

OECD Multi-Physics Model Validation Workshop (MPMV-2) GRS (Garching - GERMANY) June 26-28, 2019

Advanced multi-physics modelling activities within the EU McSAFE Project

V. H. Sanchez-Espinoza (KIT), <u>L. Mercatali (KIT)</u>, J. Leppänen, (VTT), E. Hoogenboom (DNC) R. Vocka (UJV), J. Dufek (KTH)

Content

□ Project motivation & goals

- Coupling approaches
- Results
- □ Summary

Core analysis relies mainly on deterministic neutronic codes (daily work)

- Current approach include multiple approximations (homogenization, cross section data preparation, diffusion approximation)
- Pin power approximately reconstructed from 2D lattice calculations
- Pinwise SP₃ and S_N solvers are still under development (full parallel).
 - > Serial solvers very time and memory expensive
 - > Parallel versions under development

Experimental data at pin level is scarce and not easy to be measured (pin power)

Insufficient data for code validation, evaluation of uncertainties

□ Alternative / supplementary option:

- Use of MC codes capable of simulating the neutron transport without approximations
- Obtain reliable data for any core state at fuel pin level
- Potential use taking advantage of HPC and parallelization

Innovative solutions needed to pave the way for industry-like applications

2 MPMV-2 Workshop

McSAFE – High Performance Monte Carlo Methods for Safety Demonstration

McSAFE is based on innovative ideas developed within the EU 7th FP HPMC Project (High Performance Monte Carlo Core Analysis: 2011-2014)

(Proof of concept)

Goal: move MC methods towards industrial applications

- Generalize N/TH/TM coupling
- Optimize depletion simulations (stability, CPU, memory requirements)
- Enable analysis of transients such as RIA and others (Safety)
- Validate MC tools using experimental data
- Solve whole cores making use of HPC provide reference solutions

(Industry-like applications → McSAFE)

Final scope: Move towards high fidelity multi-physics calculations using advanced codes and methodologies in order to perform NPP core level calculations including depletion and TH-feedback in a full scope approach (i.e. pin level)

4 MPMV-2 Workshop

L. Mercatali

Focus on the further development of European MC, TH and TM codes on the coupled systems already developed during the HPMC project

Methods	Monte Carlo (MC)	Thermal-Hydraulic (TH)	Termo-Mechanics (TM)	
Static MC	TRIPOLI	SCF		
(External coupling	SERPENT	SCF	TRANSURANUS	
using NURESIM)	MONK	SCF		
Static MC	SEDDENT	SCE		
(Internal Coupling)	JERPENI	3 0F	TRANSURANUS	
	DynTRIPOLI	SCF		
Dynamic MC-TH	DynSERPENT	SCF		
	DynMCNP	SCF		
Dynamic MC-TH-TM	DynTRIPOLI	SCF, TRUST	TRANSURANUS	
	DynSERPENT	SCF	TRANSURANUS	

Full-core MC-depletion and optimised thermal-hydraulic feedback integration

Topics:

- Improved algorithms for equilibrium Xe-135 calculation and stability of MC-Depletion codes
- Methods for optimised cross-section look-up and memory utilisation in MC-codes
- Further development of MC and MC-TH criticality calculations (e.g. variance reduction, acceleration of fission-source convergence, etc.)
- Optimisation of internally coupled MC-TH codes to solve full-core problems.
- Implementation of Cartesian/HEX-mesh of TH-parameter interpolation for pin-wise depletion
- Testing the methods for PWR mini-core 3x3 FA and Small Modular Reactor (SMR) cores in a Monte Carlo performance benchmark
- **Tools:** MC-codes (mainly SERPENT) coupled with SCF
- **Testing and demonstration:** VVER mini-cores, PWR mini-cores, full cores

Full-core MC-depletion: screening of capabilities and limitations (1)

These case was run in an ad-hoc node with up to 356GB RAM

- → RAM requirement increase linear with depletion zone → ~400kB per burn material
- \rightarrow Maximum foreseen case in available HPC \rightarrow 12FA
- → Big HPC have ~10GB per node !!!
- → Pin by pin full-core burnup leads to ~1TB → not feasible or foreseen for a HPC in McSAFE

Full-core MC-depletion: screening of capabilities and limitations (2)

Most demanding problem for FH2: 12 FAs array fully divided (~1e5 burnable zones)

Parameter	Value	Comment
RAM memory (Total)	50.456 GB	Includes all. The node limit is 64GB. Additional memory is to be used by other codes in coupling
RAM memory (materials)	46.063 GB	Includes all
Running time @ 2.6 GHz CPU	~80e3 mins ¹	Per Iterator or corrector step
Running time @ 2.6 GHz CPU w/o IFC	~50e3 mins ¹	Per Iterator or corrector step
Calculation time overhead due to IFC	~60%	
Total active histories	2e9	2000 active cycles of 1e6 histories each

¹43200 mins ~1 month CPU

Full-core MC-depletion: screening of capabilities and limitations (3)

Statistical convergence

Poromotor	Value			
Parameter	Max	Min	Average	Stdev
Effective multiplication factor statistical convergence	-	-	-	2.9e-5
Thermal flux detector (tally) statistical convergence	0.0723	0.0032	0.0071	0.0040
power flux detector (tally) statistical convergence	0.0260	0.0000	0.0075	0.0035

Objectives:

- Support of codes integration in the NURESIM platform
- Integration of TRIPOLI and MONK in SALOME and coupling with TH codes
 - standardised coupling based on ICoCo (MEDCoupling Library for domain mapping)
- Integration of TRANSURANUS and coupling with coupled SERPENT-SCF code (MC-TH-TM)
 - standardised coupling based on ICoCo (MEDCoupling Library for domain mapping)
- Adaptation of SERPENT/SCF coupling for PWR with HEX fuel assemblies including a SCF-pre-processor for HEX-mesh
- Demonstration of the code capability using a benchmark problem or simplified test case e.g. SMR-cores, VVER-1000 Kalinin Benchmark (SS simulation)
- Tools: TRIPOLI/SCF, SERPENT/SCF/TU, MONK/SCF

• **Testing and demonstration:** VVER mini-cores, PWR mini-core, full cores

M. García et al. "Development of an Object-oriented Serpent2-SUBCHANFLOW Coupling and Verification with Problem 6 of the VERA Core Physics Benchmark" – M&C 2019

- The basics new implementation approach consists of:
 - SERPENT: several "open doors" functions
 - SCF: compilation as library (use of high level C interfaces)
 - Models of SCF are to be developed externally (with new SCF pre-processor)
 - All mapping with ad-hoc files

D. Ferraro et al.; "Serpent/SUBCHANFLOW pin-by-pin coupled transient calculations for a PWR minicore", submitted for publication to ANE

Extension of the SSS2/SCF internal coupling to hexagonal geometries (1)

- No limitation is imposed in the coupling
- Nested IFC files can be used
- New SCF pre-processor allows coolant-centered and fuel-centered hexagonal geometries generation
- Coupling done through mapping files

D. Ferraro et al. "Extension of Serpent-SCF coupling to VVER" McSAFE project deliverable (restricted to McSAFE partners)

Extension of the SSS2/SCF internal coupling to hexagonal geometries (2)

D. Ferraro et al. "Extension of Serpent-SCF coupling to VVER" McSAFE project deliverable (restricted to McSAFE partners)

Pin-by-pin SSS2/SCF/TU coupling results (Object Oriented approach)

PWR: VERA Benchmark Problem 6

Difference: [Serpent-SCF-TU] – [Serpent-SCF]

Field	Maximum difference	Average difference
Power (W)	109.39 (10.63%)	21.62 (1.83%)
Coolant density (kg/m³)	6.00 (0.88%)	1.07 (0.16%)
Coolant temperature (°C)	2.28 (0.39%)	0.43 (0.07%)
Fuel temperature (°C)	73.77 (10.63%)	54.20 (8.15%)

M. García et al.; "Serpent2-SUBCHANFLOW-TRANSURANUS pin-by-pin depletion calculations for a PWR fuel assembly", submitted to PHYSOR 2020

Pin-by-pin SSS2/SCF/TU coupling results (Object Oriented approach)

VVER: 30AV5 VVER-1000 FA type

Difference: [Serpent-SCF-TU] – [Serpent-SCF]

Field	Maximum difference	Average difference
Power (W)	110.19 (15.70%)	18.51 (1.83%)
Coolant density (kg/m³)	0.43 (0.06%)	0.09 (0.01%)
Coolant temperature (°C)	0.17 (0.03%)	0.04 (0.01%)
Fuel temperature (°C)	23.21 (2.88%)	5.84 (0.91%)

M. García et al. "Serpent2-SUBCHANFLOW-TRANSURANUS coupling for pin-by-pin depletion calculations in PWR and VVER reactors" (in preparation for ANE submittal)

H2020 **KIT SSS2/SCF** solution for a full VVER core (2)

- Obtained K_{eff} = 1.00149 ± 8e-5 \rightarrow Agreement ~ 150 pcm
- Available results by pin ("high fidelity" goal):

Converged temperature

Further step: burnup the whole cycle (Domain decomposition becomes mandatory).

D. Ferraro et al. "Serpent/SUBCHANFLOW coupled calculations for a VVER core at hot full power" submitted to PHYSOR 2020

D. Ferraro et al. "Serpent/SUBCHANFLOW coupled calculations for a VVER fuel assemblies" submitted to PHYSOR 2020

- Good agreement for both FA with other "high fidelity" projects
- Consistent behavior with burnup
- Results available at pin level (highly detailed)

D. Ferraro et al. "Serpent/SUBCHANFLOW coupled calculations for a VVER fuel assemblies" submitted to PHYSOR 2020

Objectives:

- Development of time-dependent dynSERPENT-SCF e.g. implementation of methods to account for the prompt neutron and gamma heat deposition in the coolant.
- Development of time-dependent dynTRIPOLI-SCF.
- Development of time-dependent dynMCNP-SCF.
- Variance reduction for MC-codes with dynamic capability to improve the efficiency of time-dependent MC solutions e.g. Uniform Fission Sites (UFS).
- Methods for optimal parallel scalability of MC-TH codes for dynamic simulations to take profit of massively parallel environments in the frame of industry-like applications.
- Verification of developed tools on 3x3 pin cluster or PWR mini-core (3x3 FA)
- **Tools:** TRIPOLI/SCF, SERPENT/SCF, MCNP/SCF
- **Testing and demonstration:** PWR mini-core (3x3 FAs), SMR core (e.g. SMART core)

UAM 3-D 15x15 FA PWR minicore is used as basis for coupled transients:

- \checkmark Results obtained by pin
- ✓ Fuel temperature + density change provides the negative feedback
- ✓ Results behave as expected

D. Ferraro et al.; "Serpent/SUBCHANFLOW pin-by-pin coupled transient calculations for a PWR minicore", submitted for publication to ANE

- The TRIPOLI-4 code was extended
 - with several algorithms for the efficient solution of the coupled neutron-precursor transport equation
 - with the capability to handle moving geometry
- TRIPOLI-4 multi-physics interface has been developed to be compliant with the ICoCo specification of an API

Time evolution of the total netron flux in the SPERT-III core (Reactivity insertion at t=1s with a 0.8 cm withdrawal of the CR. The system returns to critical state at t=6 s when the CR go back to initial position)

Mean value of the neutron power deposited in each of the axial rod slices vs. time (fuel rod in a critical position)

M. Faucher et al.; "New kinetic simulation capabilities for Tripoli-4®: Methods and applications", Annals of Nuclear Energy 120:74-88 October 2018

 Validation of MC-based simulations using plant data for depletion, static and dynamic core analysis using the implemented coupled approaches (UJV)

Plant Data	Static MC-TH Problem	Static MC-TH-TM Depletion Problem	Dynamic Problem
VVER-1000	TRIPOLI SERPENT/SCF	SERPENT/SCF/TU	
PWR Konvoi	TRIPOLI/SCF SERPENT/SCF MONK	SERPENT/SCF/TU	
SPERT III E REA			DynTRIPOLI/SCF DynSERPENT/SCF DynMCNP/SCF

International benchmarks (OECD/NEA UAM, etc.)

- Project website: <u>www.mcsafe-h2020.eu</u>
 - Synthesis reports of the main project results
 - Project newsletters (subscription through website)
- McSAFE Training Course to be held at KIT in March 25-27, 2020

McSAFE User Group

- **Goal**: assessment of the McSAFE results from the user's point of view
- <u>Members</u>: Organisations (utilities, regulatory bodies, TSO, research labs, universities) from Europe, Asia and America
- UG members contribution:
 - Feedback on methods, codes and results
 - Suggestions for further developments
 - Production pf benchmark results
 - Sharing the data for validation

Do you like to join? → Send an e-mail to the coordinator: victor.sanchez@kit.edu

- Increasing demand from designers, operators, regulators and other stakeholders for advanced tools and methods in reactor analysis
- Several project around the world are oriented to tackle this demand
- The McSAFE project (EU Horizon 2020) started in 2017 and is delivering
- improved and validated high-fidelity numerical simulation tools that can be used by different end-users (industry, regulators, research centres, etc.) to provide reference solutions to deterministic codes for safety demonstration
- The objective is to develop tools and coupling approaches that will allow to calculate full NPP cores with depletion at the pin level
- The McSAFE tools can contribute to design reactor systems with improved safety features keeping sufficient safety margins
- Applicability of McSAFE tools to any reactor type including SMR, research reactors and Gen-IV and <u>usability for verification</u> of design calculation methods for innovative systems for which data are not available