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Abstract. In this study we propose and demonstrate a data-
driven approach in an “information-theoretic” framework to
quantitatively estimate precipitation. In this context, predic-
tive relations are expressed by empirical discrete probability
distributions directly derived from data instead of fitting and
applying deterministic functions, as is standard operational
practice. Applying a probabilistic relation has the benefit of
providing joint statements about rain rate and the related es-
timation uncertainty. The information-theoretic framework
furthermore allows for the integration of any kind of data
considered useful and explicitly considers the uncertain na-
ture of quantitative precipitation estimation (QPE). With this
framework we investigate the information gains and losses
associated with various data and practices typically applied
in QPE. To this end, we conduct six experiments using
4 years of data from six laser optical disdrometers, two mi-
cro rain radars (MRRs), regular rain gauges, weather radar
reflectivity and other operationally available meteorologi-
cal data from existing stations. Each experiment addresses
a typical question related to QPE. First, we measure the in-
formation about ground rainfall contained in various opera-
tionally available predictors. Here weather radar proves to be
the single most important source of information, which can
be further improved when distinguishing radar reflectivity–
ground rainfall relationships (Z–R relations) by season and
prevailing synoptic circulation pattern. Second, we investi-
gate the effect of data sample size on QPE uncertainty using
different data-based predictive models. This shows that the
combination of reflectivity and month of the year as a two-
predictor model is the best trade-off between robustness of
the model and information gain. Third, we investigate the in-
formation content in spatial position by learning and apply-
ing site-specific Z–R relations. The related information gains

are only moderate; specifically, they are lower than when dis-
tinguishing Z–R relations according to time of the year or
synoptic circulation pattern. Fourth, we measure the informa-
tion loss when fitting and using a deterministic Z–R relation,
as is standard practice in operational radar-based QPE apply-
ing, e.g., the standard Marshall–Palmer relation, instead of
using the empirical relation derived directly from the data. It
shows that while the deterministic function captures the over-
all shape of the empirical relation quite well, it introduces an
additional 60 % uncertainty when estimating rain rate. Fifth,
we investigate how much information is gained along the
radar observation path, starting with reflectivity measured by
radar at height, continuing with the reflectivity measured by
a MRR along a vertical profile in the atmosphere and ending
with the reflectivity observed by a disdrometer directly at the
ground. The results reveal that considerable additional infor-
mation is gained by using observations from lower elevations
due to the avoidance of information losses caused by ongo-
ing microphysical precipitation processes from cloud height
to ground. This emphasizes both the importance of vertical
corrections for accurate QPE and of the required MRR obser-
vations. In the sixth experiment we evaluate the information
content of radar data only, rain gauge data only and a combi-
nation of both as a function of the distance between the target
and predictor rain gauge. The results show that station-only
QPE outperforms radar-only QPE up to a distance of 7 to
8 km from the nearest station and that radar–gauge QPE per-
forms best, even compared with radar-based models applying
season or circulation pattern.
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1 Introduction

1.1 Approaches to quantitative precipitation
estimation (QPE)

Quantitative precipitation estimation at high temporal and
spatial resolution and in high quality are important prerequi-
sites for many hydrometeorological design and management
purposes. Besides rain gauges that have their own limita-
tions (Huff, 1970; Nešpor and Sevruk, 1999; Nystuen, 1999;
Yang et al., 1999), weather radar plays an increasingly im-
portant role in QPE: among other data sources, radar data
have been used for urban hydrology (Thorndahl et al., 2017;
Cecinati et al., 2017a; Wang et al., 2015), hydrological anal-
ysis and modeling (Bronstert et al., 2017; Rossa et al., 2005),
real-time QPE (Germann et al., 2006), rainfall climatology
(Overeem et al., 2009), rainfall pattern analysis (Kronenberg
et al., 2012; Ruiz-Villanueva et al., 2012) and rainfall fre-
quency analysis (Goudenhoofdt et al., 2017). For a compre-
hensive overview of radar theory and applications, see Bat-
tan (1959a, b), Sauvageot (1992), Doviak and Zrnic (1993),
Rinehart (1991), Fabry (2015) or Rauber and Nesbitt (2018).

While the advantage of weather radar is that it provides
3-D observations at a high spatial and temporal resolution
and with large coverage, unfortunately its use relies on some
assumptions, which are sometimes justified and sometimes
not. It is further hampered by considerable error and uncer-
tainty arising from measuring the radar reflectivity factor Z

(hereinafter referred to as reflectivity) instead of rain rate R,
measuring at height instead of at the ground, and many other
factors such as ground clutter, beam blockage, attenuation,
second-trip echoes, anomalous beam propagation and bright-
band effects. For a good overview on sources of errors, see
Zawadzki (1984) or Villarini and Krajewski (2010).

In this paper we will focus on the first two aspects, namely
the Z–R relation and the vertical profile of reflectivity. Typ-
ically, the Z–R relation is expressed by a deterministic ex-
ponential function of the form Z = a ·Rb fitted to simulta-
neous observations of Z at height and R at the ground, the
most common being the Marshall–Palmer relation (Marshall
and Palmer, 1948). Much work has since been carried out to
acknowledge the strongly nonlinear and time-variant nature
of this relation (Lee and Zawadzki, 2005; Cao et al., 2010;
Adirosi et al., 2016), the variability of reflectivity from high
altitude to the ground (Joss et al., 1990) and correcting for the
vertical profile of reflectivity (Vignal et al., 1999, 2000). The
transition of the Z–R relations from at height to the ground
was investigated by Peters et al. (2005). Much effort has also
been spent on ways to improve QPE by combining radar with
other sources of information such as rain gauges (Gouden-
hoofdt and Delobbe, 2009; Wang et al., 2015) or numerical
weather prediction (Bauer et al., 2015) and to quantify the
uncertainty of radar-based QPE (Cecinati et al., 2017b).

In this context, it is the aim of this paper to suggest and
apply a framework which would use relationships between

data expressed as empirical discrete probability distribu-
tions (dpd’s), and would measure the strength of relations and
remaining uncertainties with measures from information the-
ory. Comparable approaches have been suggested by Sharma
and Mehrotra (2014) and Thiesen et al. (2019): the former
use an information-theoretic approach to formulate predic-
tion models for cases where physical relationships are only
weakly known but observational records are abundant; the
latter emulate expert-based classification of rainfall–runoff
events in hydrological time series by constructing dpd’s from
large sets of training data.

In particular, we investigate the effect of applying a purely
data-based, probabilistic Z–R relation instead of a determin-
istic function fitted to the data. A similar probabilistic QPE
approach was conducted, for example, by Kirstetter et al.
(2015), by computing probability distributions of precipita-
tion rates modeled from the conditional distribution of the
precipitation rate for a given precipitation type and radar re-
flectivity factors on the basis of a 1-year data sample in the
United States. However, in contrast to their approach us-
ing a simple theoretical model we utilize an information-
theoretic framework. Similar work was also done by Yang
et al. (2017), who developed a new relationship converting
the vertical profile of reflectivity (VPR) to rain rates using a
terrain-based weighted random forest method. The potential
advantage of applying a probabilistic relation is that it yields
joint statements of both the value of R and the related es-
timation uncertainty. That is to say, with our approach we
do not want to provide a deterministic, single-valued rain
rate, but promote the use of probabilistic QPE, which ade-
quately reflects the (considerable) intrinsic uncertainties re-
lated to radar-based QPE. The history of radar meteorology
shows that the most important part is quality control and error
handling. With our approach we want to provide a probable
rain rate value range and distribution, which for users has the
added value of knowing intrinsic uncertainties (included in
the systematic and random parts of the error; Kirstetter et al.,
2015) compared with a single-valued QPE value. This is sim-
ilar to ensemble approaches in operational weather forecast-
ing. By knowing a predictive distribution, rather than a sin-
gle value, the user will make better-informed decisions, es-
pecially in the case of extreme events such as flash flood
forecasting. And if the user requires a single-valued state-
ment, a distribution can always be collapsed to a single value,
e.g., by calculating the mean or mode, whereas this is not
possible in the opposite direction. We further test the po-
tential of various operationally available observables such as
synoptic circulation patterns (CP), convective and other me-
teorological indices (retrieved from rawinsonde data), mete-
orological ground variables and season indicators to distin-
guish typical Z–R relationships. The idea is to improve QPE
by applying Z–R relationships tailored to the prevailing hy-
drometeorological situation as expressed by the predictors.
Lastly, we use a comprehensive data set from 4 years of 1 h
data available from one C-band weather radar, two vertical
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micro rain radars (MRR), six laser beam disdrometers and
six rain gauges set up in the 288 km2 catchment of the Attert,
Luxembourg, (Fig. 2) to evaluate the information gains with
respect to ground rainfall when moving from measuring at
height to measuring closer to the ground.

The remainder of the paper is structured as follows: in the
next section, we briefly present the experiments carried out
in the paper; in Sect. 2, we give a short overview on concepts
and measures from information theory (Sect. 2.1) and on the
methods (Sect. 2.2) and data (Sect. 2.3) used in the study; in
Sect. 3, we present and discuss the results of all experiments;
and our conclusions are presented in Sect. 4.

1.2 Design of experiments

We conduct a total of six experiments. In Experiment 1, we
investigate the information on ground rainfall contained in
various predictors, such as weather radar observations alone
or in combination with additional, operationally available hy-
drometeorological predictors. In Experiment 2, we investi-
gate the effect of limited data on the uncertainty of ground
rainfall estimation for various data-based models. In Experi-
ment 3, we examine the degree to which the empirical Z–R

relationship in the 288 km2 test domain varies in space, and
the minimum data sets that are required to support the use of
site-specific Z–R relations. In Experiment 4, we evaluate the
effect of functional compression by measuring the informa-
tion loss when using the deterministic Marshall–Palmer rela-
tionship instead of the empirical, “scattered” relationship be-
tween Z and R as contained in the data. In Experiment 5, we
investigate information gains along the radar path, i.e., when
we use observations of the reflectivity measured increasingly
close to the ground. We start with observations from weather
radar at height, continue with observations from MRR along
a vertical profile and finally use disdrometer observations of
the reflectivity at the ground. In the last experiment, Exper-
iment 6, we compare two methods of QPE, radar-based and
rain-gauge-based, using information measures and explore
the benefits of merging them.

2 Data and methods

2.1 Concepts and measures from information theory

Since its beginnings in communication theory and the sem-
inal paper of Claude Shannon (Shannon, 1948), informa-
tion theory (IT) has developed into a scientific discipline of
its own, with applications ranging from meteorology (Brun-
sell, 2010) and hydrology (Pechlivanidis et al., 2016; Gong
et al., 2014; Loritz et al., 2018) to geology (Wellmann and
Regenauer-Lieb, 2012) any many others. Information the-
ory has been proposed as one important approach to advance
catchment hydrology to deal with predictions under change
(Ehret et al., 2014). A good overview on applications in en-
vironmental and water engineering is given in Singh (2013),

and Cover and Thomas (1991) provide a very accessible yet
comprehensive introduction to the topic.

Please note that while the concepts of IT are universal and
apply to both continuous and discrete data and distributions,
we will, for the sake of clarity and brevity, restrict ourselves
to the latter case and work with discrete (binned) probability
distributions throughout all experiments.

2.1.1 Information

The most fundamental quantity of IT, information I (x), is
defined as the negative logarithm of the probability p of an
event or signal x (see Eq. 1). In this context the terms “event”
and “signal” can be used interchangeably to refer to the out-
come of a random experiment, i.e., a random draw from a
known distribution.

I (x)=−log2p(x) (1)

Depending on the base of the logarithm, information is mea-
sured in (nat) for base e, (hartley) for base 10 or (bit) for
base 2. We will stick to the unit bits here as it is the most
commonly used (especially in the computer sciences) and be-
cause it offers some intuitive interpretations. Information in
the context of IT has a fundamentally different meaning than
in colloquial use, where it is often used synonymously with
“data”.

Information can be described as the property of a signal
that effects a change in our state of belief about some hypoth-
esis (Nearing et al., 2016, Sect. 2.2). This definition has im-
portant implications: firstly, in order to quantify the informa-
tion content of a signal, we have to know (or at least have an
estimate) its occurrence probability a priori. Secondly, miss-
ing information can be seen as the distance between our cur-
rent state of belief about something and knowledge, which
establishes a link between the concepts of uncertainty and in-
formation. Information is carried by data, and, interestingly,
the information content of the same data reaching us can be
different depending on our prior state of belief: if we already
have knowledge prior to receiving these data, its information
content can only be zero and in all other cases it can only be
as large as our prior state of belief. Therefore, information
can be interpreted as a measure of surprise: the less probable
an event is, the more surprised we are when it occurs, and the
more informative the data are in revealing this to us. The de-
pendency of information content on our prior state of belief
is expressed by the prior probability p that we assign to the
particular event.

Compared to working with probabilities, using its log-
transforms – information – has the welcome effect that count-
ing the total information provided by a sequence of events is
additive, which is computationally more convenient than the
multiplicative treatment of probabilities.
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2.1.2 Information entropy

Information entropy H(X), or simply entropy is defined as
the expected or average value of information (see Eq. 2) of a
specific value or bin of a data set X = x1, x2, . . . , xn. This
means that if information is the additional insight gained
from the disclosure of the outcome of a single random ex-
periment, then entropy is the average additional insight if the
experiment is repeated many times. Thus, it is independent,
identically distributed (iid) sampling of the entire underly-
ing probability density function (pdf). Again, we can use
the terms “expected information” and “expected uncertainty”
as flip-side expressions of the same thing (more details on
the interpretation of entropy as uncertainty are presented by
Weijs, 2011, chap. 3).

H(X)= E[I (x)] = −
∑
x∈X

p(x)log2p(x) (2)

In Eq. (2), I (x) indicates information and E is the expected
value.

While information is a function of the occurrence proba-
bility of a particular outcome only, entropy is influenced by
and is a measure of the shape of the entire pdf. Therefore,
a pdf with only a single possible state of probability p = 1
has an entropy of zero: there will be no surprise from the
disclosure of any random draw, as we already know the re-
sult in advance. If, in contrast, the probability mass is spread
evenly over the entire value range, entropy will be maxi-
mized. Therefore, uniform distributions serve as maximum
entropy (minimum artificially added information) estimates
of unknown pdfs.

Like the variance of a distribution, entropy is a measure
of spread, but there are some important differences: while
variance takes the values of the data into account and is ex-
pressed in (squared) units of the underlying data, entropy
takes the probabilities of the data into account and is mea-
sured in bit. Variance is influenced by the relative position
of the data on the measure scale and dominated by values
far from the mean; entropy is influenced by the distribution
of probability mass and is dominated by large probabilities.
Some welcome properties of entropy are that it is applicable
to data that cannot be placed on a measure scale (categori-
cal data), and that it allows comparison of distributions from
different data due to its generalized expression in bit.

2.1.3 Conditional entropy

So far, we know that entropy is as a measure of the ex-
pected information of a single distribution. We could also re-
fer to this as a measure of self-information, or information we
have about individual data items when the data distribution is
known. If we do not only have a data set X = x1, x2, . . . , xn of
single data items available, but joint data sets of paired data
items X, Y = x1 y1, x2 y2, . . . , xn yn, then an obvious ques-
tion to ask is “What is the benefit of a priori knowledge of a

realization y coming from Y when we want to guess a partic-
ular realization x coming from X?”. In practice, this situation
appears each time we want to make predictions about a quan-
tity of interest x by exploiting available, related data, with
the prerequisite that we know the general relation between
the two data sets. Expanding the definition of entropy, condi-
tional entropy H(X|Y ) is defined as the probability-weighted
(expected) entropy of all distributions of X conditional on the
prior knowledge of Y = y (see Eq. 3).

H(X|Y )=
∑
y∈Y

p(y)H(X|Y = y)

=−

∑
y∈Y

p(y)
∑
x∈X

p(x|y)log2p(x|y) (3)

For example, suppose we want to predict ground rainfall (our
target X) based on radar reflectivity measurements (our pre-
dictor Y ). The general relation between the two can be de-
rived from a time series of joint observations and can be
expressed by their joint distribution. This empirical relation
is assumed to be both invariant, i.e., valid also for predic-
tive situations, and representative, i.e., a good approxima-
tion of the “true” relation constructed from a hypothetical,
infinitely long data set. Now, if in a particular predictive sit-
uation (i.e., at a particular point in time) we know the partic-
ular reflectivity value, then our best prediction of the corre-
sponding rainfall value is the distribution of all past rainfall
observations measured in combination with this particular re-
flectivity value.

If X and Y are completely independent, then prior knowl-
edge of y when guessing x from a data pair (x.y) does
not help at all. In this case each conditional distribution
p(X|Y = y) equals the marginal distribution p(X|Y ), and
the conditional entropy H(X|Y ) is exactly equal to the un-
conditional entropy H(X). While such a situation is clearly
not desirable, it also provides us with the useful insight that
even if we apply a completely useless predictor, we can never
make worse guesses than if we ignored it altogether. This is
called the “information inequality” (Eq. 4), or simply “infor-
mation can’t hurt”. For the complete proof, see Cover and
Thomas (1991) (p. 28).

H(X)≥H(X|Y ) (4)

2.1.4 Cross entropy

Entropy and conditional entropy measure information con-
tained in the shape of distributions and the underlying data.
Their calculation depends on prior knowledge of a pdf of
these data and implies the assumption that this pdf is in-
variant and representative. In practice, this condition is not
always fulfilled, either because we construct the pdf from
limited data or because the system generating the data is
not invariant. In these cases we work with approximations,
or models, of the pdf, which means we estimate the infor-
mation attached to a signal based on imperfect premises,
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which we in turn pay for with increased uncertainty. Cross
entropy Hpq(p||q) as defined in Eq. (5) quantifies exactly
this.

Hpq(p||q)=−
∑
x∈X

p(x)log2q(x) (5)

In Eq. (5), p is the true probability distribution of the data,
and q is the distribution that is assumed to be true. This
means we calculate the information content of a particular
signal based on its a priori known but only approximately
true occurrence probability q(x). However, as we draw from
the real distribution p, this particular signal really occurs
with probability p(x). The larger the mismatch between p

and q, the more additional questions we have to ask. In the
best case, if premises are correct and q is identical to p,
Hpq will be equal to H . In the worst case Hpq will go to
infinity. An accessible and comprehensive treatment of this
topic can be found in Weijs (2011), chap. 3.5.

2.1.5 Kullback–Leibler divergence

If both the entropy of a distribution and the cross entropy be-
tween the true distribution and an approximation (a model)
thereof are known, we can separate these two components of
total uncertainty: uncertainty due to the shape of the true dis-
tribution, and uncertainty because we do not know it exactly.
The latter is measured by the Kullback–Leibler divergence
DKL(p||q) (see Eq. 6 and Kullback and Leibler, 1951). It can
either be calculated by the probability-weighted difference of
the true and assumed-to-be-true occurrence probabilities, or
by subtracting the entropy from the cross entropy.

DKL(p||q)=
∑
x∈X

p(x)log2
p(x)

q(x)
=Hpq(p||q)−H(p) (6)

2.2 Modeling and evaluation strategy

2.2.1 Data-based models and predictions,
information-based model evaluation

Suppose we have a data set of many repeated, joint obser-
vations of several variates (data tuples), e.g., a time series
of joint observations of R and Z. For each data tuple we
can consider their values as coordinates in a multidimen-
sional space, for which the number of dimensions equals the
number of variates. Let us further suppose we choose, sep-
arately for each variate, a value range and a strategy to sub-
divide it into a finite set of bins. The first can be based on
the observed range of data or on physical considerations, the
latter on the resolution of the raw data or on user require-
ments about the resolution at which the data should be eval-
uated or at which predictions should be made. In this con-
text, many methods for choosing an optimal binning strategy
have been suggested (e.g., Knuth, 2013), but the most popu-
lar and straightforward method that concurrently introduces

minimal side information is still uniform binning, i.e., split-
ting of the value range into a finite number of equal-width
bins. Throughout this paper, we will stick to uniform bin-
ning.

With range and binning chosen, we can map the data set
into a multivariate, discrete frequency distribution as shown
in Fig. 1a. Normalization with the total number of data tu-
ples yields the corresponding multivariate, discrete probabil-
ity distribution (dpd). Note that the mapping comes at the
price of a certain information loss: firstly, we lose the infor-
mation about the absolute and relative position of the data
tuples in the data set (e.g., for time series data, we discard
the time stamp and the time order of the data), secondly we
lose any information about the data tuple values at resolu-
tions higher than the bin width. Nevertheless, the way that
the probability mass is spread within the coordinate space
is an indication of its structuredness, and its entropy is a di-
rect measure thereof. High values of entropy indicate that the
probability mass is widespread, which also means that we
are highly uncertain when guessing a particular data tuple
randomly drawn from the dpd. Conversely, if all probability
mass is concentrated in a single bin, entropy will be zero and
we can predict the values of a data tuple randomly drawn
from the dpd with zero uncertainty.

So far we have used entropy to measure uncertainty as if
we have had to guess all values of a data tuple randomly
drawn from an a priori known distribution. However, of-
ten we do not only know the distribution a priori, but we
also have knowledge of the values of parts of the data tu-
ples (e.g., we know Z and the empirical Z–R relation and
want to predict R). In this case, our uncertainty regarding the
target variate R given the predictor variate Z and the rela-
tion among the two can be measured by conditional entropy,
which we know from Eq. (4) is always smaller than or equal
to the unconditional entropy of the target. In Fig. 1a, the con-
ditional frequency distribution of the target X given predic-
tor Y is shown in red; in Fig. 1b, the related conditional prob-
ability distribution,also in red, and the unconditional proba-
bility distribution of the target, in blue, are shown.

In short, we can consider a dpd constructed from a data
set as a “minimalistic predictive model”, which, given some
values for the predictor variates, provides a probabilistic pre-
diction of the target variate. It is minimalistic in the sense
that it involves only a small number of assumptions (repre-
sentativeness of the dpd) and user decisions (choice of the
binning scheme). Compared with more common modeling
approaches, where relations among data are expressed by de-
terministic equations, the advantage of a dpd-based model is
that it yields probabilistic predictions in the form of condi-
tional dpd’s, which include a statement about the target value
and the uncertainty associated with that statement. Also,
as dpd-based modeling does not involve strong regulariza-
tions, it reduces the risk of introducing incorrect information.
When building a standard model, choosing a particular deter-
ministic equation to represent a data relation, which is a com-
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Figure 1. Illustration of a bivariate conditional probability distribution as a simple data-based predictive model. (a) Joint histogram of
target X and predictor Y (blue). Conditional histogram of target X given predictor values from the interval [−2, −2.3] (red). (b) Marginal
(unconditional) probability distribution of target X (blue) and conditional probability distribution of target X given predictor values from the
interval [−2, −2.3] (red).

mon form of regularization, involves the risk of introducing
bias, and it ignores predictive uncertainty. In this context, To-
dini (2007) provides a very comprehensive discussion on the
relative merits and problems of data-based models and mod-
els relying on additional information in the form of physical
knowledge, as well as the role and treatment of predictive
uncertainty.

Things are different, however, if we apply the model to a
new situation, i.e., if we construct the model from one data
set and use it with predictor data of another under the as-
sumption that the predictor–target relation expressed by the
model also holds for the new situation. This is clearly only
the case if the learning and the application situation are iden-
tical; however, in most cases the situations will differ and we
will pay for this inconsistency with additional uncertainty.
We can measure this uncertainty using the Kullback–Leibler
divergence (Eq. 6) between the dpd we use as a model and
the true dpd of the application situation. Total predictive un-
certainty is then expressed by cross entropy (Eq. 5) and can
be calculated as the sum of the predictive uncertainty given
a perfect model (expressed by conditional entropy), which
is limited by the amount of information the predictors con-
tain about the target and by the inadequacy of the model (ex-
pressed by Kullback–Leibler divergence).

We will apply this approach to construct and analyze pre-
dictive models throughout the paper, and use it to learn about
the information content of various predictors about our tar-
get, ground rainfall R, and learn about the information losses
when applying predictive models that were, e.g., constructed
from limited data sets, constructed at different places, or sim-
plified by functional compression. Note that expressing rela-
tions among predictor and target data by dpd’s is not lim-
ited to data-based models, in fact functional relationships of
any kind (e.g., the Marshall–Palmer Z–R relation) can be
expressed in a dpd. In that sense, the framework for model

building and testing as well as the measures to quantify un-
certainty that we use here are universally applicable.

2.2.2 Benchmark models and minimum model
requirements

Expressing predictions by probability distributions, and ex-
pressing uncertainty as “information missing” as described
in the previous sections has the advantage that we can build
default models providing lower and upper bounds of uncer-
tainty, which we can then use as benchmarks to compare
other models against. The smallest possible uncertainty oc-
curs if the predictive distribution of the target is a Dirac,
i.e., the entire probability mass is concentrated in a single
bin. In such a case, irrespective of the number of bins cover-
ing the value range, the entropy of the distribution is zero:
HDirac = 0. If such a case occurs, we know that we have
applied fully informative predictors and a fully consistent
model. Things are more interesting when we want to formu-
late upper bounds: the worst case occurs if we use a model
which is unable to provide a prediction for a set of predic-
tors in the application case. This happens when the particular
situation was never encountered in the learning data set, but
appears during application. In this case, p(x) in Eq. (6) will
be nonzero, q(x) will be zero and Kullback–Leibler diver-
gence will be infinite, indicating that the model is completely
inadequate for the application situation. In this case total un-
certainty will also be infinite, no matter how informative the
predictors are. However, infinity as an upper bound for un-
certainty is not very helpful, and we can do better than that:
if the above case occurs, we can argue that the model is inad-
equate just because it learned from a limited data set, and as
we require the model to provide a prediction for all predictive
situations, we can allocate a small but nonzero probability
to all bins of the model. In this paper, we did so using the
minimally invasive maximum entropy approach suggested
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by Darscheid et al. (2018). Note that this was only required
in experiments 2–4, when we calculated Kullback–Leibler
divergence between a reference and models based either on
very small samples (experiments 2 and 3) or deterministic
relations (Experiment 4).

Given that we successfully avoid infinite Kullback–Leibler
divergence, the worst thing that can happen is that our pre-
dictions are completely uninformative, i.e., we provide a uni-
form distribution across the entire value range of the target.
In this case, the entropy of the distribution is equal to the
logarithm of the number of bins: Huniform = log2 (number of
bins). This means that for all cases where we are sure that
infinite Kullback–Leibler divergences will not occur, we can
provide an upper limit of total uncertainty which is depen-
dent on the required resolution of our predictions.

Finally, for the special cases where we know that the
model we use is perfect (typically because we apply it to
the same situation it was constructed from), we know that
Kullback–Leibler divergence is zero, and total uncertainty
equals conditional entropy. In this case, we can state another
upper bound for uncertainty: if at worst the predictors we
use are completely uninformative, conditional entropy will
be equal to the unconditional entropy of the target distribu-
tion (see Eq. 4).

We will use these lower and upper bounds for total uncer-
tainty throughout the experiments to put the performance of
the tested models into perspective.

2.2.3 Sampling strategy

In experiments 2 and 3 we investigate the effect of lim-
ited sample size, i.e., the information loss (or uncertainty in-
crease) if we do not construct a model from a full data set,
but from subsets drawn thereof. This corresponds to the real-
world situation of building models from available, limited
data. For the sake of demonstration, we assume in the ex-
periments that a long and representative reference data set
is available for evaluation. While this is clearly not the case
in real-world situations, we can get answers from such ex-
periments for practically relevant questions such as “what is
a representative sample, i.e., how many observations are re-
quired until a model built from the data does not change fur-
ther with the addition of observations?” or “should we build
a model from locally available but limited data, or should we
use a model learned elsewhere, but from a large data set?”.

Throughout the experiments, we apply simple random
sampling without replacement to take samples from data sets.
In order to reduce effects of chance, we repeat each sampling
500 times, calculate the results for each sample and then take
the average.

2.3 Data

This study uses data from various sources collected dur-
ing a 4-year period (1 October 2012–30 September 2016)

within the CAOS (Catchments As Organised Systems) re-
search project. For more detail on project goals and partners
see Zehe et al. (2014). QPE was an important component of
CAOS, and to this end special focus was on measuring rain
rates and drop size distributions (DSD) using six laser optical
disdrometers, two vertical pointing K-band micro rain radars,
standard rain gauges and weather radar. Table 1 provides an
overview of these and additionally used data.

2.3.1 Study area and hydroclimate

The project was conducted in the Attert Basin, which is lo-
cated in the central western part of the Grand Duchy of Lux-
embourg and partially in eastern Belgium (see Fig. 2) with a
total catchment area of 288 km2. The landscape is orographi-
cally slightly structured, with a small area underlain by sand-
stones in the south, with heights up to 380 m a.s.l, a wide
area of sandy marls in the center part, in which the main At-
tert River flows from west to east, and an elevated region in
the north which is part of the Ardennes Massif and reaches
elevations up to 539 m a.s.l.

The study area is situated in the temperate oceanic climate
zone (Cfb according to the Köppen–Geiger classification;
Köppen and Geiger, 1930). Precipitation is mainly associated
with synoptic flow regimes with a westerly wind component
and amounts to around 850 mm (Pfister et al., 2005, 2000),
ranging from 760 mm in the center to about 980 mm in the
northwestern region (Faber, 1971) due to orography and luv-
lee effects. Especially during intensive rain events within a
synoptic northwesterly flow regime, the main part of the At-
tert region lies in the rain shadow of the Ardennes, whereas
the outermost northwestern part is excluded from this lee ef-
fect and is still within the region of local rain enhancement by
upward orographic lift (Schmithüsen, 1940). This also partly
explains local differences in the annual precipitation regime:
while in the elevated regions of the northwest, the main rain
season is (early) winter, in the central lowlands convective
summer rainfall also provides a substantial contribution. In-
terestingly, the latter mainly occurs along two main storm
tracks: one northeastern starting in the southwest corner of
Luxembourg and touching the study area in the east; one
northeastern starting in Belgium and touching the study area
in the west.

In our study, we investigated both the effects of location
and season on drop-size distributions and ultimately on QPE.

2.3.2 Radar data

We used 10 min reflectivity data from a single polarization
C-band Doppler radar located in Neuheilenbach (see Fig. 2),
and operated by the German Weather Service (DWD). The
raw volume data set has an azimuthal resolution of 1◦ and
a 500 m radial resolution. The antenna’s −3 dB-beamwidth
is 1◦. The distance of the study area from the radar site is
between 40 and 70 km, which renders high-resolution data
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Figure 2. The position of the Attert catchment in Luxembourg and Belgium with superimposed orography (in m a.s.l.) and the locations of
the MRR’s, disdrometers, rain gauges, the synoptic station (ASTA) and radar site (Neuheilenbach), and the rawinsonde launching (sounding)
station (Idar-Oberstein – WMO-ID 10618) as well as the scale and orientation of the small-scale map. © OpenStreetMap contributors 2019.
Distributed under a Creative Commons BY-SA License.

and avoids cone of silence issues. The raw data were filtered
by static and Doppler clutter filters and bright-band correc-
tion (Hannesen, 1998), but no attenuation corrections were
applied. Second trip echoes (Bückle, 2009) as well as obvi-
ous anomalous propagation (anaprop) echoes were also re-
moved, especially as the latter are prominent in this area dur-
ing fall and spring (Neuper, 2009). From the corrected data
we constructed a pseudo PPI (plan position indicator) data
set at 1500 m above ground and, to make the data compara-
ble to and combinable with all of the other data used, we took
hourly averages.

2.3.3 MRR data

We also used drop size spectra measured at 1500 and 100 m
above ground by two vertical pointing K-band METEK mi-
cro rain radars (MRR) (Löffler-Mang et al., 1999; Peters
et al., 2002) located at the Useldange and Petit-Nobressart
sites (Fig. 2). We operated the MRRs at 100 vertical me-
ters and a 10 s temporal resolution, but for reasons of stor-
age and processing efficiency did all further processing on
1 min aggregations thereof. The raw Doppler spectra were
transformed to drop size distributions via the drop size–fall
velocity relation given in Atlas et al. (1973). From the drop
size distributions the rain rate and the reflectivity were cal-
culated using the 3.67th and the 6th statistical moments of
the drop size distributions (as in Doviak and Zrnic, 1993; Ul-
brich and Atlas, 1998; Zhang et al., 2001). In doing so, we
assumed the vertical velocity of the air to be negligible, al-

though this may sometimes play a significant role (Dotzek
and Beheng, 2001). Furthermore, the intensity of the electro-
magnetic waves of the MRR is attenuated on the propagation
path by different processes. Due to the short wavelength, the
attenuation by water vapor is relatively strong. This process
is neglected in this study. Attenuation due to rain can also
be significant, especially at moderate and higher rain rates,
if higher altitudes (with a long beam propagation path) are
considered. Without considering the attenuation by rain, a
height dependent underestimation of the rain rates would be
retrieved. Therefore, we corrected for attenuation assuming
liquid rain by applying a stepwise path-integrated rain atten-
uation following the manufacturer indications. As previously
undertaken, we converted the data to 1 h values by averaging
(reflectivity) and summation (rain sum).

2.3.4 Disdrometer data

We also deployed six second-generation OTT particle size
and velocity (Parsivel2, Löffler-Mang and Joss, 2000) optical
disdrometers in the study area to measure drop size distribu-
tions at ground level (Fig. 2) at a 1 min resolution. Two were
located at the same sites as the MRRs (Useldange and Petit-
Nobressart); the others were placed such as to both capture
the hydroclimatic variations in the study area and to cover
it as uniformly as possible. We applied a quality control to
the raw data as described by Friedrich et al. (2013a, b), con-
verted the filtered data to drop size concentrations per unit
air volume to make them comparable to the weather radar
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Table 1. Summary of the raw data used in the experiments: description, summary statistics and binning.

Symbol Unit Value rangea Binningb Description

RR0 (mm h−1) [0, 86.98] [+] 18 Rain rate at ground level, measured at eight sites by
disdrometers and rain gauges

dBZ1500Rad (dBZ) [−99, 56.28] [++] 18 Decibel of reflectivity, measured 1500 m above
ground at eight sites by weather radar

dBZ1500MRR (dBZ) [−99, 56.28] [++] 18 Decibel of reflectivity, measured 1500 m above
ground at two sites by MRR

dBZ100MRR (dBZ) [−99, 56.28] [++] 18 Decibel of reflectivity, measured 100 m above
ground at two sites by MRR

dBZ0Dis (dBZ) [−99, 56.28] [++] 18 Decibel of reflectivity, measured at ground
level at six sites by disdrometer

logCAPE (log J kg−1) [0, 11.3] [0 : 1 : 12] 13 Logarithm of the surface based convective
available potential energy (CAPE)

GWLo (–) [1, 40] [1 : 1 : 40] 40 Circulation pattern according to German
Weather Service objective classification

TA2 (◦C) [−15.2, 36.4] [−20 : 5 : 40] 13 Air temperature, measured 2 m above ground at
Useldange station

RH2 (%) [18.1, 100] [0 : 10 : 100] 11 Air relative humidity, measured at 2 m above
ground at Useldange station

U10, V10 (m s−1) [−13.7, 19.1] [−14 : 2 : 20] 18 Wind velocity in the east–west (u) and north–south
(v) directions, measured 10 m above ground at
Useldange station

ToY (–) [1, 36] [1 : 1 : 36] 36 Tenner-day (period of 10 consecutive days) of the year

MoY (–) [1, 12] [1 : 1 : 12] 12 Month of the year

Statnum (–) [1, 8] [1 : 1 : 8] 8 Station numberc

a [min, max]; b [center of first bin, uniform bin width, center of last bin] number of bins; c 1: Ell, 2: Hostert–Folschette, 3: Oberpallen, 4: Petit-Nobressart, 5: Post,
6: Useldange, 7: Reichlange, 8: Roodt; + irregular binning with edges [−0.1 0.19 1 2 4 6 8 10 15 20 25 30 40 50 60 70 90 110 130]; ++ irregular binning with edges
[−100 11.5 23 27.8 32.6 35.5 37.5 39 41.8 43.8 45.4 46.6 48.6 50.2 51.5 52.5 54.3 55.7 56.8].

and MRR data, converted them to reflectivity and rain rate
using the 3.67th and 6th statistical moments of the drop size
distributions and finally took 1 h averages and sums thereof.

2.3.5 Rain gauge data

Next to the rain rate retrieved from the disdrometer data,
we also used additional observations from standard tipping-
bucket rain gauges at the Useldange, Roodt and Reichlange
sites (Fig. 2). Quality-controlled rain gauge data from Usel-
dange and Roodt were provided by the Administration des
services techniques de l’agriculture (ASTA), which operates
a nationwide network of surface weather stations for agricul-
tural guidance. Raw rain gauge data at Reichlange were pro-
vided by the Hydrometry Service Luxembourg. We applied
plausibility checks to all of these data, eliminated question-
able data, cases with solid precipitation (based on the output

of the hydrometeor classification algorithm of the disdrome-
ters) and finally took 1 h sums.

2.3.6 Additional predictors

In addition to direct observations of precipitation and drop
size spectra, we collected a number of operationally available
data to test their value as additional predictors for QPE. We
selected standard meteorological in situ observations such
as 2 m temperature, relative humidity, zonal and meridional
wind speeds, season indicators such as month and tenner-
day of the year as well as synoptic indices such as convective
available potential energy (CAPE) and classified circulation
pattern. The latter two are operationally provided by the Ger-
man Weather Service. All predictors are listed in Table 1.

The in situ observations were taken from ASTA station
Useldange (Fig. 2), and like all other observations underwent
additional quality filtering and 1 h aggregation. The CAPE
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values are based on rawinsonde data obtained from Idar-
Oberstein station (WMO-ID: 10618) located about 90 km
east of the study area with a temporal resolution of 6h.
The soundings were downloaded from the University of
Wyoming home page (see data availability) and checked for
contamination by convection as described in Bunkers et al.
(2006). The CAPE values were calculated as surface-based
CAPE using the virtual temperature (Vasquez, 2017). Select-
ing CAPE as a descriptor for raindrop size distribution fol-
lowed the reasoning that updraft strength has an influence
on the size of the raindrops (Seifert and Beheng, 2006). We
used a base-10 logarithmic transform of CAPE to assure high
resolution at lower CAPE values in addition to the sufficient
population of the higher classes.

With respect to classified circulation patterns, the German
Weather Service provides a daily objective classification of
the prevailing circulation pattern over Europe into one of
40 classes (Dittmann et al., 1995). It is based on numerical
weather analysis from one of the operational forecast models
of the German Weather Service at 12:00 UTC and consid-
ers wind direction, cyclonality (high- or low-pressure influ-
ence) and atmospheric humidity. Selecting the circulation as
a predictor was based on the perception that it should contain
information about both the prevailing precipitation process
(stratiform or convective) and the presence and origin of air
masses, which could influence drop size spectra due to the
presence or absence of characteristic cloud condensation nu-
clei and ice nucleation nuclei.

2.3.7 Binning choices

Using all of these data in the methods as described in
Sect. 2.2 requires binning. Our general binning strategy was
to cover the entire data range, divide it into as few bins as
possible to keep bin populations high, but at the same time
use enough bins to resolve the shape of the data distributions.
We used uniform binning whenever possible, but for strongly
skewed data such as reflectivity and rain rate we applied ir-
regular binning. For the latter, we defined the edges of the
first bin so as to cover the range from the smallest possi-
ble value (0 mm) and 0.2 mm, which is the detection limit of
most tipping-bucket rain collectors. Therefore, this bin essen-
tially covers all cases of nonzero but irrelevant rain. For the
last bin, we set the upper edge so that it still covered rainfall
based on the largest observed reflectivity value transformed
to rain rate by the standard Marshall–Palmer Z–R relation
(Z = 200R1.6), which was 119.9 mm h−1. For the bins in be-
tween, we increased the bin width with rain rate (see footnote
to Table 1) to acknowledge both the increasing uncertainty
and sparsity of high-rainfall observations. With the binning
for rain rate fixed, we applied the Marshall–Palmer relation
in reverse to get the corresponding bin edges for reflectivity.

2.3.8 Data filter

Rainfall is an intermittent process, and quite expectedly most
of our 4-year series contained zeroes for rainfall. If we had
used this complete data set for analysis, the results would
have been dominated by these dry cases; however, these
cases were not what we were interested in. Therefore, we ap-
plied a data filter to select only the hydro-meteorologically
relevant cases with measurements from all available stations
and at least two rain gauges showing rainfall≥ 0.5 mm h−1.
Additionally, cases with solid precipitation were excluded
using the output from the disdrometers’ present weather sen-
sor software. In total, 11 984 data sets passed this “minimum
precipitation” filter, which amounts to almost 17 months of
hourly data.

In Fig. 3, for the filtered data binned probability distribu-
tions of the most important variables are shown.

3 Results and discussion

3.1 Experiment 1: information in various predictors

In this experiment we explore the information content re-
garding ground rainfall R in various predictors (see Ta-
ble 1). We selected the predictors with the constraint that they
are operationally available at any potential point of interest,
which applies most importantly to reflectivity measured by
weather radar, but also to the predictors we assumed to be
spatially invariant within the test domain: convective avail-
able potential energy (as surface based CAPE), circulation
pattern, air temperature and humidity, wind, and season. We
excluded reflectivity measurements by MRR and disdrome-
ter, as these are usually only available at a few locations.

We used ground rainfall observations from the eight rain
gauges in the test domain as target data, filtered the raw data
with the “minimum precipitation” filter and created mod-
els using various predictor combinations. We measured the
usefulness of the predictors with entropy and conditional en-
tropy (Eqs. 2 and 3). The results are shown in Table 2.

There are two upper benchmarks we can use to compare
the different QPE models against: unconditional entropy if
we know nothing but the binning of the target and use a uni-
form (maximum entropy) distribution for prediction (case 1
in Table 2), and the unconditional entropy of the observed
distribution of the target (case 2 in Table 2), which we used
as a reference here. The difference between the two is con-
siderable (119 %), which means that merely knowing the true
distribution of RR0 is already a valuable source of informa-
tion.

The next important source of information is radar reflec-
tivities: if we use it as a single predictor (case 3), uncertainty
is reduced by 0.28 bit or 15.3 % compared with RR0. Note
that this approach directly applies the reflectivity data pro-
vided by the radar, no side information was added nor ex-
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Figure 3. Discrete probability distributions of the most important variables used in the experiments (filtered data set). The description of
variables and binning can be found in Table 1. The x axes for rain rate and reflectivity are truncated on the right to avoid displaying empty
bins.

Table 2. Entropy of the target (RR0) and the benchmark distribution
(RR0 uniform), conditional entropies of the target given one or sev-
eral predictors, non-normalized and normalized. Underlying data
are from the filtered data set. Predictors are ordered by descending
conditional entropy.

Case Predictor(s) (Conditional) Relativec

entropy (conditional)
H(X), H(X|Y ) entropy
(bit) (%)

1 RR0 uniform 4.17a 219
2 RR0 1.90b 100
3 dBZ1500Rad 1.61 84.7
4 dBZ1500Rad, RH2 1.57 82.6
5 dBZ1500Rad, U10 1.57 82.6
6 dBZ1500Rad, V10 1.57 82.6
7 dBZ1500Rad, TA2 1.55 81.6
8 dBZ1500Rad, logCAPE 1.55 81.6
9 dBZ1500Rad, MoY 1.54 81.1
10 dBZ1500Rad, GWLo 1.52 80
11 dBZ1500Rad, ToY 1.47 77.4
12 dBZ1500Rad, MoY, GWLo 1.30 68.4
13 dBZ1500Rad, ToY, GWLo 1.19 62.6

a Unconditional entropy of the benchmark uniform distribution; b Unconditional entropy of the
target; c H (RR0|predictor(s))/H (RR0) · 100.

isting information in the data destroyed by applying an ad-
ditional Z–R relation. This result shows, on the one hand,
that radar reflectivity is one of the most important sources of
information. On the other hand – as the reduction in uncer-
tainty is quite low when RR0 is conditioned by dBZ1500Rad
– the high variability in the Z–R relationship limits entropy

reduction. The may be due in part to the effects of the vertical
profile of reflectivity and attenuation at high rain rates.

Using each of the other predictors separately did not re-
duce uncertainty much (not shown); therefore, we only show
results for the cases where they were applied as two-predictor
models in combination with radar reflectivity (cases 4 to 11).
If we compare the relative conditional entropies of their pre-
dictions to those of the radar-only model, we can see that nei-
ther the ground meteorological observations nor CAPE con-
tained much additional information (cases 4 to 8). Instead,
the three most informative models (cases 9 to 11) either dis-
tinguish the relation between R and Z by circulation pattern
or by season, which corresponds to the operational practice
of many weather services to use one Z–R relation for sum-
mer and one for winter.

Based on these results, we built and evaluated three-
predictor models only with combinations of these relatively
informative predictors (cases 12 and 13). The information
gain from using three predictors in combination is consid-
erable, and it reduced uncertainty to 68.4 % (case 12) and
62.6 % (case 13) compared with the “target-distribution-only
case” (case 2). The benefit of applying a season-dependent
and circulation-pattern-dependent relation between R and Z

also becomes obvious if we compare case 3 (the radar-only
model) with cases 12 and 13: in the first case, uncertainty is
reduced by 16.3 %, in the latter by 22.1 %.

An obvious conclusion from these findings would be to
build better models by simply adding more predictors, which
according to the information inequality equation (Eq. 4)
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Figure 4. Entropy of the unconditional target distribution (filtered data set, black line), entropy of the benchmark uniform distribution (filtered
data set, red line), cross entropies between conditional distributions of the target given one, two and three predictors of the filtered data set
and samples thereof (green, purple, yellow and dashed yellow lines, respectively). The “∧” symbol indicates a sample.

never hurts. In fact, when learning from limited data sets,
adding enough predictors will, in the end, result in perfect
models with zero predictive uncertainty. However, there is a
catch to this, which is known as overfitting: in order for a
model to be robust in the sense of “being only weakly sensi-
tive to the presence or absence of particular observations in
the learning data set” and “performing well not only within
the training data set, but also on data unseen during training”,
it must be supported by an adequate number of learning data,
and this number grows exponentially with the number of pre-
dictors included in the model. So instead of adding more pre-
dictors, we will explore the robustness of our models in the
next experiment.

3.2 Experiment 2: the effect of sample size

The data base and filter used here are identical to the previ-
ous experiment, so a set of 11 984 joint observations of the
target (rain rate at the ground) and predictors (radar reflec-
tivity, circulation pattern, tenner-day and month of the year)
were available. From these data we built and tested a to-
tal of four predictive models, as described in Experiment 1:
a one-predictor model applying radar reflectivity only, two
two-predictor models applying radar reflectivity and tenner-
day or month of the year, and a three-predictor model using
radar reflectivity, month of the year and circulation pattern.
The difference to Experiment 1 is that we now do not only
apply the entire data set but also randomly drawn samples
thereof to build the model (see Sect. 2.2 for an explanation
of the sampling strategy). Each model is then applied to and
evaluated against the full data set. In this case, total predic-

tive uncertainty is measured by cross entropy (Eq. 5), which
is the sum of conditional entropy of the target given the pre-
dictors for the full data set and Kullback–Leibler divergence
of the sample-based model and the model built from the full
data set (see Sect. 2.2).

The results are shown in Fig. 4 as a function of sample
size. As in Experiment 1, we included the benchmark uncer-
tainties for applying a maximum entropy model (red horizon-
tal line, case 1 in Table 2) and a zero-predictor model (black
horizontal line, case 2 in Table 2) to put the other models into
perspective.

On the right margin of Fig. 4, cross entropies are shown for
the case where the sample comprises the entire data set. In
this case, Kullback–Leibler divergence is zero, and total un-
certainty equals conditional entropy. This is the same situa-
tion as in Experiment 1, and the values correspond to those in
Table 2 for cases 3, 9, 10 and 12. The three-predictor model
(dashed yellow line) quite expectedly outperforms the two-
predictor models (solid purple and yellow lines), which in
turn outperform the one-predictor model (solid green line).
However, things look different if only samples are used for
learning. With respect to the one-predictor model, for very
small sample sizes close to zero, the information content of
the sample is close to zero; hence, the predictive uncertainty
is close to that of the ignorant maximum entropy model (red
line) and considerably higher than that of the zero-predictor
model. However, when increasing the size of the sample just
a little, its information content quickly rises and cross en-
tropy drops. In fact, when learning the relation between radar
reflectivity and ground rainfall from only about 2000 joint

Hydrol. Earth Syst. Sci., 23, 3711–3733, 2019 www.hydrol-earth-syst-sci.net/23/3711/2019/



M. Neuper and U. Ehret: Radar QPE using a data- and information-based approach 3723

observations, the model is almost identical to a model learned
from the full data set of 11 984 joint observations: Kullback–
Leibler divergence is almost zero and cross entropy is almost
as low as for the model built from the full data set. From this
we can conclude that the full data set contains considerable
redundancy, which in turn implies that we can build robust
one-predictor models from the available data.

We can interpret the lines in Fig. 4 as learning curves, or
more specifically they represent the information about the
target contained in samples of different sizes. If we now con-
sider the two two-predictor models and the three-predictor
model and compare them to the one-predictor model, we can
see that the more predictors we add, the slower the learning
rates become and the longer learning takes (the curve incli-
nations are lower for small sample sizes, but remain nonzero
for larger samples). For the two two-predictor models this
means that samples larger than about 8000 (about two-thirds
of the data set) are required before their total predictive un-
certainties fall below that of the one-predictor model. For the
three-predictor model, even samples larger than about 8500
are required, and the model interestingly continues to learn
even for very large sample sizes (the yellow dashed line is
still inclined, even for large samples).

The learning behavior of the models, which differs with
the number of predictors used, is a manifestation of the
“curse of dimensionality”, and visual examination of learn-
ing curves of different models as plotted in Fig. 4 allows
two choices: for a given sample size, we can choose the
best (least uncertain) model; for a given size data set, we
can choose the model with the best trade-off between per-
formance and robustness. For the latter choice, we can estab-
lish selection criteria such as “a model qualifies as robust if
it learns from at maximum of two-thirds of the available data
at least 95 % of what it can learn from the entire data set” and
then choose the best model satisfying this criterion. From the
models displayed here, according to our subjective choice,
the two-predictor model using a month-specific relation be-
tween radar reflectivity and ground rainfall provides the best
trade-off between performance and robustness.

3.3 Experiment 3: site-specific Z–R relations

In this experiment we investigate the information content in
spatial position by learning and applying site-specific rela-
tions between radar reflectivity and ground rain rate (in the
previous experiments we applied them in a spatially pooled
manner). We used data filtered with the “minimum precip-
itation” filter again, so a set of 11 984 joint observations of
ground rain rate and radar reflectivity were available. We in-
cluded spatial information by simply using the ID number of
each station (“Statnum” in Table 1) as an additional predic-
tor, which means that we built and applied relations between
reflectivity and rain rate at the ground specifically for each
station in the test domain (see Fig. 2). As in the previous ex-
periment, we evaluated the predictive performance of these

models as a function of sample size with cross entropy. The
results are shown in Fig. 5.

The red and black horizontal lines are the same as in Fig. 4
and (as previously) represent the benchmark unconditional
entropies of the target for a maximum entropy uniform dis-
tribution and the observed distribution. A green line was also
included in Fig. 4 and represents the conditional entropy
of the one-predictor model applying radar reflectivity only.
The brown line shows the performance of the two-predictor
model including the station ID. The overall pattern is similar
to Experiment 2: adding a predictor reduces the total uncer-
tainty if the full data set is used for learning (at the right
margin, the brown line lies below the green), but higher-
predictor models require more data for learning (the green
line descends more slowly and over a longer period than the
brown). Here, the two-predictor model outperforms the zero-
predictor model only for samples larger than 2200, and the
one-predictor model only for samples larger than 6500.

Overall, the information gain of using site-specific Z–R

relations is moderate (cross entropy of the radar-only model
for the full data set is 1.61 bit, whereas it is 1.55 bit for
the site-specific model) and lower than when distinguish-
ing Z–R relations according to time or circulation pattern
(cases 9, 10 and 11 in Table 2). This is not very surprising
if we consider the extent of the test domain: the largest dis-
tance between two stations is 9.5 km (between Oberpallen
and Useldange stations), and the largest elevation difference
is 182 m (between Reichlange and Roodt stations). Across
these relatively small distances, it appears reasonable that Z–
R relations do not differ substantially. However, this could
be different when working in larger domains or in domains
with hydro-meteorologically distinctly different subdomains,
such as lowlands and mountain areas or different climate
zones (as shown, for example, in Diem, 1968).

3.4 Experiment 4: the effect of functional compression

In this experiment we evaluate the effect of functional com-
pression by measuring the information loss when using a de-
terministic function to express the relation between radar re-
flectivity and ground rain rate instead of the empirical rela-
tion derived from the data. As before, we used all joint ob-
servations of radar reflectivity and ground rainfall passing the
“minimum precipitation” filter. Each data pair is shown as a
blue dot in Fig. 6, and we can see that a strong, positive and
nonlinear relation exists between them. We already made use
of this relation in Experiment 1 when we built a one-predictor
model using reflectivity to estimate ground rainfall. Compar-
ing cases 2 and 3 in Table 2 we can see that prior knowledge
of reflectivity indeed contains valuable information, reducing
total uncertainty by 15.3 % (100 % to 84.7 %).

Let us suppose we would not have been in the comfortable
situation of having joint observations of target and predictor
to construct a data-based model, or suppose it would take too
much storage or computational resources to either store or
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Figure 5. Entropy of the unconditional, target distribution (filtered data set, black line, same as in Fig. 4), entropy of the benchmark uniform
distribution (filtered data set, red line, same as in Fig. 4), cross entropies between conditional distributions of the target of the filtered data set
and samples thereof: one-predictor model applying dBZ1500Rad (green line, same as in Fig. 4), two-predictor model applying dBZ1500Rad
and station number (brown line). The “∧” symbol indicates a sample.

Figure 6. Relation between target RR0 and predictor dBZ1500Rad. Empirical relation as given by the filtered data set (blue dots). Deter-
ministic power-law relation according to Marshall and Palmer (1948) (red line); deterministic power-law relation with optimized parameters
a = 235 and b = 1.6 (black line).

apply such a model. In these cases, it could be reasonable to
approximate the “scattered” relation as contained in the data
either using a deterministic function gained from other data
or a deterministic function fitted to the data. In fact, this is
standard practice. Expressing a data relation by a function
drastically reduces storage space, is easy to apply and pre-

serves the overall relation among the data. However, what
we lose is information about the strength of that relation as
expressed by the scatter of the data. Instead, when applying
a deterministic function we claim that the predictive uncer-
tainty of the target is zero.
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Our aim here is to quantify the information loss associ-
ated with such deterministic functional compression. Apply-
ing a deterministic model is in principle no different than us-
ing a model learned from a subset of the data, as we did in
Experiment 2: we use an imperfect model, which results in
additional uncertainty which we can measure via Kullback–
Leibler divergence between the true data relation and the
model we apply (see Eq. 6). Total predictive uncertainty is
then measured by cross entropy (Eq. 5) as the sum of condi-
tional entropy (the uncertainty due to incomplete information
of the predictor about the target) and Kullback–Leibler diver-
gence (see Sect. 2.2).

For demonstration purposes we applied two typical deter-
ministic Z–R relations of the form Z = a ·Rb. The first is
the widely used Marshall–Palmer relation (mostly attributed
to Marshall and Palmer (1948) as, for example, in Battan
(1959b) and Sauvageot (1992); however, the origin of this
particular formula is unknown to the authors) with param-
eters a = 200 and b = 1.6. The Marshall–Palmer relation is
often used as a default model if no better options or local
data are available. For the second, we assumed the local re-
flectivity and rain rate observations to be available and used
them to optimize parameter a by minimizing the root mean
square error (RMSE) between the observed rain rate and the
modeled rain rate using reflectivity observations. Following
the recommendations by Hagen and Yuter (2003), we only
varied a and kept b constant at 1.6. In the end, the opti-
mized a = 235 was not far from its Marshall–Palmer pen-
dant and only reduced the RMSE slightly from 1.18 mm h−1

(Marshall–Palmer relation) to 1.17 mm h−1. Apparently, the
default Marshall–Palmer relation already nicely fit our data.
In Fig. 6, the two deterministic Z–R functions are plotted
using red (Marshall–Palmer) and black (optimized Z–R rela-
tion) lines. Both capture the overall shape of the empirical Z–
R relation quite well, except for high reflectivities where they
tend to underestimate the observed rain rates. Applying such
a deterministic Z–R relation to a given reflectivity observa-
tion is straightforward and yields a prediction of the related
rain rate. However, from such a single-valued prediction we
cannot infer the related predictive uncertainty, and the best
we can do is to additionally provide the model’s RMSE as a
proxy.

As described above, we additionally used our information-
based approach and calculated the conditional Kullback–
Leibler divergence between the predictive distributions given
by the empirical (perfect) and the deterministic (imperfect)
models for all available data. From Eq. (6) we see that when
comparing a reference distribution p to a model distribu-
tion q, a situation can occur where the latter is zero but the
former is not, which means that an event is contained in the
reference data that, according to the model, can never oc-
cur. In such a case the Kullback–Leibler divergence will be
infinite, branding the model as completely inadequate. How-
ever, this verdict may seem too strict, e.g., if the model shows
otherwise good agreement with reality, if we have reason to

believe that the mismatch only occurred from a lack of op-
portunity due to a small data set rather than due to a princi-
pal mismatch of model and reference or, as in our case, if we
know that we are using a deterministic approximation instead
of the real data relation. In such cases, infinite divergence can
be avoided by padding empty bins of the model distribution
with small but nonzero probabilities, which we did by ap-
plying the minimally invasive maximum entropy approach
suggested by Darscheid et al. (2018).

For our data, conditional Kullback–Leibler divergence for
the Marshall–Palmer model was 3.43 bit, and it was 2.69 bit
for the optimized model. Added to the conditional entropy
of the empirical Z–R relation, this resulted in total predic-
tive uncertainties of 5.04 and 4.30 bit, respectively. In terms
of relative contributions, this means that 68 % (Marshall–
Palmer) and 62.5 % (optimized model) of total uncertainty
are due to deterministic functional compression. This is quite
considerable, and even more so if we compare these results
to the two benchmark cases in Table 2 (cases 1 and 2):
even the default and safe-side model of applying a uniform
distribution (case 1) involves smaller predictive uncertainty
than the deterministic models. This seems counterintuitive
at first when recalling the good visual agreement of the em-
pirical and deterministic Z–R relations in Fig. 6. The rea-
son for such large Kullback–Leibler divergences is the rela-
tively high binning resolution for rain rate (Table 1) in com-
bination with the way Kullback–Leibler divergence is com-
puted: probability differences are calculated bin by bin and
irrespective of probabilities in neighboring bins. This means
that even a small over- or underestimation of a model, with
an offset of the main probability mass by just one bin com-
pared with observations can result in large divergence, which
can, in the end, even exceed that of a prudent model spread-
ing probability mass evenly over the data range. For the
data used in this experiment, we assume that the agreement
between deterministic model predictions and observations
would quickly increase when coarse-graining the binning.
This would be an interesting question to pursue in a future
study, but for now we restrict ourselves to the main conclu-
sion of this experiment: as long as learning about and appli-
cation of data relations is carried out in the same data set,
compression of probabilistic data relationships to determin-
istic functions will invariably increase uncertainty about the
target. However, for the forward case, i.e., cases where there
are no data available for learning but predictions are never-
theless required, application of robust deterministic relations
capturing the essential relation between available predictors
and the target is useful.

3.5 Experiment 5: information gains along the radar
path

In this experiment we explore how the information content
about ground rainfall in reflectivity observations is related to
the measurement position along a vertical profile above the

www.hydrol-earth-syst-sci.net/23/3711/2019/ Hydrol. Earth Syst. Sci., 23, 3711–3733, 2019



3726 M. Neuper and U. Ehret: Radar QPE using a data- and information-based approach

rain gauge, and how it is related to the measurement device.
To this end, we used data from two sites, Petit-Nobressart
and Useldange (see Fig. 2), where a range of reflectivity ob-
servations along a 1500 m vertical profile starting at ground
level was available: disdrometer observations of reflectivity
and rain rate at ground level, MRR reflectivity observations
at a 100 m resolution between 100 and 1500 m above ground,
and observations from C-band weather radar at 1500 m. With
the goal in mind of providing guidance for the layout of fu-
ture QPE sensor networks, we addressed the following ques-
tions: “are MRR observations at 1500 m more informative
than weather radar observations taken at the same height?”;
“how much information is gained if we use near-surface in-
stead of elevated MRR observations, thus omitting the influ-
ence of the vertical profile of reflectivity?”; and finally “how
much information is lost if we measure reflectivity instead of
rainfall at ground level?”.

In contrast to the previous experiments, we were restricted
to two (instead of eight) sites with MRR’s installed. This
made the application of the standard “minimum precipita-
tion” filter (see Sect. 2.3) inappropriate. Thus, instead of
filtering the raw data by at least two rain gauges showing
rainfall≥ 0.5 mm h−1, we now applied this threshold sep-
arately to each of the sites. At Petit-Nobressart a total of
1241 data tuples passed the filter, at Useldange 612 data tu-
ples passed the filter (Useldange began operation a year after
Petit-Nobressart).

As in Experiment 1, we used entropy and conditional en-
tropy to measure the information content of the available pre-
dictors and added the entropy of both a uniform and the ob-
served distribution of ground rainfall as benchmarks. The re-
sults are shown in Table 3. As the results for the two sta-
tions are similar, we mainly discuss Petit-Nobressart in the
following, moving from the remotest and presumably least
informative predictor to the closest.

Weather radar data, even if they are measured at distance
and at height contain considerable information about ground
rainfall: using them as predictors reduced uncertainty by
15.7 % (100 % to 84.3 %) compared with the benchmark en-
tropy of the target distribution (Table 3, cases 2 and 3). This
is comparable to the outcomes of Experiment 1 based on all
sites (15.3 %, Table 2, same cases). We expected MRR ob-
servations taken at the same site and elevation to be more
informative than their weather radar pendant, because the
MRR signal path, and with it the potential for signal cor-
ruption, is considerably shorter. However, this is not clearly
evident from the results: at Useldange the use of MRR in-
stead of weather radar data additionally reduced uncertainty
by only 2.4 % (84.4 % to 82.0 %, Table 3, cases 3 and 4), and
at Petit-Nobressart they were even less informative (86.0 %
instead of 84.4 %, Table 3, same cases). These results should
be interpreted with some care due to the relatively limited
data base; however, it seems safe to conclude that there is
no large difference in the information content of MRR and
weather radar observations taken at height.

So why go to the extra trouble of operating an MRR? The
advantages of this instrument are evident when moving down
to elevations inaccessible by weather radar. Changes in drop
size distribution along the pathway of rainfall from cloud to
ground can be considerable, and the closer to the ground the
observation is taken the stronger its relation to ground rain-
fall: using MRR data from the lowermost bin (≤ 100 m above
ground) reduced uncertainty by 12.2 % compared with using
the uppermost bin (86.0 % to 73.8 %, Table 3, cases 4 and 5).
This emphasizes the importance of VPR correction when us-
ing weather radar data (Vignal et al., 1999, 2000). Based on
these results, an obvious next step would be to derive VPR
corrections from the two MRRs and investigate the informa-
tion gain when applied to other sites in the domain; however,
for the sake of brevity, we leave this for future studies.

Further information gains can be achieved when measur-
ing reflectivity directly at the ground: using the disdrometer
measurements further reduced uncertainty by 7.5 % (73.8 %
to 66.3 %, Table 3, cases 5 and 6), compared with the MRR
observations. This gain is not only due to using ground ob-
servations, which completely excludes any negative VPR ef-
fects, but also because predictor and target data were ob-
served at the same spot and by the same sensor. Seen from
this perspective, it is surprising that considerable uncertainty
still remains (66.3 % of the benchmark uncertainty, Table 3,
cases 6 and 2), which must be attributed to the ambiguous re-
lationship between radar reflectivity and rain rate due to the
natural variability of drop size distribution.

3.6 Experiment 6: QPE based on radar and rain gauge
data

In this final experiment we compare two methods of QPE,
radar-based and rain-gauge-based, and additionally explore
the benefits of jointly tapping both sources of information.
As we were not dependent on the availability of MRR data
as in the previous experiment, we could again make use of the
full eight-site set of observations filtered with the “minimum
precipitation” filter.

We used the same data-based approach of constructing
empirical dpd’s as a predictive model as in all previous ex-
periments; the only difference between the three tested QPE
models was the type of predictor used: for the radar-based
QPE, we used weather radar observations at 1500 m above
ground in a one-predictor model to predict ground rainfall at
the same site. This is the same approach that we applied in
Experiment 1. For the rain-gauge-based QPE, we built a one-
predictor model based on a straightforward approach com-
parable to leave-one-out cross validation: each of the eight
available stations (see Fig. 2 and Table 1) was once used as
a target station, and observations from each of the remaining
seven stations were used separately as predictors. This way
we could calculate the information content in the predictor
as a function of the distance between stations. Eight stations
render a total of 56 unique station pairings; for our stations,
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Table 3. Entropy of the target (RR0) and the benchmark distribution (RR0 uniform), conditional entropies of the target given various
predictors along the radar path, non-normalized and normalized, for Petit-Nobressart and Useldange, respectively. Underlying data are from
the filtered data set. Predictors are ordered by decreasing distance to the target.

Case Predictor(s) Location Petit-Nobressart Location Useldange

(Conditional) Relativec (Conditional) Relativec

entropy (conditional) entropy (conditional)
H(X), H(X|Y ) entropy H(X), H(X|Y ) entropy
(bit) (%) (bit) (%)

1 RR0 uniform 4.17a 242 4.17a 250
2 RR0 1.72b 100 1.67b 100
3 dBZ1500Rad 1.45 84.3 1.41 84.4
4 dBZ1500MRR 1.48 86.0 1.37 82.0
5 dBZ100MRR 1.27 73.8 1.30 77.8
6 dBZ0Dis 1.14 66.3 1.14 68.3

a Unconditional entropy of the benchmark uniform distribution; b Unconditional entropy of the target;
c H (RR0|predictor)/(RR0) · 100.

the minimum, average and maximum distances were 1.9, 7.2
and 15.3 km, respectively. For later plotting, we binned the
results in seven distance classes with a respective 2 km width
and took averages within each bin. This is comparable to us-
ing range bins when calculating a semivariogram.

For the joint QPE model we extended the approach used
for rain gauge interpolation to a two-predictor model: again
each of the eight available stations was used once as a tar-
get station; however, in this case, not only were observations
from each of the respective remaining stations used as pre-
dictors, but radar observations measured at height above the
target station were also applied. This is a typical approach
when merging radar and rain gauge data for QPE: we use
data from rain gauges observed at a horizontal distance from
the target, and radar data observed at a vertical distance from
the target.

As we built and compared models with different numbers
of predictors in this experiment, and as the models for each
particular target station were built from a subset of the data
only, it could be worthwhile exploring the additional uncer-
tainty due to the effect of sample size here as in experiments 2
and 3. However, for this particular experiment we found it
more useful for the reader (and us) to discuss results as a
function of the distance between stations, as it provides a
link to the large body of literature on spatial rainfall structure
analysis and station-based rainfall interpolation. The results
are shown in Fig. 7.

Just as in Figs. 4 and 5, we included the benchmark un-
conditional entropies of the target for a maximum entropy
uniform distribution (red line) and the observed distribution
of all stations combined (black line) to put the results into
perspective. As the radar-only model (green line) is indepen-
dent of any interpolation distance, simply because it does not
make use of any station data, it plots as a horizontal line. Its
conditional entropy (1.61 bit) corresponds to the right-hand

(full-size sample) value of the green line in Fig. 4, and to
case 3 in Table 2.

However, for the QPE model based on rain gauge obser-
vations (light blue line), the interpolation distance does play
a role: as is to be expected, the smaller the distance between
the target and the predictor station, the higher the informa-
tion content of the predictor and the smaller the conditional
entropy, i.e., the blue line rises from left to right. For short
distances between 2 and 4 km, conditional entropy is 1.34 bit,
which is lower than for the radar-only QPE. If we take the un-
conditional entropy of the target again as a reference as in Ex-
periment 1 (Table 1, case 2), station-only QPE for short dis-
tances reduces uncertainty to 70.5 %, and radar-only reduces
uncertainty to 84.7 %. For long distances, however, this order
is reversed, and station-only QPE only reduces uncertainty to
1.69 bit or 88.9 % of the reference. The break-even point at
which both methods perform equally well lies at a station
distance of about 8 km. This means that if we were asked to
choose one of the two models for QPE, the best choice would
be to use station interpolation for all targets within less than
about 8 km from the nearest station, and radar-QPE for all
others.

The above results indicate that each of the two QPE meth-
ods has its particular strengths. In other words they add
nonredundant information; therefore, we can expect some
benefits when joining them in a two-predictor model. This
is indeed the case if we take a look at the related conditional
entropies plotted as the pink line in Fig. 7. While it resem-
bles the plot of the station-only model in overall shape and
trend, it is shifted downward: conditional entropy for short
distances is now reduced to only 1.18 bit (62.1 % of the ref-
erence), and even for the longest distances (1.41 bit= 74.2 %
of the reference) it is still smaller than both the station-
only and the radar-only values. Interestingly, in the com-
bined model the radar observations add information – even
for small station distances. We assume that this can be at-
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Figure 7. Entropy of the unconditional, target distribution (filtered data set, black line, same as in Fig. 4); entropy of the benchmark uniform
distribution (filtered data set, red line, same as in Fig. 4); conditional entropy of the target given reflectivity as predictor (green line);
conditional entropy of the target given station rain rate observations as a function of interpolation distance (light blue line); and conditional
entropy of the target given reflectivity and rain rate at stations as a predictor as a function of interpolation distance (pink line). Underlying
data are from the filtered data set.

tributed to convective rainfall situations, where strong spa-
tial rainfall heterogeneity occurs, unresolvable even by rain
gauges only a few kilometers apart.

In Experiment 1 we also built and tested two-predictor
models. The best among them, using radar data and tenner-
days of the year for predictors (Table 1, case 11), reduced
conditional entropy to 77.4 % of the reference. While this is
a considerable improvement, it is surpassed by the radar–rain
gauge model even for the largest station distance. Obviously,
ground rainfall and radar observations contain nonredundant
information which, when used together, have a large poten-
tial to improve QPE.

4 Summary and conclusions

Reliable QPE is an important prerequisite for many hydrom-
eteorological design and management purposes. In this con-
text we pursued two aims with this paper: the first was to
suggest and demonstrate a probabilistic framework based on
concepts of information theory, in which predictive relations
are expressed by empirical discrete probability distributions
directly derived from data. The framework allows for the
integration of any kind of data deemed useful and explic-
itly acknowledges the uncertain nature of QPE. The second
aim was to investigate the information gains and losses as-

sociated with various data and practices typically applied in
QPE. For this purpose we conducted a total of six experi-
ments using a comprehensive set of data comprising 4 years
of hourly aggregated observations from weather radar, ver-
tical radar (MRR), disdrometers, rain gauges and a range
of operationally available hydrometeorological observables,
such as large-scale circulation patterns, ground meteorologi-
cal variables and season indicators.

In Experiment 1, we measured the information on ground
rainfall contained in various operationally available predic-
tors with entropy and conditional entropy. Weather radar
proved to be the single-most important source of informa-
tion, which could be further improved by distinguishing Z–R

relationships by season and prevailing circulation pattern.
In Experiment 2, we tested the robustness of QPE mod-

els developed in the previous experiment by measuring the
additional uncertainty due to limited learning data with
Kullback–Leibler divergence and cross entropy. The main
lesson learned here was that this added uncertainty is
strongly dependent on the number of predictors used in
the model, and that for unfavorable constellations (multiple-
predictor models learning from small samples) this effect
quickly dominates total uncertainty: this is the well-known
“curse of dimensionality”. For the data set used in this study,
we found a two-predictor model using a month-specific rela-
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tion between radar reflectivity and ground rainfall to provide
the best trade-off between performance and robustness.

In Experiment 3, we examined the degree to which the em-
pirical Z–R relationship in the test domain varies in space,
and the data set sizes that are required to support the use
of site-specific Z–R relations. Overall, the information gain
of site-specific Z–R relations was smaller than when distin-
guishing them according to season or circulation pattern as
we did in the previous experiments. Moreover, applying site-
specific Z–R relations instead of a single, site-independent
relation means adding another predictor to the QPE model,
which in turn mean that we increase the curse of dimen-
sionality. In fact, more than half of the available data had
to be used for learning the site-specific model before the ad-
ditional effort paid off. The conclusion here was to stick to a
site-independent relation, which also seems reasonable from
a meteorological point of view due to the relatively small ex-
tent of the test domain (288 km2).

In Experiment 4, we evaluated the effect of functional
compression, i.e., the information loss when replacing the
data-inherent probabilistic relationship between reflectivity
and rain rate by a deterministic functional approximation. We
measured the additional uncertainty with Kullback–Leibler
divergence, which adds to the uncertainty caused by the
incomplete information of the predictor regarding the tar-
get measured by conditional entropy. We used two standard
power-law Z–R relations: the well-known Marshall–Palmer
relation, and a modified version thereof with optimized func-
tion parameters. For both, the added uncertainty was of the
order of 60 % of total uncertainty. While these numbers
may vary with the chosen binning resolution, compression
of probabilistic data relationships to deterministic functions
will invariably increase uncertainty as long as learning and
application of data relations is carried out on the same data
set.

In Experiment 5, we investigated information gains along
the radar path using weather radar, MRR and disdrome-
ter data from two sites. The main insights here were that
the information content of radar reflectivity measured at
height (1500 m above ground) does not differ much between
weather radar and MRR, but considerable additional infor-
mation is gained by using observations from lower eleva-
tions (100 m above ground), thereby avoiding information
losses due to changes in drop size spectra along the pathway
of precipitation from cloud to ground. This emphasizes both
the importance of VPR corrections for accurate QPE and of
the required MRR observations. Despite these information
gains, considerable uncertainty remained even when using
as predictor reflectivity observations taken at the same spot
and by the same device (disdrometer) as the target variable
(rain rate) itself. This indicates a somewhat ambiguous rela-
tionship between radar reflectivity and rain rate as measured
by the disdrometer, which could potentially be sharpened by
taking the precipitation type into account.

In the last experiment, Experiment 6, we built QPE mod-
els based on radar data only, rain gauge data only and a com-
bination thereof and evaluated their information content as
a function of the distance between the target and predictor
rain gauge. Comparing the first two revealed that a separa-
tion distance of ∼ 8 km marks a transition: for shorter dis-
tances, gauge-based QPE is superior, for longer distances
radar-based QPE is more appropriate. Combining the two in
a two-predictor QPE model, however, not only outperformed
both of them for all separation distances, but also rivaled
radar-based two-predictor models applying season or circu-
lation pattern. For rain gauge networks comparable in cover-
age and density to the one used in this study, rain gauge and
radar data apparently contain useful, nonredundant informa-
tion which should be jointly exploited.

We would like to emphasize that the results from these
experiments are partly contingent on the choice of the data
filter: the “minimum precipitation” (at least two rain gauges
with rainfall≥ 0.5 mm h−1) filter we applied excluded all
cases where rainfall occurred at only a single station, and it
also excluded all cases of widespread but very low-intensity
rain.

Quantitative statements about the information content of
particular predictors or the relative performance of compet-
ing QPE models may differ according to these user choices.
However, we would like to point out that all of the differ-
ent experiments in this study could be formulated, conducted
and evaluated in a single framework and relied on a sin-
gle property – information. Therefore, it is not so much the
particular results we want to emphasize here, but rather the
probabilistic, data- and information-based framework we ap-
plied. By its probabilistic concept, it explicitly acknowledges
the uncertain nature of QPE, and by expressing probabil-
ities in terms of information, it facilitates both interpreta-
tion and computation. In this framework, predictive relation-
ships are directly derived from data and are expressed as dis-
crete probability distributions. The advantage of this is that
this avoids the introduction of unwanted side information as
much as possible, e.g., by parametric choices, and it avoids
the deletion of existing information, e.g., by data transforma-
tion or lossy compression. Altogether, this facilitates tracking
sources and sinks of information. However, these advantages
come at a price: learning robust data-based relations requires
a considerable amount of available target and predictor data,
and applying them for predictions is computationally more
expensive than using deterministic functions.

Code and data availability. The reflectivity and rain rate data mea-
sured by the six disdrometers and two MRRs are published by the
GFZ data service repository (Neuper and Ehret, 2018). The rain
gauge data from Roodt station and the rain gauge data, the 2 m tem-
perature data, the relative humidity and the wind data from Usel-
dange station are publicly available from the Administration des ser-
vices techniques de l’agriculture ASTA at http://www.agrimeteo.lu/
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(last access: 4 December 2018). The rain gauge data from the Reich-
lange station were provided upon request by the Hydrometry Ser-
vice Luxembourg (https://www.inondations.lu/; last access: 4 De-
cember 2018). The sounding data from which CAPE were calcu-
lated are publicly available from the University of Wyoming at http:
//weather.uwyo.edu/upperair/sounding.html (last access: 4 Decem-
ber 2018). The data of the objective classification of the prevailing
circulation pattern over Europe model are publicly available from
the German Weather Service at https://www.dwd.de/DE/leistungen/
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