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Abstract
As groundwater is competitively used for drinking, irrigation, industrial and geothermal applications,
the focus on elevated groundwater temperature (GWT) affecting the sustainable use of this resource
increases. Hence, in this studyGWTanomalies and their heat sources are identified. The
anthropogenic heat intensity (AHI), defined as the difference betweenGWTat thewell location and
themedian of surrounding rural backgroundGWTs, is evaluated in over 10 000wells in ten European
countries.Wells within the upper three percentiles of the AHI are investigated for each of the three
major land cover classes (natural, agricultural and artificial). ExtremeGWTs ranging between 25 °C
and 47 °Care attributed to natural hot springs. In contrast, AHIs from3 to 10K for both natural and
agricultural surfaces are due to anthropogenic sources such as landfills, wastewater treatment plants or
mining. Two-thirds of all anomalies beneath artificial surfaces have anAHI>6 K and are related to
underground car parks, heated basements and district heating systems. In somewells, theGWT
exceeds current threshold values for open geothermal systems. Consequently, a holisticmanagement
of groundwater, addressing amultitude of different heat sources, is required to balance the conflict
between groundwater quality for drinking and groundwater as an energy source or storagemedia for
geothermal systems.

Abbreviations

AHI (K) anthropogenic heat
intensity

AHImax (K) upper 3%percentile of
the anthropogenic heat
intensity

AMD acidmine drainage

CLC CORINE land cover

DH district heating

GST (°C) ground surface
temperature

GWT (°C) groundwater temperature

GWTr (°C) rural background
groundwater temperature

LUC land utilisation class

r seasonal radius

SUHI subsurface urban heat
island

URG Upper RhineGraben

Introduction

Groundwater is an important resource for society and
industry. Within the European Union (EU), it is the
main source of drinking water, supplying about 50%
of the total demand [1]. However, it is equally
important for agriculture. Depending on the country
and type of agricultural production, up to 90% of the
water for irrigation originate from groundwater [2]. In
the industrial, commercial and residential sectors the
use of groundwater as a resource for heating and
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cooling purposes is increasing worldwide [3]. Addi-
tionally, the surrounding ecosystem strongly depends
on the groundwater quality and temperature [4–11].
Multiple uses of groundwater lead to high competition
between different interest groups. Consequently, a
holistic groundwater management in terms of quanti-
tative, qualitative and thermal issues, as well as sensible
regulations of this highly demanded source are
essential [12, 13].

The EU water framework directive (WFD) [14]
defines the status of groundwater in terms of quantity
and chemical quality. Groundwater quality and
dependent ecosystems strongly rely on physical and
chemical properties, which are in turn influenced by
the groundwater temperatures (GWTs) [15, 16]. The
temperature determines natural bacterial and fauna
community composition as well as biogeochemical
processes [7, 17]. An increase in GWTs enhances the
propagation of pathogen microorganisms, which in
turn endanger the hygienic state of groundwater and
therefore its use as a drinking water resource [8]. Thus,
theWFD classifies heat input into the aquifer as pollu-
tion. However, a study by Hähnlein et al [18] on the
legal status of shallow geothermal energy use reveals
great differences between European countries: regula-
tions are based on national or regional water manage-
ment and/or ground-water protection authorities,
different ministries or technical guidelines with the
main purpose of the protection of groundwater as
drinking water resource [19]. Furthermore, these reg-
ulations mostly concentrate on the temperature of
reinjected water from industrial cooling processes
and/or open geothermal systems. Until now, little
attention has been paid to other anthropogenic heat
sources, which may have an even larger and more
widespread impact onGWTs [20–23].

Shallow GWTs are subject to seasonal variations
down to a depth of 10–15m [24]. Comparable to air
temperatures, GWTs also depend on altitude and lati-
tude [25]. For instance, mean GWT fluctuates between
2 °C and 20 °C between northern and southern Europe
[26]. However, the natural state of GWT is altered by
human activities. While groundwater is globally affec-
ted by increasing temperatures due to climate change
[27–33], there are regional, anthropogenic impacts ele-
vating GWT above its average and natural state. Chan-
ges in land use and advancing urbanisation in
particular, directly influence groundwater recharge,
level and temperature [34, 35]. Increased surface tem-
peratures due to artificial, sealed surfaces and under-
ground structures raise the GWT beneath cities leading
to so-called subsurface urban heat islands (SUHI)
[36–39]. These SUHIs are often quantified by measur-
ing the urban heat island intensity, which is defined as
the difference between GWT in the urban area and in
the rural background. In Germany, Menberg et al [23]
determined average SUHI intensities of about 3–7K,
but also detected local hot spots with GWT up to 20K
warmer than the rural background temperature.

Further GWT anomalies induced by underground
car parks, construction sites, wastewater treatment
plants, mine, landfills or power stations are also
observed [25, 36, 40, 41]. In their study on GWTs in
Germany, Benz et al [42] introduced the anthro-
pogenic heat intensity (AHI), which relates average
rural background temperatures to local temperature
measurements. They found GWTs to be much more
impacted by human activity than by atmospheric and
surface temperatures. However, they did not compre-
hensively discuss the encountered GWT anomalies.
Hence, there is still a lack of understanding of these
temperature extremes, and many questions remain
unanswered in regard to the locations, frequencies,
implications and associated point sources of such
small scale and local temperature anomalies.

This study therefore aims to map, track and dis-
cuss the occurrence of temperature anomalies in shal-
low aquifers in central Europe. Based on (multi-)
annual mean GWT data from ten European countries
(table S1 is available online at stacks.iop.org/ERL/14/
104012/mmedia), we determine the corresponding
anthropogenic heat intensities (AHIs) to identify
extreme, positive GWT anomalies. The AHImax,
defined as the upper 3% percentile of all AHIs, are
selected for each of the three major land cover classes
(natural, agricultural and artificial) and linked to the
detailed CORINE land cover types. We chose the
upper 3% to assure AHIs, which are significantly
above themeasurement accuracy.Wells located under
artificial surfaces, often in vulnerable aquifers, are
examined in more detail in order to identify potential
heat sources. Finally, we briefly discuss these GWT
anomalies in the context of national regulations and
assess the current and potential impact on our society.

Materials andmethods

Groundwater temperatures
Shallow GWT data from 44 205 wells in ten countries
in central Europe are the basis for this study. GWT
data originate from monitoring networks and are
provided by local authorities, environmental agencies
or hydrogeological services (table S1). While 11% of
the wells are equipped with GWT data loggers, most
wells were monitored manually as part of chemical
analyses. The highest well densities can be found in
France, south-west Germany and Belgium, whereas
only few sampled wells are located in Denmark and
Slovakia (figure 1(a)). To standardise the data set and
to eliminate seasonal GWT variations, data from all
wells are averaged over the time span from 2003 to
2017 following the procedure given in Benz et al
(2017a). In their approach, each temperature mea-
surement is represented by a vector of a unit length of
1 and directed towards themonth of measurement for
a clocklike segmentation of the months. The output is
the mean of all measurement vectors for one location,
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known as seasonal radius r, which is equal to zero for
uniformly distributedmeasured data, and equal to one
if they were collected in the same month. Following
the recommendation by Benz et al (2017a), all wells
with a depth �60m and r�0.25, which indicates a
bias-free annual mean, are considered for the further
analysis (figure S1).

Anthropogenic heat intensity
For each well the AHI is defined as the difference
between GWT at the well location and the median of
surrounding rural background GWTs (GWTr) [42]
(equation (1)). Based on the definition by Benz et al
[42], AHI is a measure of the anthropogenic influence
on GWTs. Yet, in this study AHI also detects thermal
disturbances caused by natural sources, as we apply it
towells in urban aswell as rural areas

= - ( ) ( )AHI GWT median GWT . 1r

The input parameters to determine the rural back-
ground temperature are the bias-free GWT, geo-
graphical elevation and night-time light intensity.

Elevation data are extracted from the Global 30 Arc-
Second Elevation (GTOPO30) model and down-
loaded with Google Earth Engine [43]. Night-time
lights from Version 4 of the DMSP-OLS Night-time
Lights Time Series, processed by NOAA, were also
extracted with Google Earth Engine. Since the night
light data are only available up to January 2014, a
10 year average (01/2004 to 12/2013) was chosen.
Night-time light intensity is expressed as a digital
number (DN) running from 0 to 63 indicating an
increasing urban activity [44]. All wells with a night-
time light of DN<15, an elevation ±90m and
within a distance of 47km to the analysed location are
considered for the calculation of rural background
temperature [42]. To ensure meaningful statistics and
to avoid an impact by outliers AHI is only determined,
if at least fivewells fulfil these criteria.

Land cover classification
The CORINE Land Cover (CLC) [45] classification
scheme consists of three hierarchical levels with 44
land cover classes at the third and most detailed level

Figure 1. (a)Overview of the survey area and distribution of all 12 151wells with bias-free annualmean groundwater temperatures
(GWTs), (b) all 10 656wells forwhich an anthropogenic heat intensity (AHI) could be determined, and (c) the upper 3%percentiles of
the three land cover classes natural, agricultural and artificial resulting in 318 hot spots (AHImax).
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(figure S2). Based on Level1, we define three main
land cover classes: (1) natural, (2) agricultural and (3)
artificial. The natural class is a combination of CLC’s
classes ‘forest and semi natural areas’ and ‘wetlands’.
The agricultural class contains CLC’s ‘agricultural
areas’ and the artificial class includes all ‘artificial
surfaces’. The calculated AHIs are categorised into and
separately analysed for these three main classes
(figure S3).

GWTanomalies
The wells within the upper 3% percentile of each class
are specified as temperature anomalies AHImax. All
AHImax wells within the artificial land cover class are
closely inspected via satellite images (Google Earth).
Based on observed common characteristics, such as
land use, economic activity and settlement structures,
we defined specific land utilisation classes (LUCs)with
detailed subclasses and identified possible heat sources
of these hot spots.

Results and discussion

Statistics of GWTanomalies (AHImax)
Based on the bias-free annual mean GWT (12 151
wells) an AHI could be evaluated for 10 656 wells
(figure 1(b)). AHI is uniformly distributed over all
known measurement depths, proving its indepen-
dence of depth (figure S4). Its distribution is given in
figures S5–S7. Figure 1(c) displays the wells within the
top three percentiles, which represent 318 GWT
anomalies (AHImax) in total. 97%of these hot spots are
located in Austria, France and Germany, which have
the highest AHI well density overall. In Belgium,
hot spots exist only in agricultural areas. Slovakia,
Switzerland and Luxembourg have only one hot spot
in the class artificial and natural, respectively. Czech
Republic, Denmark and Netherlands do not show any
(figure S8). The hot springs in Austria and Southwest
Germany, as well as accumulations of hot spots in the
Upper Rhine Graben (URG) and Eastern Germany
clearly stand out (figure 1(c)). The URG is a densely
urbanised region with multiple industrial areas, while
East Germany is widely known for its former coal and
ore mining. The minimum values of AHImax of the
classes natural, agriculture and artificial are 2.3K,
1.7Kand 3.9K respectively (figure S9).

To illustrate the link between land cover and
temperature anomalies, the Level3 CLC classes for
wells with an AHI are compared with the CLC classes
of the AHImax wells (figure 2). A shift in the percen-
tages of wells in each land cover class between these
two sets is evident. Hence, it becomes apparent for
which land cover temperature anomalies appear more
frequently. For wells located on natural land cover, the
percentage of wells in coniferous and mixed forests
decreases from AHI to AHImax, whereas the percent-
age of wells associated with transitional woodland-

shrub and natural grasslands triples. The latter are
therefore more likely to contain GWT anomalies. One
explanation is that soil temperatures and/or GWT
beneath grass or farming land are typically higher than
those beneath a forest, due to differences in incident
solar radiation and evapotranspiration [46, 47].

In contrast, the shift from non-irrigated arable
land to pastures in the agricultural class cannot be
exclusively explained by physical effects due to vegeta-
tion or shielding foliage. According to Herb et al [48],
ground surface temperatures (GSTs) beneath grass
and land with different plant canopies are similar. A
possible explanation for the anomalies is deforesta-
tion, which is known to cause subsurface temperature
anomalies [49–52], that are detectable at depths of
20–100m [53]. Regarding the temporal and hor-
izontal extent of such temperature anomalies, a lateral
spread of several hundred metres over 100years can
occur [54]. Nevertheless, one has to notice that
AHIs>3K under both natural and agricultural sur-
faces result from hot springs or local anthropogenic
sources, such as contamination caused by landfills,
mining orwaste water treatment plants.

In the artificial class, the share of discontinuous
urban fabric shifts towards industrial areas and con-
tinuous urban fabric. Multiple previous studies on
SUHIs indicated local hot spots within dense urban
areas and industrial sites, which is also evident in our
current findings here. Epting et al [41], Menberg et al
[23] and Ferguson and Woodbury [55] noticed a
strong correlation between the highest underground
temperatures and the density of buildings, in part-
icular buildings with heated basements. For the city
centre of Cologne andWinnipeg, Zhu et al [56] found
an increase in GWT of up to 5K, which compares clo-
sely with themedian of the AHImax of artificial surfaces
in this study (figure S9). Epting et al [57] observed an
increase of GWT up to 6 and 8K in dense industrial
and commercial areas of Basel. Single point heat
sources in industrial areas were also mentioned by
Ferguson and Woodbury [58], Bucci et al [40] and
Menberg et al [23].

GWTanomalies (AHImax) beneath artificial surfaces
The outcome of the detailed visual inspection and
examination of the surroundings of the 45 artificial
AHImax wells are six LUCs with 20 detailed subclasses
(figures 3 and S10). With a mean AHI of 7K, the LUC
‘factory’ has by far the largest impact on GWT,
whereas the mean AHI of ‘industry parks’ is the
smallest with on average 5K.With regard to the share
of each utilisation class, most of the hot spots are
within ‘city’ (33%), followed by ‘factory’ and ‘industry
park’ with 27% and 24%, respectively. In the follow-
ing, possible heat sources within specific LUCs are
discussed.

In the LUC ‘industry park’, different industrial
branches such as plastic, paper, electronic, chemical or
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Figure 2.Percentage of wells falling into specificCORINE land cover (CLC) Level3 classes for natural, agricultural and artificial
classes, respectively. Upper row: All 10 656wells having an anthropogenic heat intensity (AHI) (a)–(c), bottom row: 318AHImax wells
representing the upper 3%percentile of all AHIwells (d)–(f).

Figure 3. Segmentation of land utilisation classes (LUC, outer circle), colour coded according to theirmean anthropogenic heat
intensity (AHI) and standard deviation (±), andmore detailed subclasses (inner circle) of the 45AHImax of artificial surfaces.
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machinery construction companies are mixed with
office buildings and supermarkets. Here, high GWTs
can originate frommultiple heat sources such as base-
ments with heating installations, sealed surfaces or
injection of cooling water. These interfere with each
other and can add up so that the distinct heat source of
the groundwater anomaly is difficult to identify. Bucci
et al [40] also referred to heat fluxes from buildings
into the ground originating from industrial exother-
mic processes inside the buildings as cause for high
GWT above 17 °C in an industrial district close to
Turin city.

In the LUC ‘waste’, onewell is close to a landfill with
an enclosed waste recycling plant, while the other one is
on the premises of a waste disposal facility with deten-
tion basins and compensating reservoir. Benz et al [36]
also identified a wastewater treatment plant in Osaka,
Japan, as a local heat source for increasedGWT.

Despite a high thematic accuracy of over 85%,
wrong classifications of CLC classes can also occur
[59]. Here, two wells in the artificial class are located
on farmland and a fruit plantation, and thus actually
fall into the agricultural class and the LUC ‘farming’.

The LUC ‘automotive’ refers to wells located at a
car workshop, a car race track and car dealer. The
common characteristic of the automotive class are
sealed surfaces and possible contamination with pet-
roleumhydrocarbons [60].

The high mean AHI and standard deviation of the
LUC ‘city’ stand out and reflect the significant, yet
variable impact of the different subclasses and of the
corresponding heat sources. High GWT in city centres
are due to the interference and superposition of heat
input by sealed surfaces and underground structures,
as already described in several SUHI studies
[23, 36, 38, 40, 41, 56, 61–64]. A conspicuous cluster of
wells showing increased GWT were observed close to
underground car parks and therefore, classified as
separate subclasses. The fringe subclass contains less
dense urban areas. A hot spring in Austria, having the

highest AHI (27.0 K) of all artificial wells, falls within
this subclass and causes the overall high AHI and stan-
dard deviation of LUC ‘city’. Disregarding this natural
temperature anomaly leads to a mean ‘city’ AHI of
5.0±1.7K.

The LUC ‘factory’ comprises wells situated on the
property of a detached, single factory that is not part of
an industrial park. All seven wells in the subclass
power plant are at the same location in France,
whereas the remaining subclasses are only represented
by one well location each. GWT anomalies with tem-
peratures over 30 °C in the vicinity of power plants
were also reported byMenberg et al [23].

Heat sources of AHImax

For 16 out of the 45 hot spots of the class artificial, we
were able to identify potential heat sources sum-
marised into seven classes (table 1). It is important to
note that other underground heat sources such as
industrial cooling, geothermal applications or sewage
pipes are likely [22, 39, 40, 61], but could not be
detected with the here proposed method relying on
satellite imagery and local knowledge. The highest
temperature anomaly is associated with a hot spring in
Austria. All remaining temperature anomalies and
heat source classes refer to anthropogenic activities.
Based on their spatial extent and impact magnitude
they can be divided into two groups. The first group
consists of heat sources that are scare, but have a large
extent, such as contaminations and mining opera-
tions. Basements, district heating (DH) networks,
swimming pools and underground car parks are the
second group. They are rather local sources, but are
more frequent in urban environments and therefore
also have an extensive impact onGWTs.

The first group, containing the heat sources con-
tamination andmining, exhibits the highest GWT and
AHI of all identified anthropogenic heat sources with
temperatures of up to 8K warmer than the rural sur-
rounding. The three wells in the class contamination

Table 1. Individual values,means and standard deviations (std) of the groundwater temperature (GWT) and anthropogenic heat
intensity (AHI) for the 16 identified heat sources and seven heat source classes of the hot spots (AHImax)within artificial areas.

Heat source Nr. of locations Parameter Values Mean std

Hot spring 1 GWT (°C) 37.9 37.9 0.0

AHI (K) 27.0 27.0 0.0

Contamination 3 GWT (°C) 23.3 18.2 17.6 19.7 2.5

AHI (K) 9.2 7.7 4.2 7.0 2.1

Mining 2 GWT (°C) 20.9 16.7 18.8 2.1

AHI (K) 10.6 6.2 8.4 2.2

Basement 1 GWT (°C) 15.9 15.9 0.0

AHI (K) 4.0 4.0 0.0

District heating 3 GWT (°C) 15.6 15.4 14.3 15.1 0.6

AHI (K) 4.4 4.2 4.0 4.2 0.1

Swimming pool 1 GWT (°C) 16.0 16.0 0.0

AHI (K) 4.1 4.1 0.0

Undergr. car park 5 GWT (°C) 17.1 17.3 14.3 15.0 15.3 15.8 1.2

AHI (K) 6.8 5.3 4.5 4.3 4.0 5.0 1.0
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refer to two wells in LUC ‘waste’, and one well is at a
car race track (LUC ‘automotive’). Exothermic chemi-
cal and biological degradation processes in landfills or
contaminated sites can result in higher GWTs [23, 40].
Krümpelbeck [65] reported temperatures up to 60 °C
in a landfill. Similar to landfills, exothermic biogeo-
chemical weathering processes, called acid mine drai-
nage (AMD), cause high temperatures in mines and
their remote surroundings [66]. Reports by Felix et al
[67] and LfULG [68] confirm AMD as heat source of
one particular well in the LUC subclass fringe, situated
in a hard coalmining district in eastern Germany. Fur-
thermore, they described increased GWT in remote
observation wells due to coal seam fires reaching tem-
peratures up to 90 °C within the pithead stocks. The
high GWT and AHI of the well in the subclass ‘farm-
land’, located in an area in eastern Germany famous
for oremining, could also be associatedwithAMD.

The second group includes the small scale and
local heat sources basements, DH networks, swim-
ming pool and underground car parks. Thewell linked
to warming from basements, is 2maway from a shop-
ping mall in Karlsruhe, Germany. While the AHI of
this well is lower than the ones associated with con-
tamination andmining, almost every building in a city
has a basement, which typically also hosts the heating
installation of the building. Epting and Huggenberger
[21], Benz et al [61] and Epting et al [69] also empha-
sised the large impact of basements on GWT and due
to their high heat flux and dominant area, named
them as the dominant drivers of SUHIs.

Correlating local DH network plans with well
positions, we could classify the heat source of three
wells of the subclass city centre as DH. In DH net-
works, water with temperatures up to 160 °C circu-
lates under high pressure through pipes under many
urban areas [70]. Depending on season and type of
insulation, heat losses up to 20% occur [71]. Benz et al
[61] pointed out that DHpipes are a prominent source
of anthropogenic heat fluxes. The time series in figure
S11 also clearly demonstrate the impact of DH heat
fluxes on a groundwater observation well 3.5m away
from the pipe. Regarding the mean GWT at 6m
depth, representing themiddle of the aquifer, AHI is as
high as 8K. Consequently, the heat input by DH
pipes, especially in case of a local leakage is not negli-
gible and should be consideredmore carefully.

Water with lower temperatures than in DH pipes
is also released into aquifers by leaking swimming
pools. Cracks in the pool or loose tiles can cause leak-
age rates of 70 m3 d−1 [72]. Another case study about a
municipal swimming pool in Montreal reports a leak-
age rate of 350–700m3 per day into the underlying
aquifer [73]. Even if the swimming pool is watertight,
the basin releases heat to the subsurface. One of the
wells in LUC ‘city’ is located 4m away from amunici-
pal swimming pool inGermany and theGWTof 16 °C
is likely to be influenced by the heat release of the pool.
Menberg et al [23] even noticed a GWT of 20 °C for an

observation well next to a swimming pool in Frank-
furt, Germany. At another municipal swimming pool
in Germany, temperatures of 25 °C beneath the swim-
ming pool and increased GWT of 1–3K in the down-
gradient weremeasured [74].

In previous SUHI studies, underground car parks
were intensively discussed as sources forGWTanoma-
lies [21, 22, 56]. This is in accordance with our findings
that reveal underground car parks as the most fre-
quent heat source of temperature anomalies in the
class artificial (table 1). Warm, exhausted fumes and a
poor ventilation lead to heat accumulation, so air
temperature strongly increases in underground car
parks. Iskander et al [75] recorded temperatures above
25 °C in summer at the lowest level of an underground
car park. We also recorded air temperatures of up to
30 °C in an underground car park and correspond-
ingly highGWTof almost 20 °C in an observation well
within this car park (figure S12). The correlation
between these two temperatures is obvious and there-
fore the heat input of underground car parks into the
aquifer is evident.

Regulations
Despite the multitude of underground heat sources,
only open geothermal systems are currently regulated
by legally binding temperature thresholds in Austria
(20 °C), Denmark (25 °C) and theNetherlands (25 °C)
[76, 77]. Four wells out of all 318 hotspots exceed the
25 °C threshold value, though they are natural hot
springs in Germany and Austria. Amaximum temper-
ature (Tmax) of modified groundwater of 20 °C and a
relative change (ΔT) in GWT of ±6 K is given in the
geothermal installation guidelines in Austria (legally
binding) and Germany (recommended) [76, 77]. For
all hot spots, we detected 13 wells that exceed Tmax and
38 with an AHI exceeding ΔT of 6K. While four of
these temperature anomalies are associated with
natural hot springs, the remaining nine temperature
infringements, or rather 34 for AHI exceedingΔT, are
associated with anthropogenic heat sources. The
majority of wells with a higher AHI than the 6K
temperature difference (ΔT) are in the artificial land
cover class and located in Austria, France, Germany
and Switzerland. When comparing our results with
the accepted ΔT and Tmax, we found that the mean
AHI of the LUCs ‘automotive’, ‘city’ and ‘factory’ are
slightly above theΔT limit, while themeanAHI linked
to the heat source classes ‘contamination’ and ‘mining’
are 1K or even more than 2K above the criteria
respectively. Since GWT is averaged, the information
of seasonal positive or negative extreme values of the
time series is not accounted for in this analysis.
Individual GWT measurements might exceed the
maximum GWT Tmax more frequently. From the
GWT time series in figures S11–S13, it becomes
apparent that GWT peaks caused by basements,
contamination, mining and DH surpass the
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Tmax-limit several times while annual mean values
remain below the threshold. In case of aquifer thermal
energy storage systems, seasonal variation of GWTs
also cannot be detected by AHI since themeanGWT is
equal or close to the GWTr. Accordingly, the number
of wellsmomentarily exceeding 20 °C is expected to be
significantly higher than those found based on annual
meanGWTs.

Conclusion

This study detects GWT anomalies in central Europe
and identifies large- and small-scale anthropogenic
heat sources such as mining and underground car
parks. These extreme and until now unregulated heat
sources seriously impact our groundwater. When
GWTs continue to increase, groundwater cooling
systems are no longer efficient [55, 69]. Furthermore,
high GWT might also affect groundwater quality and
ecology (e.g. [5, 6, 78–80]). In some urban areas, where
aquifers are already contaminated with heavy metals
and organic compounds, an increase of GWT by only
5K might also entail a decrease of dissolved oxygen
and may lead to a mobilisation of other contaminants
such as arsenic [81–84]. Nevertheless, elevated GWTs
provide the opportunity to harness more energy from
the aquifer using shallow geothermal systems or
make the operation of such systems more efficient
[56, 85–88]. Overall, increased GWTs have multiple,
long-term consequences and therefore, the complex
interaction between heat sources and heat sinks in
consideration of the aquifer characteristics should be
further studied and also regulated. All these influen-
cing factors have to be incorporated into future urban
subsurface planning. Regulations should be more
flexible, so that depending on the specific aims of the
policy of cities and communities, the focus of ground-
water management can be on groundwater as a
resource for drinking water and/or as an energy
resource. The use of numerical heat transport models
could maximise the positive effects of increased GWT
in order to meet the needs of various interest groups
and to preserve the natural state of our groundwater
ecosystems.

Acknowledgments

CT is grateful to the funding received through GRACE,
the Graduate School for PhD students of the KIT-
Center Climate and Environment at the Karlsruhe
Institute of Technology (KIT). The work was also
supported by the German Research Foundation (pro-
ject no. B2850/3-1). The authors thank Alistair Fronh-
offs (Vlaamse Milieumaatschappij), Arlette Liétar
(Bruxelles Environnement), Martin Hansen (Geologi-
cal Survey of Denmark and Greenland), Jürgen Gruber
(Bayerisches Landesamt für Umwelt), Christian Gläser
(Landesamt für Umwelt Brandenburg), Roland Funck

(Der Senator für Umwelt, Bau und Verkehr), Mario
Hergesell (Hessisches Landesamt für Naturschutz,
Umwelt und Geologie), Lisa Beilharz (Tiefbauamt
Karlsruhe), Gunter Wriedt (Niedersächsische Land-
esbetrieb für Wasserwirtschaft, Küsten- und Nat-
urschutz), Peter Neumann (Landesamt für Natur,
Umwelt und Verbraucherschutz), Wolfgang Plaul
(Landesamt für Umwelt Rheinland-Pfalz), Sarah Mel-
chior (Landesamt für Umwelt und Arbeitsschutz), Ulf
Nilius (Landesbetrieb für Hochwasserschutz undWas-
serwirtschaft Sachsen-Anhalt), Andreas Riese (Thürin-
ger Landesamt für Umwelt undGeologie), TomMichel
(Administration de la Gestion de l’Eau), Janco van
Gelderen (Informatiehuis Water), Eugen Kullman
(Slovak Hydrometeorological Institute) and Jessica
Stapleton (Bundesamt für Umwelt) for the provision of
data and additional information. Special recognition is
also given to Nicolas Weidenthaler for the field work
and collection of GWT data in Mannheim, Germany.
We also thank the two reviewers for their comments.
We acknowledge support by the KIT-Publication Fund
of theKarlsruhe Institute of Technology.

Data availability statement

The data that support the findings of this study are
available from the corresponding author upon reason-
able request. The data are not publicly available for
legal and/or ethical reasons.

References

[1] EuropeanCommission 2016 Synthesis Report on theQuality of
DrinkingWater in theUnion examiningMember States’Reports
for the 2011–2013 Period, ForeseenUnder Article 13(5) of
Directive 98/83/EC (https://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=CELEX%3A52016DC0666#document1)

[2] Eurostat 2019Agri-environmental indicator—Irrigation Stat.
Explained (https://ec.europa.eu/eurostat/statistics-
explained/index.php/Agri-environmental_indicator_-_
irrigation)

[3] Lund JWandBoydTL 2016Direct utilization of geothermal
energy 2015worldwide reviewGeothermics 60 66–93

[4] Arning E, KöllingM, SchulzH, Panteleit B andReichling J
2006 Einfluss oberflächennaherWärmegewinnung auf
geochemische Prozesse imGrundwasserleiterGrundwasser 11
27–39

[5] BonteM, Stuyfzand P J, van denBergGA andHijnenWAM
2011 Effects of aquifer thermal energy storage on groundwater
quality and the consequences for drinking water production: a
case study from theNetherlandsWater Sci. Technol. 63
1922–31

[6] BonteM, Stuyfzand P J, HulsmannA andVanBeelen P 2011
Underground thermal energy storage: environmental risks and
policy developments in theNetherlands and EuropeanUnion
Ecol. Soc. 16 22

[7] BrielmannH,Griebler C, Schmidt S I,Michel R and Lueders T
2009 Effects of thermal energy discharge on shallow
groundwater ecosystems: ecosystem impacts of groundwater
heat discharge FEMSMicrobiol. Ecol. 68 273–86

[8] BrielmannH, Lueders T, SchreglmannK, Ferraro F,
AvramovM,Hammerl V, BlumP, Bayer P andGriebler C 2011
OberflächennaheGeothermie und ihre potenziellen
Auswirkungen auf GrundwasserökosystemeGrundwasser 16
77–91

8

Environ. Res. Lett. 14 (2019) 104012

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52016DC0666#document1
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52016DC0666#document1
https://ec.europa.eu/eurostat/statistics-explained/index.php/Agri-environmental_indicator_-_irrigation
https://ec.europa.eu/eurostat/statistics-explained/index.php/Agri-environmental_indicator_-_irrigation
https://ec.europa.eu/eurostat/statistics-explained/index.php/Agri-environmental_indicator_-_irrigation
https://doi.org/10.1016/j.geothermics.2015.11.004
https://doi.org/10.1016/j.geothermics.2015.11.004
https://doi.org/10.1016/j.geothermics.2015.11.004
https://doi.org/10.1007/s00767-006-0116-0
https://doi.org/10.1007/s00767-006-0116-0
https://doi.org/10.1007/s00767-006-0116-0
https://doi.org/10.1007/s00767-006-0116-0
https://doi.org/10.2166/wst.2011.189
https://doi.org/10.2166/wst.2011.189
https://doi.org/10.2166/wst.2011.189
https://doi.org/10.2166/wst.2011.189
https://doi.org/10.5751/ES-03762-160122
https://doi.org/10.1111/j.1574-6941.2009.00674.x
https://doi.org/10.1111/j.1574-6941.2009.00674.x
https://doi.org/10.1111/j.1574-6941.2009.00674.x
https://doi.org/10.1007/s00767-011-0166-9
https://doi.org/10.1007/s00767-011-0166-9
https://doi.org/10.1007/s00767-011-0166-9
https://doi.org/10.1007/s00767-011-0166-9


[9] BronsH J, Griffioen J, Appelo CA J andZehnder A J B 1991
(Bio) geochemical reactions in aquifermaterial from a thermal
energy storage siteWater Res. 25 729–36

[10] Griffioen J andAppeloC J 1993Nature and extent of carbonate
precipitation during aquifer thermal energy storageAppl.
Geochem. 8 161–76

[11] PossemiersM,HuysmansMandBatelaanO 2014 Influence of
aquifer thermal energy storage on groundwater quality: a
review illustrated by seven case studies frombelgium J. Hydrol.:
Reg. Stud. 2 20–34

[12] Datta P S 2005Groundwater ethics for its sustainabilityCurr.
Sci. 89 812–7 (http://jstor.org/stable/24111025)

[13] FlörkeM, Schneider C andMcDonald R I 2018Water
competition between cities and agriculture driven by climate
change and urban growthNat. Sustain. 1 51–8

[14] DirectiveWF2000Directive 2000/60/ECof the European
Parliament and of theCouncil of 23October 2000 establishing
a framework for Community action in thefield of water policy
Official J. Eur. Communities 22 2000 (https://eur-lex.europa.
eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-
756d3d694eeb.0004.02/DOC_1&format=PDF)

[15] Riedel T 2019Temperature-associated changes in
groundwater quality J. Hydrol. 572 206–12

[16] Sharma L,Greskowiak J, Ray C, Eckert P and PrommerH 2012
Elucidating temperature effects on seasonal variations of
biogeochemical turnover rates during riverbank filtration
J. Hydrol. 428–429 104–15

[17] Hall E K,Neuhauser C andCotner J B 2008Toward a
mechanistic understanding of hownatural bacterial
communities respond to changes in temperature in aquatic
ecosystems ISME J. 2 471–81

[18] Hähnlein S,Molina-GiraldoN, BlumP, Bayer P and
Grathwohl P 2010Ausbreitung vonKältefahnen im
Grundwasser bei ErdwärmesondenGrundwasser 15 123–33

[19] Tsagarakis KP et al 2018A review of the legal framework in
shallow geothermal energy in selected European countries:
need for guidelinesRenew. Energy (https://doi.org/10.1016/j.
renene.2018.10.007)

[20] Epting J 2017Thermalmanagement of urban subsurface
resources–Delineation of boundary conditions Proc. Eng. 209
83–91

[21] Epting J andHuggenberger P 2013Unraveling the heat island
effect observed in urban groundwater bodies-definition of a
potential natural state J. Hydrol. 501 193–204

[22] MenbergK, BlumP, Schaffitel A andBayer P 2013 long-term
evolution of anthropogenic heat fluxes into a subsurface urban
heat islandEnviron. Sci. Technol. 47 9747–55

[23] MenbergK, Bayer P, Zosseder K, Rumohr S andBlumP2013
Subsurface urban heat islands inGerman cities Sci. Total
Environ. 442 123–33

[24] Taylor CA and StefanHG2009 Shallow groundwater
temperature response to climate change and urbanization
J. Hydrol. 375 601–12

[25] Benz SA, Bayer P andBlumP2017Global patterns of shallow
groundwater temperatures Environ. Res. Lett. 12 034005

[26] BonsorHC2017Groundwater, geothermalmodelling and
monitoring at city-scale: reviewing European practice and
knowledge exchange: TU1206 COST sub-urbanWG2 report
BritishGeological Survey

[27] BeltramiH, FergusonG andHarris RN 2005 Long-term
tracking of climate change by underground temperatures
Geophys. Res. Lett. 32

[28] Benz SA, Bayer P,Winkler G andBlumP2018Recent trends
of groundwater temperatures inAustriaHydrol. Earth Syst. Sci.
22 3143–54

[29] GreenTR, TaniguchiM,KooiH,Gurdak J J, AllenDM,
HiscockKM, TreidelH andAureli A 2011 Beneath the surface
of global change: impacts of climate change on groundwater
J. Hydrol. 405 532–60

[30] Gunawardhana LN andKazama S 2012 Statistical and
numerical analyses of the influence of climate variability on
aquifer water levels and groundwater temperatures: the

impacts of climate change on aquifer thermal regimesGlob.
Planet. Change 86–87 66–78

[31] Kurylyk B L, Bourque CP-A andMacQuarrie KTB 2013
Potential surface temperature and shallow groundwater
temperature response to climate change: an example from a
small forested catchment in east-central NewBrunswick
(Canada)Hydrol. Earth Syst. Sci. 17 2701–16

[32] MenbergK, BlumP, Kurylyk B L andBayer P 2014Observed
groundwater temperature response to recent climate change
Hydrol. Earth Syst. Sci. 18 4453–66

[33] SinghRD andKumarCP 2010 Impact of climate change on
groundwater resources Int. J. Clim. Change Strateg.Manage.
1 15

[34] ColombaniN, Giambastiani BMS andMastrociccoM2016
Use of shallow groundwater temperature profiles to infer
climate and land use change: interpretation andmeasurement
challenges: effect of land use and climate changes on
groundwater temperatureHydrol. Process. 30 2512–24

[35] Sharp JM2010The impacts of urbanization on groundwater
systems and rechargeAQUAmundi 1 51–6

[36] Benz SA, Bayer P, BlumP,HamamotoH, ArimotoH and
TaniguchiM2018Comparing anthropogenic heat input and
heat accumulation in the subsurface ofOsaka, Japan Sci. Total
Environ. 643 1127–36

[37] FergusonG andWoodbury AD2007Urban heat island in the
subsurfaceGeophys. Res. Lett. 34 L23713

[38] TaniguchiM,Uemura T and Jago-onK 2007Combined effects
of urbanization and global warming on subsurface
temperature in four asian citiesVadose Zone J. 6 591

[39] ZhuK, Bayer P, Grathwohl P andBlumP2015Groundwater
temperature evolution in the subsurface urban heat island of
Cologne, GermanyHydrol. Process. 29 965–78

[40] Bucci A, BarberoD, LasagnaM, FornoMGandDe LucaDA
2017 Shallow groundwater temperature in the Turin area (NW
Italy): vertical distribution and anthropogenic effectsEnviron.
Earth Sci. 76

[41] Epting J, Scheidler S, Affolter A, Borer P,MuellerMH, Egli L,
García-Gil A andHuggenberger P 2017The thermal impact of
subsurface building structures on urban groundwater
resources—a paradigmatic example Sci. Total Environ.
596–597 87–96

[42] Benz SA, Bayer P andBlumP2017 Identifying anthropogenic
anomalies in air, surface and groundwater temperatures in
Germany Sci. Total Environ. 584–585 145–53

[43] EngineGE 2015Google earth engine: a planetary-scale
geospatial analysis platform (https://earthengine.google.com)

[44] LiD, ZhaoX and Li X 2016Remote sensing of human beings—
a perspective fromnight-time lightGeo-Spat. Inf. Sci. 19 69–79

[45] CORINE, CORINE LandCover-Copernicus LandMonitoring
Service. 2016; (https://land.copernicus.eu/pan-european/
corine-land-cover)

[46] BeltramiH andKellman L 2003An examination of short- and
long-term air-ground temperature couplingGlob. Planet.
Change 38 291–303

[47] KupfersbergerH, RockG andDraxler J C 2017 Inferring near
surface soil temperature time series fromdifferent land uses to
quantify the variation of heat fluxes into a shallow aquifer in
Austria J. Hydrol. 552 564–77

[48] HerbWR, Janke B,MohseniO and StefanHG2008Ground
surface temperature simulation for different land covers
J. Hydrol. 356 327–43

[49] van den BrinkC, Frapporti G,Griffioen J and
ZaadnoordijkW J 2007 Statistical analysis of anthropogenic
versus geochemical-controlled differences in groundwater
composition in TheNetherlands J. Hydrol. 336 470–80

[50] Foley JA2005Global consequences of landuse Science309570–4
[51] Lewis T J andWangK 1998Geothermal evidence for

deforestation inducedwarming: implications for theClimatic
impact of land developmentGeophys. Res. Lett. 25 535–8

[52] TaniguchiM,WilliamsonDR and PeckA J 1999Disturbances
of temperature-depth profiles due to surface climate change
and subsurfacewaterflow: II. An effect of step increase in

9

Environ. Res. Lett. 14 (2019) 104012

https://doi.org/10.1016/0043-1354(91)90048-U
https://doi.org/10.1016/0043-1354(91)90048-U
https://doi.org/10.1016/0043-1354(91)90048-U
https://doi.org/10.1016/0883-2927(93)90032-C
https://doi.org/10.1016/0883-2927(93)90032-C
https://doi.org/10.1016/0883-2927(93)90032-C
https://doi.org/10.1016/j.ejrh.2014.08.001
https://doi.org/10.1016/j.ejrh.2014.08.001
https://doi.org/10.1016/j.ejrh.2014.08.001
http://jstor.org/stable/24111025
https://doi.org/10.1038/s41893-017-0006-8
https://doi.org/10.1038/s41893-017-0006-8
https://doi.org/10.1038/s41893-017-0006-8
https://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF
https://doi.org/10.1016/j.jhydrol.2019.02.059
https://doi.org/10.1016/j.jhydrol.2019.02.059
https://doi.org/10.1016/j.jhydrol.2019.02.059
https://doi.org/10.1016/j.jhydrol.2012.01.028
https://doi.org/10.1016/j.jhydrol.2012.01.028
https://doi.org/10.1016/j.jhydrol.2012.01.028
https://doi.org/10.1016/j.jhydrol.2012.01.028
https://doi.org/10.1016/j.jhydrol.2012.01.028
https://doi.org/10.1038/ismej.2008.9
https://doi.org/10.1038/ismej.2008.9
https://doi.org/10.1038/ismej.2008.9
https://doi.org/10.1007/s00767-009-0125-x
https://doi.org/10.1007/s00767-009-0125-x
https://doi.org/10.1007/s00767-009-0125-x
https://doi.org/10.1016/j.renene.2018.10.007
https://doi.org/10.1016/j.renene.2018.10.007
https://doi.org/10.1016/j.proeng.2017.11.133
https://doi.org/10.1016/j.proeng.2017.11.133
https://doi.org/10.1016/j.proeng.2017.11.133
https://doi.org/10.1016/j.proeng.2017.11.133
https://doi.org/10.1016/j.jhydrol.2013.08.002
https://doi.org/10.1016/j.jhydrol.2013.08.002
https://doi.org/10.1016/j.jhydrol.2013.08.002
https://doi.org/10.1021/es401546u
https://doi.org/10.1021/es401546u
https://doi.org/10.1021/es401546u
https://doi.org/10.1016/j.scitotenv.2012.10.043
https://doi.org/10.1016/j.scitotenv.2012.10.043
https://doi.org/10.1016/j.scitotenv.2012.10.043
https://doi.org/10.1016/j.jhydrol.2009.07.009
https://doi.org/10.1016/j.jhydrol.2009.07.009
https://doi.org/10.1016/j.jhydrol.2009.07.009
https://doi.org/10.1088/1748-9326/aa5fb0
https://doi.org/10.1029/2005GL023714
https://doi.org/10.5194/hess-22-3143-2018
https://doi.org/10.5194/hess-22-3143-2018
https://doi.org/10.5194/hess-22-3143-2018
https://doi.org/10.1016/j.jhydrol.2011.05.002
https://doi.org/10.1016/j.jhydrol.2011.05.002
https://doi.org/10.1016/j.jhydrol.2011.05.002
https://doi.org/10.1016/j.gloplacha.2012.02.006
https://doi.org/10.1016/j.gloplacha.2012.02.006
https://doi.org/10.1016/j.gloplacha.2012.02.006
https://doi.org/10.1016/j.gloplacha.2012.02.006
https://doi.org/10.1016/j.gloplacha.2012.02.006
https://doi.org/10.5194/hess-17-2701-2013
https://doi.org/10.5194/hess-17-2701-2013
https://doi.org/10.5194/hess-17-2701-2013
https://doi.org/10.5194/hess-18-4453-2014
https://doi.org/10.5194/hess-18-4453-2014
https://doi.org/10.5194/hess-18-4453-2014
https://doi.org/10.1002/hyp.10805
https://doi.org/10.1002/hyp.10805
https://doi.org/10.1002/hyp.10805
https://doi.org/10.4409/Am-004-10-0008
https://doi.org/10.4409/Am-004-10-0008
https://doi.org/10.4409/Am-004-10-0008
https://doi.org/10.1016/j.scitotenv.2018.06.253
https://doi.org/10.1016/j.scitotenv.2018.06.253
https://doi.org/10.1016/j.scitotenv.2018.06.253
https://doi.org/10.1029/2007GL032324
https://doi.org/10.2136/vzj2006.0094
https://doi.org/10.1002/hyp.10209
https://doi.org/10.1002/hyp.10209
https://doi.org/10.1002/hyp.10209
https://doi.org/10.1007/s12665-017-6546-4
https://doi.org/10.1016/j.scitotenv.2017.03.296
https://doi.org/10.1016/j.scitotenv.2017.03.296
https://doi.org/10.1016/j.scitotenv.2017.03.296
https://doi.org/10.1016/j.scitotenv.2017.03.296
https://doi.org/10.1016/j.scitotenv.2017.03.296
https://doi.org/10.1016/j.scitotenv.2017.01.139
https://doi.org/10.1016/j.scitotenv.2017.01.139
https://doi.org/10.1016/j.scitotenv.2017.01.139
https://doi.org/10.1016/j.scitotenv.2017.01.139
https://doi.org/10.1016/j.scitotenv.2017.01.139
https://earthengine.google.com
https://doi.org/10.1080/10095020.2016.1159389
https://doi.org/10.1080/10095020.2016.1159389
https://doi.org/10.1080/10095020.2016.1159389
https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
https://doi.org/10.1016/S0921-8181(03)00112-7
https://doi.org/10.1016/S0921-8181(03)00112-7
https://doi.org/10.1016/S0921-8181(03)00112-7
https://doi.org/10.1016/j.jhydrol.2017.07.030
https://doi.org/10.1016/j.jhydrol.2017.07.030
https://doi.org/10.1016/j.jhydrol.2017.07.030
https://doi.org/10.1016/j.jhydrol.2008.04.020
https://doi.org/10.1016/j.jhydrol.2008.04.020
https://doi.org/10.1016/j.jhydrol.2008.04.020
https://doi.org/10.1016/j.jhydrol.2007.01.024
https://doi.org/10.1016/j.jhydrol.2007.01.024
https://doi.org/10.1016/j.jhydrol.2007.01.024
https://doi.org/10.1126/science.1111772
https://doi.org/10.1126/science.1111772
https://doi.org/10.1126/science.1111772
https://doi.org/10.1029/98GL00181
https://doi.org/10.1029/98GL00181
https://doi.org/10.1029/98GL00181


surface temperature caused by forest clearing in southwest
westernAustraliaWater Resour. Res. 35 1519–29

[53] FergusonG andBeltramiH2006Transient lateral heatflow
due to land-use changesEarth Planet. Sci. Lett. 242 217–22

[54] BenseV andBeltramiH2007 Impact of horizontal groundwater
flowand localized deforestationon the development of shallow
temperature anomalies J.Geophys. Res.112

[55] FergusonG andWoodbury AD2004 Subsurface heatflow in
an urban environment J. Geophys. Res.: Solid Earth 109B02402

[56] ZhuK, BlumP, FergusonG, BalkeK-D andBayer P 2010The
geothermal potential of urban heat islandsEnviron. Res. Lett. 5

[57] Epting J, García-Gil A,Huggenberger P, Vázquez-Suñe E and
MuellerMH2017Development of concepts for the
management of thermal resources in urban areas–assessment
of transferability from the Basel (Switzerland) andZaragoza
(Spain) case studies J. Hydrol. 548 697–715

[58] FergusonG andWoodbury AD2005Thermal sustainability of
groundwater-source cooling inWinnipeg,ManitobaCan.
Geotech. J. 42 1290–301

[59] EEA2006The thematic accuracy of Corine land cover 2000:
assessment using LUCAS (land use cover area frame statistical
survey)Technical ReportNo7,OCLC: 836343078 EEA:
Copenhagen

[60] AkankpoO and IgboekweMU2011Monitoring groundwater
contamination using surface electrical resistivity and
geochemicalmethods J.Water Resour. Prot. 03 318–24

[61] Benz SA, Bayer P,MenbergK, Jung S andBlumP2015 Spatial
resolution of anthropogenic heat fluxes into urban aquifers Sci.
Total Environ. 524–525 427–39

[62] Benz SA, Bayer P, Goettsche FM,Olesen F S andBlumP2016
Linking surface urban heat islandswith groundwater
temperatures Environ. Sci. Technol. 50 70–8

[63] OkeTR 1973City size and the urban heat islandAtmos.
Environ. 7 769–79

[64] TaniguchiM, Shimada J, Tanaka T, Kayane I, Sakura Y,
ShimanoY,Dapaah-Siakwan S andKawashima S 1999
Disturbances of temperature-depth profiles due to surface
climate change and subsurfacewaterflow: I. An effect of linear
increase in surface temperature caused by global warming and
urbanization in the TokyoMetropolitanArea, JapanWater
Resour. Res. 35 1507–17

[65] Krümpelbeck I 2000Untersuchungen zum langfristigen
Verhalten von Siedlungsabfalldeponien PhDThesisBergischen
Universität—GesamthochschuleWuppertal,Wuppertal

[66] Willscher S,Hertwig T, FrenzelM, FelixM and Starke S 2010
Results of remediation of hard coal overburden and tailing
dumps after a few decades: insights and conclusions
Hydrometallurgy 104 506–17

[67] FelixM, Sohr A, Riedel P andAssmann L 2009
Gefährdungspotenzial Steinkohlenhalden Zwickau/Oelsnitz
—Kurzbericht zu den Forschungsberichten 2005 bis 2007 zur
Thematik p 95 (https://umwelt.sachsen.de/umwelt/
download/luft/42_Kurzbericht_SteinkohlenHalden_SN.pdf)

[68] LfULG2010Geologie undBergbaufolgen im Steinkohlerevier
Lugau/Oelsnitz—Geoprofil 13 (https://publikationen.
sachsen.de/bdb/artikel/12197/documents/12905)

[69] Epting J, Händel F andHuggenberger P 2013Thermal
management of an unconsolidated shallowurban
groundwater bodyHydrol. Earth Syst. Sci. 17 1851–69

[70] EnergieW2013Technische Richtlinien—Technische
Auslegungsbedingungen (https://wienenergie.at/media/
files/2015/technische)

[71] Recknagel H, Sprenger E and Schramek E-R 2007Taschenbuch
fürHeizung+Klimatechnik 07/08 vol 73 73rd edn (München:
Oldenbourg Industrieverlag )

[72] Water S 2011 Best practice guidelines forwatermanagement in
aquatic leisure centre (https://sydneywater.com.au/web/
groups/publicwebcontent/documents/document/zgrf/
mdq1/~edisp/dd_045262.pdf)

[73] Chapuis RP 2010Using a leaky swimming pool for a huge
falling-head permeability test Eng. Geol. 114 65–70

[74] BlumP2018Geospeicher.bwp28 (http://fachdokumente.lubw.
baden-wuerttemberg.de/servlet/is/127777/l7516014_16019_%
2012.03.2019.pdf?command=downloadContent&filename=
l7516014_16019_%2012.03.2019.pdf&FIS=203)

[75] IskanderM, AboumoussaWandGouvin P 2001
Instrumentation andmonitoring of a distressedmultistory
underground parking garage J. Perform. Constr. Facil 15
115–23

[76] Hähnlein S, Bayer P andBlumP 2010 International legal status
of the use of shallow geothermal energyRenew. Sustain. Energy
Rev. 14 2611–25

[77] Hähnlein S, BlumP andBayer P 2011Oberflächennahe
geothermie—aktuelle rechtliche situation in deutschland
Grundwasser 16 69–75

[78] Danielopol DL, Gibert J, Griebler C, GunatilakaA,HahnH J,
MessanaG,Notenboom J and Sket B 2004 Incorporating
ecological perspectives in European groundwatermanagement
policyEnviron. Conserv. 31 185–9

[79] HahnH J, Schweer C andGriebler C 2018Are groundwater
ecosystems rights being preserved?Grundwasser 23

[80] Hähnlein S, Bayer P, FergusonG andBlumP2013
Sustainability and policy for the thermal use of shallow
geothermal energy Energy Policy 59 914–25

[81] BonteM, RölingWFM, Zaura E, van derWielen PW J J,
Stuyfzand P J and van Breukelen BM2013 Impacts of
shallow geothermal energy production on redox processes
andmicrobial communities Environ. Sci. Technol. 47
14476–84

[82] BonteM, van Breukelen BMand Stuyfzand P J 2013
Temperature-induced impacts on groundwater quality and
arsenicmobility in anoxic aquifer sediments used for both
drinkingwater and shallow geothermal energy production
Water Res. 47 5088–100

[83] BonteM, Stuyfzand P J andBreukelen BMV2014Reactive
transportmodeling of thermal column experiments to
investigate the impacts of aquifer thermal energy
storage on groundwater qualityEnviron. Sci. Technol. 48
12099–107

[84] Griebler C, KellermannC, KuntzD,Walker-Hertkorn S,
StumppC andHegler F 2014Auswirkungen Thermischer
Veränderungen Infolge derNutzungOberfläChennaher
Geothermie auf die Beschaffenheit desGrundwassers und
Seiner Lebensgemeinschaften—Empfehlungen für eine
umweltverträglicheNutzungUmweltbundesamt pp 1–53
(http://bmub.bund.de/fileadmin/Daten_BMU/Pools/
Forschungsdatenbank/fkz_3710_23_204_thermische_
veraenderungen_bf.pdf)

[85] Arola T andKorkka-Niemi K 2014The effect of urban heat
islands on geothermal potential: examples fromQuaternary
aquifers in FinlandHydrol. J. 22 1953–67

[86] Bayer P, AttardG, BlumP andMenbergK 2019The
geothermal potential of citiesRenew. Sustain. Energy Rev. 106
17–30

[87] MenbergK, BlumP, Rivera J, Benz S andBayer P 2015
Exploring theGeothermal Potential ofWasteHeat Beneath
Cities Proc.World Geothermal Congress pp 1–5

[88] Rivera J A, BlumP andBayer P 2017 Increased ground
temperatures in urban areas: estimation of the technical
geothermal potentialRenew. Energy 103 388–400

10

Environ. Res. Lett. 14 (2019) 104012

https://doi.org/10.1029/1998WR900010
https://doi.org/10.1029/1998WR900010
https://doi.org/10.1029/1998WR900010
https://doi.org/10.1016/j.epsl.2005.12.001
https://doi.org/10.1016/j.epsl.2005.12.001
https://doi.org/10.1016/j.epsl.2005.12.001
https://doi.org/10.1029/2006JF000703
https://doi.org/10.1029/2003JB002715
https://doi.org/10.1088/1748-9326/5/4/044002
https://doi.org/10.1016/j.jhydrol.2017.03.057
https://doi.org/10.1016/j.jhydrol.2017.03.057
https://doi.org/10.1016/j.jhydrol.2017.03.057
https://doi.org/10.1139/t05-057
https://doi.org/10.1139/t05-057
https://doi.org/10.1139/t05-057
https://doi.org/10.4236/jwarp.2011.35040
https://doi.org/10.4236/jwarp.2011.35040
https://doi.org/10.4236/jwarp.2011.35040
https://doi.org/10.1016/j.scitotenv.2015.04.003
https://doi.org/10.1016/j.scitotenv.2015.04.003
https://doi.org/10.1016/j.scitotenv.2015.04.003
https://doi.org/10.1016/j.scitotenv.2015.04.003
https://doi.org/10.1016/j.scitotenv.2015.04.003
https://doi.org/10.1021/acs.est.5b03672
https://doi.org/10.1021/acs.est.5b03672
https://doi.org/10.1021/acs.est.5b03672
https://doi.org/10.1016/0004-6981(73)90140-6
https://doi.org/10.1016/0004-6981(73)90140-6
https://doi.org/10.1016/0004-6981(73)90140-6
https://doi.org/10.1029/1999WR900009
https://doi.org/10.1029/1999WR900009
https://doi.org/10.1029/1999WR900009
https://doi.org/10.1016/j.hydromet.2010.03.031
https://doi.org/10.1016/j.hydromet.2010.03.031
https://doi.org/10.1016/j.hydromet.2010.03.031
https://umwelt.sachsen.de/umwelt/download/luft/42_Kurzbericht_SteinkohlenHalden_SN.pdf
https://umwelt.sachsen.de/umwelt/download/luft/42_Kurzbericht_SteinkohlenHalden_SN.pdf
https://publikationen.sachsen.de/bdb/artikel/12197/documents/12905
https://publikationen.sachsen.de/bdb/artikel/12197/documents/12905
https://doi.org/10.5194/hess-17-1851-2013
https://doi.org/10.5194/hess-17-1851-2013
https://doi.org/10.5194/hess-17-1851-2013
https://www.wienenergie.at/media/files/2015/technische
https://www.wienenergie.at/media/files/2015/technische
https://sydneywater.com.au/web/groups/publicwebcontent/documents/document/zgrf/mdq1/~edisp/dd_045262.pdf
https://sydneywater.com.au/web/groups/publicwebcontent/documents/document/zgrf/mdq1/~edisp/dd_045262.pdf
https://sydneywater.com.au/web/groups/publicwebcontent/documents/document/zgrf/mdq1/~edisp/dd_045262.pdf
https://doi.org/10.1016/j.enggeo.2010.04.004
https://doi.org/10.1016/j.enggeo.2010.04.004
https://doi.org/10.1016/j.enggeo.2010.04.004
http://fachdokumente.lubw.baden-wuerttemberg.de/servlet/is/127777/l7516014_16019_%2012.03.2019.pdf?command=downloadContent&filename=l7516014_16019_%2012.03.2019.pdf&FIS=203
http://fachdokumente.lubw.baden-wuerttemberg.de/servlet/is/127777/l7516014_16019_%2012.03.2019.pdf?command=downloadContent&filename=l7516014_16019_%2012.03.2019.pdf&FIS=203
http://fachdokumente.lubw.baden-wuerttemberg.de/servlet/is/127777/l7516014_16019_%2012.03.2019.pdf?command=downloadContent&filename=l7516014_16019_%2012.03.2019.pdf&FIS=203
http://fachdokumente.lubw.baden-wuerttemberg.de/servlet/is/127777/l7516014_16019_%2012.03.2019.pdf?command=downloadContent&filename=l7516014_16019_%2012.03.2019.pdf&FIS=203
https://doi.org/10.1061/(ASCE)0887-3828(2001)15:3(115)
https://doi.org/10.1061/(ASCE)0887-3828(2001)15:3(115)
https://doi.org/10.1061/(ASCE)0887-3828(2001)15:3(115)
https://doi.org/10.1061/(ASCE)0887-3828(2001)15:3(115)
https://doi.org/10.1016/j.rser.2010.07.069
https://doi.org/10.1016/j.rser.2010.07.069
https://doi.org/10.1016/j.rser.2010.07.069
https://doi.org/10.1007/s00767-011-0162-0
https://doi.org/10.1007/s00767-011-0162-0
https://doi.org/10.1007/s00767-011-0162-0
https://doi.org/10.1017/S0376892904001444
https://doi.org/10.1017/S0376892904001444
https://doi.org/10.1017/S0376892904001444
https://doi.org/10.1016/j.enpol.2013.04.040
https://doi.org/10.1016/j.enpol.2013.04.040
https://doi.org/10.1016/j.enpol.2013.04.040
https://doi.org/10.1021/es4030244
https://doi.org/10.1021/es4030244
https://doi.org/10.1021/es4030244
https://doi.org/10.1021/es4030244
https://doi.org/10.1016/j.watres.2013.05.049
https://doi.org/10.1016/j.watres.2013.05.049
https://doi.org/10.1016/j.watres.2013.05.049
https://doi.org/10.1021/es502477m
https://doi.org/10.1021/es502477m
https://doi.org/10.1021/es502477m
https://doi.org/10.1021/es502477m
http://bmub.bund.de/fileadmin/Daten_BMU/Pools/Forschungsdatenbank/fkz_3710_23_204_thermische_veraenderungen_bf.pdf
http://bmub.bund.de/fileadmin/Daten_BMU/Pools/Forschungsdatenbank/fkz_3710_23_204_thermische_veraenderungen_bf.pdf
http://bmub.bund.de/fileadmin/Daten_BMU/Pools/Forschungsdatenbank/fkz_3710_23_204_thermische_veraenderungen_bf.pdf
https://doi.org/10.1007/s10040-014-1174-5
https://doi.org/10.1007/s10040-014-1174-5
https://doi.org/10.1007/s10040-014-1174-5
https://doi.org/10.1016/j.rser.2019.02.019
https://doi.org/10.1016/j.rser.2019.02.019
https://doi.org/10.1016/j.rser.2019.02.019
https://doi.org/10.1016/j.rser.2019.02.019
https://doi.org/10.1016/j.renene.2016.11.005
https://doi.org/10.1016/j.renene.2016.11.005
https://doi.org/10.1016/j.renene.2016.11.005

	Introduction
	Materials and methods
	Groundwater temperatures
	Anthropogenic heat intensity
	Land cover classification
	GWT anomalies

	Results and discussion
	Statistics of GWT anomalies (AHImax)
	GWT anomalies (AHImax) beneath artificial surfaces
	Heat sources of AHImax
	Regulations

	Conclusion
	Acknowledgments
	Data availability statement
	References



