KIT | KIT-Bibliothek | Impressum | Datenschutz

Ecological drivers of tree assemblage in tropical, subtropical and subalpine forests

Asefa, Mengesha; Wen, Han‐Dong; Brown, Calum; Cao, Min; Xu, Kun; Hu, Yue‐Hua

Abstract:
Location
Yunnan province, southwest China.

Methods
We used the homogeneous Poisson, homogeneous Thomas, inhomogeneous Poisson, and inhomogeneous Thomas point process models to predict the effect of stochastic, dispersal and/or environmental processes respectively on the distribution of trees across ontogeny in tropical, subtropical and subalpine forests. To evaluate the relative importance of models, we compared the observed and simulated patterns of species‐area relationship and g(r) at community and species level, respectively.

Results
Homogeneous Thomas model was the model with the lowest AIC scores across ontogeny and forest types at community level. At species level, however, homogeneous Thomas, and inhomogeneous Thomas predicted the distribution of large and small trees respectively with lower AIC values in ALS and LJ plots. In BB plot, homogeneous Thomas model is dominant across ontogeny at the species level.

Conclusions
The tree communities are assembled mainly by dispersal process at community level. The relative importance of ecological processes for species distribution varied across life stages at species level suggesting that there is ontogenetic shift of ecological processes in shaping tree distribution. ... mehr

Open Access Logo


Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung - Atmosphärische Umweltforschung (IMK-IFU)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2019
Sprache Englisch
Identifikator ISSN: 1100-9233, 1654-1103
KITopen-ID: 1000098907
HGF-Programm 12.02.02 (POF III, LK 01)
Vegetation climate- and land use system
Erschienen in Journal of vegetation science
Band 31
Heft 1
Seiten 107-117
Vorab online veröffentlicht am 08.10.2019
Nachgewiesen in Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page