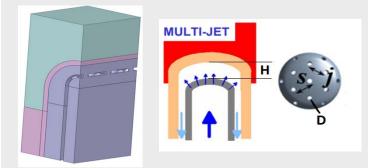


Institute for Neutron Physics and Reactor Technology (INR) P.O. Box 3640 D-76021 Karlsruhe, Germany www.ifrt.kit.edu

CFD Evaluation and optimization of the HEMJ Divertor cooling design

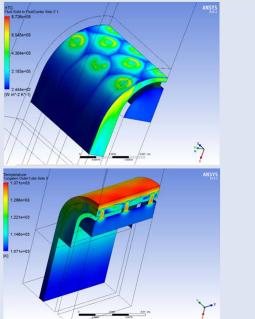
M. Zhao, B. Ghidersa, R. Stieglitz


1. Motivation and goal

- He-cooled divertor with multiple-jet cooling (HEMJ) is optional for EU-DEMO
- HEMJ must be able to accommodate at least 10 MW/m² during normal operation
- Evaluation and optimization of the heat transfer in HEMJ divertor cooling system
- CFD can optimize the cooling design and give a clear view of jet impinging

2.1 Parameters in simulation of HEMJ divertor

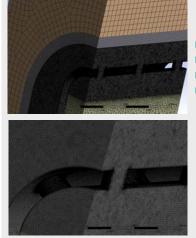
	Pressure	Mass flow	Inlet temperature	Target heat flux
	(MPa)	(g/s)	(C)	(MW/m²)
Helium Flow	10	3.35	500	10


2.2 Geometry and parameters of HEMJ divertor

Heat transfer is very sensitive to Jet Array Parameterization

- Projected row (s/D, j/D), jet-to-wall distance (H), jet diameter (D) are
- expected to be evaluated and optimized.
- In the present article, H/D was optimized

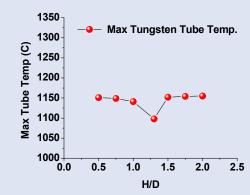
3. Evaluation of HEMJ Divertor cooling system


Max local HTC can reach to 872.6 kw/m².K at the projection center and max temperature of tungsten tube is 1371K.

Spent helium flow from the neighboring leads to cross flow between impinging jets

Outlooks

	Pressure	Mass flow	Inlet temperature	Target heat flux
	(MPa)	(g/s)	(C)	(MW/m²)
Helium Flow	10	3.35	500	10


2.3 Mesh and turbulent models

ANSYS V19.2 Meshing and CFX

- 3.8 Million Mesh in fluid center SST turbulent model
- y+ close to 1

Fluid & solid properties based on ITER material properties handbook

4. Optimization of HEMJ Divertor cooling design

H/D ratio strongly affects the local heat transfer

H/D=1.3 is the best cooling ability or the minimum surface temperature

5. Conclusions

Thermal-hydraulic studies of HEMJ divertor have been performed H/D was optimized and best cooling ability or the minimum surface temperature at H/D=1.3

- Max local HTC at the projection center and spent helium flow leads to strongly cross flow
- 1) Further works of optimizing jet arrangement, e.g. hexagonal versus in-line, equal jet diameter versus unequal nozzles 2) Comparison between experiment results and CFD simulations

14th International Symposium on **Fusion Nuclear Technology** (ISFNT-14)