

A Picosecond Sampling Electronics "KAPTURE" for Terahertz Synchrotron Radiation

International Beam Instrumentation Conference, 14-18 September 2014, Monterey, USA

<u>M. Caselle</u>, M. Brosi, S. Chilingaryan, T. Dritschler, N. Hiller, V. Judin, A. Kopmann, A.-S. Mueller, J. Raasch, L. Rota, L. Petzold, N. J. Smale, J.L. Steinmann, M. Vogelgesang, S. Wuensch, M. Siegel, M. Weber

KIT, Institute for Data Processing and Electronics Michele Caselle

ANKA &

FLUTE

@KIT

- Motivation & Introduction: What did we develop KAPTURE for?
 - Coherent Synchrotron Radiation (CSR) in the THz Range
 - Ultra-Fast Terahertz Detectors
- The KAPTURE System
- CSR Studies with KAPTURE
- Summary

Bursting CSR Emission During Low- α_c -Mode

Ultra-Fast THz Detectors

[1] A.D. Semenov, et al., IEEE Transactions on Microwave Theory and Techniques 55 (2007) 239
[2] P. Thoma, J. Raasch, et al., IEEE Trans. Appl. Supercond., Vol. 23, No 3, pp2400206, June 2013
[3] A. Semenov, et al., IEEE Electron Device Letters 31, (674) 2010

Idea: Monitor the THz-radiation from every bunch for every revolution. Continuously!

Idea: Monitor the THz-radiation from every bunch for every revolution. Continuously!

Idea: Monitor the THz-radiation from every bunch for every revolution. Continuously!

Idea: Monitor the THz-radiation from every bunch for every revolution. Continuously!

Idea: Monitor the THz-radiation from every bunch for every revolution. Continuously!

KAPTURE SYSTEM

Karlsruhe Pulse Taking Ultra-Fast Readout Electronics

Picosecond pulse sampling requirements

Requirements:

1. measuring amplitude and peaking time of each

pulse, pulse width of 20 - 100 ps

2. Pulse repetition rate of 500 MHz

3. Continuous acquisition for long observation time: seconds, minutes...

4. Wideband circuitries, bandwidth DC-60GHz

Picosecond pulse sampling system for CSR

Pulse with repetition rate 500 MHz

Picosecond pulse sampling system for CSR

Pulse with repetition rate 500 MHz

Picosecond pulse sampling system for CSR

KAPTURE Box

KAPTURE Board

✓ Minimum sampling time: 3 ps (min. equiv. sampling time 300GS/s) ✓ RMS time jitter noise < 1.7 ps \checkmark RMS noise (ADC) < 1 mV ✓ Dynamic range: ± 800 mV per channel ✓ Max pulse rate up to 550 MHz

Sampling stage

IBIC'14 14-18 Sep, 2014, Monterey, CA, USA N.Hiller for M. Caselle

KIT, Institute for Data Processing and Electronics (IPE)

Beam Test Setup at IR2 Beamline at ANKA in May 2014

N.Hiller for M. Caselle

CSR Studies with KAPTURE

Can record > 10^6 turns

CSR Studies with KAPTURE

Karlstuhe Institute of Technology

Do all bunches show a similar behavior for same bunch currents?

Ongoing investigation of bunch-bunch effects.

Simultaneous Acquisition with 2 "identical" detectors (e.g. for balanced detection)

ADC0

Possible to connect up to 4 detectors!

ADC1

KIT, Institute for Data Processing and Electronics (IPE)

Summary - KAPTURE Features

- Dynamic range of \pm 800 mV (per channel) with RMS noise < 1 mV
- Very low time jitter (RMS < 1.7 ps) → sampling time accuracy of 3 ps
- High data throughput readout board based on PCIe-DMA (32Gb/s)
- Real-time data elaboration based on high-end Graphics Processing Units (GPUs)
- Under final commissioning at ANKA
- Flexible measurement opportunities (e.g. 4 sample points for 1 detector or up to 4 detectors with 1 sample point each)
- Can be adapted for other scientific applications and/or synchrotron facilities

Thank you for your attention!

18

Michele.Caselle@kit.edu

(will happily answer all your technical questions)

Lorenzo.Rota@kit.edu

(PhD student, also here at IBIC'14 \rightarrow TUPD10)

Backup slides

KArlsruhe Pulse Taking Ultra-fast Readout Electronic

M. Caselle et al. *"An Ultra-Fast Data Acquisition System for Coherent Synchrotron Radiation with Terahertz Detectors",* Proceeding of Topical Workshop on Electronic for Particle Physics, Perugia 23-27 September 2013. JINST_124P_1113