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Abstract—Low Voltage (LV) distribution networks with high
penetration levels of photovoltaics have to tackle various chal-
lenges such as overvoltages, voltage fluctuations, reverse power
flows, and non-coincident demand and local generation. En-
ergy Storage Systems (ESS) can help to ease these issues, if
sized properly. This paper proposes a two-step methodology
for sizing centralised ESS in LV networks. In the first step, a
reoccurring daily pattern is detected using symbolic aggregated
approximation (SAX) from the data measured at a German grid.
Afterwards, high- and low-frequency components of the power
signal are separated using a low-pass filter and then used for
sizing different types of ESS. The effect of data resolution on
the sizing outcomes is also investigated. The performance of the
method was investigated using the full data set. It is concluded
that ESS with the characteristics derived using this methodology
can effectively be used for peak shaving, power smoothing and
load balancing.

Index Terms—Energy Storage, Storage sizing, Batteries, Motif
discovery.

I. INTRODUCTION

A high penetration level of photovoltaic (PV) production

in low voltage (LV) distribution networks can lead to several

challenges. For instance, the PV peak generation occurs in the

middle of the day, when the demand is usually not peaking,

especially in residential areas with a high full-time employ-

ment rate [1]. The generation without sufficient demand during

midday can lead to a reverse power flow, which can lead to

voltage-rise problems in parts of the LV network. This could be

a limiting factor for the PV hosting capacity in LV networks.

Furthermore, the variations in solar irradiance (e.g. caused by

passing clouds) can cause rapid voltage fluctuations, which

may violate the rapid voltage change thresholds, indicated in

grid codes such as the EN 50160. Both voltage fluctuations and

overvoltages occur due to the fact that LV distribution grids

typically have relatively low X/R ratios, which means that

active power has a great influence on the voltage, as much as

or even greater than reactive power. This can be shown using

the voltage sensitivity formulation. Fig. 1 shows the single-

line diagram of of a simplified grid structure. Between the

point of common coupling (PCC) and the main supply, there

is an equivalent resistance and reactance represented by Req
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Fig. 1. Single-line diagram of an equivalent grid at the PCC.

and Xeq, respectively. By linearising the load flow equations

around the operating point and assuming 1 p.u. for both Vs

and Vr voltages, the voltage sensitivity at the PCC can be

calculated using [2]

∂Vr

∂Pr

= −
(X2

eq +R2
eq)Pr +Req

1 + 2(ReqPr +XeqQr)
(1)

∂Vr

∂Qr

= −
(X2

eq +R2
eq)Pr +Xeq

1 + 2(ReqPr +XeqQr)
. (2)

In addition, the evening demand peak coincides with a

reduced or even non-existent PV generation. This requires

ramping up of large conventional power plants. If many

feeders in a power system behave in a similar manner, there

might be a deficiency of available power plants with fast

ramping capability.

Installing Energy Storage Systems (ESS) can help to over-

come these challenges. Distribution networks can benefit from

ESS for load balancing, peak shaving, voltage regulation,

avoiding curtailment, energy arbitrage, loss reduction, expan-

sion deferral and in other areas [3]. The usage of the properly

sized ESS can also reduce reverse power flow and rapid

voltage changes, which increases the dynamic and static PV

hosting capacity of the grid. A centralised ESS, in comparison

to distributed units, can be beneficial due to a more simpli-

fied control system, easy access to substation electrical and

SCADA equipment, and availability utility-owned land. It can

also be economical, as it only requires one grid interface

and there is no need for a communication infrastructure.

Nevertheless, the main question that needs to be addressed

properly when installing an ESS in a power system is choosing

the right capacity, rated power, most suitable technology and

other characteristics of an ESS [4]–[6].

While there has been a significant amount of work on

optimal sizing and allocation of distributed ESS, less attention



has been paid to the sizing problem for centralised ESS. Com-

prehensive reviews of many of these methods can be found

in [7] and [8]. For instance, a sizing method for distributed

battery ESS for the purpose of voltage regulation and peak

load shaving is introduced in [4]. ESS sizing algorithms can be

based on the grid topology and its electrical characteristics or

based on load and generation power profiles or a combination

of both using sequential-time load flow. In the first approach,

the optimal solution is often reached by performing AC or

DC (or a hybrid) optimal power flow or by solving a nonlinear

optimisation problem. These methods usually either do not use

real load and generation data or assign artificial probabilistic

quantities to them. In the second type of approaches, which is

mostly used for centralised ESS, real load and generation data

are used, as in this paper. In such studies, the time resolution

of the data and the chosen time frame can play a significant

role on the outcome of the study. While hourly data is usually

used [4], [5], to fully investigate the benefits of using ESS

in the presence of PV generation, resolution of 1s may be

required, in particular to cover fast changing generation, for

instance caused by passing clouds over PV [9]. Authors in [10]

propose a sizing strategy for a battery ESS with the purpose

of peak shaving using 15-minute data. In this work, one

arbitrary day is chosen for sizing, which can be misleading.

In [11], a convex optimisation problem is proposed for the

ESS sizing, for which the authors intentionally convert the

10s-data to 15-minute values to ease computations over a year,

eliminating fast fluctuations of the power. In the same study, it

has been shown that using a battery ESS to react immediately

to mitigate effects of passing clouds, the lifetime of the battery

diminishes over time. A similar approach is used in [5], but

typical load profiles were generated with constant demands for

each hour and in [12], 1-minute data are artificially generated

from hourly data and the selection of a typical day is not clear.

In this paper, a two-step approach is introduced for sizing

centralised ESS in LV distribution grids. In the first step,

instead of using a an arbitrary day, a reoccurring daily pattern

is detected with the help of a symbolic aggregated approxi-

mation (SAX) [13] of the time series. Real measurement data

from a German LV substation with resolutions from 1 second

to 10 minutes are used for this purpose. Different resolutions

are used to investigate the effect of the data resolution on

sizing results. In the next step, a Low-Pass Filter (LPF)

designed with the help of Discrete Fourier Transform (DFT)

is used to decompose fast and slow power variations of the

daily pattern, which are then assigned to different types of

ESS. ESS characteristics including nominal capacity, nominal

power, maximum ramp rate and number of full cycles per

day are derived from the data. Here, the main tasks of the

ESS is assumed to be load balancing and power smoothing,

which inherently leads to peak shaving, avoiding reverse power

flow and reduction of voltage fluctuations. However, behind-

the-meter applications of ESS such as increasing the self-

consumption can also be addressed using a similar approach.

The content of this paper is structured as follows. In section

II, the methodology is explained in detail. A short discussion

regarding the effect of the data resolution of sizing outcome is

provided in part III. Afterwards, an evaluation of the proposed

method is presented in part IV, followed by a conclusion and

outlook in section V.

II. METHODOLOGY

The first requirement for sizing ESS using time-series data is

to select the power profile as the input for the sizing algorithm.

To reduce computation time, it is a common practice to use

an arbitrary day or a worst-case scenario data. However, in

the present publication a SAX transformation and random

projection are used to detect and generate daily patterns with

the highest probability. In the next step, a LPF allocates

different power profiles to different types of ESS. The method

is discussed in detail in the following.

A. Getting Standard Patterns

Sizing of a ESS could be done by using the raw measured

data, however, this approach can lead to a very data specific

storage size. With only limited data available this might not be

suitable, additionally with a large amount of data this approach

can be computationally intensive. For this purpose, we want to

find a standard consumption pattern and size our storage with

regard to this standard pattern. The approximation of the whole

time series to a standard pattern helps us to focus on regular

shapes of the consumption instead of single occurrences. Two

weeks of measurement data with the resolution of 1 second,

1 minute and 10 minutes from a German MV/LV substation

is used for this purpose. The measured 1-second data for a

period of two weeks is shown in Fig. 2(a).

Finding patterns in energy time series is a common un-

supervised learning problem. In this paper, the problem is

tackled using a motif discovery algorithm following [14] and

[15]. For this motif discovery algorithm, the time series is first

described with symbols and the random projection algorithm

is used to find possible motifs. With the help of a sliding

window a matrix S∗ ∈ (n−m+ 1)×w is generated, with n

being the number of observations, m the number of sequences

and w the predefined length of the motif. w is chosen to

cover a full day, for instance, w = 86400 for the 1 second

data. Each piece in a sequence is attributed a letter out of an

alphabet. Different to the above mentioned implementations,

the alphabet distribution is based on the empirical cumulative

distribution function of the time series, which is defined as

follows. For observations x = (x1, x2, . . . , xn), Fn is the

fraction of observations less or equal to p, i.e.,

Fn(p) =
1

n

n
∑

i=1

I(xi ≤ p). (3)

The SAX representation of all sequences, are saved row-

wise in a similarity matrix. In every iteration of the random

projection algorithm, we randomly select l of the w columns

of S∗, where l is a user-defined mask length and l ≤ w. The

word built with l columns is compared to all (n − m + 1)
rows of S∗. If there exists a match between the letters in

the mask, the corresponding entry in the so-called collision
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Fig. 2. (a) Measured power at the substation for two weeks with 1-second
resolution. (b) 80%-quantile (daily pattern) of 1-second data. (c) 80%-quantile
of the 1-minute data. (d) 80%-quantile of the 10-minute data.

matrix is incremented. The entries with the highest values

in the collision matrix are considered potential motifs. Those

motifs are then iterated over the original time series and their

distance is calculated to find the instances where the motif

occurs. In the present paper, the motif candidates found are

evaluated using the Euclidean distance between two time series

sequences si and sj , which is defined as

d(si, sj) =

√

∑

t

(si(t)− sj(t))2. (4)

The resulting motif covers most of the days in the data set.

All these days grouped into the motif are used to describe

the standard pattern. This standard pattern is then defined

as the 80%-quantile of all the occurrences. This quantile is

chosen as the storage does not need to cover the maximum

consumption which has ever happened, as the LV costumers

are also supported by the grid. However, choosing a higher

percentage quantile can easily be done, which will lead to

bigger storage units.

The resulting standard pattern are shown in Fig. 2(b)-(d).

As seen, the daily consumption pattern is a typical duck curve,

which exhibits characteristics such as reverse power flow, high

ramping and peak requirements and also significant power

fluctuations during midday. These power profiles are used as

the input for the second part of the sizing algorithm.

B. Time-frequency Analysis

Different ESS technologies operate at different time scales.

While batteries have relatively large energy density, deep and

frequent cycles can effect their lifetime and capacity. On the

other hand, fast ESS such as supercapacitors or flywheel have

high power density and can provide a large number of cycles

without degradation, but their energy content is limited.

Therefore, a frequency analysis of the power profile can

be a good reference point for ESS sizing. Using Discrete

Fourier transform (DFT), it can found how much of the power

signal lies within each given frequency band. Fig. 2(a) shows

the frequency spectrum of the power profile for the three

Fig. 3. (a) Frequency spectrum of the power profile at different resolutions.
(b) Spectrogram of the 1s daily pattern.

different time resolution. The spectrum starts at 0.01157 mHz

(corresponds to 24 hours) and ends at half of the sampling

frequency, as according to the Nyquist principle the spectrum

is symmetrical around half of the sampling frequency. As

a non-periodic signal, the frequency spectrum of the power

profile might be less visually interpretable, compared to a

periodic signal. However, one can easy see frequencies below

13.793 mHz, which corresponds to 1 minute and 0.278 mHz,

which corresponds to 1 hour (shown by vertical lines in Fig.

2 (a)). The effect of eliminating high-frequency components

by using low-resolution data on the sizing outcomes are later

discussed in section III. Fig. 3(b) shows the spectrogram of

the 1 second signal using short-time DFT for every 3 hours

using a Hamming window and a 50% overlap. This helps to

visualise the time at which various frequencies are present.

As expected, the higher frequencies are mostly present in the

period starting at noon with the increase in PV production.

C. Allocating Power Profiles

Using a LPF to allocate different power signals to different

ESS technology is a common practice, in particular for sizing

battery-supercapacitor hybrid ESS [16]. In such systems, it

has been shown that a smoother power profile with the

help of supercapacitors significantly improves the lifetime of

the batteries [17]. Here, the output of the LPF is used for

sizing an electrochemical ESS such as Lithium-ion (Li-ion)

batteries, which we refer to as type 1 ESS. The high-frequency

components can either be provided by the grid or preferably

by a fast ESS such as a supercapacitor or a flywheel, which

is referred to as type 2 ESS. The cut-off frequency of the LPF

influences the sizing results. However, despite many efforts

there is no clear and agreed-upon method for selecting the cut-

off frequency. In this work, the cut-off frequency is selected

according to a typical discharge time of type 2 ESS. A LPF

with a cut-off frequency of 1.33 mHz (fc in Fig. 3), which

corresponds to 75 seconds, is selected in this study. It is

assumed that the average power over a day can be provided

by the grid, as an autonomous operation of the distribution

grid is not intended. Fig. 4 shows the power profile used for



Fig. 4. Power of both types of ESS and SOC of type 1 ESS generated from
the daily pattern.

sizing each type of ESS and their combination and how the

State of Charge (SOC) of type 1 ESS changes over the daily

pattern.

The method discussed here can also be used for sizing other

Distributed Energy Resources (DER) such as fuel cells or

diesel generators in combination with a type 2 ESS. In this

case, the fast ESS allows a more efficient operation of the

DER and a more economic sizing [12]. However, in this case,

the negative power of the DER should be covered in another

way, as it cannot consume energy.

D. Deriving Energy Storage Characteristics

In the following, the power profiles derived from the previ-

ous section is used for the sizing procedure. The sizing of the

ESS is carried out using data with three different resolutions

to see the effect of the data resolution on the sizing outcome.

Furthermore, in addition to the nominal capacity of the ESS,

other characteristics of the ESS such as nominal power, ramp

rate, and cycling times per day is derived from the data.

Here, for both charging and discharging mode of the ESS,

an efficiency of 90% is considered.

a) Nominal capacity: The nominal capacity of an ESS

depends on the storage medium itself, which in case of Li-

ion batteries depends on the number of cells and in case of

flywheels, depends on the inertia and the maximum speed of

the rotating mass. The nominal capacity (En) for each type of

the ESS can simply be calculated by integrating over the power

allocated to each one of them and selecting its maximum, i.e.

En =

max(|
t
∫

0

P (τ)dτ |))

η(1− SOCmin

SOCmax

)
. (5)

where P (τ) is the power allocated to the ESS and η is

its efficiency. For Li-ion batteries, the lifetime can further be

extended by operating it within a certain range of SOC [11],

here represented by [SOCmin, SOCmax]. Therefore, this range

is also taken into when sizing the ESS.

b) Nominal power: The nominal power (Pn) of the ESS

is commonly limited by the power electronics interface of

the ESS. Thus, increasing power ratings is generally less

expensive than increasing the energy ratings. For both types

of ESS, the maximum of the assigned power is chosen,

considering both charging and discharging, i.e.

Pn = max(max(P (t)), |min(P (t))|). (6)

c) Ramp rate: In the literature, there are various defi-

nitions for a ramp rate. In this paper, the ramp rate (Rn) is

considered as the maximum change of power between two

consecutive points in time. If Ts is the sampling time of the

power signal, the ramp rat is calculated as

Rn = max(P (t)− P (t− Ts)). (7)

d) Cycling times and lifetime: Cycling times is defined

here as the number of times the SOC of the ESS falls below

10% of its maximum, which is limited value for each tech-

nology. In electrochemical batteries such as Li-ion batteries,

the lifetime deteriorates with deep cycling, due to cumulative

changes of the structure and decomposition of the cells. For

such batteries the following charging/discharging behaviour

can significantly affect its lifetime [11]:

1) High rates of charging/discharging.

2) Frequent variation in the rate of charge/discharge.

3) Leaving the battery for a long time at high SOC.

4) Cycling more than once a day. This simply reduces the

calendar life of the battery.

The first two factors can be avoided by allocating the

high-frequency components to a type 2 ESS or the grid, as

suggested earlier. The third point can be taken into account

by choosing a larger battery, as shown in Eq. (5). The last

influencing factor depends on the charging and discharging

algorithm and how often the batteries operation is triggered.

Thereby, the control algorithm should only allows a battery

to be charged and discharged once during a day. This is later

discussed in section IV.

E. Choosing the right technology

The aforementioned characteristics for the two types of ESS

are calculated and presented in TABLE I. In each case, the

ESS should have the sufficient capacity, power, ramp rate,

and cycling times. For type 1 ESS, an ESS with high energy

content is required with energy to power ratio of approximately

three. This can easily be provided by Li-ion batteries. Also,

redox flow battery can be used, as the energy and power of

flow batteries can be scaled independently from each other.

For type 2 ESS Flywheel Energy Storage System (FESS)

and supercapacitors are a good alternative. Flywheel Energy

Storage Systems (FESS) were proposed as an optimal solution

for power smoothing or other applications, where frequent

cycling at high powers are required [18], [19].

III. DISCUSSION ON TIME RESOLUTION OF DATA

In the present paper, the sizing calculations are carried out

using 1-second, 1-minute and 10-minute data. As shown in

TABLE I, there is no significant difference between the sizing

results for type 1 ESS, when using 1-minute data and 1-second



TABLE I
ESS CHARACTERISTICS DERIVED FROM THE DATA.

Type of ESS Type 1 ESS Type 2 ESS

Data Resolution 1s 1min 10min 1s 1min

Nom. Capacity (kWh) 163.86 162.71 171.9 0.054 2.2
Nom. Power (kW) 50.32 44.75 48.69 12.89 21.27
Ramp Rate (kW/s) 0.54 0.42 0.017 13.93 0.27
Full cycles per day 1 1 1 29 4

Suitable Technology
Li-ion batteries,
Flow batteries

Flywheels,
Supercapacitors

data. Therefore, it can be concluded that using 1 minute data is

sufficient for sizing ESS for applications such as peak shaving

and load balancing. Using 10-minute data leads to a slightly

bigger storage, however, the required ramp rate cannot be

accurately calculated. For power smoothing applications using

type 2 ESS, 1-second data is the most advantageous, as these

system often operate within a few seconds. Even using 1-

minute data can lead to oversizing and and underestimating

the ramp rate.

IV. EVALUATION

For the evaluation of the proposed sizing methodology, the

derived ESS characteristics are tested with the two weeks

measurement data. As the 80% quantile is chosen for the

sizing, it is clear that the ESS cannot cover the power

variations at all times. However, for the intended purposes of

peak shaving, load levelling and power smoothing, the effects

of the ESS can be assessed. To fully observe the effect of

power smoothing by the type 2 ESS, the evaluation results are

presented using the 1-second data and its corresponding ESS

characteristics. However, similar results can be presented using

the 1-minute and 10-minute data. The results are obtained

using the constraints presented in TABLE I, meaning that

energy content, power, and ramping rate and cycling times

of each ESS are kept below calculated values. For the peak

shaving implementation, a simple controller triggers the type

1 ESS to store energy from 11:00 to 16:00 and discharges it

from 18:00 to 00:00. These times are also selected based on

the detected daily pattern (see Fig. 2(b)). For type 2 ESS, a

continuous operation is assumed.

In Fig. 5(a), four different cases are compared to each other.

Case 1 shows the originally measured consumption at the

substation. Case 2 and case 3 show the power drawn from

the grid if only one type of ESS, type 1 or type 2, is installed

at the substation. Case 1 and case 3 are hard to distinguish,

however case 3 has a much smoother curve, as shown in Fig.

5(d). Finally, the ideal case, in which both ESS are installed,

either separately or in a hybrid structure, is presented as case 4.

By analysing the results in Fig. 5, the following observations

can be made:

1) As seen in Fig. 5(a), by using type 1 ESS, the evening

peak is eliminated for almost everyday. That is a reduc-

tion of 45.32 kW on average. The exception is the 6th

day, in which there was no sufficient PV generation to

charge the type 1 ESS and cover the peak demand. Due

to the peak shaving, the grid does not need to provide the

power with high ramp rate in the afternoon. Moreover,

the ESS can defer expansions or relief congestion from

the grid components, if that is the case. The results for

the 5th day are presented separately in Fig. 5(c).

2) During midday, reverse power flow is either avoided or

its duration and power is significantly reduced. This can

potentially increase the static hosting capacity of the

LV grid for PV installations and avoids PV curtailment

due to overvoltage issues. However, if a PV system is

installed far away from the storage installation place, it

may still require local voltage compensation.

3) As shown in Fig. 5(d), type 2 ESS reduces short-

time power fluctuations. The maximum change in power

during the whole period is reduced by 35.2%, from 18.8

kW/s to 12.2 kW/s, while on average it is down to

54.38%. This will increase the dynamic hosting capacity

of the LV grid, as the number of rapid voltage changes

due to the active power variations, such as the ones

caused by passing clouds, are reduced. Moreover, in

case both ESS are in operation, the power drawn from

the grid is as smooth and flat as possible, taking into

account the ESS constraints, such as their ramp rate.

4) By using type 2 ESS, the power drawn by or injected

by type 1 ESS has significantly less variations, which

can improve the lifetime of such systems significantly.

V. CONCLUSION

In the present paper, a new approach for sizing centralised

ESS is introduced. A reoccurring daily pattern with high

probability is first detected and extracted using a SAX trans-

formation and random projection. This pattern is then broken

down to high- and low-frequency components for sizing two

types of ESS with specific applications. For each type of ESS,

nominal capacity, nominal power, ramp rate, number of cycles

per day and most suitable technology is derived from the

data. In addition, the effects of using measurement data with

different resolutions on the sizing outcome is investigated. It

is concluded that for applications such as peak shaving, using

1 minute sampled data is still adequate, while using 10-minute

sampled data can lead to minor oversizing and an inaccurate

ramp rate. However, using 1 second data for power smoothing

applications is mandatory. Finally, the sizing outcomes are

then evaluated using 14 days of data. It has been shown

that ESS with characteristics derived from detected daily

consumption pattern, can effectively reduce peak demand,

reverse power flow and voltage fluctuations over the whole

period.

For future work, a cost-benefit analysis can complement

the proposed method. Other possible influencing factors in

the sizing of the ESS, such as a more detailed modelling of

the ESS and it power flow controller can be added to the

methodology.



Fig. 5. (a) Power drawn from the grid in different scenarios during two weeks. (b) SOC of type 1 and type 2 ESS during two weeks. (c) Power drawn from
the grid during the 5th day. (d) Power drawn from the grid from 22:00 to 23:00 during the 5th day.
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