
INSTITUTE FOR THEORETICAL INFORMATICS – APPLICATION-ORIENTED FORMAL VERIFICATION

KASTEL Industry 4.0 Demonstrator
Provably Forgetting Information in PLC software
Alexander Weigl | 10. Oct. 2019

KIT – The Research University in the Helmholtz Association

www.kit.edu

http://www.kit.edu

Orientation & Story

Motivation: IR 4.0
Industrial Systems becomes . . .

more connected.

more intelligent.

configurable.

more enriched with information.

more vulnerable.

a worthy target.

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 2/22

Orientation & Story

Motivation: IR 4.0
Industrial Systems becomes . . .

more connected.

more intelligent.

configurable.

more enriched with information.

more vulnerable.

a worthy target.

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 2/22

Orientation & Story

Constanze Kurz and Frank Rieger
Cyberwar – Die Gefahr aus dem Netz

also in LNP272: Alles zerfragen

Business Secrets are
confidential information of a company,
and protected by law.
Protection requires efforts by the owning
company to protect their data following
the state of the art.

KASTEL
Demonstrator is part of KASTEL SVI
(AP 4.6)

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 3/22

Orientation & Story

Constanze Kurz and Frank Rieger
Cyberwar – Die Gefahr aus dem Netz

also in LNP272: Alles zerfragen

Business Secrets are
confidential information of a company,
and protected by law.
Protection requires efforts by the owning
company to protect their data following
the state of the art.

KASTEL
Demonstrator is part of KASTEL SVI
(AP 4.6)

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 3/22

The KASTEL Demonstrator
What we demonstrate?

An approach to ensure that no Business Secrets are stored.

Demonstrator: Spinning Wheel
Availability of Hard- and Software

Already used as a Demonstrator

What we want to show:
The attacker does not learn the

number of turns by observing the
current state.

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 4/22

System & Attacker Model

Level 4: enterprise level

Level 3: company level

Level 2: process level

Level 1: control level

Level 1: field level

P
la

n

C
ol

le
ct

 D
at

a

Level 0: process level

ERP

MES

SCADA

PLC

Input-/Output signals

Manufacturing Process

Attacker’s Environment
Focus on the PLC system

Attacker can observe only one system state

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 5/22

Overview

1 The Software
Functionality
Software Architecture
Preparation for Verification

2 The Verification
Information Flow
Forgetting Information
Results
Discussion: Validity

3 Closing Remarks
Quantification
Conclusion

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 6/22

The Software

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 7/22

Operator view

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 8/22

Operator view

Automatic Mode
PLC drives to user-defined segments sequentially

A segment consists of position, velocity, accel-/decelaration, break time

Sequence can be repeatedly executed

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 8/22

Operator view

Manual Mode
Operator can manually control velocity, and

set the reference position

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 8/22

Reactive Software

Executed every n ms

Feedback loop

For verification, we focus on Logic component

Reading Sensors

Logic

Setting Actuators

Wait

Physical Plant

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 9/22

Software Architecture
PROGRAM Main

Initialization;

Get values from HMI;

STOP MANUAL

AUTOACTIVE
AUTO

SequenceAutomaton(); FUNCTION BLOCK SequenceAutomaton

INIT IDLE

WAIT MOVEDONE

MainAxis(); FUNCTION BLOCK MainAxis
States: INIT, ENABLE, DISABLE, REF, HALT,
IDLE, JOGCWSLOW, JOGCWFAST, DRIVER-

AMP, JOGCCWSLOW, JOGCCWFAST, VE-
LOCITY, MOVEACTIVE, RESET, ERROR

Hardware: MOTOR

Update HMI; Human Machine Interface

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 10/22

Software Architecture

PROGRAM Main

Initialization;

Get values from HMI;

STOP MANUAL

AUTOACTIVE
AUTO

SequenceAutomaton(); FUNCTION BLOCK SequenceAutomaton

INIT IDLE

WAIT MOVEDONE

MainAxis(); FUNCTION BLOCK MainAxis
States: INIT, ENABLE, DISABLE, REF, HALT,
IDLE, JOGCWSLOW, JOGCWFAST, DRIVER-

AMP, JOGCCWSLOW, JOGCCWFAST, VE-
LOCITY, MOVEACTIVE, RESET, ERROR

Hardware: MOTOR

Update HMI; Human Machine Interface

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 10/22

Software Architecture

PROGRAM Main

Initialization;

Get values from HMI;

STOP MANUAL

AUTOACTIVE
AUTO

SequenceAutomaton(); FUNCTION BLOCK SequenceAutomaton

INIT IDLE

WAIT MOVEDONE

MainAxis(); FUNCTION BLOCK MainAxis
States: INIT, ENABLE, DISABLE, REF, HALT,
IDLE, JOGCWSLOW, JOGCWFAST, DRIVER-

AMP, JOGCCWSLOW, JOGCCWFAST, VE-
LOCITY, MOVEACTIVE, RESET, ERROR

Hardware: MOTOR

Update HMI; Human Machine Interface

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 10/22

Software Architecture

PROGRAM Main

Initialization;

Get values from HMI;

STOP MANUAL

AUTOACTIVE
AUTO

SequenceAutomaton(); FUNCTION BLOCK SequenceAutomaton

INIT IDLE

WAIT MOVEDONE

MainAxis(); FUNCTION BLOCK MainAxis
States: INIT, ENABLE, DISABLE, REF, HALT,
IDLE, JOGCWSLOW, JOGCWFAST, DRIVER-

AMP, JOGCCWSLOW, JOGCCWFAST, VE-
LOCITY, MOVEACTIVE, RESET, ERROR

Hardware: MOTOR

Update HMI; Human Machine Interface

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 10/22

Software Architecture

PROGRAM Main

Initialization;

Get values from HMI;

STOP MANUAL

AUTOACTIVE
AUTO

SequenceAutomaton(); FUNCTION BLOCK SequenceAutomaton

INIT IDLE

WAIT MOVEDONE

MainAxis(); FUNCTION BLOCK MainAxis
States: INIT, ENABLE, DISABLE, REF, HALT,
IDLE, JOGCWSLOW, JOGCWFAST, DRIVER-

AMP, JOGCCWSLOW, JOGCCWFAST, VE-
LOCITY, MOVEACTIVE, RESET, ERROR

Hardware: MOTOR

Update HMI; Human Machine Interface

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 10/22

Preparation for Verification

Software not directly usable
focus on MainAxis

demote floating-point to integers

reduce state, remove assignment to HMI variables

Are these abstractions valid?

Verification Pipeline

Source
Code

Simplify Symb.
Execution

Model
Checker

3

�
7

PLC Program to be Verified
421 LoC in Structured Text

32 states variables, 52 input variables

566 bits large (270 bits input, 296 bits state)

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 11/22

Preparation for Verification

Software not directly usable
focus on MainAxis

demote floating-point to integers

reduce state, remove assignment to HMI variables

Are these abstractions valid?

Verification Pipeline

Source
Code

Simplify Symb.
Execution

Model
Checker

3

�
7

PLC Program to be Verified
421 LoC in Structured Text

32 states variables, 52 input variables

566 bits large (270 bits input, 296 bits state)

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 11/22

Preparation for Verification

Software not directly usable
focus on MainAxis

demote floating-point to integers

reduce state, remove assignment to HMI variables

Are these abstractions valid?

Verification Pipeline

Source
Code

Simplify Symb.
Execution

Model
Checker

3

�
7

PLC Program to be Verified
421 LoC in Structured Text

32 states variables, 52 input variables

566 bits large (270 bits input, 296 bits state)

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 11/22

Preparation for Verification

Software not directly usable
focus on MainAxis

demote floating-point to integers

reduce state, remove assignment to HMI variables

Are these abstractions valid?

Verification Pipeline

Source
Code

Simplify Symb.
Execution

Model
Checker

3

�
7

PLC Program to be Verified
421 LoC in Structured Text

32 states variables, 52 input variables

566 bits large (270 bits input, 296 bits state)

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 11/22

The Verification

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 12/22

Information Flow
What we want to show:

The attacker does not learn the number of turns since the start of the PLC by
observing the current state.

The attacker does not learn the number of turns by observing one state σt0 :

#Turns(t0) :=
⌊

1
360

∫ t0

0
v(t) dt

⌋
Prob(#Turns) = Prob(#Turns | σt0)

v(t) – Angular Speed (deg
s)

Classical Information Flow
Property: No influence of v(t) on the state.

. . . Non-interference is too strong: Velocity is stored internally!

. . . of course sensors values have influence

. . . but #Turns is not stored.
Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 13/22

Information Flow
What we want to show:

The attacker does not learn the number of turns since the start of the PLC by
observing the current state.

The attacker does not learn the number of turns by observing one state σt0 :

#Turns(t0) :=
⌊

1
360

∫ t0

0
v(t) dt

⌋
Prob(#Turns) = Prob(#Turns | σt0)

v(t) – Angular Speed (deg
s)

Classical Information Flow
Property: No influence of v(t) on the state.

. . . Non-interference is too strong: Velocity is stored internally!

. . . of course sensors values have influence

. . . but #Turns is not stored.
Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 13/22

Information Flow
What we want to show:

The attacker does not learn the number of turns since the start of the PLC by
observing the current state.

The attacker does not learn the number of turns by observing one state σt0 :

#Turns(t0) :=
⌊

1
360

∫ t0

0
v(t) dt

⌋
Prob(#Turns) = Prob(#Turns | σt0)

v(t) – Angular Speed (deg
s)

Classical Information Flow
Property: No influence of v(t) on the state.

. . . Non-interference is too strong: Velocity is stored internally!

. . . of course sensors values have influence

. . . but #Turns is not stored.
Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 13/22

Information Flow
What we want to show:

The attacker does not learn the number of turns since the start of the PLC by
observing the current state.

The attacker does not learn the number of turns by observing one state σt0 :

#Turns(t0) :=
⌊

1
360

∫ t0

0
v(t) dt

⌋
Prob(#Turns) = Prob(#Turns | σt0)

v(t) – Angular Speed (deg
s)

Classical Information Flow
Property: No influence of v(t) on the state.

. . . Non-interference is too strong: Velocity is stored internally!

. . . of course sensors values have influence

. . . but #Turns is not stored.
Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 13/22

Forgetting Information

Idea
Relaxing the information flow

Allowing the system to react to current sensor values
. . . but forget old information

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 14/22

Forgetting Information

Idea
Relaxing the information flow

Allowing the system to react to current sensor values
. . . but forget old information

Example: Baffle Gate

Granting access based on
permission

But does not store amount of
passed

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 14/22

Forgetting Information

Idea
Relaxing the information flow

Allowing the system to react to current sensor values
. . . but forget old information

Privacy-preservation by forgetting
System is allowed to store secret data of m last steps.

. . . σn+0 σn+1 σn+2 σn+3 σn+4 σn+5 σn+6

guessableprotected ü

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 14/22

Forgetting Information in
Relational Test Tables

ASSUME ASSERT �
S IL IH S

0 = = — — 1
1 — = — — —
2 — = = — k
3 — = = = ω

We distinguish between
state variables (|S| = 32)

uncritical sensor variables (|IL| = 51), and

protected sensor variable (|IH | = 1, angular velocity).

Syntax
“—” expresses “DON’T CARE”

“=” expresses equality in columns variables

k is the allowed lookbehind

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 15/22

Forgetting Information in
Relational Test Tables

ASSUME ASSERT �
S IL IH S

0 = = — — 1
1 — = — — —
2 — = = — k
3 — = = = ω

We distinguish between
state variables (|S| = 32)

uncritical sensor variables (|IL| = 51), and

protected sensor variable (|IH | = 1, angular velocity).

Syntax
“—” expresses “DON’T CARE”

“=” expresses equality in columns variables

k is the allowed lookbehind

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 15/22

Forgetting Information in
Relational Test Tables

ASSUME ASSERT �
S IL IH S

0 = = — — 1
1 — = — — —
2 — = = — k
3 — = = = ω

We distinguish between
state variables (|S| = 32)

uncritical sensor variables (|IL| = 51), and

protected sensor variable (|IH | = 1, angular velocity).

Syntax
“—” expresses “DON’T CARE”

“=” expresses equality in columns variables

k is the allowed lookbehind

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 15/22

Forgetting Information in
Relational Test Tables

ASSUME ASSERT �
S IL IH S

0 = = — — 1
1 — = — — —
2 — = = — k
3 — = = = ω

Explanation
For all possible two runs of the systems, starting in

arbitrary, but equal, states and equal uncritical input IL,

then injecting different secrets,

after waiting k cycles

the states have to be equal

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 16/22

Forgetting Information in
Relational Test Tables

ASSUME ASSERT �
S IL IH S

0 = = — — 1
1 — = — — —
2 — = = — k
3 — = = = ω

Explanation
For all possible two runs of the systems, starting in

arbitrary, but equal, states and equal uncritical input IL,

then injecting different secrets,

after waiting k cycles

the states have to be equal

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 16/22

Forgetting Information in
Relational Test Tables

ASSUME ASSERT �
S IL IH S

0 = = — — 1
1 — = — — —
2 — = = — k
3 — = = = ω

Explanation
For all possible two runs of the systems, starting in

arbitrary, but equal, states and equal uncritical input IL,

then injecting different secrets,

after waiting k cycles

the states have to be equal

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 16/22

Forgetting Information in
Relational Test Tables

ASSUME ASSERT �
S IL IH S

0 = = — — 1
1 — = — — —
2 — = = — k
3 — = = = ω

Explanation
For all possible two runs of the systems, starting in

arbitrary, but equal, states and equal uncritical input IL,

then injecting different secrets,

after waiting k cycles

the states have to be equal

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 16/22

Results

The system does not adhere to information forgetting.
for k = 2, 5, 7, 10

Analysation of the counterexample
last velocity is stored internally

but not last velocity is not overwritten forcibly

If we do not consider the internal stored velocity, the system forgets the
information.

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 17/22

Results

The system does not adhere to information forgetting.
for k = 2, 5, 7, 10

Analysation of the counterexample
last velocity is stored internally

but not last velocity is not overwritten forcibly

If we do not consider the internal stored velocity, the system forgets the
information.

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 17/22

Results

The system does not adhere to information forgetting.
for k = 2, 5, 7, 10

Analysation of the counterexample
last velocity is stored internally

but not last velocity is not overwritten forcibly

If we do not consider the internal stored velocity, the system forgets the
information.

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 17/22

Results

The system does not adhere to information forgetting.
for k = 2, 5, 7, 10

Analysation of the counterexample
last velocity is stored internally

but not last velocity is not overwritten forcibly

If we do not consider the internal stored velocity, the system forgets the
information.

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 17/22

Results

The system does not adhere to information forgetting.
for k = 2, 5, 7, 10

Analysation of the counterexample
last velocity is stored internally

but not last velocity is not overwritten forcibly

If we do not consider the internal stored velocity, the system forgets the
information.

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 17/22

Discussion: Validity

Why PLC level?
Protection on . . .

PLC level is hard

upper pyramid level easier and known

but also attacks on the sensor/actuator level happened

Single observable state
If an attacker sees a sequence of states, then

the information of the sequence leak

information that are k cycles past are still secret

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 18/22

Discussion: Validity

Why PLC level?
Protection on . . .

PLC level is hard

upper pyramid level easier and known

but also attacks on the sensor/actuator level happened

Single observable state
If an attacker sees a sequence of states, then

the information of the sequence leak

information that are k cycles past are still secret

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 18/22

Discussion: Validity

Only MainAxis

MainAxis is the most critical

HMI also reads the velocity from global state

An attacker can get the complete user-defined program sequence

Program transformation
Demoting floating point to integer is critical
. . . justification in each individual case

Symb. Execution and other simplification are uncritical

Verification
Starting in arbitrary equal states is an over-abstraction

Spurious counterexample possible

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 19/22

Discussion: Validity

Only MainAxis

MainAxis is the most critical

HMI also reads the velocity from global state

An attacker can get the complete user-defined program sequence

Program transformation
Demoting floating point to integer is critical
. . . justification in each individual case

Symb. Execution and other simplification are uncritical

Verification
Starting in arbitrary equal states is an over-abstraction

Spurious counterexample possible

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 19/22

Discussion: Validity

Only MainAxis

MainAxis is the most critical

HMI also reads the velocity from global state

An attacker can get the complete user-defined program sequence

Program transformation
Demoting floating point to integer is critical
. . . justification in each individual case

Symb. Execution and other simplification are uncritical

Verification
Starting in arbitrary equal states is an over-abstraction

Spurious counterexample possible

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 19/22

Closing Remarks

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 20/22

Quantification
In view of KASTEL continuation:

Information Forgetting is a Quantification of Security

Quantifiations
A system that . . .

forgets information faster

forgets more information

is more secure.

In the view of risk assessment
A system, that forgets faster, decreases the costs when a data breach occurs.

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 21/22

Quantification
In view of KASTEL continuation:

Information Forgetting is a Quantification of Security

Quantifiations
A system that . . .

forgets information faster

forgets more information

is more secure.

In the view of risk assessment
A system, that forgets faster, decreases the costs when a data breach occurs.

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 21/22

Quantification
In view of KASTEL continuation:

Information Forgetting is a Quantification of Security

Quantifiations
A system that . . .

forgets information faster

forgets more information

is more secure.

In the view of risk assessment
A system, that forgets faster, decreases the costs when a data breach occurs.

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 21/22

Conclusion

Take away
We can prove that systems forget information

Forgetting information is a quantitative privacy property
It does not prevent attacks, but the loot is reduced.

Technical Report appears soon

Verification software available:
https://github.com/verifaps/verifaps-lib

Introduction The Software The Verification Closing Remarks

Weigl – I4.0 Demonstrator 10. Oct. 2019 22/22

https://github.com/verifaps/verifaps-lib

	Introduction
	Orientation & Story
	System & Attacker Model
	Overview

	The Software
	Functionality
	Software Architecture
	Preparation for Verification

	The Verification
	Information Flow
	Forgetting Information
	Results
	Discussion: Validity

	Closing Remarks
	Quantification
	Conclusion

