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Sulphur isotopes of alkaline magmas unlock long-
term records of crustal recycling on Earth
William Hutchison 1, Rainer J. Babiel2, Adrian A. Finch1, Michael A.W. Marks2, Gregor Markl2,

Adrian J. Boyce 3, Eva E. Stüeken1, Henrik Friis 4, Anouk M. Borst1 & Nicola J. Horsburgh 1

Earth’s surface and mantle sulphur reservoirs are connected via subduction, crustal recycling

and volcanism. Although oceanic hotspot lavas currently provide the best constraints on the

deep sulphur cycle, their restricted age range (<200Ma) means they cannot reveal temporal

variations in crustal recycling over Earth history. Sulphur-rich alkaline magmas offer the

solution because they are associated with recycled sources (i.e. metasomatized lithospheric

mantle and plumes) and, crucially, are found throughout the geological record. Here, we

present a detailed study of sulphur isotope fractionation in a Mesoproterozoic alkaline pro-

vince in Greenland and demonstrate that an enriched subduction-influenced source (δ34S of

+1 to +5‰) can be reconstructed. A global δ34S compilation reveals secular variation in

alkaline magma sources which support changes in the composition of the lithospheric mantle

and/or Ga timescales for deep crustal recycling. Thus, alkaline magmas represent a powerful

yet underutilized repository for interrogating crustal recycling through geological time.
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Magmas are an integral component of Earth’s S cycle and
are linked to the surface via subduction, mantle storage,
crustal recycling and volcanism1,2. The most significant

insights into the connections between the surface and mantle S
reservoirs have been gained from studies of oceanic hotspots,
particularly ocean island basalts (OIBs). A key observation is that
several OIBs2,3 show mass independent S isotope fractionation, a
feature characteristic of Archaean age sedimentary rocks4, which
is usually expressed as Δ33S. These OIBs (Mangaia2 and Pitcairn3)
are characterised by negative Δ33S and δ34S, which fingerprint
Archaean crust in their mantle source. Importantly, other OIBs
(Discovery5, Samoa6 and Canary Islands7) indicate post-
Archaean S (Δ33S ≈ 0) with positive δ34S (~3‰) and are sug-
gested to represent subducted Proterozoic sediments and/or ser-
pentinized oceanic peridotites. Isotopic variations between
different OIBs suggest that there are chemically distinct reservoirs
of subducted crust within the mantle8 and that plumes sample
this ancient crust and return it to the surface.

Despite these advances we do not fully understand how
changing subducted S input (from sedimentary records) ties to
mantle S output (from igneous records). Although marine sedi-
mentary rocks reveal large S isotopic variations through geolo-
gical time9,10 there are no comparable igneous time-series; this
greatly limits our ability to quantify rates and timescales of sur-
face S recycling. A key issue is that the oceanic record only
extends to ~200Ma; thus, OIBs cannot reveal temporal variations
in crustal recycling over Earth history.

Alkaline magmas (silicate rocks and carbonatites) represent
low-degree melts of volatile-rich mantle sources11. Their trace
element signatures and radiogenic isotopes are similar to OIBs12

and they are often linked to recycled crustal materials13–17. While
predominantly found on the continents, there are a number of
oceanic alkaline localities related to OIBs (including the Canary
Islands). In all cases, alkaline magma sources are associated with
mantle plumes18–20 and/or sub-continental lithospheric mantle
(SCLM)21–23 that has been metasomatised by fluids and melts
derived from previously subducted slabs.

The advantage of alkaline rocks, compared to more common
basaltic or granitic suites, is that their low viscosities, densities
and temperatures promote rapid rise to the surface and they
generally show limited evidence of crustal contamination11,24.
Evolved alkaline rocks are also rich in S-bearing minerals25,

which reflect the high solubility of S in carbonatitic26 and alkaline
silicate27 melts. Carbonatites, for example, have average S con-
centrations of ~6000 ppm28, much greater than other terrestrial
magmas erupted through continental crust (granites and degassed
basaltic lavas typically have concentrations <100 ppm1,29). In
short, because alkaline magmas are S-rich, found throughout the
geological record, and genetically linked to previously subducted
crust, they are potentially well suited for understanding S cycling
between the surface and mantle.

Before we can use S isotopes to investigate the origins of an
igneous rock suite, we must account for all processes that may
fractionate S from mantle source to surface. While there have
been a large number of S isotope investigations of alkaline
complexes (Fig. 1), few30–33 have thoroughly investigated how
crustal contamination34, degassing35 and fluid evolution36 (i.e.,
changes in temperature-pH-fO2) altered the primary mantle
signature. Understanding these processes is critical to unlocking
the alkaline record of magma sources and placing these obser-
vations within the context of the global S cycle.

Here, we present a detailed S isotope study of an alkaline
igneous province known as the Gardar (Fig. 1). We target pri-
mitive dykes and diatremes as well as three well-studied chemi-
cally evolved alkaline bodies (Ilímaussaq, Motzfeldt and Ivigtût,
Fig. 1). By carefully screening for crustal contamination and
interrogating degassing and magmatic fluid evolution processes
we demonstrate that the δ34S of alkaline rocks can be used to
evaluate mantle S sources. We undertake a global compilation
and establish a δ34S time-series of alkaline magma sources. We
show that most complexes require a component of recycled
surface S, and find new evidence for a secular variation in their
δ34S. We consider the causes of this temporal variation and
demonstrate that alkaline rocks are a powerful data set for
understanding connections between surface and mantle S reser-
voirs over geological timescales.

Results
Geological setting and sample selection. The Gardar province in
SW-Greenland (Fig. 1) is a failed Mesoproterozoic continental rift
that was volcanically and tectonically active in two cycles37 from
1320–1260Ma and 1180–1140Ma. Magmas were emplaced
across and along the boundary between the North Atlantic Cra-
ton (>2800Ma Archaean orthogneiss) and the Paleoproterozoic
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Fig. 1 Locations of the alkaline rocks compiled for this study. The Kola Alkaline Province and the Alto Paranaiba Igneous Province (APIP), discussed in the
text, are among the largest alkaline provinces known. Alkaline rocks are mostly found in continental settings although there are a few oceanic occurrences,
including the Canary Islands hotspot

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12218-1

2 NATURE COMMUNICATIONS |         (2019) 10:4208 | https://doi.org/10.1038/s41467-019-12218-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


mobile belt (~1800Ma Ketilidian granites, Supplementary Fig. 1).
While the vast majority of Gardar magmas comprise intrusive
suites (i.e., dyke swarms and km-scale plutonic bodies), extrusive
lavas and tuffs are preserved as a package of rift-fill sediments
known as the Eriksfjord Formation.

Geochemical investigations of Gardar rocks emphasise that
their parental magmas were derived from a metasomatised
SCLM15,22,38. Metasomatism has been linked to an episode of
Andean-style subduction that took place during the Ketilidian
orogeny and is supported by Gardar Nd-model ages, which
mostly range between 1850 and 1720Ma22,39,40, overlapping the
ages of Ketilidian rocks. Thus, there is consensus that the
Ketilidian orogeny led to pervasive mantle metasomatism; hence,
Gardar magmas carry a geochemical signature of previously
subducted crust and fluids22,37,38.

In this study, we analyse ENE-WSW oriented mafic dykes
(commonly referred to as Giant Dykes), as well as lamprophyre
and carbonatite diatremes. Previous investigations of these
rocks38,41 confirm that they have been modified little by crustal
interactions and therefore provide the best information on the
Gardar mantle source41. We also investigate three intrusions:
Ilímaussaq, Motzfeldt and Ivigtût (Fig. 1), which comprise
alkaline and peralkaline (i.e., molar (Na+K)/Al > 1) igneous
rocks of syenitic or alkali granitic affinity. While these intrusions
are more chemically evolved than the dyke and diatreme samples
they provide a valuable counterpoint to understand how
magmatic and fluid evolution may impact S isotope systematics.

The geological history of the three alkaline intrusions is well-
constrained and their magmatic evolution is markedly
different42,43. In brief, Ilímaussaq hosts agpaitic nepheline
syenites (peralkaline rocks with complex Na-Ca-HFSE minerals)
and is one of the most reduced and chemically evolved magmatic
series known43. Motzfeldt predominantly hosts miaskitic nephe-
line syenites (peralkaline rocks with zircon and Fe-Ti oxides),

which formed at reduced magmatic conditions (less extreme than
Ilímaussaq, but still below the QFM buffer40) and underwent
intense late-stage oxidation44. Ivigtût is an alkaline granite stock
that is associated with the world’s largest deposit of cryolite
(Na3AlF6). The cryolite and its associated mineralisation
represent the products of interaction between a magmatic fluid
(dominated by CO3

2− and F−) and the host granite42,45.
Importantly, although reduced conditions (≤QFM) and high

temperatures (1000–600 °C) mark the early magmatic phase of
each complex, oxidised conditions (~HM) and lower tempera-
tures (≤300 °C) prevail during later hydrothermal phases.
Evidence for this transition includes haematite-rich skarns46, as
well as fluid inclusion and mineral isotope studies (δD and δ18O)
that support influx of external oxidising meteoric fluids and
brines in the roof and margins of the complexes14,40.

Sulphur isotope variations in Gardar rocks. δ34S analyses of
Gardar rocks were carried out on mineral separates and whole-
rock powders. For the latter, we undertook S concentration
measurements and converted sulphides to Ag2S before isotopic
analysis47 (Methods). Primitive dykes have whole-rock δ34S of
1–5‰ while pyrites from lamprophyre and carbonatite diatremes
have δ34S of 2–3‰ (Fig. 2a). Gardar intrusions (Fig. 2b–g) show a
greater δ34S span and are divided into early-formed magmatic
rocks and veins, and late-stage veins and fenite (i.e., metasoma-
tically altered country rock at the margins of the complex).

At Ilímaussaq, early-formed agpaitic rocks and hydrothermal
veins (Fig. 2b) are dominated by sphalerite (1.3–3.1‰), with co-
existing galena (–1.1 to 0.5‰) in a few samples. Syenitic rocks,
cumulate and alkaline dykes that are parental to the agpaitic rocks
and veins also show a narrow δ34S range (0.8–2.0‰, indicated by
the grey bar in Fig. 2b). In contrast, late-stage fenite in the roof
and margins of the intrusion contain sulphides (pyrite and
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Fig. 2 Histograms summarising sulphur isotope results for the Gardar. The bar colour corresponds to the sulphide or sulphate mineral analysed. Note that
when sulphide minerals were finely disseminated we undertook a whole-rock sulphide extraction (converting to an Ag2S precipitate, see Methods). δ34S
results from primitive mafic dykes are shown in panel a alongside δ34S analyses of pyrite extracted from carbonatite and lamprophyre diatremes. δ34S
analyses of three alkaline complexes (Ilímaussaq, Motzfeldt and Ivigtût) are shown in b–g, with the upper panels b, d and f corresponding to early-formed
magmatic rocks and veins, and the lower panels c, e and g corresponding to latest veins and fenites. Note that fenites are country rock around the intrusion
that has been metasomatised by alkaline magmatic fluids. Note that in b, d and f the grey bar indicates the δ34S range of magmatic rocks and cumulate that
are likely parental to the mineral separates analysed. All δ34S results are provided in Supplementary Data 1–2
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chalcopyrite) with low and highly variable δ34S and sulphate
(barite) with δ34S of 5.3‰ (Fig. 2c).

At Motzfeldt, we found molybdenite and pyrite in early-formed
roof-zone pegmatites and veins with δ34S of 2.6–3.9‰ (Fig. 2d).
Like Ilímaussaq, syenitic cumulate and veins from deeper in the
intrusion show a similar δ34S range (1.3–3.4‰) that overlaps with
the early-formed units (Fig. 2d). Late-stage fluorite veins injected
into the surrounding rock (Fig. 2e) show variable δ34S with
chalcopyrite down to –15‰ and barite up to 9‰.

At Ivigtût, sulphides from the early-formed quartz-cryolite-
siderite magmatic body show a tight clustering of δ34S values (–1
to 3‰, Fig. 2f). Although these magmatic fluids were injected
into an alkaline granite stock42, it is uncertain whether the granite
is genetically related to the overlying cryolite body45. Never-
theless, granophyre dykes radiating from the deep granite reveal
comparable δ34S values of 1‰ (Fig. 2f). Low-sulphide δ34S, down
to –4.5‰, was observed in a few late-stage interstitial veins in
cryolite, while high-sulphide δ34S, up to 9.4‰, was observed in
the final alteration products that are rich in fluorite and hydrous
phases (Fig. 2g). Late-stage barites also show two distinct values
of ~10 and ~21‰.

Magmatic processes that impart sulphur isotope variations.
Whole-rock δ34S represent the total isotope value (δ34S∑S) of the
melt or magmatic cumulate (depending on the sample) and will
mainly be affected by crustal assimilation, magmatic degassing
and melt-sulphide segregation35. Mineral δ34S record the isotopic
fractionation between the S mineral phase and the melt or fluid.
For an individual S-bearing mineral, the measured δ34S reflects
the δ34S∑S but also the temperature and S speciation of the melt/
fluid (the latter being controlled by pH and fO2 conditions36).
Thus, S minerals record δ34S variations due to changes in
temperature-pH-fO2, features that are masked by a whole-rock
approach. We first evaluate processes that impact δ34S∑S, and
then assess changes in temperature-pH-fO2 encoded in mineral
δ34S.

Table 1 compares S concentration and δ34S in local crust with
Gardar magmas. Local crust is mostly magmatic in origin (i.e.,
orthogneiss, granites and rift-related lavas) with low S concentra-
tions (<100 ppm) and a restricted δ34S range (1–4‰). Eriksfjord
sediments have high-δ34S (25‰, consistent with a marine origin)
but minimal S concentrations (~10 ppm) and we stress that there
is no evidence for evaporitic units or shales with high S contents.

Scenarios of crustal assimilation (melting and incorporating 10,
25 and 50% of local crust, Table 1) show that changes in melt δ34S
for the magmatic suites are very low, generally <0.5‰.
Calculations for Motzfeldt suggest that extreme crustal assimila-
tion may have increased melt δ34S by ~1‰. However, it is
important to note that the coarsely crystalline roof-zone
pegmatites sampled for early-stage sulphide minerals (Fig. 2d)
were not analysed for S concentrations (due to the difficulty of
obtaining a representative whole-rock sample). As these samples
are rich in visible sulphide minerals we expect S concentrations to
be comparable to the agpaitic rocks of Ilímaussaq (~1000 ppm),
i.e., much greater than the values used for modelling in Table 1.
Hence, Motzfeldt magmas are unlikely to have been significantly
shifted by crustal assimilation. Gardar magmatic suites show
scant geochemical and petrographic evidence for crustal
assimilation38,40,43; even under the most extreme scenarios (far
greater than observed in modern continental rifts48) we find that
crustal S concentrations are sufficiently low to discount this
process.

S isotope fractionation due to magmatic degassing and
sulphide segregation is strongly dependent on redox conditions.
Fortunately, fO2 in our mafic dyke and alkaline intrusion samples
are well-constrained14,40,43,49 and they are accepted to have
formed at conditions at or below QFM. In Fig. 3a we evaluate
variations in melt δ34S as a function of degassing at QFM using
numerical models of ref. 35 and fractionation factors of refs. 50,51.
Calculations suggest that reduced S species S2– and H2S dominate
the melt and gas, respectively, and predict decreasing melt δ34S as
a consequence of degassing. The magnitude of δ34S change
(0–10‰) depends on the extent of degassing, choice of
fractionation factors (molten salts50 vs. silicate melts51) and
degassing scenario (open- vs. closed-system degassing35). Given
that our analyses of primitive dykes, diatremes and early-formed
magmatic rocks show that they are S-rich (>500 ppm) with
overwhelmingly positive δ34S (1–5‰), we conclude that their
magmatic source must be >1‰ and infer that degassing has not
significantly shifted isotopic values.

Although measurements of δ34S in mafic rocks suggest
negligible isotopic fractionation between melt and sulphide
mineral phases52 we decided to evaluate sulphide (FeS) segrega-
tion at fO2 conditions relevant to the Gardar (using equations of
ref. 35 and fractionation factors for silicate melts51, Fig. 3b). Like
magmatic degassing, sulphide segregation decreases δ34S in the

Table 1 The impact of crustal contamination on sulphur isotopes

Magmatic suite Average S
(range), ppm

Average
δ34S, ‰

Local crust Average S
(range), ppm

Average
δ34S, ‰

δ34S Change due
to bulk crustal
assimilation, ‰

10% 25% 50%

Ilímaussaq 1430 (246–4413) 1.4 Eriksfjord sandstones 6 25.1† 0.01 0.03 0.05
Eriksfjord mafic lavas 63 (38–79) 0.6 0.00 0.00 0.00
Ketilidian granites 52 (12–76) 2.7 0.01 0.02 0.05

Motzfeldt 150 (100–200) 2.4 Eriksfjord sandstones 11 25.1 0.18 0.46 0.92
Eriksfjord mafic lavas 37 (31–42) 1.0 0.03 0.06 0.13
Ketilidian granites 25 (19–34) 4.4 0.07 0.18 0.36

Ivigtût 1000 (670–8100) 0.9* Archaean gneiss 51 (31–99) 1.0 0.03 0.08 0.17

Regional dykes and
diatremes

500 (357–772) 2.3 Eriksfjord sandstones 6 25.1† 0.03 0.08 0.15
Eriksfjord mafic lavas 63 (38–79) 0.6 0.00 0.00 0.00
Ketilidian granites 52 (12–76) 2.7 0.03 0.07 0.14

S concentration measurements and δ34S analyses of Gardar magmas and local crust are shown for whole-rock samples only (Supplementary Data 2). At Ivigtût whole-rock δ34S analyses (*) were only
carried out on granophyre dykes radiating from the granite stock that underlies the main cryolite body. Note also that Eriksfjord sandstones labelled with † yielded insufficient Ag2S for isotopic analysis
and a δ34S value of similar sandstones from Motzfeldt was used in calculations. The alkaline magmatic suites are significantly richer in S than the local crust (by 1–3 orders of magnitude). Thus, models of
bulk crustal assimilation generate little variation in melt δ34S (generally, <0.5‰)
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residual melt (0–5‰) and cannot explain the positive values
observed in primitive magmatic rocks and early stages of the
alkaline intrusions (Fig. 2a, b, d, f). Moreover, when comparing
δ34S of magmatic cumulate with late-stage melts for Ilímaussaq
and Motzfeldt samples, we find their values are indistinguishable
(mostly within 1‰, Supplementary Data 2). Thus, our observa-
tions and models indicate that sulphide segregation played a
negligible role modifying δ34S of Gardar melts.

Having established that crustal assimilation, degassing and
sulphide segregation had minimal effects on melt δ34S, we now
consider how changes in temperature-pH-fO2 impact mineral
δ34S. Given the isotopic and mineralogical distinctions between
the early- and late-stage samples (Fig. 2), we consider these
groups separately when modelling these processes.

Early magmatic rocks and veins contain only sulphide (Fig. 2b, d,
f) and in a few samples from Ilímaussaq and Ivigtût we identified
multiple sulphide phases. This allows us to quantify temperature

variations using isotope geothermometry53. At Ilímaussaq,
sphalerite-galena pairs yield temperatures of 500–200 °C (Fig. 4a),
in agreement with temperature estimates from fluid inclusions54,55

and phase equilibria56 (600–200 °C). At Ivigtût, sulphides from the
early-formed magmatic rocks support temperatures of 400–200 °C,
also consistent with independent temperature constraints14,42,57

(Fig. 4c). To evaluate whether temperature variations explain the
observed δ34S range in all early-stage samples, we modelled δ34S
fractionation for different sulphide minerals at each intrusion
(shown as the coloured arrows in left hand plots in Fig. 4a–c). At
Ilímaussaq and Ivigtût, an elevated δ34S∑S of 1.8‰ and 2.5‰,
respectively, provides a good fit, encompassing almost all samples
with mineral pairs and individual sulphides where temperatures are
unconstrained. Although sulphide mineral pairs were absent in
early-stage Motzfeldt samples (Fig. 2b) the high-δ34S of molybde-
nite and pyrite (2.6–3.9‰) again suggests a high-δ34S source
(δ34S∑S≈ 2‰) since falling temperatures increase sulphide δ34S by
only ~1.5‰ (Fig. 4b). Thus, early magmatic sulphides at
Ilímaussaq, Motzfeldt and Ivigtût require an elevated δ34S∑S
(1.8–2.5‰) to yield credible estimates on formation temperatures
(Fig. 4a–c).

Although variable temperatures account for the δ34S range in
early-stage sulphides, it is important also to consider pH, which
controls S speciation (i.e., the abundance of H2S, HS-, and S2−)
and might impart isotopic fractionation in a reduced magmatic
fluid36 (Supplementary Fig. 2). Ours and previous modelling36

(Supplementary Fig. 3) show that when pH is <7, H2S is the
dominant S fluid phase and there is minimal fractionation
between the fluid and the precipitated sulphide. At Ivigtût and
Motzfeldt pH was likely <7 (see Supplementary Discussion) and
so these effects can be ignored. However, at Ilímaussaq phase
equilibria56 have been used to argue that the agpaitic magmatic
fluids had high and potentially variable pH ≥ 7. In Fig. 3c, we
calculate how δ34S of ZnS (the main sulphide phase in Ilímaussaq
rocks, Fig. 2b) varies during cooling when δ34S∑S is fixed (0‰)
and pH is variable (7–9). These models predict ZnS δ34S of 0–5‰,
which is much greater than the δ34S range observed in natural
samples from Ilímaussaq (pink bar, Fig. 3c). These models also
predict that at high temperatures, δ34S should converge to the bulk
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δ34S∑S of 0‰, a feature not seen in our samples and contrary to
Ilímaussaq whole-rock δ34S, which are mostly between 1 and 2‰
(Table 1). We conclude that the close correspondence between
ZnS δ34S from Ilímaussaq and the temperature modelling results
in Fig. 4a (also shown as the red bar in Fig. 3c) support
temperature as the main control on δ34S. Varying temperature
provides the best explanation of all early-stage δ34S (Fig. 4) and
also requires an elevated source δ34S, consistent with all whole-
rock δ34S observations from the Gardar (1–5‰).

Unlike the early-stage samples, late-stage veins and fenites
(Fig. 2c, e, g) contain sulphates and sulphides. The difference
between sulphate and sulphide δ34S is up to 15–25‰ in these
late-stage samples (Fig. 4a–d) and suggests low temperatures of
formation 200–300 °C (for reference isotope fractionation at
magmatic temperatures, ~600 °C, is ~8‰50). Sulphates require
increased concentrations of oxidised S species (SO4

2–), suggesting
that late magmatic fluids underwent an fO2 increase. Models
calculating δ34S variations from oxidation of a magmatic fluid are
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shown in Fig. 4a–c (right hand panels). Oxidation causes sulphate
to become the dominant S phase and approach the δ34S∑S value.
At equilibrium, differences in bond stiffness between oxidised and
reduced S species favour heavy 34S isotope substitutions in
sulphate58 and lead to a sharp δ34S decrease in co-existing
sulphides. Increasing fO2 adequately explains both the appear-
ance of barite and the negative isotopic shifts in late-stage
sulphides (Fig. 4a–c and Supplementary Fig. 4). Late-stage
oxidation was most likely driven by an influx of externally
derived fluids and at both Ilímaussaq and Motzfeldt, there is δ18O
and fluid inclusion evidence40,46 for external brines and meteoric
fluid infiltrating along the margins of the intrusions (where our
late-stage minerals were sampled).

At Ivigtût late-stage sulphides reveal both low- and high-δ34S.
Barites also show groupings of ~10 and ~21‰ (Fig. 2g). While
oxidation of a reduced alkaline fluid, by infiltration and mixing
with an external brine14, explains the low-δ34S sulphides in late-
stage veins (Fig. 4c and Supplementary Fig. 5) it cannot explain
the array of high-δ34S sulphides associated with fluorite and
hydrous phases (Fig. 4d, note different scale from other panels).
To account for these high-δ34S samples we envisage a reverse
process, whereby an infiltrating brine with Mesoproterozoic
seawater-like δ34S (δ34S∑S= 20‰) is reduced on mixing with the
magmatic fluids (Supplementary Fig. 6). As noted above,
differences in bond stiffness between oxidised and reduced S
species favour heavy isotope substitutions in the sulphate58

(Fig. 4d) and so our model rationalises the presence of barite
with δ34S up to 22.5‰ as well as the pyrite and galena with
elevated and wide-ranging δ34S (since small variations in redox
lead to large isotopic shifts, 3–10‰, Fig. 4d). Although these
final-stage sulphates and sulphides are rarely found in direct
contact (and do not provide unequivocal evidence for equili-
brium), our model complies with previous evidence for late-stage
brine influx (e.g., fluid inclusions14), and strengthens the case that
Ivigtût represents a heterogeneous mixing zone between a
reduced CO3

2− and F− rich magmatic fluid (δ34S∑S= 2.5‰)
and oxidised brine (δ34S∑S= 20‰). Finally, although we invoke
external fluids as a cause for late-stage oxidation at Ilímaussaq
and Motzfeldt, at Ivigtût a greater ratio of external to internally
derived fluids is required, reflecting the much smaller size of
Ivigtût (~300 m in diameter), compared to Ilímaussaq and
Motzfeldt (km-scale).

Sulphur isotope signature of the Gardar magma source. Pri-
mitive dykes and diatremes provide the best constraints on the
Gardar mantle source41 and all possess high-δ34S (1–5‰).
Magmatic cumulate and dykes from the alkaline intrusions
(Fig. 2b, d, f) also show positive δ34S and, like the primitive dyke
and diatreme samples, appear unaffected by crustal contamina-
tion, magmatic degassing and sulphide segregation (Table 1 and
Fig. 3a, b). This has two important implications. First, because the
δ34S source values calculated for early-stage sulphide-dominated
rocks from the alkaline intrusions (Fig. 4a–c) are within ~1‰ of
their parental magmatic units (Fig. 2), and also overlap the δ34S
of primitive samples; this provides strong evidence that evolved
alkaline rocks constrain magma source δ34S. This conclusion
resonates with earlier studies30 and suggests that, because alkaline
rocks are exceptionally S-rich, their mineral δ34S can be used to
evaluate source δ34S (i.e., δ34S∑S). The main caveat is that S
minerals must be dominated by either reduced or oxidised pha-
ses. Only with our complete data set from multi-phase alkaline
intrusions and their associated primitive magmas has it been
possible to verify fully this hypothesis.

The second implication is that Gardar magma sources are
enriched in δ34S. Gardar δ34S is well above the accepted range for

the asthenospheric upper mantle (−1 ± 0.5‰59) and shows closer
correspondence to subduction zone settings1, implying there is
recycled surface S in their source. This is coherent with virtually
all prior geochemical investigations of the Gardar, which have
advocated a significant involvement of a metasomatised SCLM
component in magmagenesis15,38 (originating from subduction
process ~500Ma before rift onset22,39,40). While it is clear that
Gardar mantle metasomatism resulted from subduction pro-
cesses38, our δ34S analyses cannot determine the precise source
(i.e., slab-derived melts or pore fluids). Trace elements of
primitive Gardar melts (e.g., Th/Ce ratios) have been used to
argue for fluid-dominated metasomatism15,38, while recent δ34S
analyses of arc cumulates60 suggest that sulphate-rich pore fluids
are preferentially driven off at the arc front and imply that slab-
derived melts are the key metasomatic agent. Although future
δ34S investigations of Gardar mantle xenoliths may address this
issue, the salient point is that alkaline magmas encode
information about the fate of surface S subducted into the mantle.

The origin and evolution of alkaline magmas. Our detailed
study of the Gardar intrusions shows that, despite major differ-
ences in the origin of the magmatic fluids, S isotopes are frac-
tionated by common evolutionary processes. To explore whether
similar redox changes and magma source δ34S typify other
alkaline systems we compiled a global data set (Fig. 5).

Our compilation reveals that alkaline rocks span an exception-
ally wide δ34S range (–25 to +25‰, Fig. 5). Almost invariably,
there is a decrease in δ34S between early and later formed
sulphides within a given system. Only at Ivigtût and Bayan Obo
were late-stage sulphides with high-δ34S (~9‰) and sulphates
with seawater-like δ34S (>20‰) observed. These data require
significant external brine influx and reduction in a magmatic-
hydrothermal environment. At Ivigtût we suggest this took place
concurrently with the magmatic phase, while at Bayan Obo a
more complex multi-stage evolution is envisaged61 involving
Mesoproterozoic and Palaeozoic hydrothermal events.

Sulphur isotope shifts between early and late-stage alkaline
rocks have been reported at individual systems30–33 and our
global compilation demonstrates the ubiquity of this process.
Early stages are almost always reduced and sulphide-dominated
(Fig. 5). With cooling, the reduced magmatic systems collapse,
oxidised S (sulphate) becomes dominant and this leads to a major
δ34S decrease in latest sulphide minerals. It is important to note
that while external oxidising fluids were implicated in our study,
previous authors30,62 have suggested that alkaline melts might
also show a relative fO2 increase (i.e., oxidation) with falling
temperatures through natural variations in the crystallising
assemblage. Although the precise cause of late-stage oxidation
at each complex is beyond the scope of this study, our
compilation (Fig. 5) shows that δ34S is exceptionally sensitive to
low-temperature oxidation and is an excellent tool for finger-
printing these fundamental changes in fluid chemistry at all
alkaline systems.

Our δ34S observations alongside previous studies30 emphasise
that S-rich alkaline rocks can be used to evaluate magma source
δ34S when they are dominated (>90%) by either sulphide or
sulphate. While measurements of primitive alkaline magmas are
undoubtedly the best method for determining magma source
δ34S, our detailed case study demonstrates that a wide variety of
alkaline rocks, including magmatic cumulate, late-stage silicate
melts, carbonatites and aluminofluoride melts (Ivigtût), closely
approximate source δ34S (within ~1‰). Given that virtually all
alkaline systems mirror the δ34S trends observed in the Gardar
(Fig. 5) it is reasonable to assume that the isotope systematics that
govern Gardar melts are applicable elsewhere. Thus, for each
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alkaline system in Fig. 5 we averaged δ34S in the most primitive,
high temperature (≫300 °C) phases (mostly magmatic cumulate)
to estimate magma source δ34S. We exclude sulphide minerals
that show large isotopic fractionation at high temperatures (i.e.,

galena53), and where multiple sulphide minerals were reported we
include only the most reduced phase (e.g., taking pyrrhotite over
pyrite) and apply temperature corrections similar to our Gardar
study (Fig. 4a–c). Well-constrained source values (Fig. 5) were
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only calculated for systems that met these criteria and where
petrological observations confirm that reduced or oxidised S
dominated the mineralogy. Based on our case study, where >95%
of all early-formed S minerals (excluding galena, above) are
within ±1.5‰ of the most primitive δ34S values, we propose
similar large but reasonable uncertainties on our magma source
δ34S (Fig. 5).

Adopting this approach, we find that the δ34S of alkaline
magma sources fall between –5 and +5‰ (Fig. 5). As noted
previously, mid-ocean ridge basalts (MORB) have δ34S of −1 ±
0.5‰59, and although we do not exclude mixing of multiple
mantle sources, a key observation is that a simple asthenospheric
upper mantle source cannot explain the global δ34S diversity of
alkaline magmas. Alkaline magmas show much closer correspon-
dence to OIB2,3,6 and SCLM63 (Fig. 5), and require mantle
reservoirs with both enriched and depleted δ34S. Recycled surface
S is the most logical candidate and is consistent with findings

from trace elements, radiogenic (Sr–Nd–Pb) and stable isotopes
(B), which often require a recycled crustal component in alkaline
magma sources13,16,17,24. Although alkaline rocks originate
through a variety of mantle processes, including mantle plumes19

and subduction-related mantle metasomatism38, they undoubt-
edly play a key role in returning previously subducted S to the
surface, and are therefore an integral component of the global
S cycle.

Our compilation also shows strong evidence for regional
variations in source δ34S. Gardar intrusions have source δ34S of
1–3‰, similar to Proterozoic carbonatites from Canada64 (Fig. 3),
but starkly contrasting with the negative-δ34S suggested from
Russia and Finland (Kola Alkaline Province33,65,66) and Brazil
(Alto Paranaiba Igneous Province, APIP32). We infer that these
data represent genuine low-δ34S sources because: (1) δ34S is
consistent between multiple complexes at a regional scale; (2)
different regional studies provide consistent isotope values (e.g.,
all studies of Kola sulphides33,65,66 show isotopically light values);
and (3) individual mineral δ34S are exceptionally low (e.g.,
sulphates are always enriched in 34S and should have δ34S ≥ 0‰,
however, barites from Salitre and Tapira in APIP32 possess
negative-δ34S, requiring a δ34S∑S ≪ 0‰). Additionally, at Kola
and APIP, isotopic studies21,33,67,68 have ruled out assimilation of
local Precambrian crust. The regional variations in source δ34S
(Fig. 5) imply that the processes that enrich the mantle prior to
alkaline magmatism, whether SCLM metasomatism or plume-
related, are isotopically diverse and take place at a regional scale.

Links to the global sulphur cycle. The alkaline rocks compiled
here span an age range of ~2060 to ~0Ma and provide a δ34S
time-series of magma sources (Fig. 6). While OIBs are limited by
the age of oceanic crust (<200Ma), alkaline magmas that intru-
ded continental crust are well-preserved over much of Earth
history and provide a valuable inventory of mantle evolution17,24.
Our igneous δ34S time-series shows a temporal trend with Pro-
terozoic alkaline magmas largely restricted to positive δ34S values
(0–5‰) and Phanerozoic suites showing greater δ34S diversity
(–5 to 4‰, overlapping the range of OIB sources).

Our igneous δ34S compilation also shows a first-order
correspondence with the global sedimentary sulphide δ34S record
from continental shelves and inland seas (Fig. 6). Pyrite from
sedimentary rocks shows a long-term δ34S evolution from zero to
slightly positive values in the Archaean and Proterozoic to
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significantly lower δ34S in the Phanerozoic. This record of oceanic
δ34S represents a shift from an anoxic deep ocean with a small
sulphate reservoir to more oxygenated deep waters with a large
sulphate reservoir after ~600Ma, coinciding with the onset of
bioturbation10. Although Proterozoic sedimentary δ34S is on
average positive, pyrite with negative-δ34S is mainly observed in
deeper parts of sedimentary basins69. These observations have led
several workers to invoke a missing Proterozoic 34S-depleted S
pool, deposited in deep water settings and lost from the surface
via subduction9,70.

Our observations raise two key questions: why do igneous and
sedimentary δ34S show similar time-evolving trends, and why are
anomalous low-δ34S alkaline provinces only observed in the
Phanerozoic? In Fig. 7 various scenarios are summarised. In the
first case, the igneous δ34S pattern could simply reflect crustal
assimilation of sedimentary rocks, i.e., because Phanerozoic
sedimentary crust has low-δ34S (Fig. 6), assimilation would lead
to low-δ34S values in some Phanerozoic magmas. The second
hypothesis assumes alkaline magmas are derived from metaso-
matised SCLM, and that secular variation in δ34S reflects
changing composition of the SCLM. Since subduction exerts an
important control on SCLM composition, this would suggest that
low-δ34S sedimentary rocks were subducted in the Phanerozoic,
imprinted a low-δ34S signature on the SCLM, and were tapped by
Phanerozoic magmas within ~10–100Ma. A final hypothesis is
that during the Precambrian (both Proterozoic and Archaean)
low-δ34S crust was subducted and stored in the deep mantle8,9,70,
hence the secular evolution represents a Ga time-lag in returning
this material to the surface.

Focusing on the anomalous low-δ34S alkaline provinces, i.e.,
Kola and APIP, it is easy to eliminate crustal assimilation because
the local crust is Precambrian and isotopic studies reject crustal
interactions21,33,67,68. Discriminating between the other scenarios
is more challenging, particularly because δ34S alone does not
allow unambiguous discrimination between deep mantle (OIB)
and SCLM sources (Fig. 5). Nevertheless, if both Kola and APIP
sources were modified by low-δ34S sediments subducted in the
Phanerozoic, then sutures (former subduction zones) of Phaner-
ozoic age should be present. In Kola and APIP the nearest sutures
are Palaeo- and Neoproterozoic, respectively, ruling out Phaner-
ozoic subduction-related source modification.

We suggest that low-δ34S Phanerozoic alkaline magmas at Kola
and APIP are derived from a mantle plume with a low-δ34S
signature. Importantly, noble gas isotope signatures support a
deep plume source at both Kola19 and APIP18, and radiogenic
isotopes also support ancient (potentially Archaean) sources at
Kola33. Thus, our favoured hypothesis is that their low-δ34S
signatures reflect deep recycling of previously subducted low-δ34S
crust of either Archaean or Proterozoic age. This implies that the
co-variation of igneous and sedimentary δ34S (Fig. 6) is fortuitous
since low-δ34S provinces reflect recycling ancient (Ga) rather
than contemporary (Ma) S. Our suggestion that low-δ34S alkaline
provinces are a Phanerozoic phenomenon is also consistent with
timescales of Earth’s geodynamic cycle, i.e., plate tectonics and
subduction into the deep mantle initiated around 3.2–2.5 Ga71–74,
residence timescales in the lower mantle are calculated to be on
the order of 1.5 Ga75, thus we would expect to see deep crustal
recycling after ~1 Ga (Fig. 6).

Although our final hypothesis complements several OIB
studies2,3, which have confirmed recycled Archaean S with
characteristic negative-δ34S, other OIB studies have reported
positive-δ34S (Fig. 6) and linked these to recycled Proterozoic S5–7.
While we do not suggest that all recycled Proterozoic and
Archaean crust has negative-δ34S, our observations require a deep
mantle source and, as has been advocated at other OIB
sources2,3,8, this is most plausibly linked to low-δ34S recycled

crust. Likewise, we do not rule out plume origins for the
Proterozoic alkaline provinces20, but emphasise that they do not
carry a low-δ34S signature2,3,8,9.

Ultimately, our global compilation represents an important
new δ34S time-series of mantle source evolution. Key to
unravelling the igneous record is determining whether specific
δ34S signatures reflect a deep mantle plume or metasomatised
SCLM origin. Further studies should look to combine multiple S
isotopes, stable isotopes, radiogenic isotopes and noble gases for
the same sample suite. This approach will clarify mantle sources
and the temporal patterns in Fig. 6, and provide robust
geochemical constraints on the connectivity of Earth’s surface
and mantle S reservoirs.

Methods
Sulphur isotopes. We extracted visible S-bearing minerals using a microdrill. For
samples without visible S-bearing minerals we generated a whole-rock powder and
extracted sulphide phases as Ag2S using a Cr reduction procedure47. S isotope
analysis (δ34S) was undertaken at three institutes: Scottish Universities Environ-
mental Research Centre (SUERC, East Kilbride, UK); School of Earth and Envir-
onmental Sciences (University of St Andrews, UK) and Fachbereich
Geowissenschaften (Universität Tübingen, Germany). An Isoprime VisION isotope
ratio mass spectrometer (IRMS) with a linked Vario PYRO cube elemental analyser
(EA) was used at SUERC, a Thermo Quest Delta+ XL IRMS connected to a NC
2500 was used at Tübingen, and at St Andrews we used an EA IsoLink, coupled to a
MAT 253 IRMS via a Conflo IV. Standards were closely spaced throughout the
runs and used to calibrate sample isotope compositions. Replicates between the
different institutes were consistent to the error within natural δ34S heterogeneity
(generally, ±0.3‰ at 2 s.d. for the early-formed high temperature, >300 °C,
sulphides).

Sulphur concentrations. Sulphur concentrations in whole-rock powders were
determined via Combustion Ion Chromatography (CIC) at the Universität
Tübingen (Germany) using a 930 Compact IC Flex chromatograph (Metrohm)
combined with a combustion oven (Analytik Jena). Mixtures of equal amounts (10
mg) of powdered sample and WO3 were heated in the combustion oven to 1050 °C
in an Ar–O2 atmosphere. The loaded steam was condensed and injected into the
ion chromatograph equipped with a Metrosep A Supp 5–250/4.0 column (kept at
55 °C) using an NaOH-Na2CO3-acetone eluent. For the whole analytical procedure,
Millipore water (18.2 MΩ.cm) was used and quantification was done using MagIC
Net software (Metrohm). The effective detection limit for powdered samples was
about 1–2 μg/g and based on the repeated analyses of samples and reference
material GSN, relative uncertainties were generally <15% (1 s.d.), depending on the
concentrations.

Isotope modelling. Models of S isotope fractionation due to magmatic degassing
and sulphide (FeS) segregation were calculated using the equations of ref. 35. In
both cases melt δ34S is dictated by: total S isotope value (δ34S∑S); fO2 conditions;
the fraction of S remaining in the melt; the choice of open vs. closed-system
behaviour76 and the empirical fractionation factors used. We model all scenarios at
QFM since Gardar magmatic suites are accepted to have formed at fO2 conditions
at or below the QFM buffer14,40,43,49. To evaluate S speciation in the melt and gas
we used the models of ref. 77 and ref. 35, respectively. At QFM reduced S species
dominate the melt (S2–) and gas (H2S). Empirical fractionation factors from ref. 50

(blue, Fig. 3a) are from experiments on molten salts while those from ref. 51 (red,
Fig. 3a, b) are from more recent experiments on silicate melts. We expect that the
fractionation factors of ref. 51 (red, Fig. 3a, b) to be most appropriate for the silicate
melts in the Gardar, but have included those of ref. 50 because they have tradi-
tionally been used1,35 and may be suitable for ionic liquids (i.e., carbonatites).

Sulphur isotope fractionation in an evolving magmatic fluid36 is primarily
controlled by temperature, fO2, pH and total S isotope value (or source δ34S,
δ34S∑S). These methods are described in detail in by ref. 36 and were used here to
evaluate how changes in temperature-fO2-pH may have generated the isotope
fractionation in our samples (Figs. 3c and 4). It is important to note that although
we used identical equations of ref. 36, we updated the fractionation factors using a
more recent compilation53, as well as activity coefficients and equilibrium
constants from the SUPCRTBL78 and LLNL data sets (note that the latter is
included in The Geochemists Workbench software79).

To understand the geological feasibility of the predicted isotope fractionation it
is essential to also evaluate mineral stability fields36. We used The Geochemists
Workbench79 to calculate pH–fO2 phase diagrams for simplified element systems,
e.g., Fe–Cu–S–O, Pb–S–O and Zn–S–O, and overlay these on the modelled isotope
variations (Supplementary Discussion). Previous fluid inclusion, mineralogical and
phase equilibria studies of Ilímaussaq, Motzfeldt and Ivigtût intrusions are available
(detailed above and in the Supplementary Discussion) and provide valuable
constraints on the temperature, pH and fO2 conditions. In the Supplementary
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Discussion we outline these constraints for each system and justify our preferred
trajectories that explain both the isotopic and mineralogical changes observed
in Fig. 4.

Data availability
The data that support the findings of this study are available within the article and its
Supplementary Information files.
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