KIT | KIT-Bibliothek | Impressum | Datenschutz

Determination of Feasible Power Variability Ranges in Active Distribution Networks with Uncertain Generation and Demand

Noto, Giancarlo 1; Hagenmeyer, Veit 1; Appino, Riccardo Remo 1; Chicco, Gianfranco
1 Institut für Angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Active distribution networks are promising to provide ancillary services to the utilities in addition to traditional generation. The idea is to make use of the controllable distributed energy resources within the distribution network to regulate the power exchange with its upper level grid on the basis of a set point determined by the utility. However, determining an interval of feasible set points for this power exchange is challenging because of the uncertainty affecting the uncontrolled generation and demand. This paper proposes a novel methodology to compute feasible variability ranges for the power exchange with the upper level grid. In particular, the method seeks for the range maximizing the probability that a set point within the range is feasible, given a realization of the uncertain generation/demand. The proposed method combines numerical optimization and probabilistic forecasts with concepts from the theory of multi-parametric programming. Simulations based on a modified European CIGRE Low Voltage benchmark grid are used to illustrate the proposed findings.

DOI: 10.1109/PTC.2019.8810592
Zitationen: 2
Zitationen: 2
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 06.2019
Sprache Englisch
Identifikator ISBN: 978-1-5386-4722-6
KITopen-ID: 1000098903
HGF-Programm 37.06.01 (POF III, LK 01) Networks and Storage Integration
Erschienen in IEEE Milan PowerTech, Milan, Italy, 23-27 June 2019: proceedings
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1–6
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page