

OECD/NEA Second Multi-Physics Model Validation Workshop (MPMV-2) June 26-27, 2019. GRS, Germany.

KIT Multi-Physics Developments for Reactor Analysis

Víctor Sánchez, U. Imke, L. Mercatali and A. Abalkhail Presented by A. A. Abalkhail (victor.sanchez@kit.edu)

Institute for Neutron Physics and Reactor Technology (INR)

KIT – The Research University in the Helmholtz Association

Content

- Motivation
- KIT strategy
- Current R&D topics
- Multi-physics advanced codes based on transport and subchannel solvers
- How to validate pin-by-pin deterministic solutions?
- High-fidelity multi-physics codes based on Monte Carlo
- Validation of high fidelity codes
- Summary and Outlook

Motivation

Complex Physics:

- Increasing complexity of core loading
- High burn-up
- Quite different core designs PWR, BWR, SMR, Gen-IV, research reactors

Huge and cheap HPC-Capability

- European HPCs: PRACE (Partnership for Advanced Computing in Europe)
- HPC-clusters in the Federal State Baden Württemberg (BW)
 - **FIVE HPC centers**
 - One at KIT for Energy

HPC Infrastructure at Baden Württemberg

- bwForCLuster MLS/WISO: Economics /social sciences (Mannheim/Heidelberg)
- bwForCLuster JUSTUS: Chemistry (Ulm)
- bwForCLuster NEMO: Neuro sciences. Microsystems, elementary particle physics (Freiburg)
- bwForCLuster BinAC: Bio informatics and Astrophysics
- **Research High Performance Computer ForHLR** I and II at KIT for energy research
 - Phase I: applications with many thousands processors

KIT SCC ForHLR I

KIT SCC ForHLR II

3 2nd MPMV OECD Workshop

KIT

Strategy for the Development of Safety Analysis Codes

Selection of Key Safety Topics combining innovative Research with E&T

- Reflecting needs of German situation
- Following international trends

Integration of RPD activities in national / international activities and programs

- EU projects
- National programs and projects of BMBF, BMWi, etc.

Combination

In-house HGF* (KIT, HZDR) code development and use of international codes

Make use of HPC and new algorithms and methods

* HGF: Helmholtz Association of Research Centres

Current R&D Topics

7 2nd MPMV OECD Workshop

KIT Multi-Scale Thermal Hydraulic Coupling

Goal: Improve the description of TH phenomena inside the RPV, Core

8 2nd MPMV OECD Workshop

Coupling of Neutronic/Subchannel-TH/Pin Mechanics Solvers (e.g. PARCS/SCF/TRANSURANUS)

Goals:

- Improve description of core behaviour under irradiated conditions during life time
- Coupling approach:

MPI-based Approach

Тс	Coolant temperature				
Dc	Coolant Density				
Tf	Fuel Temperature				
Trod	Rod radial temperature				
Lin Pow	Linear Power				
Pres	Pressure				
CC HTC Clad-Coolant heat transfer coefficient					

Transferred variables

Multi-physics advanced codes based on transport solvers and subchannel codes

From Industry standards to Pin/subchannel-based Core Analysis

- Best-estimate codes: based on nodal diffusion and coarse TH (1D, 3D)
 - TRACE/PARCS, ATHLET/DYN3D, CATHARE/CRONOS2, RELAP5/PANBOX/COBRA, CASCADE-3D, PARCS/SCF, PARCS/CTF, etc. combined with Pin Power Reconstruction

KIT: Advanced Neutronic /thermal hydraulic coupling at pin level:

- Replace nodal diffusion by transport solvers (SP3) and system TH by SCF: DYNSUB5
- Under development: PARCS-SP3 / SUBCHANFLOW Coupling based on ICoCo method
- 11 2nd MPMV OECD Workshop

12 2nd MPMV OECD Workshop

How to Validate the Pin-by-Pin Deterministic Solutions?

KIT High-Fidelity Coupled codes based on MC-solvers for pin-level solution of full PWR cores:

Internal coupling of MCNP5/SUBCHANLOW

Internal coupling of SERPENT2/SUBCHANFLOW

M. Daeubler, B. L. Sjenitzer, A. Ivanov, V. Sanchez, R. Stieglitz und R. Macian-Juan, "High-fidelity coupled Monte Carlo neutron transport and thermal-hydraulic simulations using Serpent 2/SUBCHANFLOW," *Annals of Nuclear Energy*, pp. 352-375, 2015.

PhD: M. Däubler

Serpent2/SCF: High fidelity Simulation of the HFP PWR MOX/UOX Core (1/2) Karlsruhe Institute of Technology

Channel and sub-channel TH model of OECD NEA and U.S. NRC PWR MOX/UO2 core transient benchmark

U 4.2%	U 4.5%	M 4.3%	U 4.5%					
32.5	17.5	35.0	20.0					
U 4.5%	M 4.0%	U 4.5%	M 4.3%	U 4.2%	U 4.5%			1
(CR-C)		(CR-B)		(CR-SC)				
0.15	0.15	0.15	0.15	17.5	32.5			
M 4.3%	U 4.2%	M 4.3%	U 4.5%	U 4.5%	M 4.3%	U 4.5%		
	(CR-SB)		(CR-SC)					
17.5	32.5	17.5	20.0	0.15	0.15	32.5		
U 4.%	U 4.2%	U 4.2%	U 4.2%	U 4.2%	U 4.5%	U 4.2%		
(CR-SB)				(CR-D)		(CR-SA)		
37.5	0.15	22.5	0.15	37.5	0.15	17.5		
U 4.5%	M 4.0%	U 4.2%	M 4.0%	U 4.2%	U 4.5%	M 4.3%	U 4.5%	
					(CR-SC)			
0.15	22.5	0.15	37.5	0.15	20.0	0.15	20.0	
U 4.2%	U 4.5%	U 4.2%	U 4.2%	U 4.2%	M 4.3%	U 4.5%	M 4.0%	
(CR-A)		(CR-C)				(CR-B)		
22.5	32.5	22.5	0.15	22.5	17.5	0.15	35.0	
0 4.2%	U 4.2%	0 4.5%	M 4.0%	0 4.2%	04.2%	M 4.0%	0 4.5%	
					(CR-SB)			
0.15	17.5	32.5	22.5	0.15	32.5	0.15	17.5	-
0 4.2%	U 4.2%	04.2%	0 4.5%	UOX 4.5%	M 4.3%	04.5%	04.2%	
(CR-D)		(CR-A)				(CR-C)		
35.0	0.15	22.5	0.15	37.5	17.5	0.15	32.5	1

Core Thermal hydraulics:

- 193 subchannels
- 20 axial levels

Quantity	Value		
Power	$3565\mathrm{MW}$		
Core mass flow rate	$15849.4 \mathrm{kg/s}$		
Inlet pressure	$15.5\mathrm{MPa}$		
Coolant inlet temperature	$560\mathrm{K}$		

Core model at subchannel level:

- Neutronics nodes: 55777 pins and guide tubes
- Thermal hydraulics: 35 axial levels, 62532 sub channels Fluid: 2.2 M cells, Solid: 23.4 M
- Solution approach: Pin-by-pin solution

Per iteration step:

- 4 E6 neutrons per cycle
- 650/2500 inactive/active cycles

Convergence criteria:

• T-Doppler and M-density= < 0.5 %

18 2nd MPMV OECD Workshop

Validation of high-fidelity solvers

Serpent2/SCF Validation

Code-to-code comparison

 OECD NEA/ US NRC PWR MOX/UOX REA Core Transient Benchmark (ss conditions)

Code-to-data comparison

Experiments like VENUS 1 and 2 critical experiments

MIT BEAVRS benchmark

- HZP physics test
- HP measurements at 18 days (693 MWth) after BOL

SPERT III E steady state conditions

M. Daeubler, L. Mercatali, V. Sanchez, R. Stieglitz und R. Macian-Juan, "Validation of the Serpent 2-DYNSUB code sequence using the Special Power Excursion Reactor Test III (SPERT III)," p. Submittet to ANE for publication, 2015.

Final Conclusions and Outlook

Conclusions:

- Numerical simulation tools for safety evaluations undergo continuous developments and must correspond to the state-of-the-art
- Need to move towards the increase of the spatial and energy resolution is recognized
- Advances in computer power paves the ways for high fidelity simulations and full use of big HPC-clusters now available

Outlook:

- New powerful full transport solvers based on PN, SN and MOC are under development e.g. SCOPE2, nTRACER, MPACT
- Development of dynamic Monte Carlo codes (prompt and delayed neutrons, control rod movements) strong competitors of classical deterministic codes safety-related applications (long term)
 - EU H2020 McSAFE Project (KIT Coordinator): 2017-2020

