions reveal less differences between modeled and

observed precipitation compared to E–OBS and an underestimation of simulated rainfall compared to HYRAS by about 10 %.

Regarding (2), LAERTES-EU reveals a clear added value due to the large sample size. Estimates of long return periods are

more robust compared to smaller ensembles. Furthermore, trends at least in the ensemble mean are highly significant. The IPCs370

also show a clear added value of RCM data compared to coarser global models. Regarding extremes, LAERTES-EU includes

a broader range of precipitation totals which are not covered by observations due to their limited temporal availability.

Besides a proper representation of precipitation, long-term trends and temporal variations were of special interest. Regard-

ing (3), the presented results show a good agreement of LAERTES-EU concerning the temporal evolution of the considered

percentiles of spatially aggregated daily precipitation totals for the different investigation areas. The ensemble mean is within375

the range of the observations and the spread (min–to–max) covers the observed variability except a few peaks. Throughout

the complete TP1, positive and significant trends can be found for ME in both percentiles and also in the number of days

exceeding the climatological mean (1961–1990). For AL, there is no clear trend signal in the ensemble mean but an increase in

the maximum values. In contrast the number of days exceeding the climatology is decreasing. The positive trends for ME with

relative changes about 7–8 % are coincident with the theoretical 6–7 % per Kelvin temperature change (CC rate) as Moberg380

et al. (2006) found an increase of approximately 1 K during the 20th century for Europe. The negative trends for AL, however,

do not fit in this theoretical estimate. The maximum simulated percentile values increase with a super–CC rate up to a factor 4.

Comparing the trends of TP1 to the shorter TP1b, the tendencies are the same but less pronounced in TP1b. On a decadal

time scale some oscillations can be found with periods of increasing precipitation and such with decreasing values. Similar

results as for time series of percentiles can be found using climate change indices (ETCCDI).385

Regarding (4), the projections for the upcoming decade until 2028 (TP2) reveal ongoing tendencies of heavy precipitation

indices. A special case is the Alpine region where the slightly negative trends in the past (TP1) turn to positive once. Both the

continuity for ME and the reversion for AL appear in all time series, number of days or ETCCDI variables and all percentiles.

While there is a clear signal and high significance building the ensemble mean first, the trends are ambiguous and less significant
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when considered separately. However, we conclude that this tendencies are likely as it is a continuation of the results of the390

present decade. Similar results for parts of LAERTES-EU were found by Reyers et al. (2019).

The presented LAERTES-EU data set can be used for various applications. However, it has to be mentioned that the compo-

sition of the four data blocks to one ensemble restricts the temporal homogeneity. Nevertheless, the agreement with intensity

distributions, observations, and statistics is very high. In this study we have been focused on all-year variances, oscillations, or

trends. Future investigations will address a seasonal differentiated analysis of trends and oscillations as well as a more detailed395

investigation of the spatial distribution of these findings. In particular, the simulations can be used as input for hydrological

modeling and further applications such as flood risk assessments. The presented ensemble in this case acts as a stochastic

weather generator treating the single simulations independently. Estimates of high return periods become more robust.

Furthermore, analyses of possible mechanisms behind observed oscillations are in preparation. Previous studies indicated

that there is a strong relation between precipitation in Europe and the North Atlantic Oscillation (NAO), especially during400

wintertime (e.g., Hurrell, 1995; Rîmbu et al., 2002; Haylock and Goodess, 2004; Nissen et al., 2010; Pinto and Raible, 2012).

Moreover, Casanueva et al. (2014) found a connection between extreme precipitation and the Atlantic Multidecadal Oscillation

(AMO) during the whole year. The investigations of Bloomfield et al. (2018) revealed long-term changes in mean sea level

pressure in the North Atlantic region and related storminess over Europe, which might be an artifact of a rising number of

available and assimilated observations in the last decades.405

Data availability. The E–OBS data (Haylock et al., 2008) is online available after registration at https://www.ecad.eu/download/ensembles/

ensembles.php. The 20CR data (Compo et al., 2011) can be found on https://www.esrl.noaa.gov/psd/data/20thC_Rean/. HYRAS (Rauthe

et al., 2013) can be requested an the German Weather Service (DWD). The RCM data (MiKlip data) will be made available via the CERA

database (http://cera-www.dkrz.de/; last access: July 2019) of the German Climate Computing Center (DKRZ).
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Appendix A: Statistical Quantities410

The Pearson correlation coefficient (Wilks, 2006) is given by

R=

N∑
k=1

{[yk − yk] · [xk −xk]}
√

N∑
k=1

[xk −xk]2 ·
√

N∑
k=1

[yk − yk]2
, (A1)

with the data series x and y of lengthN . The range ofR isR ∈ [−1;+1] with a perfect anti-correlation atR=−1 and a perfect

correlation at R= +1.

The Gumbel distribution (Wilks, 2006) is an extreme value type-I distribution and often used for return period estimation.415

Its cumulative density function (cdf) is given by

F (x) = exp
(
−exp

(
−x−β

α

))
, (A2)

with the free parameters β = σ
√

6 ·π−1 and α= x− γβ, where σ is the standard deviation of the sample x and γ = 0.57721

Euler’s constant. For x usually a series of yearly maximum values is used. The relationship between the cdf and the return

period T is given by (Wilks, 2006)420

T =
1

1−F (x)
. (A3)

The signal–to–noise ration S2N in this case is defined as

S2N =
RVT,Gumbel

CI90,T
, (A4)

with the return levelRV of the Gumbel distribution at return period T divided by the 90 % confidence interval at T (Früh et al.,

2010). Small values of S2N indicate a more uncertain estimate, high values a more robust one.425

Appendix B: ETCCDI quantities

Two out of the 27 indices introduced and recommended by the Expert Team on Climate Change Detection and Indices4

(ETCCDI; Karl et al., 1999; Peterson, 2005) are used in this study. R95pTOT describes the annual total precipitation sum of

all values above the climatological 95 % percentile of wet days (RR> 1 mm) during the reference period 1961–1990. The

R95pTOT of the year k is defined as430

R95pTOTk =
W∑

w=1

RRwk ∀ RRwk >RRp95 , (B1)

where RRwk is the daily precipitation amount on a wet day during year k, RRp95 is the climatological 95 % percentile, and

W the total number of wet days in year k. Analogously, the R99pTOT is defined replacing the 95 % with the 99 % percentile.

R99pTOTk =
W∑

w=1

RRwk ∀ RRwk >RRp99 . (B2)

4http://etccdi.pacificclimate.org/
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Appendix C: Trends and Significance435

A Mann–Kendall Test (Mann, 1945; Kendall, 1955) is performed for the detection of trends and its related significance. To

account for possible oscillations within long time series, we first split the complete time series into sub-series with a minimum

length of 10 years and up to over 100 years (trend matrix). The Mann-Kendall Test uses a standardized test statistic Sτ following

a standard Gaussian distribution (SGD). Sτ is given by:

Sτ =





τ−1√
σ2

τ

, τ > 0 ,

0 , τ = 0 ,

τ+1√
σ2

τ

, τ < 0 .

(C1)440

Here, τ is known as the Kendall’s τ and σ2
τ is the variance of the standard Gaussian distribution (SGD). A detected trend is

significant if Sτ lies within the upper and lower quantile z of the SGD at a given significance level α with Sτ ∈
[
zα

2
;z1−α

2

]
,

respectively (Yue et al., 2002).

Yue et al. (2002) pointed out some weaknesses of the Mann–Kendall test in case of inherent autocorrelation. To avoid a

distortion of the statistic by autocorrelation, Yue et al. (2002) presented the Trend–Free Pre–Whitening (TFPW) method. The445

first step is the estimation of a linear trend between two time steps t= i and t= j using the Theil-Sen Approach (TSA; Theil,

1950; Sen, 1968). The slope b of this linear regression is given by:

b=median

(
xj −xi
j− i

)
,∀i < j . (C2)

In a second step, the original time series x is detrended by subtracting b at each time step t:

x′t = xt− b · t . (C3)450

Afterwards, the lag-1 autocorrelation coefficient r1 is removed from the trend-free series x′:

x′′t = x′t− r1 ·x′t−1 , (C4)

where r1 is given by:

r1 =

1
N−1 ·

N−1∑
i=1

(
x′i−x′

)
·
(
x′i+1−x′

)

1
N ·

N∑
i=1

(
x′i−x′

)2
. (C5)

The modified TFPW time series x∗ result by re-adding the TSA-slope b:455

x∗t = x′′t + b · t . (C6)

This modified time series conserves the trend, but is free of autocorrelation. The Mann–Kendall Test is performed on the TFPW

time series x∗. According to Yue et al. (2002), TFPW has to be considered in cases with non-zero TSA-slope and significant

lag-1 autocorrelation. The significance of a trend or autocorrelation is tested on the 90 % (α= 0.1), 95 % (α= 0.05), and 99 %

(α= 0.01) significance level.460
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