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Abstract
Tunable open-access Fabry–Pérotmicrocavities enable the combination of cavity enhancement with
high resolution imaging. To assess the limits of this technique originating frombackground variations,
we performhigh-finesse scanning cavitymicroscopy of pristine planarmirrors.We observe spatially
localized features of strong cavity transmission reduction for certain cavitymode orders, and periodic
background patterns with high spatial frequency.We show in detailedmeasurements that the
localized structures originate from resonant transverse-mode coupling and arise from the topography
of the planarmirror surface, in particular its local curvature and gradient.We further examine the
background patterns andfind that they derive fromnon-resonantmode coupling, andwe attribute it
to themicro roughness of themirror. Ourmeasurements and analysis elucidate the impact of
imperfectmirrors and reveal the influence of theirmicroscopic topography. This is crucial for the
interpretation of scanning cavity images, and could provide relevant insight for precision applications
such as gravitational wave detectors, laser gyroscopes, and reference cavities.

1. Introduction

Opticalmicrocavities are a powerful tool to enhance light–matter interactions for a variety of applications [1].
With its capability to combine cavity enhancement with opticalmicroscopy, scanning cavitymicroscopy (SCM)
is emerging as a powerful technique for single-particle sensing and spectroscopy of heterogeneous
nanomaterials [2–4], and for the realization of efficient light–matter interfaces for solid-state quantum emitters
[5–16]. The basic functionality derives from a fully tunable, open-access Fabry–Perot cavity withmicron-scale
mode size, which is typically realized by the combination of amicro-machined concave and amacroscopic
planarmirror, the latter carrying the sample to be studied. One of the twomirrors can be raster-scanned laterally
to obtain spatially resolvedmeasurements. For the example of sensing and spectroscopy, small changes in the
resonant cavity transmission are recorded to obtain information about sample-induced scattering and
absorption [2–4]. In consequence, any background variations in transmission originating from the bare cavity
alone need to be as small as possible to enable the resolution of small signals.

In different experiments [2, 4, 12]using variousmirror coatings, cavity geometries, andwavelengths, we
consistently observe two classes of artefacts in SCM images: spatially localized contour lines with deteriorated
cavity performance for certain longitudinalmode orders, andweak periodic background patterns.

To understand and quantify the effects, we perform extensive SCMmeasurements of pristine planar
dielectricmirrors with high reflectivity.Wefind that both types of artefacts are related to transversemode
coupling, which is present due to imperfectmirror shapes [17].

Different techniques have been developed to produce concave, near-spherical profiles asmicro-mirror
substrates, including CO2 lasermachining [8, 18–21], chemical etching [22, 23], focused ion beammilling
[24, 25], and thermal reflow [26, 27].While the achieved shape accuracy (∼2 nm) and surface roughness
(<0.2 nm) is at a remarkable level [19, 28–30], even nano-scale deviations of the surface from the ideal spherical
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shape affect themode structure. It has been shown that such imperfectmirror shape and finitemirror size can
lead to loss,mode deformation, and shifted resonance frequencies at particularmirror separations [17]. The
behavior is explained by resonant coupling between different transversemodes of the cavity andmode-
dependent diffraction loss. The effects can be quantified by amodel based on resonant state expansion [31] that
takes themeasuredmirror profile into account.

Here, we show thatmode coupling is also the origin of artefacts in SCM images due to imperfections of
superpolished planarmirrors. In the first class of artefacts, the localized structures correspond to a spatially
varying resonance condition for transversemode coupling. It can be traced back to the surface topography of the
planarmirror and its local curvature and gradient, which both lead to a spatial variation of the effective radius of
curvature themode samples, either on the nominally planar or on the concavemicro-mirror. For the second
class of artefacts, analysis of the background patterns’ Fourier components reveals non-resonant admixture of
specific higher-ordermodes to the fundamental cavitymode.Nano-scale roughness of the planarmirror leads
to a spatial variation of the admixture which results in the observed high spatial frequency patterns.

These artefacts can have significant impact on SCMmeasurements, andwe discuss ways to avoid the effects
and also point towards their possibly beneficial use.

2. Experimental setup and observations

The cavity design studied here is depicted schematically infigure 1(a): the resonator consists of amacroscopic
planemirror and a concavemicro-mirror on the end-facet of a singlemode opticalfibermachinedwith aCO2

laser (single pulse of length 18ms, power 0.49W, laser focuswaist 27 μm). The superpolished planemirror
substrate (fused silica, rms roughness<0.2 nm) is coated by ion beam sputteringwith a Braggmirror for a center
wavelength at 780nm terminatedwith aλ/4 layer of SiO2, yielding a transmission ofT1=60 ppmand a
combined absorption and scattering loss L1=20 ppm. The surface roughness of the substrate wasmaintained
after the coating. Thefiber tip is coated for the same center wavelengthwithT2=12 ppmand L2=12 ppm. At
shortmirror separation, a cavity built from the twomirrors achieves ameasured finesse of 60 000 = ,
consistent with the above numbers. Bothmirrors are characterizedwithwhite light interferometry to obtain the
surface topographywith a vertical resolution of<0.2 nm and a diffraction limited lateral resolution of 450 nm.

Figure 1. (a) Schematic scanning cavity setup showing themachined fiber, the planemirror, and the opticalmode. (b) Schematic
cavity transmission spectrum showing how the fundamentalmode (blue) can become resonant with a higher order transversemode
(red) of the neighboring longitudinalmode order. (c)Upper panel: fiber profile section in x and y direction. Dashed lines: parabolic fit.
Lower panel: residuals of thefits. (d) Simulated frequency detuningwith respect to the fundamentalmode (black horizontal lines)
normalized to one free spectral range as a function of longitudinalmode order q.Modes are shown for transversalmode orders m 1=˜
(red), m 2=˜ (yellow), ... , m 7=˜ (purple). (e)Resonant cavity transmission scan of a 100 100 mm´ area at q=15. (i) Loss
introduced by a nano-scale particle yielding theGaussian point spread function of the fundamental cavitymode. (ii)Contour line of
resonantmode coupling. (iii)Periodic background pattern. Black square: scan area offigure 3(d)–(f).
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Figure 1(c) shows cuts through themeasuredfibermirror profile along two orthogonal axes togetherwith
parabolic fits, yielding radii of curvature of r 161 mc

x m= and r 201 mc
y m= . The residual shows deviations on a

few-nm scale, which are the origin of transverse-mode coupling effects.
The procedure described in [17] based on resonant state expansion [31] is used to calculate themode

frequencies νqmn of the studied cavity based on themeasured surface profile, where q is the longitudinal, andm, n
the transversemode number ofHermite–Gaussianmodes. Figure 1(b) shows schematically the transversemode
spectrum for a givenmirror separation, indicating the situationwhere a higher-ordermode becomes (near-)
degenerate with a fundamentalmode of a neighboring longitudinalmode order. Figure 1(d) shows a calculation
of themode resonance spectra as a function of themirror separation, where the free spectral range is normalized
such that the fundamentalmodes appear atfixed frequencies. The different transverse-mode families
m m n= +˜ are color coded, and their sub-modes are non-degenerate due to the presence ofmirror ellipticity
[21]. For a significant fraction of longitudinalmodes, the fundamentalmode becomes near-resonant with
higher ordermodes.

In the experiment, the light of a grating-stabilized diode laser at 780nm (linewidth∼1MHz) is coupled into
the cavity through the fiber, and light transmitted through the planemirror is detectedwith an avalanche photo
diode. The laser frequency is fixed andwemodulate the cavity length to record the resonance of the fundamental
mode.We laterally raster-scan the planarmirrorwith a step size of 200nm to record SCM images of the
resonant cavity transmission for the fundamentalmode at different longitudinalmode orders q. Figure 1(e)
shows ameasurement on amostly cleanmirror that shows three types of structures: (i) circularly symmetric
Gaussian shaped features, (ii) often closed, sharp contour lines, and (iii) a periodic background pattern. The
Gaussian shapes (i) originate from loss introduced by contaminants with a sizemuch smaller than the cavity
mode, such that the feature shape is given by the intensity distribution of the fundamental cavitymode as long as
the introduced loss is small. This typically represents the signal of interest e.g. for cavity-enhanced extinction
microscopy, and themode size directly yields the spatial resolution of themeasurement. Structures (ii) and (iii)
are the focus of this study. It is apparent that they aremuchmore localized than (i) and thus containmuch higher
spatial frequencies than the fundamentalmode, such that they cannot originate from the fundamentalmode
alone.We proceed by discussing the artefacts (ii) and (iii) in detail.

3. Transverse-mode resonance isocontours

To obtain amore detailed understanding of the properties of the contour lines (ii), we perform analogous
measurements as shown infigure 1(e) on a defect-free, 30×30 μmarea of a pristine planarmirror for all
accessible longitudinalmode orders q of the cavity. The complete data set is shown in the supplement.
Figure 2(e) shows the evaluated predominant (solid red) or the average (light blue)finesse value as a function of q
from this dataset. Specificmode orders show a reduced finesse, which in the latter case is related to the fraction of
the area that is affected by the contour lines. Figures 2(a)–(d) show examplemeasurements at q=(11, 34, 132,
158), which are also indicated infigure 2(e).

It can be observed infigures 2(a)–(d) that the shape of certain contours is very similar across different
measurements, and that thewidth of the contour lines increases continuously with increasing q. Figure 2(f)
shows the superposition ofmeasurements taken atmode orders q=11, 12, 14, 16, 22, 24, 28, 38. Remarkably,
the individualmeasurements combine to a consistent isocontourmap.

3.1. Analysis
A closer look at the cavity resonances in the surrounding of a contour line shows thatmode degeneracy occurs at
these spatial locations. Infigure 3(a)we show an example transmissionmap taken at q=132.We follow the
fundamental cavity resonance across a linear path perpendicular to a contour line, indicated in the inset.
Figure 3(b) shows cavity transmission spectra for each position on themirror.We observe that in addition to the
fundamentalmode TEM00, a higher ordermodeTEM60 is visible, whose frequency detuning and strength
changes with the lateralmirror position in themanner of an avoided level crossing. The frequency axis of the
data is centered on the average frequency of the twomodes tomake this apparent. The higher ordermode can be
assigned unambiguously from the knowledge of q and themode frequency simulation shown infigure 1, as well
as from counting the higher-ordermodes in the cavity transmission spectrum. At the location of the contour
line, themode separation isminimal, and the twomodes have equal amplitude. Figure 3(c) shows the
quantitative evaluation of the data in (b), yielding a variation of the frequency separation 100,60nD »  GHz or
equivalently±20 cavity linewidths. This evidences that the contour lines result from a spatially varying
transverse-mode resonance, where theminimalmode separation on the contour line directly yields the inter-
mode coupling strength. This observation implies that the transversemodes experience different frequency
shifts on different locations on themirror.
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The origin of the differential frequency shift can be constrained by considering the expression for the
resonance frequency for amodewith longitudinal (q) and transverse (m, n) order
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of amode pair with a given set of (q,m, n), can be varied by a change of q, the laser wavelengthλ, the effective
mirror radii of curvature r r,c

x y
c
x y,
,pl
, that themodes experience [17], and a change of the field penetration depth

dpen, which itself depends on the layer thickness and the refractive indices nH, nL. Note that the free spectral
range c d2FSRn = ( ) depends on the penetration depth, such that the given expression forΔν is an
approximation in the case of varying dpen.

3.2. Spatial width ofmode resonances
The observed overall behavior of an increasingwidth of spatialmode resonances for increasing q as seen in
figures 2(a)–(d) can be explained by the dispersion of themodes involved. From equations (1), (5) and the

Figure 2. (a)–(d)Resonant cavity transmission scans formode orders q=11, 34, 132, 158. The transmission is normalized to the peak
value. (e)Cavityfinesse as a function of longitudinalmode order, deduced from taking the predominant (solid red) and the average
(light blue) value of each transmission scan and converted to finesse knowing themirror losses. Black dots:mode orders of scans
(a)–(d). Gray dots:mode orders of scans (b)–(e) in figure 6. (f)Overlay of transmission scans of longitudinalmode orders q=11, 12,
14, 16, 22, 24, 28, 38 yielding a consistent isocontourmap. Color scale: see (a).
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condition of degeneracy, one can estimate themode order leading to degeneracy at a givenmirror separation by

m
d rarccos 1

. 6
c

p
»

-
˜ ( )

More accurately, themode admixture to the fundamentalmode can be calculatedwith the simulation of the full
cavitymode structure [17]. Figure 6(a) shows the contributions of transversemodes to the fundamentalmode as
a function of the longitudinalmode order. For short cavities, transversemodes with large m̃ become degenerate
with the fundamentalmode. Thesemodes have a dispersion that differs largely from the fundamentalmode and
lead to amode crossing under a large angle mµ ˜ , see figure 1(d). Thismeans that small variations lead to a large
frequency detuning between themodes, restricting resonantmixing to small spatial regions and thus the
observed sharp features. For long cavities, in contrast, the transverse-mode spacing ismuch larger, andmodes
with small m̃ become resonant with the fundamentalmode. The difference between themodes’ dispersion mµ ˜
is consequently smaller such that the resonant coupling region is large, consistent with themuch broader
features observed for longer cavities.

3.3.Wavelength dependence
Next, we can directly evidence the dependence of themode degeneracy location onλ by taking SCM images at
different laser wavelengths. Figures 3(d), (e) show two examples wherewemeasure at q=15 and change the
wavelength fromλ=780.1400 nm in (d) toλ=780.2328 nm in (e), which changes the size of themode
degeneracy contour by about its spatial width. Awavelength change can thus globally change the observed
contour pattern and could be used tomap out contours across the entiremirror, but is not the origin of the
structure. For all othermeasurements we have ensured a stable laser wavelength.

Figure 3. (a) SCM transmissionmeasurement at q=132with a close up higher resolution scan. Pixel size: 0.5 and 0.2 μm.The black
line indicates a 5.4 μmlong path alongwhich spectra shown in (b) are taken. (b)Cavity transmission spectra around the fundamental
mode for different lateral positions on the path in (a) showing an avoided crossing withmode (6, 0) . Theminimal frequency
separation is found at the darkest spot on the path in (a). (c)Maximal amplitude of the spectra in (b) (blue) and frequency separation
Δν00,60 of the twomodes (0, 0) and (6, 0) along the path. (d), (e)Transmission scans at q=15. Changing thewavelength from
λ=780.1400 nm (d) toλ=780.2328 nm (e) increases the size of the contour. (f) Scans (d) and (e) added up for comparison.
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3.4. Variation of local surface gradients
Wenow consider a spatial change in the effective radius of curvature of the fibermirror rc as a possible origin of
the spatial variation of themode degeneracy condition. Unevenness of the planarmirror leads to a spatially
varying orientation of the cavity’s optical axis, such that the cavitymode samples different areas on themicro
mirror. Since themirror shape is non-spherical, this translates into a change in rc. Figure 4(b) shows this
situation schematically. To analyze the effect, we have taken interferometric images of the planarmirror
topography on several locations to infer the typical variation of surface inclination. Figure 4(a) shows an example
of ameasured surface profile h(x, y), and (c) shows the calculatedmodulus of the local surface angle

h x h yarctan 2 2a = D D + D D( ( ) ( ) ) on the same area after smoothing the datawith aGaussian filter of a
4.2 μm1/e2 radius thatmatches themode radiusw0 on themirror.We observe typical height variations of up to
Δh∼1 nmon length scales ofΔx∼10 μm, yielding angles of up toα=0.005°. Assuming that the cavity
modewill formon the curvedmirror where the two local surface anglesmatch, we can calculate the change in
the effective radius of curvature e.g. for aGaussian profile h x t x aexp 2 2= - -( ) [ ]by solving for xα for which

h x xarctan d d xq a= =a( ( ) )∣ and evaluating r x h x h x1 d d d dc
2 3 2 2 2= +a( ) [ ( ) ] ( ). For a perfectly aligned

cavity, this leads to relative changes in rc of r r 10c c
6D » - . Figure 4(d) shows a calculation of the resulting

frequency shift 00,60nD as a function ofα (yellow solid line), which is too small to explain the observed frequency
shifts shown infigure 3(c) (indicated by dashed gray line infigure 4(d)). However, when the cavity is slightly
misaligned, the change in rcwith x ismuch larger, and for an initialmisalignment of 1.5°, the calculation shows
that the observed range of frequency shifts is expected for themeasured range of surface anglesα, see blue line in
figure 4(d).Misalignments of this order ofmagnitude are reasonable for the experiment reported here. This
effect is thus a relevant contribution to the observations and can also be dominating.

3.5. Variation offield penetration
In principle, an additional contribution could arise from a spatial variation of thefield penetration depth on the
planarmirror. From the observed variation ofΔνwe can quantify the necessary spatial variation of either the
refractive index contrast or the layer thickness (or a combination of both). The observedΔν≈±1 GHz
corresponds to a change in the penetration depth of 28nm,which is about 3%of the value for dpen

L of the planar
mirror. This could be caused by a variation of the layer thickness by 3%, or alternatively by a change in the
refractive index contrast by 7×10−3. Both values are at least an order ofmagnitude too large to be realistic.

We also consider a variation offield penetration at thefibermirror due to local gradients at the planar
mirror: due to the partial directionality of the coating process [30], the coating layer thickness will depend on the
local surface orientation, and the coating on thefiberwill be thinner cos cos0 0q q qµ +( ) ( ) at the inclined parts
of the curvedmirror.Here, θ0 is the deposition direction. For our fiber geometry, amaximal thickness variation

Figure 4. (a)White light interferometricmeasurement of themirror surface.White spots are conatminants which are excluded from
analysis. (b) Schematic illustration of the effect of local gradients of the planarmirror. (c)Calculatedmodulus of the local surface angle
and (e) average curvature of the area shown in (a). (d)Change ofΔν00,60 as a function of surface angle at q=132 in units ofκ. Yellow
solid line: frequency shift due to changing rc for an aligned cavity. Yellow dashed line: Shift due to changing rc and changing
penetration depth. Blue line: frequency shift due to rc for an initialmisalignment ofα0=1.5°. Gray dashed line: observedmaximal
shift. (f)Calculated change of transverse-mode frequency separationΔν00,60 as a function of themaximal local curvature in units ofκ
over the range of values observed in (a). Gray dashed line:Maximal shift observed infigure 3.
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up to±3% is expected for e.g.a fully directional deposition under θ0=30°. Figure 4(d) (yellow dashed line)
shows that this effect is comparable inmagnitude to the one due to the changing rc for a perfectly aligned cavity.
However, the thickness variation is almost independent ofα0 and thus does not contribute significantly for a
tilted cavity.

3.6. Variation of local curvature
Wenow turn to the influence of the local curvature of the planarmirror due to surface imperfections. Figure 4(e)
shows the calculated average curvature on the area offigure 4(a). Therefore, wefit two-dimensional (2D)
parabolas to each datapoint over an 8μmarea and take the average of themaximal andminimal curvature
found along orthogonal eigenaxes.Wefind values that correspond to radii of curvature rc,pl as small as 70mm,
which thus significantly affects theGouy phase. The corresponding shift inmode frequency differenceΔν is
shown infigure 4(f) as a function ofmaximal curvature. The values obtained from the surface curvature are
comparable and even larger than the observed frequency variations. This suggests that this is a dominating effect
in our experiments.

To further support this picture, we have prepared a planarmirrorwith amicroscopic surface profile that is
much taller than the imperfections of the bare superpolishedmirror, and that can be clearly identifiedwith SCM
measurements. Thereforewe irradiate themirror with a pulse of a focusedCO2 laser, leading to local
delamination of the coating from the substrate and the formation of a dome. Figure 5(a) shows awhite light
interferometric image of the structure togetherwith a cut (b) and the calculated local curvature (c). The peak
curvature ismore than two orders ofmagnitude larger than on the pristinemirror, and its effect on theGouy
phase is thus unambiguously observable.We perform SCMmeasurements of such profiles, see figure 5(d), and
observe circular isocontours of low cavity transmission as expected formodemixing resonances. For these
experiments, we use a different cavity operating at 860nmwith afiberwith r 280, 295 mc

x y, m= ( ) .We use the
measured relative cavity length at which the fundamental cavitymode appears to resolve the height profile of the
dome. Figure 5(e) shows transmission spectra taken along a linear path across one dome, and figure 5(f) shows
the evaluated height. Compared tofigure 5(b) the profile is less sharp, consistent with the expected convolution
of the cavitymodewith the profile. In addition, we obtain the positions of themodes TEM01 andTEM10 and
calculate their repsectiveGouy phase difference relative to the fundamentalmode from the cavity length

Figure 5. (a)White light interferometric heightmeasurement of a laser-induced buckle created on the planarmirror. (b)Cut through
the data shown in (a) (blue line) together with a low-pass filtered copy. (c) Local curvature ( r1 c,pl) calculated from the low-pass filtered
topography. (d) SCMmeasurement of an areawith several buckles. (e)Cavity transmission as a function of the cavity length for
different points across a buckle. (f)Height profile (black datapoints) evaluated from the position of the fundamentalmode in (e). Red
solid line: Interpolated and smoothed profile. (g)MeasuredGouy phase difference to the fundamentalmode for the TEM01 (black
datapoints) andTEM10mode (red datapoints). Solid lines: Gouy phase calculated from the curvature of themeasured profile in (f).
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difference, see datapoints infigure 5(g).We observe an increase of ζ at the outer part of the profile and a
reduction in the center, which fits well to the positive (concave) and negative (convex) curvature at the respective
locations. In contrast, only a small influence of the surface gradient is observable, whichwould lead to an
asymmetry of theGouy phase profiles.We can also calculate the expectedGouy phase from themeasured height
profile and its curvature. The solid lines infigure 5(g) are the results of the calculationwith rc

x y, taken as free fit
parameters.We obtain r 275 mc

x m= and r 380 mc
y m= .While rc

x
fits well to themeasured value for this fiber, rc

y

is larger, consistent with an angularmisalignment of the fiber along this direction. Thismisalignment is also
apparent from the different height of the TEM01 andTEM10which originates frommodematching. The
difference of the frequency variation of the twomodes can be traced back to the orientation of themodes and the
surface curvature.While the TEM01mode is oriented approximately along the scan direction and thus
experiences both positive and negative curvature along its axis, the orthogonally oriented TEM10mode does to
first order not experience a positive curvature and is only affected by the isotropic negative curvature at the
dome’s center.

Overall, the goodmatching of themeasured and calculatedGouy phase across the dome confirms our
interpretation, andwe identify local curvature as the dominant effect also for pristine planarmirrors.

4. Periodic background patterns

The second type of artefacts observed in SCMmeasurements are periodic patterns in the resonant cavity
transmission. Infigure 1(e), such a pattern (iii) is apparent over the entiremeasurement area. It contains higher
spatial frequencies than contained by the fundamentalmode, giving first evidence for the relevance of higher
order transversemodes. Depending on q, the contrast of such patterns ranges between< 1%and 30%,
indicating that non-resonant coupling is present. This is further confirmed by the observed insensitivity of the
pattern towavelength changes. In an experiment using a different cavity, even for awavelength change ofmore
than 30nm,we observed that the patterns do not change significantly (data not shown).

We investigate the background patterns for different q and analyze their spatial frequency spectrum.
Figures 6(b)–(e) show SCM transmissionmeasurements (lower panels) and corresponding 2D spatial Fourier
spectra (upper panels).White circles indicate the spatial and spectral extent of the fundamentalmode. The
patterns show an orientation along the principal axes of theHermite–Gaussianmodes of the cavity, which are
defined by the profile ellipticity of the fibermirror. The Fourier spectra show localizedmaxima at high
frequency, where the q dependence of the observed frequency can be explained by themode degeneracy
condition approximated by equation (6) and the respective spatial frequency spectrumof the dominant TEMm,n

mode. AHermite–Gaussianmode contains spatial frequencies up to f f m 1m 0= + , where f0 is the 1/e
2

frequency of the fundamentalmode. This results from the increase of the number of transverse field nodes∝m
and the increase inmode size m 1µ + .

Figure 6(g) shows a radial integration of the 2DFourier spectrum and compares it with the spectrumof the
Gaussian fundamentalmode and the spectrumof themode family that dominantly contributes tomodemixing
as identified from the simulation shown infigure 6(a).While the observed low frequency partmatches well to
the expectedGaussianmode spectrum for the particular longitudinalmode order, additional high frequency
components agreewith the frequencies of dominantly admixingmodes. In particular, the localized peaks
observed in the 2DFourier spectra occur at the peak frequency of themost strongly admixing higher order
mode. Components at higher frequency do not show any structure and can be attributed to uncorrelated
measurement noise. The overall scaling of observed and expected frequencies with q can be clearly seen from the
comparison of spectra for q=35 and q=147 (top and bottompanel of figure 6(g)).

It is thus clear that a spatially varying non-resonant admixture of a few dominant higher-ordermodes leads
to the observed patterns.We propose that the variation of themode admixture originates from surfacemicro-
roughness on the planarmirror. To support this hypothesis, we compare ameasured structure at q=35 and its
Fourier transformwith the pattern formed by convolutingGaussianwhite noise with the expected dominant
admixingmodeTEM9,1 as obtained from the simulation shown infigure 6(a). Figure 6(f) shows the TEM9,1

mode (ii) calculated for parameters corresponding to themeasurement shown in (e), and the convolution of the
TEM9,1modewith noise (iv) in the lower row, and the corresponding 2DFourier spectra in the upper row. A
similar texture with comparable length scales can be identified.However, the simulated Fourier spectrum shows
more frequency components at intermediate frequencies fm>f>f0. The difference could be a sign of
destructive interference with additionally contributingmodes, which are indeed expected to be relevant from
the simulation of admixingmodes.
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5. Conclusion

In summary, we have analyzed artefacts that regularly appear in SCMand found consistent explanations that can
describe the observations.We have identified two types of effects that can be traced back to variations of the local
gradient and curvature of the surface topography that leads to resonantmode coupling, and tomicroscopic
surface roughness whichmodulates theweak, non-resonant admixture of higher ordermodes. Both effects arise
from transverse-mode coupling, which is significant due to imperfect shapes of bothmirrors. In particular, even
for superpolishedmirrors, surface imperfections lead to a variation of the effective local radius of curvature that
causes significant relative shifts ofmode frequencies.

For quantitativemeasurements of e.g. the extinction contrast, the artefacts limit the achievable sensitivity
[2]. The observed effects are also relevant for cavityQED experiments, in particular with solid-state emitters e.g.
for the case of color centers in diamond, where thin diamondmembranes are integrated into open-access
cavities [9, 13, 14, 33], mode coupling due to imperfectmembrane surfaces can additionally affect themode
structure and limit the operation conditions for emitter-cavity coupling experiments.

In general, this coupling can be reduced byminimizing deviations of the planar and curvedmirror’s surface
profile from the respective ideal shape. Using e.g.multi-shot lasermachining [29] or precise focused-ion-beam
milling [30] potentially with CO2 post-treatment [34], concave profiles can be optimized tominimizemode
coupling. In addition, longitudinalmode orders withweakmode coupling can be selected to fully avoid effect (ii)
and largely suppress effect (iii). Also, our calculations indicate that for awell aligned cavity, the effect of local
surface gradients on the planarmirror can be negligible. Finally, by using differential techniques e.g. with
different wavelengths orwith broadband illumination of the cavity,modemixing can be subtracted or averaged
out very efficiently.

In contrast, the amplifying effect of resonantmode coupling could be harnessed to sensitively characterize
supermirrors for precision applications e.g. smallest surface distortions and scattering could be analyzedwith
high spatial resolution, enabling new insight for challenging applications such as laser gyroscopes, high-finesse
reference cavities, or gravitational wave detectors.

Figure 6. (a)Contributions cnm ofHermite–Gaussianmodes to the fundamentalmode shown as clog nm
2∣ ∣ for different longitudinal

mode orders. Each horizontal box separated by gray lines corresponds to m̃ +1modes of order m̃ ranging from (0, m̃ ) to ( m̃ , 0).
(b)–(e) Lower panels: transmission scans showing checker board and stripe background artefacts at different longitudinalmode
orders.White circles indicate the 1/e2-radii of theGaussianmodes at the respective cavity length. Upper panels: spatial Fourier
transforms.White circles: 1/e2 -radii of Fourier-transformedGaussianmodes. Dashed lines: assumed principal axes ofHermite–
Gaussianmodes. (f) (ii)H–GmodeTEM9,1 with its Fourier transform (i). (iv)Convolution of normally distributed randomnumbers
withmode TEM9,1 and Fourier transformof the image (iii). (g)Radial integration of Fourier transformed scans in (e) and (c) (green)
together with theGaussianmode (yellow) and a sumofmodes of the orderwhich is contributingmost to the groundmode:

i m iTEM ,i
m

0å -= ( ˜ )˜ (blue), where m 10=˜ for q=35 and m 5=˜ for q=147.
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