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ABSTRACT LDPC code design tools typically rely on asymptotic code behavior and are affected by an
unavoidable performance degradation due to model imperfections in the short length regime. We propose
an LDPC code design scheme based on an evolutionary algorithm, the Genetic Algorithm (GenAlg), imple-
menting a ‘‘decoder-in-the-loop’’ concept. It inherently takes into consideration the channel, code length
and the number of iterations while optimizing the error-rate of the actual decoder hardware architecture. We
construct short length LDPC codes (i.e., the parity-check matrix) with error-rate performance comparable
to, or even outperforming that of well-designed standardized short length LDPC codes over both AWGN and
Rayleigh fading channels. Our proposed algorithm can be used to design LDPC codes with special graph
structures (e.g., accumulator-based codes) to facilitate the encoding step, or to satisfy any other practical
requirement.Moreover, GenAlg can be used to design LDPC codeswith the aim of reducing decoding latency
and complexity, leading to coding gains of up to 0.325 dB and 0.8 dB at BLER of 10−5 for both AWGN
and Rayleigh fading channels, respectively, when compared to state-of-the-art short LDPC codes. Also,
we analyze what can be learned from the resulting codes and, as such, the GenAlg particularly highlights
design paradigms of short length LDPC codes (e.g., codes with degree-1 variable nodes obtain very good
results).

INDEX TERMS LDPC codes, belief propagation decoding, short LDPC code design, EXIT charts, genetic
algorithm, evolutionary algorithms, artificial intelligence, decoding complexity.

I. INTRODUCTION
The design of Low-Density Parity-Check (LDPC) codes is
well-established at the limits of the infinite length regime.
The classical design tools, e.g., density evolution [1] and
EXIT charts [2], provide the required analysis to design
long LDPC codes of superior performance at negligible gaps
from the Shannon limit [3]. However, for finite length LDPC
codes, a sufficiently good LDPC code turns out to deviate
from the guidelines (e.g., degree distributions) provided by
the classical design tools which are based on the asymptotic
length code analysis. It turns out that LDPC codes lack per-
formance in the ultra-short length regime when compared to
more structured, and thus explicit, coding schemes such as
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Polar, Reed–Muller (RM) or Bose-Chaudhuri-Hocquenghem
(BCH) codes (see [4] for an exhaustive comparison).

Nonetheless, LDPC codes can be seen as the workhorse of
many of today’s (and upcoming) communication standards
motivated by a simple and well-understood decoder, namely
the belief propagation (BP) decoder. However, emerging
applications based on short block transmission have urged
the need for well-designed ‘‘ultra-short’’ codes, cf. ultra-
reliable and low-latency communications (URLLC); e.g., for
machine-to-machine type communications and Internet of
Things networks. In these applications, it is also preferable to
work with a unified decoding hardware, i.e., one (de-)coding
scheme fits all – from block lengths of several hundred up
to ten-thousands of bits. This trend is also reflected by the
fact that the 3GPP group agreed to replace the Turbo codes
by LDPC codes in the upcoming New Radio (NR) access
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technology standard [5], [6]. Also, short LDPC codes are
used in near-earth and deep space applications [7]. Thus,
rather than finding new coding schemes for URLLC implying
new decoding algorithms and hardware structures, we aim
to leverage short-length LDPC codes by explicitly optimiz-
ing them at short length and under actual decoder con-
straints. To some extent, our approach also follows the current
trend of data-driven computation/optimization in the field
of machine learning, i.e., rather than tailoring the code to a
specific canonical model (e.g., additive white Gaussian noise
(AWGN) channel with non-quantized messages), our method
inherently takes any practical decoder hardware constraints
‘‘in-the-loop’’ into account and directly optimizes from the
data (i.e., the actual decoder behavior).
Typically, the LDPC code design is divided into two sub-

problems: 1.) finding a good general code structure (degree
profile or protograph) and 2.) optimizing the explicit realiza-
tion of the code (edges of the actual graph). Although there
exists some work on short-length code design, e.g., [8], most
practical approaches rely on heuristics, e.g., greedy-based
optimization techniques such as Progressive Edge Growth
(PEG) [9] which, however, typically require degree profiles
found by asymptotic assumptions. In [10], a differential evo-
lution algorithm-based approach has been used to optimize
the protograph of an LDPC code. However, to the best of
our knowledge, no differential evolution-based optimization
of the full H-matrix has been reported so far, probably, due
to the demanding computational complexity of the algorithm.
In [11], it has been shown that a simple concatenation of an
LDPC code with a cyclic redundancy check (CRC) code sig-
nificantly enhances its performance under high-complexity
ordered statistic decoding (OSD). Unfortunately, the gain
vanishes for classical iterative decoding. Thus, it seems as
if finding sparse graphs with good short length performance
remains to be a cumbersome task. Yet, there is simply no
suitable design strategy to find such a sparse H-matrix due
to the exponentially increasing design-space of the problem.

A practical coding scheme also implies some further
constraints on the parity-check matrix to enable low-
complexity encoding such as, e.g., accumulator-based struc-
tures. We show that our approach can also be applied to given
code structures such as irregular repeat-accumulate (IRA)
codes. We refer to [12] for details on these structural graph
constraints.

The main contribution of this work is an efficient
LDPC code design tool resulting in short codes compara-
ble to, or even outperforming, state-of-the-art short LDPC
codes over both AWGN and Rayleigh fading channels. The
proposed scheme is used to design the complete parity-
check matrix (i.e., H-matrix) directly, unlike the classical
way where the degree distribution is optimized first. This
optimization involves no PEG [9] or similar algorithms, but is
only based on the GenAlg, similar to what has been proposed
for polar codes in [13]. One strong asset of the proposed
design tool is that it can be tailored to any specific required
constraint on the H-matrix, resulting in codes which are of

both low encoding and, thus, low hardware complexity. It
is worth mentioning that extensions to longer LDPC codes
are straightforward with the current framework. Furthermore,
designing LDPC codes tailored to other types of decoders
(e.g., quantized BP decoder, OSD) is possible. The source
code and theH-matrices from this work can be found online.1

II. LDPC CODES
An LDPC code, originally introduced by Gallager [14],
is conventionally represented by its corresponding (m × n)
parity-check matrix H =

[
hji
]
m×n (referred to as H-matrix

throughout this work), where n represents the number of
variable nodes (VNs) (i.e., also the code block length) and
m represents the number of check nodes (CNs) the code
has. The number of information bits per codeword is k =
n − rank (H). Therefore, the actual code rate is designated
by Rc = k/n which could be potentially higher than the so-
called design rate rd = (n−m)/n. A corresponding graphical
representation [15] is the Tanner graph, in which a VN vi is
connected to a CN cj if hji = 1, with i ∈ {1, . . . , n} and
j ∈ {1, . . . ,m}.
The decoding of LDPC codes is iteratively performed

over the Tanner graph where soft messages (i.e., Log Like-
lihood Ratio (LLR) messages) are propagated over the graph
between variable nodes and check nodes according to

Lcj→vi = 2 · tanh−1
(
5
i′ 6=i

tanh
(
Lvi′→cj

2

))
Lvi→cj = Lch,i +

∑
j′ 6=j

Lcj′→vi

where Lch,i is the LLR channel output, Lcj→vi is the message
from CN cj to VN vi and Lvi→cj is the message from VN vi to
CN cj. For more details, we refer to [12], [16] and [17].

LDPC code design is, thus, the process of determining
(i.e., optimizing) the connections hji ∈ {0, 1} of the bipar-
tite Tanner graph under certain requirements (e.g., a target
error floor or some hardware constraints). Optimizing the
degree distributions of the Tanner graph is conventionally
pursued via EXIT charts [2], by matching the EXIT curves
of the check node decoder (CND) and variable node decoder
(VND). This means that the open decoding tunnel between
the two EXIT curves should beminimal to operate close to the
channel capacity [2]. Another method, density evolution [1],
iteratively tracks the (average) probability density functions
of the messages propagated between the VND and CND.

The classical design methods assume infinitely long
lengths n→ ∞, a graph that contains no cycles and infinite
number of decoding iterations [18]. These assumptions are
not valid when considering the problem of short LDPC code
design, which raises the need for a design tool tailored to
short length codes [8]. An optimal EXIT chart-based LDPC
code design (e.g., matched EXIT curves) is inefficient for a
short LDPC code, as shown in Fig. 1. One can see that a

1https://github.com/AhmedElkelesh/Genetic-Algorithm-based-LDPC-
Code-Design
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FIGURE 1. The LDPC code design paradigm for asymptotic length fails in
the short-length regime.

PEG-optimized short LDPC code realization following the
asymptotically optimal degree profiles (see Fig. 1a) has a
worse error-rate performance, shown in Fig. 1c, when com-
pared to another short LDPC code designed by our proposed
algorithm, and whose EXIT curves are not well-matched and
even intersecting in the high mutual information region (see
Fig. 1b). This reaffirms our aforementioned statements about
the inefficiency of the classical code design tools in the short-
length regime.

III. GENETIC ALGORITHM-BASED LDPC CODE DESIGN
We consider the design of an LDPC code as an optimization
problem, in which the target is to minimize the block error-
rate (BLER) at a certain design SNR. This optimization prob-
lem has some constraints defined by the problem at hand. The
code rateRc = 1− rank(H)

n , the number of VNs and the number
of CNs should remain constant. In other words, we keep the
number of VNs fixed to n (i.e., no puncturing involved) and
the number of CNs fixed to m (i.e., we assume no redundant
checks2). Furthermore, every variable (or check) node must
be connected to at least one check (or variable) node, respec-
tively. To solve this problem, similar to [13], we apply the
genetic algorithm (GenAlg) [19].

2In case the resulting H-matrix is not of full rank, it holds that Rc > rd
which, if needed, could be (in a naive implementation) solved by freezing
some VNs. Thus, we do not impose any further constraint other than m CNs.

The design process starts with an initial population of some
randomly constructed LDPC codes (i.e., population 1). An
error-rate computation framework is used to assess the error-
rate performance of the found LDPC codes at a certain design
SNR and a fixed maximum number of BP iterations Nit,max .
The best LDPC codes from this population are picked and
then undergo evolutionary transformations (mutations and
crossovers). This process is repeated until a certain target
error-rate or a maximum number of populations (i.e., epochs)
is reached, see Fig. 2.

FIGURE 2. Abstract view of genetic algorithm (GenAlg)-based LDPC code
design.

The ‘‘mutations’’ are done by adding (or removing) an
edge to (or from) the parent H-matrix at a random posi-
tion, or a combination of both, Fig. 3. The ‘‘crossover’’ is
a symmetric 2D-crossover between two parent H-matrices
(i.e., H1 and H2). The left (or upper) half matrix of H1 is
concatenated with the right (or lower) half matrix of H2
forming two offspring H-matrices in the next population,
Fig. 4.

FIGURE 3. Mutation examples; All derived from parent (a) by: Removing
an edge (b), adding an edge (c), or a combination of both (d).

Population (i + 1) contains the best (in terms of error-
rate) T H-matrices from population i, together with mutated
offsprings from those T H-matrices and offsprings due to
crossover between each pair of T parent H-matrices. For all
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FIGURE 4. Crossover examples between the two parents H1 and H2.

simulation results using the GenAlg as discussed next, we set
T = 20. We refer to [13] for further details on the GenAlg for
code design. For the sake of reproducibility, the source code
is available online.

IV. INSIGHTS FROM OPTIMIZED LDPC CODES OVER
AWGN CHANNEL
To be consistent with the results in [4], we design LDPC
codes with code length n = 128, code dimension k = 64
and, thus, code rate Rc = 0.5. All considered LDPC codes in
this section are simulated over the binary-input AWGN (bi-
AWGN) channel. All reference LDPC codes taken from [4]
were designed through a girth optimization technique based
on the PEG algorithm and are considered state-of-the-art:
the standardized LDPC code by the Consultative Committee
for Space Data Systems (CCSDS) for satellite telecommand
links ( ), an accumulate-repeat-3-accumulate (AR3A)
LDPC code ( ), an accumulate-repeat-jagged-accumulate
(ARJA) LDPC code ( ), and the proposed protograph-
based LDPC code for the upcoming 5G NR standard with
a base graph (base graph 2 in [20]) optimized for small
blocklengths ( ). As a calibration step of our decoding
framework, we were able to reproduce exactly the same
BLER curves using our own simulation setup. Therefore,
the presented gains are not an artefact of different decoder
implementations.

To get started, our initial population P1 contains a set of
randomly constructed regular (3, 6) LDPC codes (no PEG
used).

A. ERROR-RATE PERFORMANCE
Using GenAlg, we inherently design the whole edge inter-
leaver (i.e., H-matrix) tailored to BP decoding with a maxi-
mum number of BP iterations Nit,max = 200 at a design SNR
of 5 dB. The resulting LDPC code ( ) performs equally
good as the 5G LDPC code over the whole simulated SNR
range, as shown in Fig. 5a.

To facilitate the encoding of the GenAlg-based LDPC
codes, we design accumulator-based codes (i.e., a structured
interleaver). We refer the interested reader to [12], [17]
for more details about different structured types and design

FIGURE 5. Several
(
n = 128, k = 64

)
LDPC codes decoded with BP

decoding using Nit,max = 200 iterations over the bi-AWGN channel.

methods of LDPC codes. In this work, we design IRA codes3

such that the H-matrix has the form

H = [HL HR]

3Similar to the LDPC codes of the DVB-S.2 standard.
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whereHL is the sub-matrix to be optimized andHR is a fixed
‘‘dual-diagonal’’ square sub-matrix with dimensions m× m

HIRA
R =



1
1 1

1
. . .

. . .
. . .

. . . 1
1 1

1 1


.

The resulting IRA code without tailbiting ( ) designed at
5 dB under 200 BP iterations approaches, again, the perfor-
mance of the 5G LDPC code, as shown in Fig. 5a.

To avoid degree-1 VNs, an upper-right 1 is included in the
H-matrix for tailbiting irregular repeat-accumulate (TB-IRA)
codes, such that HR has the form

HTB-IRA
R =



1 1
1 1

1
. . .

. . .
. . .

. . . 1
1 1

1 1


.

The TB-IRA code has only degree-2 VNs in the HR-matrix.
The GenAlg-based TB-IRA code ( ) designed at 5 dB
again approaches the performance of the 5G LDPC code,
as shown in Fig. 5a.

To facilitate the encoding step, while still avoiding
degree-1 VNs, a weight-three column replaces the weight-
one column in the IRA code and is then moved to the first
column in HR, and thus the name pseudo-tailbiting irregular
repeat-accumulate (PTB-IRA) codes, as

HPTB-IRA
R =



1 1
1 1

1
. . .

1
. . .

. . .

. . . 1
1 1

1 1


.

This code is similar to the WiMAX LDPC codes (IEEE
802.16e) and the WiFi LDPC codes (IEEE 802.11n). The
resulting GenAlg-based PTB-IRA code ( ) designed at
5 dB again approaches the performance of the 5G LDPC
code, as shown in Fig. 5a.

In some applications, it is crucial to ensure that the
worst case decoding latency is relatively low while hav-
ing an acceptable error-rate performance. In BP decoding,
the worst case latency is proportional toNit,max . So we design
LDPC codes tailored to iterative BP decoding with reduced

FIGURE 6. Several
(
n = 128, k = 64

)
LDPC codes decoded with BP

decoding using Nit,max = 20 iterations over the bi-AWGN channel.

maximum number of BP iterations Nit,max . Using GenAlg,
an LDPC code tailored to Nit,max = 20 BP iterations ( )
designed at 5 dB outperforms the 5G LDPC code, leading
to an Eb/N0 gain of 0.325 dB at BLER of 10−5, as shown
in Fig. 6a. The resulting code under 20 BP iterations ( )
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approaches the error-rate performance of the LDPC codes
from [4], with lower Nit,max . For example, when compared
to an AR3A LDPC code decoded with Nit,max = 200 iter-
ations ( ). Thus, the proposed code can be decoded with
reduced worst case decoding latency with competitive error-
rate performance.

It is fair to mention that the 5G LDPC code was designed
to support a wide range of blocklengths and code rates. Thus,
the error-rate performance was not the only design target. The
5G LDPC codes enables high degree of implementation par-
allelism and an organized message passing process, besides
being described in a compact manner [6]. Fortunately, other
such structural constraints can be imposed in our genetic opti-
mization problem to further simplify encoding and decoding
implementations of the resulting GenAlg-based LDPC codes.

B. DECODING LATENCY AND COMPLEXITY
We show that for a fixed Nit,max , significant decoding latency
and decoding complexity reduction can be achieved only by
optimizing the LDPC code edge interleaver. In BP decod-
ing of LDPC codes, the average decoding latency can be
measured using the average number of BP iterations needed
by the decoder Nit,avg. Due to the early stopping condition
used, the average number of performed iterations Nit,avg is
much lower than Nit,max , especially in the high SNR region.
Fig. 5b and Fig. 6b show that our proposed GenAlg-based
LDPC codes required on average a lower number of BP iter-
ations when compared to conventionally designed (reference)
LDPC codes for the same Nit,max . This potentially leads to a
reduction in the decoding latency. Thus, higher throughput
decoder implementations are possible.

In a parallel iterative (message passing) decoder,
the decoding complexity depends on the number of per-
formed iterations and the number of arithmetic operations per
iteration. The number of arithmetic operations per iteration is
proportional to the number of edges in the Tanner graph of
the code E . In other words, the decoding complexity heavily
depends on the total number of messages passed between
the VNs and the CNs. This means that an average decoding
complexity measure can be calculated as the product of the
average number of iterationsNit,avg (due to the early stopping
condition) and the number of edges in the Tanner graph E .
Similar to [18], we use the average decoding complexity

per information bit η as the decoding complexity measure
throughout this work

η =
Nit,avg · E

k
.

Fig. 5c and Fig. 6c show a decoding complexity com-
parison between our proposed LDPC codes and the 5G
LDPC codes under BP decoding with Nit,max = 200 and
Nit,max = 20, respectively. This means that decoding com-
plexity reduction was possible by designing the LDPC code
using GenAlg.

Although our design algorithm, which depends on error-
rate simulations (Fig. 7), is more complex than most of the

FIGURE 7. Evolution of the BLER at design SNR Eb/N0 = 5 dB;(
n = 128, k = 64

)
LDPC codes; BP decoding with Nit,max = 20;

bi-AWGN channel.

conventional design tools, our proposed codes can be decoded
with (much) lower complexity (Fig. 5c and Fig. 6c). Thus,
there is a trade-off between offline (i.e., design) complexity
and online (i.e., decoding) complexity. However, one should
keep in mind that the design is only done once while the
decoding complexity applies to every later usage of the
designed code. Furthermore, our proposed framework can be
potentially used to design LDPC codes with the aim of reduc-
ing the decoding latency and/or complexity with a slightly
relaxed error-rate performance constraint.

C. MINIMUM DISTANCE dmin
Computing the minimum distance dmin of LDPC codes can
be formulated as an integer program (see equation (1)), which
can be solved by numerical optimization methods [22]:

min
n∑
i=1

xi

subject to Hx− 2z = 0,
n∑
i=1

xi ≥ 1 (1)

where x ∈ {0, 1}n, z ∈ Zm and all operations are performed
over integer numbers. dmin is the value of the objective func-
tion

∑n
i=1 xi at the minimum.

Table 1 shows the dmin of different LDPC codes. As a
reference, we included the dmin of the 5G polar code specified
by the 3GPP group [20] and the RM code with the same

TABLE 1. dmin of different
(
n = 128, k = 64

)
-codes.

141166 VOLUME 7, 2019



A. Elkelesh et al.: Decoder-in-the-Loop: Genetic Optimization-Based LDPC Code Design

code length n and code dimension k . The results in Table 1,
Fig. 5a and Fig. 6a reassure that the minimum distance dmin
is not the only parameter to consider in order to enhance the
performance of short linear codes under BP decoding. This
can be attributed to the fact that the performance of a linear
code under iterative decoding is dominated by the Tanner
graph structure of the code and not its dmin [23]. However,
it is worth mentioning that maximizing dmin is important to
enhance the error-floor behavior of a code [12]. The CCSDS
LDPC code has the largest dmin when compared to other
LDPC codes considered in this work, because it was designed
to operate in the very low error-rate region.

V. RESULTS FOR THE RAYLEIGH FADING CHANNEL
To demonstrate the flexibility of our proposed design algo-
rithm, we also design LDPC codes for the Rayleigh fad-
ing channel. To be more precise, we assume an ergodic
Rayleigh fading model with full Channel State Information
(CSI) which can be motivated as the result of an Orthogonal
Frequency-Division Multiplexing (OFDM)-based transmis-
sion in a multi-path propagation environment and, thus,
is omnipresent in today’s wireless communication systems.
Our proposed design algorithm benefits from having the
decoder-in-the-loop and the channel-in-the-loop. Thus,
designing LDPC codes tailored to both the decoder and the
channel is possible.

We design LDPC codes tailored to BP decoding with
Nit,max = 200 iterations at a design SNR Eb/N0 = 8 dB.
As shown in Fig. 8a, the resulting LDPC code ( ) outper-
forms the 5G LDPC code optimized for short block lengths
over the whole simulated SNR range (i.e., an Eb/N0 gain of
0.2 dB at a BLER of 10−4). Moreover, our proposed LDPC
code uses a lower number of iterations on average when
compared to the 5G LDPC code as depicted in Fig. 8b. Also,
the average decoding complexity needed to decode our pro-
posed LDPC code is lower than that required for decoding the
5G LDPC code, see Fig. 8c. Thus, our proposed LDPC code
has a better error-rate performance and can be decoded with
reduced decoding latency and decoding complexity when
compared to the 5G LDPC code.

Similarly, we use the same procedure to design LDPC
codes tailored to a lower number of BP iterations
Nit,max = 20. In Fig. 9a, we show that our GenAlg-designed
LDPC code ( ) outperforms the 5G LDPC code over the
whole simulated SNR range and an Eb/N0 gain of 0.8 dB is
achieved at a BLER of 10−4. Again, a significant reduction
in the average number of required iterations (i.e., decoding
latency measure) and the average decoding complexity is
achieved when compared to the reference (standardized)
LDPC codes, see Fig. 9b and Fig. 9c.

VI. LESSONS LEARNED FROM THE GENETIC LEARNING
ALGORITHM
Besides superior decoding performance, we aim to under-
stand what makes the resulting codes so powerful and further

FIGURE 8. Several
(
n = 128, k = 64

)
LDPC codes decoded with BP

decoding using Nit,max = 200 iterations over the Rayleigh fading channel.

analyze the final code structure. As such, the GenAlg may
even provide new design paradigms for short length codes.

First, we observed that our optimizedGenAlg-based LDPC
codes (i.e., H-matrices) contain some degree-1 VNs. It is
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FIGURE 9. Several
(
n = 128, k = 64

)
LDPC codes decoded with BP

decoding using Nit,max = 20 iterations over the Rayleigh fading channel.

well-known that degree-1 VNs are unfavorable in unstruc-
tured LDPC codes as they increase the probability of having
more than one degree-1 VN being connected to the same CN

(recall TB-IRA and PTB-IRA). In that case, these degree-1
VNs suffer from unrecoverable poor decoding performance.
Obviously, this, prevents having an open tunnel between
the VND and CND EXIT curves as shown in Fig. 1b, and
converging to the (1, 1) point is not possible. However,
as shown in Fig. 1, if wisely placed, those degree-1 VNs are
not degrading the actual error-rate performance of the short-
length LDPC code. Similarly in [24], degree-1VNswere used
to improve the iterative decoding thresholds of protograph-
based LDPC codes. One interesting observation is that in our
optimized GenAlg-based LDPC codes, there is no CN which
is connected to more than one degree-1 VN, despite the fact
that this was not a constraint in the optimization problem.
Thus, GenAlg was able to ‘‘learn’’ that the design in which
a CN is connected to more than one degree-1 VN should be
avoided. A similar application of degree-1 VNs was reported
by Richardson in multi-edge type LDPC codes [25].

In order to further investigate the found degree profile,
we show a BER comparison between two long length LDPC
codes (n = 128000) in Fig. 10, as a sanity check:
1) Conventional design: the first code is a single real-

ization following the (asymptotically) optimal degree
profile found by EXIT chart-based curve matching as
shown in Fig. 1a.

2) GenAlg-based design: the second code is a scaled ver-
sion (realization) following the degree profile of our
optimized GenAlg-based short length LDPC code as
shown in Fig. 1b. It has a non-negligible amount of
degree-1 VNs, but we ensure per-design that only one
degree-1 VN is connected per CN.

FIGURE 10. Sanity check for long codes;
(
n = 128000, k = 64000

)
LDPC

codes; BP decoding with Nit,max = 200; bi-AWGN channel.

As shown in Fig. 10, it can be seen that the long LDPC
code designed based on EXIT chart curve matching benefits
from a lower threshold than the code based on GenAlg.
Further, the GenAlg-based long LDPC code indeed suffers
from an inevitable error-floor due to the significant portion of
degree-1VNs it has. Therefore, Fig. 1 and Fig. 10 clearly indi-
cate that short length codes follow different design paradigms
and, thus, the GenAlg-based design process leads to better (in
terms of error-rate) short length LDPC codes. The intuition
behind this effect is the fact that, typically, the price-to-
pay for non-matched EXIT curves is a degraded waterfall
performance. However, in the short length regime, the slope
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in the waterfall region is more important than its exact starting
position (i.e., threshold).

Further, we also observe that in our GenAlg-based short
LDPC codes, no degree-2 VNs are involved in a short cycle.
Despite being a well-known structural constraint in LDPC
design, this was not explicitly outlined as a constraint in our
GenAlg optimization process. Again, GenAlg was able to
‘‘learn’’ this constraint independently.

Next we summarize a few remarkable observations from
our GenAlg results:
• Degree-1 VNs do not necessarily cause a performance
degradation in short length LDPC codes.

• In the short length LDPC code design process, a non-
matched EXIT curves scenario can lead to a good short
length LDPC code, while obviously leading to a poor
long length LDPC code.

• Unfavorable graph structures (e.g., degree-2 VNs
involved in short girth) were inherently avoided by
GenAlg without an explicit constraint imposed on it.

VII. CONCLUSION
The classical LDPC code design tools are based on
asymptotic length assumptions which are not valid in the
short-length regime. Therefore, we focus on constructing
short-length LDPC codes (i.e., the parity-check matrix) using
the genetic algorithm. We propose a flexible framework
accommodating practical decoding requirements and channel
constraints. We construct LDPC codes without any special
graph structure (i.e., we use a random edge interleaver)
and demonstrate the flexibility of the proposed framework.
We also construct accumulator-based LDPC codes which
can be encoded easily. Our proposed LDPC codes out-
perform some well-designed state-of-the-art (standardized)
LDPC codes over both AWGN and Rayleigh fading chan-
nels. Moreover, we design LDPC codes tailored to a reduced
number of BP iterations in order to reduce the decoding
complexity and latency with good error-rate performance
(e.g., a coding gain of up to 0.8 dB when compared to the
5G LDPC code is reported over the Rayleigh fading channel).
Finally, we observed that allowing the presence of carefully
placed degree-1 VNs opens up more degrees of freedom for
code design, and does not degrade the error-rate performance
of our proposed short length LDPC codes.
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