

Analytical solution of a gas release problem considering permeation with time dependent boundary conditions

Marvin R. Schulz | September 26, 2019 Joint Work With: Kaori Nagatou, Axel von der Weth Frederik Arbeiter, Ron Dagan, Volker Pasler

KIT-IANA, KIT-INR, KIT-IATF, MathSEE

ICTT-26, Paris 2019

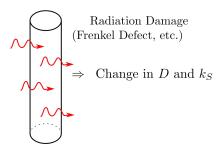
KIT - Die Forschungsuniversität in der Helmholtz-Gemeinschaft

www.kit.edu

イロト (四) (日) (日) (日) (の)

Motivation

Influence of radiation damage on Diffusion and Sieverts' constant



- Setup-Material?
- Heating heals defects!
- How to recover D and k_s from data?

Experiments like this are relevant for:

- Reactor and Fusion-technology,
- Green energy: Storage and transport of H₂,
- repository exploration, ...

nan

・ロト ・ 日 ト ・ 日 ト ・

Outline

Motivation

- Experiment, Setup
- Diffusion-Equation with time dependent boundary-conditions
- Explicit Solution for each time interval [Sample]
- Partial pressure of Hydrogen during Release-Interval

< □ > < □ > < Ξ > < Ξ > < Ξ > Ξ - のへぐ

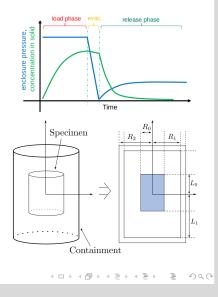
Karlsruher Institut für Technologie

Experimental Setup

- Cylinder geometric isovolumetric setup
- Loading with Hydrogen at defined pressure p_L (and Temperature T)
- Evacuate the System
 - $\rightarrow p(t) = p_L \exp[-\lambda t]$
- Recover Sieverts' and Diffusion Constant

$$R_0 = 3.0 \ 10^{-3} \,\mathrm{m}, \ L_0 = 3.0 \ 10^{-2} \,\mathrm{m}$$

$$R_1 = 0.01 \text{ m}, \ R_2 = 0.02 \text{ m}, \ L_1 = 0.04 \text{ m}$$



Boundary Conditions

Note: (Sieverts' Law)

On the surfaces the Concentration of (Mono-atomic)-Hydrogen is given by

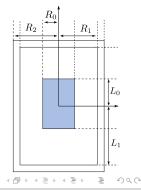
$$c \equiv k \sqrt{p(t)} \quad \forall t \ge 0$$

Note: (Diffusion-Equation)

$$\partial_t c^{(n)} - D_j \Delta c^{(n)} = 0, \ j \in \{s, c\} \ t \in [t_n, t_{n+1}]$$

 $c^{(n)}(r, z, t) = k_j \sqrt{p(t)} \ for \ \begin{cases} r \in \{R_0, R_1\} \\ z \in \{\pm L_0, \pm L_1\} \end{cases}$
 $c^{(n)}(R_2, z, t) \equiv 0$
 $c^{(n)}(r, z, t_n) = c^{(n-1)}(r, z, t_{n-1}), c^{(-1)} \equiv 0$

$$p(t) = egin{cases} p_L, t \in [t_0 = 0, t_1] \ p_L \exp[-\lambda t], t \in [t_1, t_2] \ unclear, t \in [t_2, t_3] \end{cases}$$



Solving These Equations

Zero-Boundary condition [Sample]

$$g_{\mathcal{S}}(r, z, t) \coloneqq c(r, z, t) - k_{\mathcal{S}}\sqrt{p(t)}, r \in [0, R_0], z \in [-L_0, L_0]$$

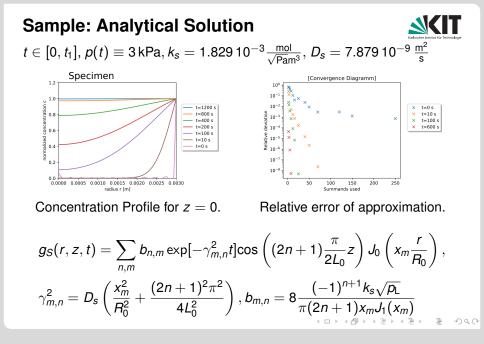
$$\Rightarrow \partial_t g_{\mathcal{S}} - D_{\mathcal{S}}\Delta g_{\mathcal{S}} = k_{\mathcal{S}}\partial_t\sqrt{p}$$

Zero-Boundary condition [Containment, neglecting z]

$$g_{\mathcal{C}}(r,t) \coloneqq c(r,t) - \tau(r)k_{c}\sqrt{p(t)}, \tau(r) = \frac{\log[r] - \log[R_{2}]}{\log[R_{1}] - \log[R_{2}]}, r \in [R_{1}, R_{2}]$$

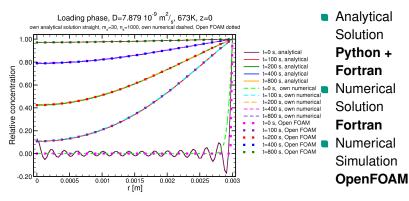
$$\Rightarrow \partial_{t}g_{\mathcal{C}} - D_{c}\Delta g_{\mathcal{C}} = \tau k_{s}\partial_{t}\sqrt{p}$$

Hom. PDE \rightarrow Separation of variables ODEs \rightarrow Solvable Fundamental Solutions \rightarrow Full Solution Variation of Constants



Marvin R. Schulz - Analytical Solution of a gas release problem

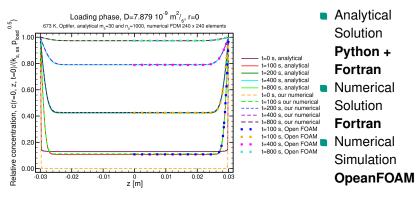
Compare: Numerical (Fortran), Analytical (Python), OpenFOAM



Different approaches show similar results!

<ロ><()</p>

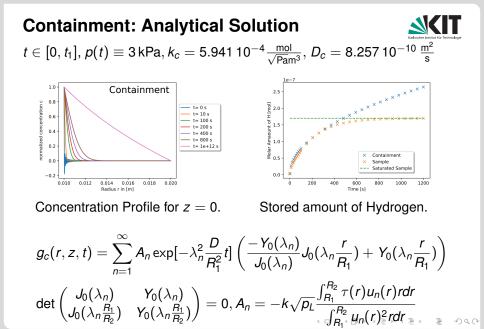
Compare: Numerical (Fortran), Analytical (Python), OpenFOAM



Different approaches show similar results!

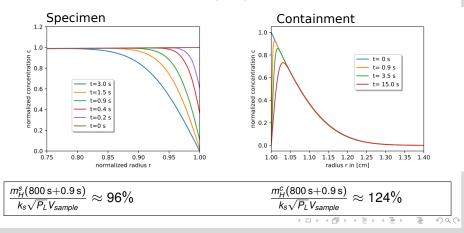
Marvin R. Schulz - Analytical Solution of a gas release problem

イロト イヨト イヨト



Pumping Interval

Fick's Law $\rightarrow c(r, z, t) = p_L \exp[-\lambda t]$, for $r \in \{R_0, R_1\}, z \in \{L_0, L_1\}$ Fixed Ratio: 97 % He and 3 % H_2 Remaining Partial Pressure: $\Rightarrow p_{H_2}(0.9s) = 1$ Pa



Release Interval

Problem: p(t) in gaseous phase unknown \Rightarrow No Boundary Conditions

Note: (Initial Guess)

$$\sqrt{\rho(t)} = \frac{\sqrt{\rho_f} - \sqrt{\rho_0}}{1 - \exp[-\beta T]} \left(1 - \exp[-\beta t]\right) + \sqrt{\rho_0} \tag{1}$$

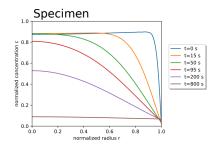
[Sedano et al., J. Nucl. Mater. (1999)]

$$\partial_t g_S - D_s \Delta g_S = k_s \underbrace{\partial_t \sqrt{p}}_{\text{Now Easy}}, \quad \partial_t g_C - D_c \Delta g_C = \tau k_c \partial_t \sqrt{p}$$

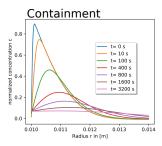
Note:

- β , *T* and *p*_f free parameters,
- Sieverts' Law still holds for the pressure above.

Release Interval Graphics



$$j_{1}^{s}(t) = -2\pi D_{s} \int_{-L}^{L} R_{0} \partial_{r} c(R_{0}, z, t) dz$$
$$j_{2}^{s}(t) = -4\pi D_{s} \int_{0}^{R_{0}} \partial_{z} c(r, L_{0}, t) r dr$$
$$j_{3}^{c}(t) = -2\pi D_{c} \int_{-L_{1}}^{L_{1}} R_{1} \partial_{r} c(R_{1}, z, t) dz$$



Flux of Hydrogen:

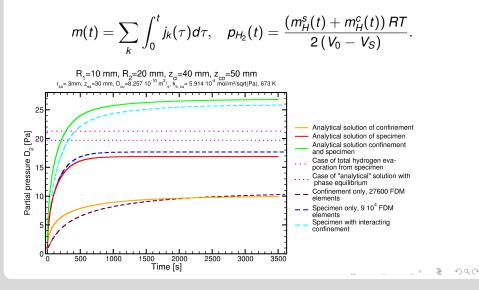
- Coat Containment j_3^c ,
- (2x Caps Containment),

イロト イポト イヨト イヨト

- Coat Specimen j^s₁,
- Caps Specimen j^s₂.

Ξ

Pressure Increase



Conclusion

- Fortran FDM and analytic (Python) model show similar results,
- Measure containment effect,
- Recover D and k with B&B (fast evaluation -> analytic solution),
- Estimate: Duration of Experiment,

copper containment may be usable

Open Problems:

- Guess function $\sqrt{p(t)}$ does not exactly fit. (Fixed-point Iteration),
- Melting Point of copper \approx 1.300 K.

Acknowledgement:

The current talk summarizes results of two running projects:

Main goal of the first one is the determination of transport parameters of hydrogen in structural metallic materials used for components in fusion power stations: This work has been carried out within the framework of the EUROfusion Consortium, and has received funding from the Euratom research and training program 2014-2018 under grant agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission

The authors are also thanking for support and fundings by MathSEE regarding the second project: *Neue Lösungen der Kontinuitätsdiffernetialgleichung mit Phasengleichgewicht zur Verbesserung der Ergebnisse bei der Auswertung von Experimenten.*

Bibliography

- Sedano, Perujo, Wu, Intrinsic hydrogen transport constants in the CFC matrix and fibres derived from isovolumetric desportion experiments, in J. Nucl. Mater. (1999)
- Parsons, Reichanadter, Vicksman, Segur, Explicit Solution for Cylindrical Heat Conduction, in American Journal of Undergraduate Research (2016)
- von der Weth, Nagatou, Arbeiter, Dagan, Klimenko, Schulz, Numerical analysis of an isovolumetric thermal desorption experiment, Defect and Diffusion Forum (2019)