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Abstract

The Innovation Pool project Amalea of the Helmholtz as-

sociation of Germany will explore and provide novel cutting-

edge machine learning techniques to address some of the

most urgent challenges in the era of large data harvests in

physics. Progress in virtually all areas of accelerator-based

physics research relies on recording and analyzing enor-

mous amounts of data. This data is produced by progres-

sively sophisticated fast detectors alongside increasingly

precise accelerator diagnostic systems. As KIT contribution

to Amalea, it is planned to investigate the design of a fast

and adaptive feedback system that reacts to small changes in

the charge distribution of the electron bunch and establishes

extensive control over the longitudinal beam dynamics. As

a promising and well-motivated approach, reinforcement

learning methods are considered. In a second step the algo-

rithm will be implemented as a pilot experiment to a novel

PCIe FPGA readout electronics card based on ZYNQ Ultra-

Scale+ MultiProcessor System on-Chip (MPSoC).

INTRODUCTION

With the increasing demand for compact, energy- and

cost-efficient accelerator systems, in addition to tailored

photon emission matched to the often extreme requirements

of experiments in physics and photon science, the control

systems have to cope with increasing complexity, high sen-

sor data output rates, large data volumes as well as the de-

sire for fast feedbacks and extensive beam control. Artifi-

cial intelligence with its subfield of machine learning in-

cluding unsupervised, supervised and reinforcement learn-

ing, as well as deep learning, promises to assist in reduc-

ing the effort and complexity for operating a control sys-

tem up to the point, where it may eventually control an

accelerator autonomously. At the Karlsruhe Institute of

Technology (KIT), since a few years, we are exploring ma-

chine learning methods for data classification, data reduc-

tion, and accelerator control informed by fast and precise

sensor networks [1–4]. Since 2019, the Helmholtz Asso-

ciation in Germany is funding an Innovation Pool project

called Amalea (Accelerating Machine Learning for Physics),

which is exploring machine learning for accelerator-based

physics, fast data reduction, and fast feature extraction from

data, to name a few application areas. Amalea is driven

by four Helmholtz centers, led by Deutsches Elektronen-

Synchrotron (DESY), Helmholtz-Zentrum Berlin (HZB),

Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and KIT.

The aim of Amalea is to investigate how novel machine

learning methods, applied to the fields of particle physics,

∗ These authors contributed equally to the presented work.

photon science and accelerator physics provide meaning-

ful and effective use cases. At KIT and as one of the use

cases contributing to the Amalea project, we explore how

we can accelerate machine learning algorithms in real-time

for machine physics applications and control. In this con-

tribution, we discuss our efforts towards the design of a

longitudinal feedback that acts on the RF system of the KIT

storage ring KARA (Karlsruhe Research Accelerator) and

aims for control of the micro-bunching instability. Driven

by the interaction of short electron bunches with their own

emitted coherent synchrotron radiation (CSR), this instabil-

ity leads to the formation of dynamically changing micro-

structures within the longitudinal charge distribution of the

bunch. Given its dynamic nature, a fast and adaptive feed-

back system is required to establish extensive control over

the longitudinal beam dynamics. Reinforcement learning

is a general-purpose approach to solving such problems,

which has seen great success over the past decades. In [4],

we illustrate how reinforcement learning can be applied to

this task specifically, yielding the design of a longitudinal

feedback loop. In the following, we review this idea and, in

extension to [4], discuss some of the challenges in imple-

menting this approach on a fast hardware system to meet

the strict requirements regarding execution time. Therefore,

KIT is developing a reinforcement learning hardware plat-

form for the eventual implementation of the feedback design

discussed below. The platform consists of two boards, the

KAPTURE-2 front-end electronics that samples the pulse

from the accelerator, and a high-end FPGA data acquisition

board that provides high-data volume throughput that can

process the data continuously. Based on which, a fast neural

network inference can be deployed on FPGA for the fast

inference requirement, and a lightweight training process

is developed on ARM (or both on ARM side). To provide

a proof of concept, the textbook CartPole environment is

built on a ZYNQ MPSoC platform to test the performance

of the reinforcement learning algorithm on hardware.

MICRO-BUNCHING INSTABILITY

Above a certain threshold current, which depends on

the machine settings of the storage ring [5], the CSR self-

interaction of short electron bunches leads to a dynamically

changing longitudinal charge distribution and thus to fluc-

tuating CSR emission (illustrated in Fig. 1). These fluctu-

ations have been measured at a wide range of synchrotron

light sources [6–18]. Additionally, the underlying longitudi-

nal dynamics can be simulated by numerically solving the

Vlasov-Fokker-Planck (VFP) equation [19], where the CSR
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wake potential

VCSR(q) =

∫ ∞

−∞

ρ̃(ω)ZCSR(ω)eiωqdω , (1)

can be added as a perturbation to the Hamiltonian. Here, q =

(z − zs)/σz,0 denotes the generalized longitudinal position,

ρ̃(ω) the Fourier transformed longitudinal bunch profile and

ZCSR(ω) the CSR-induced impedance of the storage ring. At

the KIT storage ring KARA, such simulations using the VFP

solver Inovesa [20] have shown great qualitative agreement

with measurements of the emitted CSR power [21].

The additional potential in Eq. (1) can be interpreted as

a perturbation to the accelerating RF potential, and thus re-

sults in a perturbation of the synchrotron motion within the

bunch. This causes the formation of micro-structures and

their dynamic evolution at time scales comparable to the

synchrotron period. As the longitudinal charge distribution

varies, so does the emitted CSR power, which is why this

phenomenon is commonly referred to as micro-bunching

or microwave instability. This also means that any efforts

towards stabilizing the CSR emission imply obtaining some

form of control over the micro-bunching dynamics within the

bunch. However, depending on the application, the forma-

tion of such micro-structures can also be desirable as it leads

to the emission of CSR at higher frequencies, reaching up to

the THz range. Extensive control over the longitudinal beam

dynamics would thus provide the opportunity of optimizing

the emitted CSR for each application individually.

-4 -2 0 2 4

-4

-2

0

2

4

long. position (σz,0)

en
er

g
y

d
ev

ia
ti
o
n

(σ
E
,
0
)

(a) micro-bunching

0

5

10

15

ρ
(p

C
/

(σ
z
,
0
σ
E
,
0
))

0 2 4 6 8 10 12

0.04

0.06

0.08

0.10

0.12

0.14

0.16

time (Ts)

C
S
R

p
o
w

er
(W

)

(b) fluctuating CSR

Figure 1: (a) The CSR self-interaction causes the formation

of micro-structures in the longitudinal charge distribution.

(b) Their continuous variation leads to fluctuations in the

emitted CSR power. The illustrated dynamics are simulated

with the VFP solver Inovesa developed at KIT.

REINFORCEMENT LEARNING

Following the notation in [22], the field of reinforcement

learning (RL) is briefly introduced below. For a more de-

tailed description of the subject, we refer to [22].

Reinforcement learning is the computational approach to

goal-directed learning from interaction. In contrast to other

sub-fields of machine learning, its learning paradigm does

not require a pre-existing data set, but merely an environment

to interact with. The learner and decision maker, usually

called the agent, continuously interacts with the environment

learning from past experience and thereby improving its

behavior. At every time step, the agent perceives the current

state St of the environment and carries out an action At .

Based on the chosen action, the environment transitions

to a new state St+1 and yields a scalar reward Rt+1. The

agent’s goal is defined as to maximize the cumulative reward

received over time.

In order for the agent to eventually figure out the best

available action at every time step, the sequence of states

has to provide all relevant information about the environ-

ment. Thus, the reinforcement learning problem is formally

described as a Markov decision process (MDP), demanding

that the sequence of states fulfills the Markov property

p(St+1 |St ) = p(St+1 |S1, . . . , St ) , (2)

where p(St+1 |St ) denotes the conditional probability of tran-

sitioning to state St+1 given the previous state St . At every

time step t, the state St is thereby required to provide all

relevant information about the transition dynamics of the

environment. While many problems can be modeled in this

form and the Markov property allows precise theoretical

statements, it can be difficult to fulfill this requirement in its

most rigorous formulation for practical applications. Nev-

ertheless, recent efforts in reinforcement learning research

have proven quite successful [23, 24], and lead to a new

wave of attention for the field.

Overall, reinforcement learning represents a general-

purpose approach to sequential decision problems, which

makes it applicable to a wide range of control tasks.

FEEDBACK DESIGN

In order to apply reinforcement learning methods to con-

trol of the micro-bunching instability, we need to define the

problem as an MDP. Fortunately, the definition of a Marko-

vian process is straightforward. In case of simulating the

longitudinal dynamics via VFP solvers, the starting condi-

tions are given by an initial charge distribution and a set of

constant parameters (e.g. machine parameters of the storage

ring). The temporal evolution of this charge distribution

is then simulated by iteratively solving the VFP equation.

At every time step, the calculation of the next step is en-

tirely based on the charge distribution of the preceding time

step (neglecting constant parameters). Thus, defining the

sequence of longitudinal charge distributions as the state

signal

St � ψt (z, E) (3)

yields a Markov process, fully satisfying Eq. (2).

To obtain an MDP, we still need to find an action space

providing the agent with the opportunity to influence the

micro-bunching dynamics in a meaningful way, and a reward

function defining the goal of its task. As our primary interest

lies in the emitted CSR power, we define the reward function

based on the CSR power time series

Rt � Rt (Pt,CSR) . (4)
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Choosing the reward function is a very crucial part of

defining any reinforcement learning problem, as the agent

will aim to converge towards the behavior that maximizes

the received amount of reward, whether this is the intended

solution or not. For the problem at hand, i.e. aiming to

stabilize the emitted CSR, the choice can be as simple as

Rt � ω1µt′:t − ω2σt′:t , (5)

where µt′:t and σt′:t denote the normalized mean and stan-

dard deviation of the time series Pt,CSR in the interval [t ′, t],

andω1,2 > 0 are simple weighting factors. This definition of

reward is expressing our desire of having a CSR power signal

of high intensity and low fluctuation, which corresponds to a

smooth charge distribution that is not significantly changing

in time. Whether this is done in the best possible and most

desirable way is unclear and still under investigation. How-

ever up to now, Eq. (5) has proven to be a quite reasonable

choice.

Finally, we need to define an action space. As the addi-

tional CSR wake potential in Eq. (1) acts as a perturbation

to the RF potential, one promising approach seems to be

centered around the RF system. If we can compensate some

of the CSR-driven perturbation, this should have a positive

effect on the micro-bunching dynamics. Thus, one straight-

forward choice of the action space would be

At ∈ {VRF × ϕRF} , (6)

where VRF denotes the RF amplitude and ϕRF the RF phase.

Dynamically modifying these two parameters should pro-

vide the agent with a substantial amount of control over the

RF system, however it also includes the option for a trivial

solution, as the dependency of the instability threshold on

the RF amplitude is well established [5, 25, 26]. Reducing

the RF amplitude until the instability threshold is crossed

would stabilize the longitudinal dynamics just naturally, but

is not what we intend the agent to learn. A slightly modified

choice that circumvents this issue is restricting the action

space to sinusoidal modulations of the RF amplitude and

phase, while maintaining the same effective values

At ∈ {AV × fV × Aϕ × fϕ } , (7)

where AV,ϕ and fV,ϕ denote the amplitude and frequency

of the RF modulations. Based on preliminary studies, the

dynamic modulation of the RF amplitude seems to be a

particularly suitable and effective choice to counteract the

CSR-induced perturbation. The influence of RF modula-

tions on the micro-bunching dynamics has also been tested

experimentally in the past, e.g. [27, 28]. A temporally adapt-

able RF modulation scheme is a promising proposition to

exert influence on the longitudinal beam dynamics in the

micro-bunching instability as it provides the required flex-

ibility to respond to the varying perturbation by the CSR

wake potential over continuous time.

Feasibility of the State Signal

Given the MDP formulation of the problem, as introduced

in the previous section, we can apply reinforcement learn-

CSR Signal

Agent

RF System
reward state

action

Figure 2: General feedback scheme using the CSR power

signal to construct both, the state and reward signal of the

Markov decision process (MDP).

ing methods to solve this task. To do so, the VFP solver

Inovesa has already been extended to support dynamic RF

modulations and the communication with a reinforcement

learning agent during runtime. First tests using this interac-

tion scheme are currently ongoing.

The definition of the state signal in Eq. (3) however, is

usually not feasible at an actual storage ring. Although first

efforts towards phase space tomography have been made

at KARA, this type of information is not yet accessible.

Instead, we should consider using the diagnostic systems,

which are already in place and can provide information about

the micro-bunching dynamics. As the projection of the

charge distribution ψt (z, E) in phase space, the longitudinal

bunch profile can be measured using an electro-optical near-

field setup on a turn-by-turn basis [29–31]. Complementary

information about the second dimension of the longitudinal

phase space, i.e. the energy, can be gained by measuring

the horizontal bunch profile in a dispersive section of the

accelerator using a fast-gated camera [32–34]. However, the

simplest and most robust way of acquiring information about

the micro-bunching dynamics is by using the CSR power

signal Pt,CSR itself. In order to calculate the reward function

defined in Eq. (4), we need to measure Pt,CSR regardless of

the definition used for the state signal. As the emitted CSR

power and its fluctuation over time are strongly correlated

to the micro-bunching dynamics within the bunch, we aim

to construct a state signal using merely this information

St � St (Pt,CSR) . (8)

Figure 2 illustrates the resulting feedback scheme.

In order to represent the required data in condensed form,

we would like to construct a feature vector that efficiently

describes the current state of the micro-bunching dynamics.

Some features which are expected to yield characteristic

information about that are combined in this exemplary choice

St � (µt′:t, σt′:t,mt′:t, fmax, Amax, ϕmax)T , (9)

where mt′:t represents a slow trend in the amplitude of the

CSR power. The variables fmax, Amax, ϕmax denote the fre-
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quency, amplitude and phase of the main component in the

Fourier transform of the time series Pt,CSR in the preceding

interval [t ′, t]. The such modified definition of the state sig-

nal is quite different from the initial consideration in Eq. (3),

which means we no longer have the theoretical comfort of

perfectly fulfilling the Markov property. Whether the defi-

nition in Eq. (9) yields enough information for the agent to

choose adequate actions is unclear and has to be verified in

practice. Ideally, this compact definition of the state signal

results in a fast learning process and convergence to a satisfy-

ing extent of control over the micro-bunching dynamics and

thereby the emission of CSR. If these goals can not be met

experimentally, the state signal should be extended to carry

more information in order to satisfy the Markov property in

Eq. (2) as closely as possible.

Finally, we need to consider the step width ∆t = t − t ′

within the MDP, which corresponds to the feedback’s repeti-

tion rate. As the micro-bunching dynamics and the changes

caused by the agent’s actions occur at time scales governed

by the synchrotron period, the step width has to be chosen

small enough in order to react to these fast changes. Whether

or not this can be relaxed to slower interaction rates has to

be tested empirically. At KARA, the synchrotron period is

usually in the order of several kHz, which yields challenging

time constraints for the hardware implementation of this

feedback scheme.

HARDWARE IMPLEMENTATION

The FGPA DAQ Board

To face up to the upcoming demand of high data through-

put and fast data processing close to the data source, a novel

PCIe readout card is developed at KIT. The DAQ board is

shown in Fig. 3.

Figure 3: Shown is the novel PCIe ZYNQ MPSoC Data

Aquisition Board developed at KIT.

The main processor is based on the ZYNQ UltraScale+

targeting the xcu11eg-1ffvc1760 Xilinx device, which can

be divided into two parts: Programmable Logic (PL, FPGA)

side and the Processing Subsystem (PS, ARM). It includes a

64-bit quad-core ARM processor with up to 1.5 GHz and a

dual-core ARM with up to 600 MHz for real-time tasks. A

Mali-400 GPU is available for simple parallel data process-

ing. The ZYNQ is equipped with a large FPGA with about

600k Configurable Logic Blocks (CLB) and several tens

of megabytes of block RAM and UltraRAM. The selected

FPGA contains more than 2900 DSP slices [35] and can

thus fulfill the synthesis and implementation requirement of

machine learning.

KAPTURE-2 Front-End Electronic

KAPTURE-2 (Karlsruhe Pulse Taking Ultra-fast Readout

Electronics) [36] is a picosecond sampling system for THz

pulses at high repetition rates, as produced by synchrotron

light sources (2 ns at KARA) due to the high frequency (500

MHz) of the accelerating RF system. KAPTURE-2 is able

to acquire and sample the pulse shape with 3 ps resolution

by 4 channels simultaneously and continuously, with a data

rate 4 × 1.8 GS/s at 12 bit per sample point (see Fig. 4).

Figure 4: Shown is the 4 channel picosecond sampling sys-

tem developed at KIT.

Hardware Implementation Scheme

From the hardware point of view, the main difference

between supervised and reinforcement learning is that the

former can usually be done using an offline training process

while the latter requires online training. For reinforcement

learning, the learning process is continuous and has to hap-

pen during runtime in order to allow the agent to learn from

past experience and to efficiently explore its action space.

This yields much higher demands regarding the hardware

implementation. An iteration of both, the training process

and the inference process, need to be completed within the

Figure 5: The hardware implementation scheme needs to

satisfy the demand for kHz repetition rate.
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challenging time constraints specified by the feedback loop

illustrated in Fig. 5.

As discussed above, the timing requirements for the feed-

back repetition rate are resulting directly from the physics

time-scale and are in the order of kHz. That means the tim-

ing from the detector, the data sampling by the front-end

electronics, the FPGA or ARM neural network inference

and the control signal generation for the RF system need

to finish within 1 ms. The data collection and the training

must also be performed in this narrow time window. This

requires a special implementation supporting the reinforce-

ment learning approach. The whole training and inference

process need to be run directly on the hardware.

Implementation of NN Inference on FPGA

The major task of implementing machine learning (ML)

on an FPGA is to transfer the (deep) learning model to the

FPGA architecture. This section will demonstrate one solu-

tion to map ML models to the ZYNQ UltraScale+.

The implementation tool set for mapping the ML model

to FPGA is called HLS4ML [37]. It transfers ML models

implemented in the supported ML frameworks, while using

a high-level neural networks Python-API as Keras [38] or

Pytorch [39], to the altered hardware.

HLS4ML is suitable with all the current Xilinx FPGA

devices like the Virtex or Kintex series, because it transfers

the model first to the high level synthesis (HLS) project.

Afterwards, the HLS code or IP core can be used in the

FPGA implementation. The workflow to generate HLS code

and the final firmware implementations of machine learning

algorithms is shown in Fig. 6.

Figure 6: The HLS4ML framework transfers the ML model

from Python to an HDL based model.

Full Implementation of Policy Gradient on ARM

Selection of RL environment for testing For a first

test of the hardware, a suitable environment needs to be

deployed to interact with the hardware as the VFP solver

can not be built directly on the hardware platform. Thus,

a different RL problem is selected to test the performance

of the hardware, which demonstrates the feasibility as the

algorithm run on the FPGA or ARM is the same for RF

control and for the CartPole control problem [40].

Selection of RL algorithm for testing The perfor-

mance tests need to include the fast neural network inference

which corresponds to the choice of the proper action at the

current time step, and the speed of the training process af-

ter collecting the states, rewards and actions taken in one

episode. Thus, there are three major parts that need to be

accomplished on the hardware, a simulation of the environ-

ment, the fast inference, and the training process (backward

propagation).

The RL method implemented on the FPGA could be any

algorithm that can prove the hardware inference and training

capability described above. Some examples would be the

A3C [41] or the DDPG [42] method.

CartPole problem with policy gradient We will con-

sider solving the CartPole problem specifically by using a

simple policy gradient method. The CartPole is fully imple-

mented in C code on the ARM of the MPSoC. As illustrated

in Fig. 7, this environment simulates the CartPole on a hori-

zontal axis, where the pole can be moved by applying actions

to the cart (NN output is discretized to match the environ-

ment). The goal is to keep the pole balanced (the pole stays

in a narrow angle range) as long as possible.

Algorithm 1 shows the basic procedure of a policy gradi-

ent method and how the agent interacts with the environment.

At every episode, in step 8, the agent chooses one action

according to the current state (observation). Then the agent

applies this action and transitions to the next state (St+1 in

step 9). It also collects a scalar reward from the environ-

ment. Then at step 11, the agent needs to store the current

step, which includes the state, the chosen action and the

received reward. After that, the agent checks whether the

episode is finished or not. In our case, a fallen pole means

that the episode is finished. If a failure of control happens,

the episode is finished and the RL agent collects all infor-

mation related to this episode and calculates the discounted

cumulative reward in step 14. This information is then used

to update the parameters of the policy in step 15.

Figure 7: The CartPole environment [40] is used to test

the hardware performance on a comparable reinforcement

learning problem.
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Algorithm 1 Policy Gradient Method (REINFORCE [43])

1: differential policy parameterization πθ (a |s) (fully con-

nected neural network)

2: initialize policy parameters θ ∈ Rd and the learning

rate α > 0

3: allocate memory to store information about the interac-

tion with the environment

4: repeat

5: reset the S0 to a random starting state

6: t ← 0

7: repeat

8: choose action At according to πθ (·|St )

9: St, Rt, St+1 ← env.step(At )

10: t ← t + 1

11: store the St, At, Rt, St+1 in memory

12: until St+1 is terminal (state ST )

13: loop over steps in this episode t = 0, 1, . . . ,T − 1

14: calculate the cumulative discounted reward Gt

15: θ ← θ + αGt∇θ ln πθ (At |St )

16: end loop

17: until episode has reached a threshold number of steps

If the pole is kept balanced for more than a given number

of steps (customized value), the agent is assumed to have

learned solving this problem and the training process stops

in step 17. In principle, the agent can also be trained forever.

In the following, we discuss its implementation on hardware.

CartPole on ZYNQ (ARM) The experiment is done on

the processing subsystem side of the ZYNQ. A full reverse

engineering on Tensorflow is done for policy gradient and

fully implemented on ARM.

In Fig. 8, each blue point represents one episode. The

y-axis indicates how many steps the agent achieved in this

episode. The threshold for the maximum number of steps

(finishing condition) in Algorithm 1 was set to 2000. Thus

the training process stops, if the agent manages to keep the

pole balanced for more than 2000 steps. As a result, the

pole is kept balanced for 2157 steps at the 1663th episode.

The entire training process took 161 228.30 µs, 193 472 022

clock cycles. On average, each episode takes 0.096 ms. Due

to the usage of a simple policy gradient method, all steps of

the episode are considered for backward propagation. While

using e.g. the DDPG algorithm instead, updates would be

made after every step of the environment, making a single

iteration of backward propagation much less expensive.

Compared with the FPGA implementation, this result

yields to different options for the implementation: The first

option is doing inference on the FPGA, training on ARM

and then a parameter assignment from ARM to FPGA. The

second option is doing both steps on ARM, being already

fast enough.

Figure 8: After 1663 episodes in the CartPole environment,

the episode threshold is exceeded for the first time.

SUMMARY AND OUTLOOK

Driven by CSR self-interaction, the micro-bunching insta-

bility at storage rings is caused by a fast and dynamic pertur-

bation that depends on the longitudinal charge distribution.

In order to establish extensive control over these dynamics,

we aim for a feedback system that can react to small changes

in the charge distribution and adjust the RF system accord-

ingly. As a potent general-purpose approach, reinforcement

learning offers the opportunity to model these dynamics and

to apply solution methods, which optimize for a pre-defined

goal in form of a scalar reward function. The required defi-

nition of a Markov decision process is well-motivated due

to the inherent Markov property of VFP solvers and concep-

tually outlined in this contribution. As the micro-bunching

dynamics are governed by the synchrotron frequency, the il-

lustrated feedback design yields challenging time constraints

for the implementation at the KIT storage ring KARA. Thus,

its feasibility is demonstrated on a specialized hardware plat-

form developed at KIT. Both, an FPGA- and an ARM-based

implementation are proven to be feasible. Using the text-

book CartPole problem as test environment and applying a

simple policy gradient method yields results that are compa-

rable to computation on a standard PC, but at dramatically

increased in speed for both, training and inference. Beyond

the envisaged application, the developed hardware platform

can be used for any reinforcement learning task with similar

timing requirements. In future work, other RL methods (e.g.

DDPG or A3C) and test environments (pendulum, flappy

bird) will be considered and tested on the hardware. The task

balance between FPGA and ARM is also a promising subject

for further investigations. Moreover, the differing case of a

fixed neural network implementation on FPGA side will be

considered, as this provides relatively low latency and high

speed compared to the ARM implementation. Finally, the

outlined feedback scheme is also not necessarily restricted

to the micro-bunching instability. Different collective ef-

fects can be modeled in form of Eq. (1) and simulated using

a VFP solver. A successful implementation may thus be

easily transferable to control tasks of different longitudinal

instabilities at storage rings.
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