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Abstract: Chronic kidney disease (CKD) affects 13% of the
worldwide population and end stage patients often receive
haemodialysis treatment to control the electrolyte concentra-
tions. The cardiovascular death rate increases by 10% - 30%
in dialysis patients than in general population. To analyse pos-
sible links between electrolyte concentration variation and car-
diovascular diseases, a continuous non-invasive monitoring
tool enabling the estimation of potassium and calcium con-
centration from features of the ECG is desired. Although the
ECG was shown capable of being used for this purpose, the
method still needs improvement. In this study, we examine the
influence of lead reduction techniques on the estimation re-
sults of serum calcium and potassium concentrations. We used
simulated 12 lead ECG signals obtained using an adapted Hi-
meno et al. model. Aiming at a precise estimation of the elec-
trolyte concentrations, we compared the estimation based on
standard ECG leads with the estimation using linearly trans-
formed fusion signals. The transformed signals were extracted
from two lead reduction techniques: principle component anal-
ysis (PCA) and maximum amplitude transformation (Max-
Amp). Five features describing the electrolyte changes were
calculated from the signals. To reconstruct the ionic concen-
trations, we applied a first and a third order polynomial re-
gression connecting the calculated features and concentration
values. Furthermore, we added 30 dB white Gaussian noise to
the ECGs to imitate clinically measured signals. For the noise-
free case, the smallest estimation error was achieved with a
specific single lead from the standard 12 lead ECG. For ex-
ample, for a first order polynomial regression, the error was
0.0003±0.0767 mmol/l (mean±standard deviation) for potas-
sium and -0.0036±0.1710 mmol/l for calcium (Wilson lead
V1). For the noisy case, the PCA signal showed the best es-
timation performance with an error of -0.003±0.2005 mmol/l
for potassium and -0.0002±0.2040 mmol/l for calcium (both
first order fit). Our results show that PCA as ECG lead reduc-
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tion technique is more robust against noise than MaxAmp and
standard ECG leads for ionic concentration reconstruction.
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1 Introduction

Chronic kidney disease (CKD) patients at end stages often
undergo haemodialysis treatments to counterbalance the elec-
trolyte disbalance. Unexpectedly, the principal mortality cause
for CKD patients is sudden cardiac death. The risk of cardiac
mortality is 10 to 30 times higher in CKD patients than in
non-CKD patients [1]. Recent studies have shown the relation-
ship between the extracellular potassium ([K+]o), and calcium
([Ca2+]o) concentrations and the pathophysiology of sudden
cardiac death [2]. Due to this connection, ECG has been pro-
posed as a non-invasive method to determine the blood serum
electrolyte concentrations. A reduction of the information of
a 12 lead ECG to a set of most discriminating input data is
desired. In 2011, Corsi et al. [3] used a PCA transform of clin-
ical ECG signals for this purpose. Other works in this field [4]
used a lead transformation in the direction of the highest am-
plitude (MaxAmp) for lead reduction. A comparison between
the mentioned lead reduction techniques (PCA and MaxAmp)
is still lacking. Furthermore, no studies comparing lead trans-
forms and standard leads for the regression are known to the
authors of this work. Additionally, different regression meth-
ods, such as neuronal networks or polynomial fit can be ap-
plied for the same purpose. The ECG as an electrolyte and a
cardiac event predictor is a promising tool, which has shown
results with a standard deviation smaller than 0.2 mmol/l for
[Ca2+]o and 0.4 mmol/l for [K+]o. However, many parameters
and techniques still have to be optimized to obtain a robust and
precise tool for electrolyte estimation. In this study, we com-
pare the concentration estimation results based on simulated
signals from ECG lead reduction techniques (PCA and Max-
Amp) and the results from single lead reconstruction from the
12 lead ECG. We performed an evaluation for both noisy and
noise-free cases. Moreover, we applied polynomial regression
with a first and a third order polynomial fit to investigate on the
influence of the lead reduction techniques on those two regres-
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Fig. 1: Two exemplary simulated ventricular ECG signals at differ-
ent [Ca2+]o levels corrupted by 30dB white Gaussian noise (lead
Einthoven 1).

sion methods. This allowed us to appraise which combination
is adequate for our objective of estimating [Ca2+]o and [K+]o.

2 Methods

2.1 Simulations

80 computer simulations of the cardiac electrophysiology at
ventricular level were performed. The heterogeneous formula-
tion from the Himeno et al. [5] model proposed by Loewe et
al. [6] was used. In the original formulation [K+]o was set to
4.5 mmol/l and [Ca2+]o to 1.8 mmol/l. In this study, we varied
the ionic concentrations in equally distributed steps as in a for-
mer study [4]. Further settings were applied as described there.
Since a ventricular cell model was used, no P wave was con-
tained in the extracted ECG signals. For a realistic simulation
of the pathophysiological cases, we added noise to the sim-
ulated signals. We added white Gaussian noise to the signals
achieving an SNR of 30 dB. As in clinically measured ECG
signals, we low-pass filtered the noise signals with a cut-off
frequency of 80 Hz using a butterworth 6th order phase free
filter. The low-pass filtered noise signals were added to each
setup of the ECG simulated signals. The generation of noise
signals was repeated 30 times per setup to augment the dataset
as described in [7]. This allowed us to augment the data set.
The addition of noise to the ECG signals and the influence of
[Ca2+]o on the ECG can be observed in Figure 1.

2.2 Lead reduction

For the ionic concentration estimation, features from ECG sig-
nals were extracted as described in [7]. The following features

were used for further steps: center of the T wave, amplitude
of the T wave, upslope of the T wave, ratio of energy of the
second half of the T wave to the energy of the whole T wave,
and R amplitude. Feature estimation was applied to signals
from three different combinations. The first combination was
a standard 12 lead ECG. Thus, the features from all 12 signals
were calculated. The second combination used MaxAmp as
ECG lead reduction technique. MaxAmp lead reduction was
applied in the direction of the QRS complex and in the direc-
tion of the T wave; i.e., 2 signals were calculated with this re-
duction method. Features related to changes in the QRS com-
plex were extracted from the MaxAmp signal that maximized
R peak amplitude and features regarding changes of the shape
and amplitude of the T wave were extracted from the MaxAmp
signal that maximized T wave amplitude. The third combina-
tion used the PCA as lead reduction technique. PCA was ap-
plied to the 8 linearly independent ECG leads. The QRS com-
plex generally has a higher amplitude than the T wave, thus
the first component of the PCA (PCA 1st) is higher influenced
by this part of the signal. Therefore, we also calculated the
second component of the PCA (PCA 2nd) and additionally the
PCA of the signal part containing the T wave (PCA T). There-
fore, the impact of both parts of the signal could be observed,
especially considering that changes of [Ca2+]o and [K+]o have
a dominant influence on the T wave [8]. Summarizing, features
were calculated for the 17 signals extracted from all combina-
tions (12 leads, 2 signals from MaxAmp and 3 signals from
the PCA technique).

2.3 Regression

Polynomial regression was chosen for reconstructing ionic
concentrations of [K+]o and [Ca2+]o from the feature values.
For the validation of the methods, 20-fold cross validation was
used. The grouping of the setups was the same for all input
setups and for all regression techniques. The estimation error
was determined and minimized for each partition data using a
Tikhonov regularization.

3 Results

Figure 2 and 3 show the results of applying different lead re-
ductions techniques to a standard 12 lead ECG and MaxAmp
respectively. For both analyzed ionic concentrations ([K+]o

and [Ca2+]o), estimation performance was evaluated by ana-
lyzing the mean error and the standard deviation of the errors.
Results are summarized in Tables 1 and 2. Table 1 shows the
estimation errors using a polynomial fit of first order as re-
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Fig. 2: Signals resulting from an information reduction of a stan-
dard ECG using PCA.
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Fig. 3: Signals resulting from an information reduction of a stan-
dard ECG using a MaxAmp transformation.

gression method, Table 2 using a third order polynomial fit.
The upper part of the table shows the results for the noise-free
case and the lower part for the noisy case. For the regression
using a standard 12 lead ECG without reduction techniques
the estimation error was calculated for each lead. The results
depict the lead with the smallest estimation error (best lead).
For noise-free signals and a first order polynomial regres-
sion, Wilson lead V1 showed the smallest standard deviation
and MaxAmp the highest standard deviation of the estima-
tion . When applying noise, the second component of the PCA
yielded the smallest standard deviation of errors. There are dis-
crepancies between the results using a first order and a third or-
der polynomial regression model. For a third order polynomial
regression, Wilson lead V1 and PCA T showed the smallest
standard deviation of errors for [K+]o and [Ca2+]o respectively
for the noise-free case; PCA T and PCA 2nd for the noisy case.
The highest standard deviation for the [K+]o estimation error
was obtained when using a PCA 1st as lead reduction tech-
nique for both the noisy and noise-free case for a third order
polynomial fit. For [Ca2+]o, the highest standard deviation of
errors ocurred when using MaxAmp for noise-free signals and

Tab. 1: Influence of different lead reduction techniques on a first
order regression. Estimation errors represent mean error ± stan-
dard deviation. The smallest and highest standard deviation of
errors per regression method are highlighted in green and red,
respectively.

noise-free [K+]o in mmol/l [Ca2+]o in mmol/l

PCA 1st -0.0072±0.2778 0.0034±0.2148
PCA 2nd -0.0054±0.1857 0.0038±0.2055
PCA T -0.0049±0.2152 0.0021±0.1938

MaxAmp -0.0004±0.3159 -0.0057±0.5379
V1/V1 (best lead) 0.0003±0.0767 -0.0036±0.1710

noisy [K+]o in mmol/l [Ca2+]o in mmol/l

PCA 1st -0.0001±0.9830 0.0001±0.7394
PCA 2nd -0.003±0.2005 -0.0002±0.2040
PCA T -0.0036±0.2376 -0.001±0.2128

MaxAmp -0.0019±0.3412 0.0099±0.6556
V2/V2 (best lead) -0.0003±0.8321 -0.0011±0.7482

Wilson lead V2 for noisy signals. Additionally we observed
that the standard deviation of error for a 12 lead standard ECG
increased more than for MaxAmp and PCA.

4 Discussion

Similar to the studies by Corsi et al. [2] and Pilia et al. [3]
the ionic concentration estimation errors showed an accept-
able range. The results underline that the estimation errors
highly depend on the regression method, the prevalence of
noise and the lead or lead reduction technique used. In both
regression methods, the estimation error of ECG lead regres-
sion with single leads of the ECG in noise-free signals showed
smaller standard deviation of the errors. Due to the results pre-
sented in the previous section, we consider that for noise-free
signals using a standard 12 lead ECG achieves better results
than using lead reduction techniques. We believe it is worth
to mention that except for [K+]o estimation with a first order
polynomial fit, MaxAmp showed the highest standard devia-
tion of errors for all combinations. When considering noisy
signals, the lowest standard deviation of error was achieved
for PCA 2nd or PCA T. The biggest standard deviation of er-
rors were obtained by either the first component of the PCA
or the single ECG lead estimation in both regression models.
Lead reduction techniques are apparently more robust against
noise than a standard 12 lead ECG as visible in Table 1 and
2. Thus, when working with noisy signals, a lead reduction
technique should be used. In this study, applying PCA 2nd or
a PCA T showed the best results. As electrolyte variation has
a higher impact on the T wave than on the QRS complex for
the evaluated features, we have shown with this study how im-
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Tab. 2: Influence of different lead reduction techniques on a third
order regression. Estimation errors represent mean error ± stan-
dard deviation. The smallest and highest standard deviation of
errors per regression method are highlighted in green and red,
respectively.

noise-free [K+]o in mmol/l [Ca2+]o in mmol/l

PCA 1st -0.0416±0.3591 0.0158±0.1465
PCA 2nd -0.0288±0.2733 0.0126±0.1251
PCA T -0.0112±0.1076 0.0025±0.0714

MaxAmp -0.0072±0.1579 0.0256±0.4659
V1/II (best lead) 0.0026±0.0663 0.0012±0.0747

noisy [K+]o in mmol/l [Ca2+]o in mmol/l

PCA 1st 0.0007±0.9863 0.0008±0.7445
PCA 2nd -0.01±0.1736 0.0011±0.0810
PCA T -0.0037±0.1579 -0.0005±0.1094

MaxAmp 0.0016±0.2734 -0.0084±0.6084
V2/V2 (best lead) 0.001±0.8339 -0.0012±0.7518

portant a lead reduction in the correct direction is. This can be
observed by comparing the results of PCA 1st with the results
of PCA 2nd and PCA T. We consider relevant to mention that
MaxAmp showed higher standard deviation of errors than the
errors obtained from using PCA 2nd and PCA T. Additionally,
we observed the smallest standard deviation of errors using a
third order polynomial fit instead of a first order polynomial fit.
Therefore, third order polynomial fit is a better suited regres-
sion method when aiming at a serum blood estimation of [K+]o

and [Ca2+]o using the ECG because non-linear behaviour be-
tween features and ionic concentrations can be better captured.
The following limitations should be taken into account regard-
ing this study. On the one hand, the evaluation of the influ-
ence of ECG lead reduction techniques has been carried out
for simulated signals. Although we added noise to the signals
to reproduce a more realistic scenario, the results using clinical
data may differ from the results presented here. We observed
that the estimation errors depend on the regression method
used. In this study, we have analyzed a first order and a third
order polynomial fit. However, when utilizing other regression
models like for example neuronal networks, the results may
vary. We evaluated the results of lead reduction as we suspect
that too many features can decrease the accuracy of the esti-
mation. However, we did not prove if the full information of
the 12-lead ECG would deliver better results.

5 Conclusions

In this work, we used simulated signals with the adapted Hi-
meno et al. model to study the influence of ECG lead reduction
techniques on ionic concentration estimation. Therefore, we

used 2 different regression methods and were able to show, that
the third order polynomial regression yielded smaller standard
deviation of estimation errors than a first order polynomial fit.
We showed that for the noise-free case, using single leads of
the ECG reached generally better results than using signals
obtained by lead reduction techniques like PCA or MaxAmp.
However, when adding noise to the signals, a lead reduction
using principal component analysis showed generally the best
results. This supports the promising idea of using ECG as a
non invasive method for [K+]o and [Ca2+]o estimation and the
subsequent prediction of cardiac events in CKD patients.
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