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Summary 

Light is one of the most crucial environmental factors that impacts on development and 

metabolic processes of almost all organisms on earth. Filamentous fungi can perceive 

light using different photoreceptors and transduce the signal into biochemical outputs 

that modulate cellular and molecular responses within the ambient light 

environment. The black spore producing fungus Alternaria alternata is a common 

pre/post-harvest plant pathogen capable of producing more than 70 secondary 

metabolites. A. alternata is rarely implicated as human pathogen (allergy). Many 

processes in A. alternata are triggered by light. Whereas red light stimulates 

sporulation, continuous illumination with blue light completely inhibits sporulation. 

Interestingly, the inhibitory effect of blue light can be reversed by red light, suggesting 

cross-talk between the two light-sensing systems. 

The A. alternata genome encodes a phytochrome (FphA), a white collar 1 (WC-

1) orthologue (LreA), an opsin (NopA), and a cryptochrome (CryA) as putative 

photoreceptors. Apart from the white collar 1 orthologue LreA, which has been studied 

to some extent, further gene-function analyses have been limited due to difficulties to 

generate homogenous knock-out strains. However, recently, the CRISPR-Cas9 

technology was established in A. alternata facilitating rapid and precise editing of 

genetic sequences and studies of gene function and regulation. Using this technology, 

we investigated the role of FphA and LreA and the interplay with the high-osmolarity 

glycerol (HOG) mitogen-activated protein (MAP) kinase pathway by creating loss-of-

function mutations for fphA, lreA, and hogA.  

Deletion of fphA, lreA and hogA resulted in a reduction of sporulation in the dark, 

suggesting an activating function of the photoreceptors (FphA and LreA) and HogA. 

Conidiophore development in A. nidulans requires a transcriptional cascade consisting 

of brlA, abaA and wetA. We investigated the effect of the deletion of FphA and LreA 

on wetA and abaA genes which are part of the central regulatory cascade of conidiation 

in Aspergillus. A brlA orthologue was not found in the A. alternata genome. After 60 

min of white light illumination, the expression of wetA and abaA was abolished in the 

fphA- and lreA- mutant strains confirming the importance of the photoreceptors in the 

activation of sporulation and asexual development. Germination of conidia was 
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delayed in red, blue, green, and far-red light. Deletion of phytochrome, but not lreA, 

released the repression under all conditions, suggesting repressing functions of FphA 

and the presence of additional blue-light photoreceptors, respectively.  

Next, we analysed the impact of light on secondary metabolite formation in the 

absence of FphA, LreA and HogA. The stimulation of alternariol formation was lost in 

the hogA- mutant strain irrespective of light and dark conditions with the upregulation 

of a yellow compound. Blue- and green-light stimulation of alternariol formation 

depended on LreA and not FphA. Oxidative stress response to hydrogen peroxide and 

menadione were enhanced in the fphA- and lreA- but not hogA- deletion strains 

independent of light due to the upregulation of catalases and superoxide dismutases.  

We found that light induction of ccgA (clock-controlled gene in Neurospora 

crassa and light-induced in Aspergillus nidulans) appears to be strictly dependent on 

LreA and only to some extent on FphA.  In order to further characterize the roles of fphA, 

lreA, and hogA, we studied their role in regulating other putative light-regulated genes. 

The expression of the catalase gene catA and short-chain dehydrogenases/reductases 

gene (AAT_PT02522) depended on FphA, LreA, and HogA. Light induction of ferA (a 

putative ferrochelatase gene) and bliC (bli-3, light regulated, unknown function) 

required LreA and HogA but not FphA.  

Since previous reports in A. nidulans, N. crassa and Trichoderma viride 

suggested an interaction between the red and blue light photoreceptors with the HOG 

MAP kinase cascade, we investigated the expression of osmotic-stress induced genes 

in the three mutant strains.  The transcript levels of hogA, atfA, and ccgA were reduced 

in the fphA, lreA- and hogA- mutant strains. While the expression of bliC was 

dependent on LreA and HogA, the fphA- deletion strain exhibited similar expression 

levels compared to the WT. We further analysed the phosphorylation of HogA by 

immunostaining under different light conditions. After illumination with red or blue light, 

fluorescence was detected in the cytoplasm and enriched in nuclei.  The stimulation of 

the signal was not observed in the ΔfphA or ΔlreA mutant strains suggesting light 

activation of the HogA pathway depended on FphA and LreA. 

The loss of fphA enhanced pathogenicity on tomato, whereas the lreA- and 

hogA- mutant strains showed reduced virulence as compared to the WT. We also 

found that phytochrome plays a role in temperature sensing.  
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Zusammenfassung 

Licht ist ein wichtiger Umweltfaktoren, der die Entwicklungsprozesse und 

metabolischen Prozesse von fast allen Organismen der Erde beeinflußt. Filamentöse 

Pilze können Licht mittels verschiedener Photorezeptoren wahrnehmen. Der schwarze 

Sporen-produzierende Pilz Alternaria alternata ist ein weit verbreitetes prä/post-Ernte 

Pflanzenpathogen, der in der Lage ist mehr als 70 Sekundärmetabolite zu produzieren. 

A. alternata kann auch selten als Humanpathogen Allergien verursachen. Viele 

Prozesse in A. alternata werden durch Licht gesteuert. Rotlicht stimuliert die 

Sporenproduktion, aber kontinuierliche Beleuchtung mit Blauchlicht inhibiert die 

Sporenproduktion komplett. Interessanterweise kann der inhibierende Effekt von 

Blaulicht durch Rotlicht aufgehoben werden, was eine Verknüpfung zwischen den 

Lichtsensorsystemen suggeriert. 

Das A. alternata Genom kodiert ein Phytochrom (FphA), ein WC-1 Ortholog 

(LreA), ein Opsin (NopA) und ein Cryptochrom (CryA) als putative Photorezeptoren. 

Neben dem White Collar-1 Ortholog LreA, das schon zum Teil untersucht wurde, 

waren weitere Funktionsanalysen der Gene durch Schwierigkeiten bei der 

Konstruktion von homologen knock-out Stämmen limitiert. Jedoch wurde die 

CRISPR/Cas9 Technologie in A. alternata etabliert, die schnelle und präzise 

Veränderung von Gensequenzen und somit Studien von Genfunktion und –regulation 

zulässt. Mit der Verwendung dieser Technologie, haben wir die Rolle von FphA und 

LreA sowie das Zusammenspiel mit dem high-osmolarity glycerol (HOG) mitogen-

activated protein (MAP) Kinase Signalweg durch loss-of-function Mutationen 

für fphA, lreA, and hogA untersucht. 

Die Deletion von fphA, lreA and hogA führte zu einer Reduktion der Sporulation 

im Dunkeln, was eine aktivierende Funktion der Photorezeptoren (FphA und LreA) und 

HogA suggeriert. Die Entwicklung von Konidiophoren benötigt eine transkriptionelle 

Kaskade, die aus brlA, abaA und wetA besteht. Nach 60 min Beleuchtung mit Weißlicht 

wurde die Expression von abaA und wetA in fphA und lreA Mutanten aufgehoben, 

wodurch die wichtige Rolle von Photorezeptoren in der Sporulation und asexuellen 

Entwicklung bestätigt wurde. Ein BrlA Ortholog wurde nicht gefunden. 

Die Auskeimung von Konidien war in Rot-, Blau-, Grün- und Dunkelrotlicht 

verzögert. Die Deletion von Phytochrom, aber nicht von lreA, hob die Repression unter 
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allen Bedingungen auf, was die hemmende Funktion von FphA und die Präsenz 

zusätzlicher Blaulicht Rezeptoren bestätigt. 

Weitergehend wurde die Auswirkung von Licht und die Rolle von FphA, LreA 

und HogA auf die Sekundärmetabolitbildung untersucht. Die Alternariolproduktion war 

sowohl im Licht als auch im Dunkeln strikt von hogA abhängig. Stattdessen wurde die 

Bildung einer gelben Substanz stimuliert. Die Blau- und Grünlicht Stimulation der 

Alternariolproduktion war nur von LreA abhängig und nicht von FphA. Die Resistenz 

gegenüber oxidativem Stress durch Wasserstoffperoxid und Mennadion war in dem 

fphA und lreA-Deletionsstamm, aber nicht im hogA Deletionsstamm erhöht. Die 

erhöhte Resistenz war unabhängig von den Lichtbedingungen und kann durch eine 

Induktion von Katalasen und Superoxiddismutasen erklärt werden.  

Zur weiteren molekularen Analyse wurde die Induktion von ccgA (clock-

controlled gene in Neurospora crassa and light-induced in Aspergillus nidulans) 

untersucht. Das Gen wird auch in A. alternata durch Licht induziert. Die Induktion war 

strikt von LreA und nur leicht von FphA abhänig. Für die weitergehende 

Charakterisierung der Rollen von fphA, lreA, and hogA, wurde die Regulation weiterer 

putativer lichtregulierter Gene untersucht. Die Expression des Katalase Gens catA and 

des short-chain dehydrogenases/reductases Gens (AAT_PT02522) ist von FphA, 

LreA and HogA abhängig. Die Lichtinduktion von ferA (ein putatives 

Ferrochelatasegen) and bliC (bli-3, light regulated, unbekannte Funktion) benötigen 

LreA und HogA, aber nicht FphA.  

Da vorherige Untersuchungen in A. nidulans, N. crassa and Trichoderma viridae 

eine Interaktion zwischen den Rot und Blaulicht Photorezeptoren mit der HOG-MAP-

Kinase Kaskade suggerieren, wurde die Expression von Genen, die durch 

osmotischen Stress induziert werden, in den drei Mutanten untersucht. Die 

Transkriptmenge von hogA, atfA und ccgA war in fphA, lreA und hogA Mutanten 

reduziert. Während die Expression von bliC von lreA und hogA abhängig war, wies der 

fphA Deletionsstamm eine vergleichbare Expression zum Wildtyp auf. Desweiteren 

wurde die Phosphorylierung von HogA unter verschiedenen Lichtbedingungen durch 

Immunostaining untersucht. Nach Beleuchtung mit Rot und Blaulicht wurde 

Fluoreszenz im Zytoplasma und angereichert im Zellkern detektiert. Die Stimulation 

des Signals wurde nicht im fphA oder LreA Mutantenstamm beobachtet, wodurch die 

Aktivierung des Hog Signalweges durch FphA und LreA suggeriert wird.  
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 Der Verlust von fphA verstärkte die Pathogenität auf Tomaten, während lreA 

und hogA Deletionsstämme eine abgeschwächte Virulenz im Vergleich zum Wildtyp 

aufweisen. Zudem fanden wir, dass fphA eine Rolle in der Temperaturwahrnehmung 

spielt. 
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1. Introduction 

Alternaria is a fungal genus that is ubiquitous in nature. The genus includes 

saprophytic and pathogenic species. Alternaria species are widely distributed in nature 

and are commonly found in grains, feeds, sewage, plastic, dead organic matters as 

well as air conditioning system (Ostry, 2008). Alternaria are indispensable in the 

ecosystem as major degraders of polymeric organic material and their recycling to 

CO2. They are known to form both synergistic and antagonistic (pathogenic) 

relationships with, plants, animals and microbes. They are able to produce more than 

70 different secondary metabolites, some of which are mycotoxins or antibiotics 

(Pfeiffer et al., 2007). Some of these compounds impact their virulence and 

pathogenicity (Ostry, 2008; Tsuge et al., 2013; Wenderoth et al., 2019).    Prominent 

examples among Alternaria species are A. alternata, A. tenuissima, A. 

arborescens, A. radicina, A. brassicae, A. brassicicola, and A. infectoria.  The optimum 

growth temperature ranges between to 25°C and 30°C. They have been implicated as 

post-harvest plant pathogens in a variety of crops such as brown rot of tangerine, black 

rot of tomato and apple as well as leaf spot of lemons, grapevine and limes (Magan et 

al., 1984; Hasan, 1999; Thomma, 2003). In humans, they have been reported as 

opportunistic pathogens directly linked to cutaneous, subcutaneous infections and 

asthma (Sanzani et al., 2016). A. alternata is a black-spore producing fungus with 

conidia produced in chains. New individual spores arise directly from the tip of mature 

parent chains. The spores are melanised. This property protects them against 

ultraviolet (UV) damage and other environmental stresses. On the basis of their 

chemical structures, Alternaria mycotoxin are divided into five major groups; (1) 

dibenzopyrone derivatives, which encompass alternariol (AOH), alternariol 

monomethyl ether (AME), and altenuene (ALT); (2) tetramic acid derivatives, such as 

tenuazonic acid (TeA), and iso-tenuazonic acid (iso-TeA); (3) perylene derived, 

altertoxins I, II, and III (ATX-I, ATX-II, and ATX-III); (4) A. alternata f. 

sp. lycopersici TA1, TA2, TB1, and TB2 toxin (AAL TA1, TA2, TB1, and TB2); (5) wide-

ranging structures, such as tentoxin (TEN), iso-tentoxin (iso-TEN), and dihydrotentoxin 

(DHT), which are cyclic tetrapeptide (Ostry, 2008; Alexander et al., 2011; Lou et al., 

2013; Hickert et al., 2017). These mycotoxins are potentially harmful if consumed and 
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pose a serious risk to human and animal health. Their presence in cereal grains has 

been suggested to be linked with high levels of human esophageal cancer in China 

and Africa (Fleck et al., 2016).  

Light is a major source of energy for plants and important for many organisms 

on earth. The wide distribution of photoreceptors that sense, carry and process 

environmental cues among microorganisms, animals, insects, and plants suggests a 

more sophisticated role of light beyond their role as source of energy in photosynthesis. 

The presence or absence of light and direction, intensity, and spectral distribution carry 

information important for the development and fitness of many microorganisms. The 

influence of light on biological responses such as sporulation, virulence, secondary 

metabolite production and the entrainment of the circadian clock in filamentous fungi 

reveals complex roles of light in photobiology (Blumenstein et al., 2005; Idnurm & 

Heitman, 2005; Fischer, 2008; Kami et al., 2010; Rodriguez-Romero et al., 2010; 

Canessa et al., 2013; Röhrig  et al., 2013; Dasgupta et al., 2016; Yu et al., 2016; Yu & 

Fischer, 2019). 

1.1 Phytochrome enables red- and far-red- light sensing in plants, 
bacteria and fungi 

Living organisms perceive light from the environment using different photoreceptors.  

The first evidence of red- light sensing in Alternaria was reported in Alternaria solani 

(Lukens, 1963). Red light stimulated the formation of conidia from conidiophores. 

Phytochromes (phys) are a superfamily of red (R) and far-red (FR) photoreceptors 

which regulate various metabolic processes and development in response to light in 

plant, fungi and bacteria. They were first discovered over half a century ago in plants  

(Butler et al., 1959) and afterwards in cyanobacteria, bacteria and fungi such as A. 

nidulans and N. crassa (Karniol et al., 2005; Njimona et al., 2014; Lamparter et al., 

2004; Lamparter et al., 2003; Lamparter et al., 2002; Lamparter et al., 2017). 

Phytochromes are composed of two major protein domains; an N- terminal anchoring 

the tetrapyrrole bilin chromophore, responsible for the photosensory properties and a 

C-terminal output or regulatory domain, responsible for the transmission of the light 

signal. The bilin chromophore is covalently attached to a conserved cysteine residue 

in the phytochrome apoprotein via the C3 sidechain of the bilin A-ring. The core 

sensory domain typically consists of a PAS, GAF and PHY subdomain with two 
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additional PAS domains in plant phytochromes (Montgomery & Lagarias, 2002). The 

C-terminal output end contains a subdomain similar to histidine kinases (HKRD), 

although a truncation of most of the histidine kinase-related domain does not eliminate 

the activity of  phyB suggesting that this domain is dispensable (Krall & Reed, 2000). 

In some bacteria and fungi, the histidine kinase domain is followed by a response-

regulator domain (RRD) (Pao & Saier, 1997; Szurmant et al., 2007). Plant 

phytochromes (Phy family) and cyanobacterial phytochromes that bind 

phytochromobilin and phycocyanobilin respectively have a conserved Cys in the GAF 

domain (Fry & Mumford, 1971; Rockwell & Lagarias, 2006). Fungal phytochrome is 

more related to bacterial phytochromes than to plant phytochromes (Lamparter et al., 

2004; Lamparter et al., 2003; Lamparter et al., 2002; Blumenstein et al., 2005; 

Froehlich et al., 2005). Unlike plant phytochromes, the fungal phytochrome harbors a 

bilin chromophore covalently attached to a cysteine in the PAS domain and lacks the 

canonical cysteine in the GAF domain (Blumenstein et al., 2005).  X-ray 

crystallographic and in vitro studies have established that the PAS and GAF domains 

of the photosensory core are knotted together and both are crucial for proper 

incorporation of the chromophore (Wu & Lagarias, 2000; Wagner et al., 2005). 

Phytochromes act as photosensors which trigger various biological and 

metabolic outputs by reversibly interconverting between two conformations, Pr (red 

light (R)-absorbing) and Pfr (far-red light (FR)-absorbing) via the cis/trans-

isomerization of a double bond in the bilin chromophore upon stimulation by red or far-

red light (Abe et al., 1985; Siebert et al., 1990; Foerstendorf et al., 2001; Heyne et al., 

2002; Bae & Choi, 2008). The Pr form is mostly synthesized in the dark and upon 

absorption of red light is converted to the Pfr form, which is the active form for many 

biological responses. The Pfr form after absorption of far-red light or via dark reversion 

can be converted back to Pr, the biologically inactive form of the photoreceptor (Quail, 

1997; Fankhauser, 2001). There are five phytochromes in the plant Arabidopisis 

thaliana designated as phyA, phyB, phyC, phyD and phyE (Rockwell et al., 2006). 

Analysis of different mutants of these genes have differential and overlapping roles as 

biological switch. While phyA mediates the control of seedling deetiolation upon 

continuous far-red illumination, phyB mediates the same function upon continuous 

illumination by red light (Nagatani et al., 1993; Whitelam et al., 1993; Kiss et al., 2003). 

Unlike in dicotyledons, the phytochrome family in monocotyledons, including 
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duckweeds, have three different phytochrome genes, homologs of phyA, phyB, and 

phyC (Mathews & Sharrock, 1997). 

Bacteriophytochrome was first characterized in a stem nodulating symbiont of 

Aeschynomene, Bradyrhizobium sp. strain ORS27A (Giraud et al., 2002). Unlike most 

bacteriophytochromes, BrBphP is a bathyphytochrome (phytochrome that undergo 

dark conversion of Pr to Pfr and thus the ground state is the Pfr form) which lacks an 

histidine kinase (HK) domain (Giraud et al., 2002; Karniol & Vierstra, 2003; Tasler et 

al., 2005). It contributes to a far-red light shift in the modulation of various biological 

responses such as the regulation of photosynthetic signalling and carotenoid 

metabolism (Beattie et al., 2018). Bathyphytochrome are well distributed among 

Rhizobia soil bacteria which includes Rhodopseudomonas palustris, Agrobacterium 

tumefaciens, Agrobacterium vitis S4, Rhizobium leguminosarum 3841, Rhizobium 

etli CIAT652, and Azorhizobium caulinodans and Xanthobacter autotrophicus (Giraud 

et al., 2002; Karniol & Vierstra, 2003; Tasler et al., 2005; Rottwinkel et al., 2010). In 

addition to bathyphytochrome and normal phytochrome in bacteria, there are other 

phytochromes with unusual spectral properties as observed in the Agp1 and Agp2 from 

A. tumefaciens with an N-terminal chromophore attachment site outside the region 

where the plant and cyanobacterial phytochrome binds their chromophore (Lamparter 

et al., 2002). 

 
 
Fig. 1.  Domain organization of plant, cyanobacterial, bacterial and fungal 
phytochromes. P1, P2, PAS-A and PAS-B all belong to PAS (Per-ARNT-Sim) domain; GAF, 

GAF (vertebrate cGMP specific phosphodiesterases, cyanobacterial adenylate cyclases, and 
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the transcription activator FhlA) domain; PHY, phytochrome domain; HKD, histidine kinase 

domain; RRD, response regulator domain; C, conserved cysteine for chromophore 

attachment. H and D represent histidine residue and aspartate residue respectively for 

autophosphorylation.  

 

Phytochromes have been identified in various filamentous fungi including N. 

crassa, A. nidulans, Fusarium graminearum, A. fumigatus, Ustilago maydis, and 

Botrytis cinerea (Blumenstein et al., 2005; Kim et al., 2015; Fuller et al., 2013; Panzer 

et al., 2019; Hu et al., 2014). N. crassa has two phytochrome genes, Phy-1 and Phy-2 

respectively. The inactivation of the phy-1  and phy-2 had no effect on colony 

morphology, developmental processes or transcript levels of light-inducible genes 

(Froehlich et al., 2005; Chen et al., 2009). However, the expression of con-10 was 

upregulated in the phy-2 mutant independent of light suggesting a repressive role 

(Olmedo et al., 2010). Recently,  the role of Phy-2 in light-dependent repression of 

sexual development has been reported (Wang et al., 2016). In A. nidulans, red light 

promotes asexual development and represses sexual development (Blumenstein et 

al., 2005; Purschwitz et al., 2008; Röhrig  et al., 2013; Mooney & Yager, 1990). Deletion 

of fphA  leads to early sexual development, derepression of mycotoxin formation and 

conidial germination with slight abrogation of asexual developmental processes 

(Blumenstein et al., 2005; Purschwitz et al., 2008; Röhrig  et al., 2013) (Fig. 2). 
Interaction between A. nidulans phytochrome (FphA) and histidine 

phosphotransferase protein (YpdA) in the dark stimulates FphA kinase activity 

suggesting a role for the phytochrome in the dark (Blumenstein et al., 2005; Brandt et 

al., 2008; Yu et al., 2016). Light-dependent induction of conidiation genes such as brlA, 

wetA, abaA and fluffy genes were tightly connected to FphA (Ruger-Herreros et al., 

2011). Deletion of a phytochrome-like histidine kinase gene in B. cinerea resulted in 

altered and reduced radial growth, sclerotia production, cell wall chitin content and 

pathogenicity on plants (Hu et al., 2014). 
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Fig. 2. Role of fphA in A. nidulans. A. nidulans strains SAB2 (ΔfphA) and FGSC4 (WT) were 
point-inoculated on agar plates and incubated in the dark (left) or under red-light irradiation 
(right). The indicated areas were enlarged and displayed as inserts. Deletion of fphA enhanced 
the rate of sexual development under red light illumination (670 nm), while the wildtype 
produces asexual, green conidiospores (Blumenstein et al., 2005). 
 

Beyond A. nidulans and B. cinerea phytochromes, light inhibits spore 

germination in A. fumigatus (Fuller et al., 2013). Deletion of the phytochrome lead to 

release of spores in light and reduced stress tolerance against oxidative and cell wall 

perturbing agents (Fuller et al., 2013). In B. bassiana, red and far-red-light- dependent 

stimulation of asexual sporulation was reduced in the phytochrome deletion strain with 

enhanced oxidative stress response against hydrogen peroxide (Qiu et al., 2014). 

ΔBbphy displayed high sensitivity to osmotic stress, UV and conidial thermal tolerance.  

1.2 Blue-light-sensing system  

1.2.1 The white-collar complex (WCC)  

The N. crassa white-collar complex (WCC) consists of white collar-1(WC-1) and white 

collar-2 (WC-2) which together form hetero- and homodimers in vitro and function as 

transcription factor (Ballario et al., 1998). The WC-1 protein contains two PAS(Per-

Arnt-Sim) domains, a GATA type zinc finger (ZnF) DNA binding motif and a nuclear 

localization signal (NLS)(Ballario et al., 1996; Linden & Macino, 1997). The N-terminal 

PAS domain of WC-1 is classified as a LOV domain (light-oxygen -voltage), 

noncovalently	binding flavin adenine dinucleotide (FAD); a likely chromophore for blue-

light-dependent responses. (He et al., 2002; Cheng et al., 2003; Froehlich et al., 2002). 

WC-2 protein has a zinc-finger and a PAS domain with the exception of a LOV domain 
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(Linden & Macino, 1997). The orthologues of WC-1 and WC-2 in A. alternata are LreA 

and LreB, respectively. They share similarity in domain orientation with WC-1 and WC-

2. The 1025 amino acid long LreA has a LOV domain, two PAS domains, a NLS, and 

a ZF domain at the C-terminus (Fig. 4). The NLS, however, is not functional (Wang et 

al., 2015).The 422 amino acid long LreB has a PAS domain and a ZF at the C-terminus 

(Fig. 3). 
N. crassa WCC has both, light and dark functions. The deletion of the LOV 

domain of wc-1 resulted in the loss of light but not dark functions (He et al., 2002). The 

WCC has a role as transcription factor and modulates a range of biological responses 

in N. crassa, including the switch between asexual and sexual development, 

carotenoid formation, phototropism of perithecial peaks, protein modification and 

transcriptional regulation of gene expressions, circadian clock and reactive oxygen 

species(Lakin-Thomas et al., 1990; Linden & Macino, 1997). The deletion of wc-1 and 

wc-2 in N. crassa leads to the complete loss of most light-dependent responses (He et 

al., 2002; Collett et al., 2002; Lee et al., 2003). 

 

 
Fig. 3. Domain organization of N. crassa WC-1 and WC-2, and A. alternata LreA and 
LreB. The blue-light receptors WC-1 and LreA both harbor a LOV (Light-Oxygen-Voltage) for 
FAD (flavin-adenine dinucleotide) binding, two PAS (Per-ARNT-Sim) domains for protein 
interactions, and a GATA type zinc-finger DNA binding (ZF) domain. WC-2 and LreB both 
contain a PAS and a ZF domain  

 

In A. nidulans, deletion of the WCC orthologues, LreA and LreB had no effect 

on light-inducible responses (Purschwitz et al., 2008). Conidiation was enhanced in 

the lreA- and lreB-deletion strains irrespective of light and dark. Both deletion strains 

exhibited reduced mycotoxin synthesis and reduced sexual structures (cleistothecia). 

This suggests a role for WCC in A. nidulans as activators of mycotoxin biosynthesis 
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and sexual development as well as a repressor of asexual development (Purschwitz 

et al., 2008).  B. cinerea WCC modulates light-dependent responses and conidiation 

in response to stress and environmental conditions (Canessa et al., 2013). Deletion of 

bcwcl1 resulted in the release of conidiation independent of light, reduced ability to 

cope with excessive light and oxidative stress as well as reduced virulence against 

plant defense mechanisms. Although several transcriptional responses are 

abolished in the bcwcl1 deletion strain, the expression of some genes is still induced 

by light revealing a complex network of blue light sensing systems (Canessa et al., 

2013).  

In Trichoderma atroviride, stimulation of asexual development and light-induced 

expression of the photolyase gene, phr-1 is dependent on the orthologues of the WCC 

Brl1and Brl2 respectively (Casas-Flores et al., 2004). In the dark, deletion of brl1 

resulted in the downregulation of proteins while several proteins were upregulated in 

the brl2- mutant. This suggests independent and complex roles of BLR proteins in the 

modulation of responses (Sanchez-Arreguin et al., 2012). Mutations of Cyptococcus 

neoformans BWC1, but not BWC2 rendered the mutant strains insensitive to light 

(Idnurm & Heitman, 2005). The bwc1 mutants were highly sensitive to ultraviolet 

radiation. The inhibitory effect of light on mating and fruiting body formation was 

released in the bwc1- and bwc2-deletion strains (Idnurm & Heitman, 2005). Recently, 

the biological function of the white collar- 1 orthologue, sfwc1 of the homothallic 

ascomycete Sordaria fimicola in the regulation of phototaxis and fruiting body formation 

was shown (Krobanan et al., 2019). The sfwc1 mutant  strain exhibited  altered 

expression of light-inducible genes, lacked the fruiting-body zonation and was 

defective in the phototropism of the perithecial breaks (Krobanan et al., 2019).  

1.2.2 LOV domain proteins: VIVID and ENVOY 

Some fungi contain LOV proteins with an N-terminal cap which regulates 

photoadaptation in blue light mediated responses. The first member of this group, 

VIVID, was identified in N. crassa with 186-amino acid and binding a flavin (FAD) as a 

chromophore (Zoltowski et al., 2007; Schwerdtfeger & Linden, 2003) (Fig. 4). The 

expression of VVID is dependent on the WCC. Blue light activation of VIVID enables it 

to interact with the LOV domain of WC-1, disrupting the WCC complex required for 

further transcriptional activation of the WCC (Chen et al., 2010a; Hunt et al., 2010; 
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Malzahn et al., 2010). This negative feedback loop is termed photoadaptation and is 

dependent on the amount of VVD present in the system. 

An orthologue of VVD is the 207-amino acid protein ENVOY identified in 

Trichoderma reesei (Hypocrea jecorina) (Schmoll et al., 2005). ENVOY is a functional 

LOV photoreceptor with a conformational change similar to the light-induced VIVID. 

Similar to VIVID, ENVOY expression is regulated by the WCC complex. However, in 

contrast to the negative feedback provided by VIVID, ENVOY appears to provide a 

positive output on WCC activity (Tisch & Schmoll, 2013). It is involved in light-mediated 

regulation of various processes including growth, conidiation, sexual development, G-

protein signalling, cellulase gene transcription, hydrophobins and sulphur metabolism 

(Schuster et al., 2007; Schmoll et al., 2009; Seibel et al., 2012). Even though VIVID 

and ENVOY share similarity in their domain orientation, ENV1 is incapable of 

complementing the deletion mutant of VIVID suggesting a complex and differential role 

in signal transduction (Schmoll et al., 2005).  

 

 

 
 
Fig. 4. Domain organization of N. crassa VVD and T. reesei ENVOY.  The N. crassa and 
T. reesei vivid (VVD) contain light, oxygen and voltage (LOV) domains where FAD is covalently 
bound to a cysteine upon illumination.  

1.2.3 Cryptochromes and photolyases 

Cryptochromes and photolyases are blue/UV-A photoreceptors containing an N-

terminal domain (photolyase-related (PHR) region) that binds noncovalently to the 

flavin chromophore FAD. In addition to FAD, methenyltetrahydrofolate (MTHF) and 

deazariboflavin are found in cryptochromes and photolyases as chromophores 

(Sancar, 2003; Klar et al., 2006; Geisselbrecht et al., 2012; Kiontke et al., 2014). 

Cryptochromes are distinguished from photolyases by carboxy-terminal extensions of 

variable length and the absence of DNA repair activity (Kim et al., 2014; Liu et al., 

2011; Fischer et al., 2016; Fuller et al., 2015). Cryptochromes are widely distributed 

among bacteria and eukaryotes and can be classified into three main groups; the 

animal cryptochromes, plant cryptochromes and CRY-DASH proteins with similarities 
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to cryptochromes from Drosophila, Arbididoposis, Synechocystis and Human. 

However, CRY-DASH proteins are absent in humans or Drosophila. Cryptochrome is 

indispensable in regulation of circadian clock in animals.  

All species, except plants and animals, encode a member of 

cryptochrome/photolyases (CPD) protein with dual roles as a photoreceptor and DNA-

repair activity. In N. crassa, the deletion of the CRY-DASH orthologue affected no light-

dependent responses. However, the roles of CRY-DASH cryptochromes in signal 

transduction has been observed in other filamentous fungi including A. nidulans, T. 

atroviride, F. fujikuroi and Sclerotinia sclerotiorum (Bayram et al., 2008a; Garcia-

Esquivel et al., 2016; Castrillo et al., 2013; Veluchamy & Rollins, 2008). The deletion 

of cyrA in A. nidulans (Fig. 5) resulted in derepression of sexual development and 

genes encoding the regulation of fruiting body formation (Bayram et al., 2008a). 

Inactivation of the T. reesei cry1 gene showed decreased repair ability of conidia when 

exposed to UV light. Light- induction of cry1 depended on the white-colar-1 orthologue, 

brl1 revealing a cross talk with the WCC (Guzman-Moreno et al., 2014). Similarly, the 

T. atroviride cryptochrome/photolyase gene regulates photoreactivation and gene 

expression in blue and red light. The expression of blr1-independent genes in the cry1 

deletion strains were independent of red and blue light (Garcia-Esquivel et al., 2016). 

In S. sclerotiorum , deletion of cryptochrome/photolyases (CPD) resulted in a decrease 

in sclerotia formation when exposed to UV-A (Veluchamy & Rollins, 2008). In F. 

fujikuroi, cryD mutants showed altered morphology in light and increased production 

of bikaverin (secondary metabolite) under nitrogen starvation. This suggests a 

negative role for CryD in secondary metabolite biosynthesis and fitness in light. 

 

 
Fig. 5. Domain organization of A. nidulans cryptochrome. The cryptochrome in A. nidulans 
harbours a photolyase and FAD binding domain as chromophore.  
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1.3 Green-light sensing with opsin 

Opsins belong to the large family of rhodopsins with similarity to the animal type 2 

rhodopsins. It consists of seven transmembrane helix motif that binds retinal as a 

chromophore. The chromophore is covalently linked to a conserved lysine residue 

through a Schiff base (Ernst et al., 2014). Whereas the retinal conformation upon 

illumination changes to 13-cis (Sharma et al., 2006; Spudich, 2006), the orientation is 

all-trans in the dark. The conformation change is important for appropriate biological 

responses. Opsin genes are evenly distributed among Archaea, fungi and bacteria. 

Besides the green light sensing rhodopsin, there are also opsin-related proteins 

(ORPs) and an auxiliary ORP-like rhodopsin called CarO-like rhodopsins in various 

fungi (Brown & Jung, 2006; Wang et al., 2018). Eventhough opsins have been 

identified in various fungi including A. alternata (Fig. 6), there is still lack of information 

on their role in signal transduction. The first characterized opsin in ascomycetes was 

in N. crassa. Deletion of nop-1 in N. crassa, C. neoformans and F. fujikuroi had no 

obvious phenotypic defects (Bieszke et al., 1999; Chen et al., 2009; Estrada & Avalos, 

2009; Idnurm & Heitman, 2005). Recent study on Nop-1 in N. crassa has shown that 

a nop-1 mutant displayed early sexual development and upregulation of genes 

involved in oxidative stress, catalase and proton transmembrane functions (Wang et 

al., 2018).   

 

 

 
 
Fig. 6.  Domain organisation of opsin in A. alternata (NopA and NopB). Opsin is a 
transmembrane protein with retinal as chromophore. Upon absorption of green light, the retinal 
undergoes a cis–trans isomerization mediating biological responses. 
 

In the necrotrophic phytopathogenic fungus S. sclerotiorum, the microbial opsin 

homolog gene, sop1  is indispensable in developmental and stress responses (Lyu et 

al., 2015). sop1 mutant strain displayed high sensitivity to salt stress, fungicide and 

osmotic stress. However, they exhibited enhanced tolerance to oxidative stress 

suggesting a differential role in stress response and adaptability (Lyu et al., 2015). In F. 

fujikuroi and Phaeosphaeria nodorum opsin was shown to be an active green-light 

dependent proton pump (Garcia-Martinez et al., 2015; Fan et al., 2011). Deletion of 
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carO in F. fujikuroi resulted in release of spores in light (Garcia-Martinez et al., 2015; 

Brunk et al., 2018). CarO pump activity was highly enhanced upon exposure to 

glutamate, gluconate, acetate, and indole-3-acetic acid (IAA) (Garcia-Martinez et al., 

2015; Adam et al., 2018) 

The maize pathogen, U. maydis encodes three putative opsins, opsin1, opsin2 

and opsin3. Opsin 1 and opsin 2 present in axenic cultures and induced during the 

entire life cycle are green light-driven proton pumps compared to opsin3 associated 

with plant infection lacking the proton pump activity (Panzer et al., 2019). 

Umops1 expression is dependent on blue light but not red or far-red light. However, 

the expression of Umops2 is induced by blue, red and far red light. Blue light induction 

of Umops1 but not Umops2 was lost in Δwco1 strains. This suggests a possible 

interaction with the white-collar complex and the presence of an additional blue light 

receptor compensating for the loss of WCO1 activity in the expression of Umops2  

(Panzer et al., 2019).  

1.4 Coordination of secondary metabolism in fungi: the velvet 
family of regulatory proteins 

The velvet complex family shares a protein domain that is mostly conserved in 

filamentous and dimorphic fungi with a distinct role in signal transduction and 

metabolism (Ni & Yu, 2007; Bayram & Braus, 2012). They interact with one another 

and non-velvet family to modulate light sensing, interphase between asexual and 

sexual development, mycotoxin biosynthesis and penicillin production (Bayram et al., 

2008b). The biological function of the velvet family has been well studied in Aspergillus. 

A. nidulans consists of at least four velvet family members including VeA, VosA, VelB 

and VelC. They form various protein complexes with themselves as well as with the 

with the methyltransferase LaeA such as VosA-VelC, VosA-VelB, VelB-VeA-LaeA, and 

VelB-VelB, controlling asexual and sexual development, mycotoxin biosynthesis as 

well as viability of spores (Bayram et al., 2008b; Sarikaya Bayram et al., 2010; Park et 

al., 2012; Park et al., 2014). VosA-VelB protein complex coordinates spore maturation, 

germination and trehalose production in the conidia.  
Although VeA is conserved in most fungi, the function differs in the regulation of 

developmental processes and secondary metabolite biosynthesis. In the dark,  A. 

nidulans VeA and VelB enter the nucleus, VeA dissociates and interacts with the 
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methyltransferase LaeA, (Bayram et al., 2008b) resulting in a heterotrimeric protein 

complex which regulates developmental responses and the expression of various 

secondary metabolite biosynthetic  genes in many fungi (Wiemann et al., 2010; Hoff et 

al., 2010; Chettri et al., 2012; Lind et al., 2015) including A. fumigatus (Perrin et al., 

2007; Dhingra et al., 2013). Apart from LaeA, there are other methyltransferases 

affecting velvet-mediated responses via VeA localization in the nuclei or in the 

cytoplasm. This includes the LaeA-like methyltransferase LlmF, VipC and VapB 

(Palmer et al., 2013; Sarikaya-Bayram et al., 2014). VipC and VapB can influence the 

localization of VeA by inhibiting the function of LimF. This results in the regulation of 

various genes involved in secondary metabolism possibly via chromatin remodelling 

(Sarikaya-Bayram et al., 2015). VipA is another velvet interacting partner discovered 

in A. nidulans. Interestingly, apart from its interaction with VeA, it also interacts with 

phytochrome and the white-collar orthologue, LreA in the cytoplasm and nuclei 

respectively (Röhrig  et al., 2017).  

Deletion of veA from A. parasiticus leads to a reduction in sporulation as well as 

a blockage in both sclerotia formation and biosynthesis of aflatoxin intermediates 

(Calvo et al., 2004). In B. cinerea, the velvet protein complex regulates secondary 

metabolism, asexual development  and virulence (Schumacher et al., 2015). A veA 

mutant in A. flavus displayed high sensitivity to oxidative stress and a reduction in the 

expression levels of oxidative stress-induced genes upon exposure to hydrogen 

peroxide suggesting a positive role in the modulation of oxidative stress response 

(Baidya et al., 2014). Similarly, deletion of the veA and laeA genes in A. alternata 

resulted in reduction in sporulation and altered mycotoxin production (Estiarte et al., 

2016). In the fungus Pestalotiopsis microspore, while veA, velB and laeA mutant 

strains displayed defects in colony growth, sporulation and pigmentation, only the velB 

mutant and not veA or laeA deletion strains was affected by Congo red (Akhberdi et 

al., 2018).  Moreover, the production of pestalotiollide B polyketide required VelB and 

LaeA in contrast to the repressing function of VeA in the biosynthesis of the same 

compound. These suggest a synergistic as well as differential role among the velvet 

family protein and interacting complexes in modulation of stress responses (Akhberdi 

et al., 2018). 
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Fig.  7. Domain organization of A. alternata VeA. VeA consist of a velvet domain conserved 
for velvet family proteins, a bipartite NLS, a nuclear export signal (NES) and a PEST domain 
(rich in proline (P), glutamic acid (E), serine (S) and threonine (T)) motifs.  

 

In contrast to the activating role of velvet family proteins reported in most fungi 

for developmental processes, the deletion of vosA, veA and velB in A. fumigatus 

resulted in increase in sporulation and an elevated expression level of brlA during 

asexual development (Park et al., 2012). vosA and velB mutant strains showed 

reduction in the amount of trehalose in conidia and increased sensitivity to oxidative 

and UV stress (Park et al., 2012). Recently, the biological functions of the velvet family 

proteins and methyltransferase orthologues in developmental responses were 

characterized in N. crassa (Bayram et al., 2019). The localization of VE-1, VE-2, VOS-

1, and LAE-1 in the nucleus and cytoplasm were independent of light. Furthermore, 

VE-1, VE-2, and LAE-1 are involved  in the production of protoperithecia during sexual 

development. N. crassa  VE-1 and VE-2 successfully complement A. nidulans  veA 

and velB  mutant strains suggesting a conserved role of the proteins (Bayram et al., 

2019).  

1.5 The MAPK (mitogen-activated protein kinase) cascade  

Mitogen-activated protein kinase (MAPK) is a chain of protein kinases which 

communicate signals from different receptors on the surface of the cell to the DNA in 

the nucleus. They are important for cell responses from eukaryotes in yeast to human 

(Qi & Elion, 2005; Raman et al., 2007; Keshet & Seger, 2010). MAPK activity is 

regulated through a three-tiered cascade composed of a MAPK, a MAPK kinase 

(MAPKK, MEK) and a MAPK kinase kinase (MAPKK, MEKK) (Qi & Elion, 2005; Raman 

et al., 2007; Keshet & Seger, 2010). Substrates for the MAPKs include other kinases 

and transcription factors. These protein kinases can be activated by a wide range of 

stimuli and stress agents including oxidative, osmotic stressors. These stimuli are 

detected upon ligand binding to the cell surface by membrane receptors and 

communicated directly to the MAPKK (Gonzalez-Rubio et al., 2019). Activated MAPKK 

kinase phosphorylates the MAPK kinase at specific serine/threonine sites which 



  Introduction 

21 

 

thereafter results into phosphorylation of a MAP kinase. The activation of the MAPK 

cascade results in the activation of transcription factors and the expression of specific 

sets of genes in response to environmental stimuli. Each organism has multiple distinct 

MAPK cascades involved in the transduction of extracellular signals to cellular 

responses. In the model organism, S. cerevisiae, five MAP kinase pathways have been 

identified and characterized (Gustin et al., 1998). They play distinct roles in cell wall 

integrity (protein kinase C, PKC), mating (Fus3), invasive growth (Kss1), and growth 

under high osmolarity conditions (HOG1) and ascospore formation (Smk1) (Gustin et 

al., 1998; Breitkreutz & Tyers, 2002). Unlike most filamentous fungi with only three 

MAP kinase pathways, several Aspergillus species, including A. nidulans, A. niger 

and A. fumigatus have four MAP kinase genes (Reyes et al., 2006; Hamel et al., 2012; 

Wang et al., 2013). MAP kinases homologous to the yeast Fus3/Kss1 have been 

identified and characterized in different fungi including N. crassa, Candida albicans, A. 

nidulans, A. fumigatus, Cochliobolus heterostrophus, Colletotrichum lagenarium, C. 

gloeosporioides, Pyrenophora teres among other pathogenic and non-pathogenic 

species. In A. nidulans homologs of the Fus3 module, SteC (Ste11), MkkB (Ste7), 

MpkB (Fus3), SteD (Ste50) and AnSte12/SteA (Ste12) have been shown to mediate 

asexual and sexual development as well as secondary metabolite biosynthesis (Wei 

et al., 2003; Vallim et al., 2000; Teague et al., 1986; Bayram et al., 2012; Paoletti et 

al., 2007). In A. fumigatus, a Fus3 ortholog, MpkB is crucial for conidiation and 

dihydroxynaphthalene (DHN)-melanin production (Manfiolli et al., 2019). In M. grisea, 

the MPS1 pathway (homologous to S. cerevisiae Slt2 pathway) and the PMK1 pathway 

(homologous to S. cerevisiae Fus3 and Kss1 pathways) have been shown to be 

involved in penetration peg and appressorium formation respectively (Dean et al., 

2005).  

T. atroviride and T. reesei  genomes encode three MAPK pathways, Tmk1, 

Tmk2, and Tmk3, respectively which have been shown to be crucial for asexual 

sporulation (Medina-Castellanos et al., 2018; Wang et al., 2014). The expression of 

tmk3 is light-dependent in T. reesei and in T. atroviride. Tmk3 regulates  asexual 

development and responses to osmotic and cell wall perturbing agents (Delgado-

Jarana et al., 2006; Wang et al., 2013; Esquivel-Naranjo et al., 2016; Wang et al., 

2014). Overall, studies have indicated that MAP kinase pathways may play important 
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roles in regulating growth, differentiation, survival, secondary metabolite biosynthesis 

as well as pathogenicity. 

 

 
Fig. 8. General scheme of a MAPK pathway.  The plasma membrane perceives stimulus 
through specific membrane receptors.  The receptor then transfers the perceived signal or 
stimulus through phosphorylation to the core MAPK cascade which is composed of at least 
one of either of a MAPK, a MAPK kinase (MAPKK, MEK) and a MAPK kinase kinase (MAPKK, 
MEKK).  This is transmitted via a two-component system or adaptor molecules. Upon 
phosphorylation, the MAP kinase is translocated to the nucleus where it phosphorylates a 
transcription factor. The activated transcription factor might be part of a transcription factor 
complex TFC or a repressor molecule which mediates the expression of the target gene(s) 
(TG) (Roman et al., 2007).  
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1.5.2 The stress-activated MAP kinase (HOG) pathway in fungi 

Stress-activated protein kinases or SAPKs are MAP kinases involved in transducing 

different signals leading to the activation of downstream targets which influences the 

fitness of the organism (Chen et al., 1996; Franklin et al., 1998). An integral part of the 

SAPKs is Hog1 and its homologs which in filamentous fungi employ the TGY dual 

phosphorylation site for signal transduction (Kyriakis & Avruch, 2012). The function of 

Hog1 in the model yeast S. cerevisiae was first  limited to osmoregulation (Brewster et 

al., 1993). However, it was later discovered that Hog1 is important in the adaptation to 

citric acid,  heat and cold stress  as well as a role in cell wall integrity, regulation of 

transcription and translation processes, cell cycle progression and cell membrane ion 

transport (Lawrence et al., 2004; Winkler et al., 2002; Bilsland et al., 2004; Hayashi & 

Maeda, 2006; Panadero et al., 2006; Martinez-Montanes et al., 2010; de Nadal & 

Posas, 2015). In S. pombe, phosphorylated Spc1 MAPK in the HOG pathway enters 

the nucleus to phosphorylate and activate a bZIP TF, Atf1 which mediates biological 

functions including conjugation, meiosis as well as osmotic stress response (Shiozaki 

& Russell, 1996; Wilkinson et al., 1996). 

In several filamentous fungi, including N. crassa, A. nidulans,  C. lagenarium, 

and M. grisea, the HOG pathway has been shown to be mostly involved in osmotic and 

oxidative stress responses, development and virulence (Eaton et al., 2008; Heller et 

al., 2012; Lamb et al., 2012; Van Nguyen et al., 2013; Nimmanee et al., 2015). M. 

grisea OSM1, was the first HOG1/Spc1/p38 homolog characterized. Deletion of osm1 

resulted in a reduction of asexual sporulation, the inability to cope with hyperosmotic 

conditions as well as a defect in the accumulation of arabitol in the mycelium (Dixon et 

al., 1999). Similarly, the OS-2 MAP kinase gene in N. crassa plays a role in  

osmoregulation, fungicide resistance, and response to oxidative stress (Noguchi et al., 

2007; Zhang et al., 2002). The os-2 mutant showed loss of induction of clock-controlled 

genes, ccg-1, bli-3 and con-10 (Watanabe et al., 2007). 

In A. nidulans, SakA is phosphorylated in response to light, nutrient starvation 

and hypoxia stress (Lara-Rojas et al., 2011; Yu et al., 2016; Fischer et al., 2016). 

Deletion of sakA resulted in early production of sexual cleistothecia and a defect in 

asexual sporulation. Light induction of ccgA was lost in the sakA-deletion strain 

suggesting a cross talk between the light and osmosensing MAP kinase cascade (Yu 

et al., 2016). In A. fumigatus, Hog1 orthologs SakA and MpkC are crucial for 
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osmoregulation, oxidative stress response, ability to cope with cell wall perturbing  

agents, carbon source utilization and virulence (Reyes et al., 2006; Altwasser et al., 

2015; Valiante et al., 2015; Bruder Nascimento et al., 2016).  

 

Fig. 9. Scheme of the HOG pathway signalling cascades in A. nidulans, S. cerevisiae, 
and S. pombe. Sho1p (SHO-pathway) activates Pbs2p in S. cerevisiae, whereas the 
homologue in A. nidulans has no function. Output responses are represented as OS: osmotic 
stress response, OX: oxidative stress response (Hagiwara et al., 2016). 
 

The deletion of Bcsak1 of B. cinerea resulted in reduced virulence as well as 

increased sensitivity to oxidative stress from hydrogen peroxide (Segmuller et al., 

2007). However, Bcsak1 mutant strains exhibited enhanced resistance to the 

dicarboximide contact fungicide, iprodione (Segmuller et al., 2007). Recently, it was 

shown that SakA regulates development and Aflatoxin B1 biosynthesis in A. flavus 

(Tumukunde et al., 2019). In the absence of osmotic stress, the sakA mutants 

produced more sclerotia than the wild-type strain. However, this was completely 

inhibited in medium supplemented with osmotic stress agents. Furthermore, deletion 
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of sakA resulted in the increase of Aflatoxin B1 biosynthesis suggesting a repressing 

role for SakA in Aflatoxin B1 production in A. flavus (Tumukunde et al., 2019). 

1.6 Light signalling cascades in filamentous fungi 

1.6.1 Light sensing in N. crassa  

Blue light regulates many biological functions including asexual and sexual 

development, carotenoid formation, direction of sexual spore release and a major 

player in the resetting of the circadian clock in N. crassa (Bahn et al., 2007; Ballario & 

Macino, 1997; Chen et al., 2010b; Corrochano, 2007; Corrochano, 2011; Herrera-

Estrella & Horwitz, 2007; Linden & Macino, 1997; Purschwitz et al., 2006). In order to 

better understand the mechanism of gene regulation in response to light in N. crassa , 

several studies have identified light-dependent genes (Chen et al., 2009; Dong et al., 

2008; Lewis et al., 2002; Smith et al., 2010) based on microarray analysis. The 

estimated light-controlled genes varied from 3% to 14% of the total  genome (Chen et 

al., 2009, Dong et al., 2008, Lewis et al., 2002). 

ChIP-seq was used to identify approximately 400 direct targets as well as 27 

transcriptional factor genes dependent on the light- activated WCC cascade (Smith et 

al., 2010). This was in agreement with a previous study which reported the role of the 

light-activated WCC in the expression of early light-induced genes and  few of the TFs 

genes dependent on WCC signalling cascade (Chen et al., 2009). Furthermore, early 

light-induced proteins in turn regulate the expression of late light-induced genes. For 

instance, SUB-1 (submerged protoperithecia-1; NCU01154) and CSP-1 (conidial 

separation-1; NCU02713)  which are early light-induced TFs play a role in the light-

dependent regulation of a large set of late light-induced genes (Chen & Loros, 2009; 

Sancar et al., 2011). In most of these studies, not all of the genes identified as direct 

targets of the WCC were light-regulated as some play a role in the dark. The 

expression of some of the TF genes were repressed upon illumination. This suggests 

a repressive function for the WCC for specific targets or probably the TFs cross-talk 

with the WCC cascade in the repression of genes in light (Chen & Loros, 2009; Sancar 

et al., 2011).  

The physical manifestation of the circadian clock through asexual sporulation 

regulated by the blue light photoreceptor WCC cascade is perhaps the main reason 
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that N. crassa has been extensively studied as the model for circadian clock research 

in filamentous fungi (Baker et al., 2012). The WCC proteins which act as a transcription 

factor regulating the expression of the FREQUENCY (FRQ) protein (Crosthwaite et al., 

1997; Froehlich et al., 2002). The interaction of FRQ with the WCC complex results in 

the phosphorylation of the WCC which in turn inactivates it, removing the WCC from 

the frq promoter. This negative loop is further enhanced by the removal WCC from the 

nucleus (Schafmeier et al., 2005; He et al., 2006; Hong et al., 2008; Schafmeier et al., 

2008). The stability of the FRQ protein and inactivation of the WCC is regulated by 

several  kinases including CK1, CK2 and PRD4/ checkpoint kinase 2 and phosphates; 

PP1 and PP2A (Gorl et al., 2001; Yang et al., 2002; Pregueiro et al., 2006; Heintzen & 

Liu, 2007).  FRQ levels decrease in the course of the subjective night. As negative 

feedback reaches completion in the mid to late day, FRQ level and rate of FRQ 

synthesis decreases.  The expression level of frq peak in the late subjective noon and 

the FRQ protein level peak around 4-6 h later (Aronson et al., 1994; Garceau et al., 

1997; Merrow et al., 2001).  The cycle is completed by the delayed release of FRQ-

dependent repression which requires the FRQ protein to be phosphorylated for as long 

as 16-18h (Merrow et al., 1997; Schafmeier et al., 2006).The subsequent 

phosphorylation of the FRQ makes it attractive to the FWD-1 (F-box/WD-40 repeat-

containing protein, an ortholog of the Drosophila Slimb protein. Similar to the function 

in Drosophila clock, the FWD-1 is a substrate-recruiting subunit of an SCF-type E3 

ubiquitin ligase (Ko et al., 2002; He et al., 2003). Upon interaction of the FRQ with the 

FWD-1, the FRQ protein is ubiquitylated and targeted to the proteasome where it is 

degraded facilitating turned over. The cycle can then restart. 

1.6.2 Light sensing in A. nidulans 

Analysis of A. nidulans genome has revealed orthologues of most photoreceptors 

found in N. crassa. An exception is the absence of VIVID protein and a functional 

rhodopsin gene (Ruger-Herreros et al., 2011). Genome wide expression analysis 

identified >400 genes upregulated and less than >100 genes downregulated when 

competent mycelium was exposed to 30 min of white light (Ruger-Herreros et al., 

2011). Some of the upregulated genes were predicted to be involved in asexual 

development, circadian clock, stress responses, redox reaction and carbon 

metabolism. A few of these genes are transcription factors predicted to be involved in 
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the regulation of the light signalling cascade. These TFs regulate several biological 

functions such as the switch in developmental phases, secondary metabolite 

biosynthesis as well as different stress responses (Ruger-Herreros et al., 2011). 

Importantly, the expression of the conidiation master regulator brlA and the fluffy genes 

flbB and flbC are regulated by light. Deletion of flbB and flbC disrupted the activation 

of brlA suggesting not only the activation of conidiation by light but also an interaction 

between the fluffy genes and the central conidiation cascade regulated by brlA (Ruger-

Herreros et al., 2011). 
ccgB, a homolog of the N. crassa ccg-1 (a clock-controlled and glucose-

repressed gene of unknown function) (Arpaia et al., 1995; Bell-Pedersen et al., 1996) 

displayed the highest expression level upon illumination by light. Apart from N. crassa 

and A. nidulans, ccgB is absent in the genome of related species such as A. niger and 

A. fumigatus (Ruger-Herreros et al., 2011). While ccgA and ccgB, are induced by light 

in a similar manner though with a little difference, other light-induced genes includes 

conJ (homolog of the conidiation and light-dependent gene, con-10 in N. 

crassa) (Roberts et al., 1988; Olmedo et al., 2010), cryA, a UV/blue light photoreceptor 

involved in sexual development in A. nidulans  as well as the rhodopsin gene, nopA.  

Most genes downregulated were predicted to be involved in oxidoreductase 

responses, nuclear components, transport and nitrogen metabolism (Ruger-Herreros 

et al., 2011). The most downregulated gene is veA. The cross talk between the velvet 

protein VeA, the WCC and phytochrome was identified at the ccgA locus (Hedtke et 

al., 2015). Whereas red light induced ccgA to a greater extent and rapidly, blue light 

does not in a similar manner. The induction of ccgA was completely abrogated in the 

fphA-deletion strain, whereas deletion of lreA/B only reduced the expression level. This 

suggests a crucial role for FphA in the regulation of ccgA. In the dark, VeA and LreA 

bind to the ccgA promoter and upon illumination with red or blue light, LreA dissociates 

from the promoter (Hedtke et al., 2015). Interestingly binding of VeA to the ccgA 

promoter is lost in the fphA-deletion strain and binding of LreA is lost in the veA-deletion 

strain suggesting an interaction between the three proteins. 

Moreover, the interaction between the FphA and LreA protein has been shown 

to be involved in histone acetylation and deacetylation resulting in gene regulation. 

Histone acetylation at the ccgA locus upon illumination is lost in both, the fphA and 

lreA mutant strains (Hedtke et al., 2015). Therefore, LreA and VeA bind to the 
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promoters of light-inducible genes in the dark and attracted to histone acetylase GcnE 

and the histone deacetylase HdaA. LreA represses the activity of GncE and promotes 

HdaA activity. In light, LreA is released from the promoter and FphA and VeA promote 

histone acetylation by activating GcnE. In this manner, the expression of light-inducible 

genes are thus promoted (Yu & Fischer, 2019). 

 
Fig. 10. Current model of light responses in fungi. (a) In N. crassa, upon illumination, the 
WCC complex binds to the promoter of early light-responsive elements (ELREs) resulting into 
the induction of several genes and transcription factors including sub-1, frq and vvd. The FRQ 
protein (via the circadian clock) regulates the first step in light response while the VVD interacts 
with WCC leading to photoadaptation. WCC activity and phosphorylation is mediated by 
several kinases and phosphatases. Chromatin modification regulates light responses. Histone 
acetylation through NGF-1 is crucial for the induction of several genes, whereas histone 
methylation through DIM-5, HP1 and SET-1 modulates the repression of light-dependent 
responses.  SUB-1 interacts with FF7 and the WCC complex leading to the induction of late 
light-responsive genes. Other photoreceptor proteins in N. crassa such as PHY-1, PHY-2, 
NOP-1 and CRY as well VE-1 are indispensable in light responses both at the developmental 
and molecular level. The expression of TFs induced after first light response regulate several 
gene expression. (b) In A. nidulans, red light is perceived by the phytochrome FphA. In the 
cytoplasm, light-dependent activation of FphA probably leads to dephosphorylation of the 
phosphotransferase protein YpdA, causing activation of the high osmolarity glycerol (HOG) 
pathway and, via phosphorelay, activation of the MAP kinase stress-activated kinase (SakA). 
Phosphorylated SakA shuttles into the nucleus to phosphorylate the transcription factor AtfA, 
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which activates gene expression. Chromatin remodelling through acetylation of lysine 9 in 
histone H3 (H3K9Ac) is also involved in light signalling. LreA and VeA bind to the promoters 
of light-inducible genes in the dark and interacts with acetyltransferase GcnE and deacetylase 
HdaA.  LreA represses GcnE activity and thus light-inducible genes are repressed. Upon 
illumination, LreA dissociates from the promoter. VeA and FphA promote GcnE activity 
facilitating gene expression (Yu & Fischer, 2019). 
 

1.7 The role of light in plant-fungal interactions 

Light is perceived by plants and by microorganisms and is used as cue for interaction. 

In plants, light is crucial for several biological functions including changes in hormonal 

levels, secondary metabolite biosynthesis, production and release of volatile 

compounds which in general influences plant-microbial interactions (Rahman et al., 

2003; Wang et al., 2010; Carvalho & Castillo, 2018). Red light regulates the synthesis 

of cinnamic acid, tryptophan and phenylpropanoid pathways-dependent resistance in 

plants (Shirasawa et al., 2012; Parada et al., 2014). Red light also represses gray mold 

incidence (B. cinerea) in grapevine, broad bean and tomato plants (Khanam et al., 

2005; Ahn et al., 2015; Xu et al., 2017). In fungi, the red and blue light photoreceptors 

are crucial for  secondary metabolite biosynthesis (Bazafkan et al., 2017). Aflatoxin 

and sterigmatocystin production are repressed by white light  (Bayram et al., 2008b) in 

Aspergillus  whereas in A. alternata  the synthesis of alternariol and altertoxin are white 

and blue light-dependent (Pruss et al., 2014). In the plant pathogen, C. acutatum, a 

notorious fungus capable of infecting several plants including tomatoe, strawberry, 

apple and mango, light qualities influences melanin production which affects the 

virulence ability of the fungus (Yu et al., 2013).  Light is thus crucial for disease 

development and defense mechanisms in both plants and fungi. 

 Furthermore, in most plant fungal pathogens, mutation of the blue light 

photoreceptor WC homologs attenuates their virulence ability. In the maize leaf 

pathogen Cercospora zeae-maydis, the WC-1 ortholog regulates host stomata tropism 

and lesion development (Kim et al., 2011a). Similarly, in the rice blast pathogen M 

oryzae, MGWC-1 modulates asexual spore releases which plays a critical role in 

successful disease development (Kim et al., 2011b). 
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1.8 Objectives of this work  

Light is perceived and transduced by most filamentous fungi, where it regulates major 

fungal behaviour and developmental processes such as morphogenesis, sporulation, 

growth, stress tolerance, metabolic pathways and virulence. Most fungi including N. 

crassa and T. atroviride respond well to blue light and use the white-collar (WC) light 

sensing system for several biological responses. Although, most fungi contain in 

addition phytochrome as putative red-light receptor, the role of phytochrome is not 

clear. In A. alternata, blue light inhibits sporulation, but the effect can be reversed by 

red-light illumination, suggesting the presence and action of blue- and red-light 

receptors. Furthermore, there is evidence that the HOG MAP kinase pathway serves 

as a hub for light-dependent responses. The aim of this study is to understand the role 

of phytochrome (FphA), white collar 1 (LreA) and the interplay with the high-osmolarity 

glycerol (HOG) mitogen-activated protein (MAP) kinase pathway in light sensing and 

signal transduction in A. alternata.
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2. Results 

2.1 Evidence for light sensing in A. alternata 

The first evidence for light sensing in the Alternaria genus was reported in A. solani 

(Luken, 1963). Conidiophores produced conidia upon continuous illumination with red 

but not with blue light. To investigate the effects of light on vegetative growth and 

asexual sporulation in A. alternata, cultures of the wild-type strain were incubated at 

28 °C for 12 days in dark and different light conditions. Cultures incubated in dark, red 

and far-red light exhibited dark brown coloration whereas they appeared pale upon 

exposure to blue, white and green light (Fig. 11A). Melanisation of spores was 

independent of light suggesting that the change of the colour of the cultures was 

dependent on the number of asexual spores produced (Fig. 11B). Whereas 

sporulation was promoted in cultures exposed to red and far-red light, continuous 

exposure of cultures to blue, white and green light resulted in sterile aerial hyphae and 

sporulation was drastically repressed. The effect in green-light was not as strong as 

the effect of blue and white light (Fig. 11C). 
Since a previous study suggested an interplay between the red and blue light 

system in A. alternata, we analysed the effect of red light on the cultures exposed to 

blue light. Cultures were grown for 48 h in dark and then exposed to 12h of blue light, 

followed by 12h of incubation in the dark, red or far-red light. Furthermore, we tested 

another illumination condition where 12h of blue light exposure was followed by 12h of 

red light, and again 12 h of blue light. All cultures were further incubated for 8 days 

after the respective treatments (Fig. 11D). The cultures exposed to red or far-red light 

after blue light exposure produced more spores than cultures incubated in dark after 

blue-light illumination. The red-light stimulation was nullified by another blue light 

exposure (Fig. 11E). This suggests an interplay between the red and blue-light 

photoreceptors as shown in the reversal of blue-light inhibitory ability upon exposure 

to red and far-red light. 
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Fig. 11. Light sensing and photoreversibility of blue-light inhibition of sporulation. (A) 
Phenotypic appearance of cultures inoculated with 5 × 104 fresh conidia of the A. alternata wild-
type evenly spread on mCDB plates and incubated at 28 °C for 12 days in the dark or at 
different wavelengths as indicate. (B) Microscopic pictures of spores in dark and blue-light (C) 
Quantification of the asexual conidia produced on the plates in panel (A). Three independent 
plates of each strain were analyzed, and the mean values for the three samples are displayed. 
The arrow bar represents the standard deviation. (D) Photoreversibility of blue-light inhibition 
of asexual sporulation by red or far-red light. All cultures first incubated for 48 h in the dark 
after which they were exposed to 12 h of blue-light followed dark incubation or exposure to 
12h of red or far-red light. Control culture was kept in the dark. All the cultures were further 
incubated in the dark until 12 days. (E). Quantification of asexual conidia from the cultures in 
panel D. Three independent plates of each strain were analyzed, and the mean values for the 
three samples are displayed. The arrow bar represents the standard deviation. 
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2.2  Generation of fphA, lreA and hogA- mutant strains using the 
CRISPR Cas 9 gene editing technology 

The A. alternata genome encodes photoreceptors for blue (LreA), red (FphA), and 

green (NopA and NopB) light sensing. In addition to these are other components 

including WC-2 (LreB), the velvet protein family and HogA which have been reported 

to be involved in light sensing and signal transduction in other fungi. The A. alternata 

LreA consists of 1025 amino acids, and similar to the N. crassa WC-1 harbors a LOV 

domain (with a cysteine residue binding site for the chromophore), a GATA-type zinc 

finger, two PAS domains, and a predicted NLS. FphA comprises 1,511 amino acids 

consisting of a PAS domain, a GAF domain and a PHY domain. It encodes a histidine 

kinase (HK) domain, ATPase domain, and a response regulator (RR) in the C-terminal.  

The cysteine in the PAS domain and the two nuclear localization signals (NLS) of the 

phytochrome of A. nidulans are conserved in A. alternata. An N-terminal extension in 

front of the photosensory domain is also conserved compared to FphA in A. 

nidulans and N. crassa. The hogA gene encodes an open reading frame (ORF) of 

1,068 bp interrupted by seven introns and giving rise to a polypeptide of 355 amino 

acids. It has a protein kinase ATP-binding region as well as a MAP kinase site. 

In order to assign a role(s) to FphA, LreA, and HogA in light sensing in A. 

alternata, we aimed to inactivate the respective genes using the CRISPR-Cas9 

technology. 20 nucleotide protospacer of the respective genes of interest (FphA, LreA, 

and HogA) adjacent to a 3′ AGG protospacer-adjacent motif (PAM) site close to the 

start of the ORF were selected and introduced into plasmid pFC332 by PCR and 

cloning (Fig. 12A& Fig. S1). The resulting plasmid which contains the Cas9 coding 

sequence from Streptococcus pyogenes (codon optimized for Aspergillus niger), 

hygromycin resistance cassette and the single-guide RNA (sgRNA) targeting the 

genes of interest (FphA, LreA, and HogA) were used for transformation of the wild-type 

strain (ATCC 66981). Hygromycin resistant transformants were then analysed for 

possible mutant strains. For fphA, 20 hygromycin-resistant transformants were 

obtained out of which two of the transformants exhibited morphological differences 

from the rest. In the case of lreA, 30 hygromycin- resistant transformants were 

obtained, with three exhibiting a changed phenotype. Two of the 10 transformants 

analysed for the loss of HogA function were positive. Presumptive positive 
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transformants with impaired phenotypes were further analysed via PCR and 

sequencing of the PCR products in order to ascertain the number of deleted 

nucleotides. Deletions of 3,398 bp and 535bp were obtained for lreA and hogA 

respectively whereas in the case of fphA, we detected a deletion and insertion of 528bp 

and 102bp respectively. There was no difference in the colony growth of the fphA and 

lreA mutant with the wildtype strains. In contrast, the loss of the HogA resulted in a 

defective radial growth. 

 
Fig. 12. Inactivation of the fphA gene using CRISPR-Cas9. (A) Scheme for the inactivation 
of fphA. The primers located upstream and downstream of the protospacer and the 
protospacer are indicated. The deletion is also shown. aa, amino acids. (B) Confirmation of 
the CRISPR-Cas9-induced inactivation of fphA by PCR using the primers indicated in panel A 
and genomic DNA as the template. (C) Comparison of the fphA mutant sequence (black) with 
the sequence of the wild type (red) revealed a 528-bp deletion with 467 bp of the fphA ORF 
and 61 bp of the 5′ untranslated region (UTR). The protospacer is underlined. The start codon 
is boxed. The dashed line shows the deleted nucleotides. The dotted line represents 961 
nucleotides which were also missing and not displayed here. (D) Pictures of colonies of the 
WT and the fphA, lreA, and hogA mutant strains incubated at 28°C for 4 days. 
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2.3 Phytochrome and the WC-1 orthologue LreA are involved in 
sporulation 

In order to understand the importance of FphA, LreA, and HogA in sporulation, we 

investigated the effect of different wavelengths on light regulation of sporulation in the 

wild-type and the fphA, lreA, and hogA mutant strains (Fig. 13A, B). Continuous 

illumination with red and far-red light promoted sporulation compared with cultures in 

dark. Sporulation was repressed in blue, white and green-light. In the dark, conidiation 

was reduced to 86% in the fphA mutant strain. Red and far-red light stimulation of 

sporulation was abrogated in the mutant. The phenotype change as a result of the loss 

of function of FphA was rescued after recomplementation with a wild-type copy of FphA 

(Fig. 14A, B). This result suggests that the FphA is a positive regulator of conidiation 

not only in light but also in the dark.  The inactivation of the lreA resulted into 51% 

reduction of conidia in the dark and no difference was observed in blue- light compared 

to the wild type suggesting the presence of additional blue light receptors. The 

reduction in sporulation in the lreA mutant strain was restored by recomplementation 

with a wild-type copy of LreA (Fig. 14A and B). The hogA mutant was drastically 

affected by continuous illumination as spore numbers were reduced to 48% in dark. 

However, the culture plates of the hogA mutant appeared black compared to other 

mutants and wild type strains suggesting a negative role for the HogA in melanin 

production in hyphae (Fig.15). Recomplementation of the hogA mutant with the wild-

type copy was impossible due to inability to isolate viable protoplast from the hogA 

mutant strain. 
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Fig. 13. Analysis of the number of asexual spores in the A. alternata wild type and 
the fphA, lreA, and hogA mutant strains under different illumination conditions. (A). 
Phenotypic appearance of cultures inoculated with 5 × 104 fresh conidia of the A. alternata wild-
type and corresponding mutant strains evenly spread on mCDB plates and incubated at 28 °C 
for 12 days in the dark or at different wavelengths as indicated. (B) Quantification of the 
asexual conidia produced on the plates in panel (A). Three independent plates of each strain 
were analyzed, and the mean values for the three samples are displayed. The arrow bar 
represents the standard deviation. 
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Fig. 14.  Recomplementation of the ΔfphA and ΔlreA mutant strains. (A) Colony 
appearance of cultures inoculated with 5 × 104 fresh conidia of the A. alternata wild-type, ΔfphA 
and ΔlreA and complemented strains evenly spread on mCDB plates and incubated at 28 °C 
for 12 days in the dark. (B) Quantification of the asexual conidia produced on the plates in 
panel (A). Three independent plates of each strain were analyzed, and the mean values for 
the three samples are displayed. The arrow bar represents the standard deviation. Statistical 
analysis was performed with Student’s t test,  **, P ≤ 0.01. 
 

Fig.  15.  HogA  negatively regulates the mycelial melanin production. (A) Pictures of 
mycelium of the WT, fphA-, lreA- and hogA-mutant strain incubated at 28°C (shaking culture) 
for 7 days in white light and dark conditions. (B) Quantitative analysis of melanin. Melanin was 
purified with 2 % NaOH and the absorbance at 459 nm was measured using the 
spectrophotometer. All experiments were done in triplicate. The arrow bar represents the 
standard deviation. Statistical analysis was performed with Student t-test: P ≤ 0.05 (*), P ≤ 0.01 
(**).  
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In A. nidulans, B. cinerea and B. bassiana, links between light and induction of asexual 

development genes were shown. Although the A. nidulans central regulator BrlA was 

not identified in the A. alternata genome, we found orthologues of many other proteins 

including the AbaA and WetA . A. alternata abaA ORF is composed of 2918 bp with 

three introns and two introns and is predicted to encode a 850 aa-length protein 

containing an TEA DNA- binding domain  which is conserved in A. nidulans and A. 

fumigatus. The wetA ORF comprises 1632 bp with no intron and is predicted to encode 

a 566 aa- length protein with a conserved C-terminal domain.  In order to assign a role 

for FphA and LreA in the regulation of asexual development at the gene level in A. 

alternata, we investigated light induction of five developmental genes (abaA, wetA, 

csp-1 and flbC) (Fig. 16). Mycelia of the WT and the fphA, and lreA mutant strains 

were grown in the dark at 28 °C for 36h and exposed to white light for 1 h. After RNA 

extraction, the amount of mRNA transcript was determined. Expression levels of abaA 

and wetA were strongly induced by light in the wild-type but lost in the fphA and lreA 

mutant strains. Hence, FphA and LreA appears to be positive regulators for abaA and 

wetA light induction. Next we tested the light regulation of the autophagy gene atg1 

and fluffy gene flbC whose expression has been shown to be light induced in B. 

bassiana and A. nidulans respectively. In A. alternata, the induction of atg1 and flbC 

required the FphA and LreA.  At last, we tested an orthologue of N. crassa csp-1 

(conidial separation-1). Light induction of this gene was independent of FphA but 

strictly dependent on LreA. Taken together the results suggest that FphA and LreA act 

as activators of asexual reproduction in A. alternata, while HogA plays an important 

role for the general fitness of the organism. 
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Fig. 16.  Expression analysis of asexual development genes in A. alternata wild type and 
the corresponding mutant strains. Spores of wild type (WT), fphA and lreA mutant strains 
were cultured on the mCDB surface at 28 °C for 36 h in the dark. Mycelium was exposed for 
1h to white light. Control samples were collected in the dark. RNA was isolated and the 
expression levels of the genes were normalized using H2B. The bars present mean values ± 
SD of three biological replicates. Statistical analysis was performed with Student’s t test, *, 
P ≤ 0.05; **, P ≤ 0.01. 
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2.4  Phytochrome but not LreA is indispensable in light inhibition of 
germination 

In order to test if germination of spores was affected by light, we investigated the effect 

of different wavelengths of lights on the germination rate. In complete medium at 28°C, 

germination occurred without delay and there was no difference in the wild type and 

the corresponding mutants except for the hogA mutant strain.  However, in minimal 

medium with glucose substituted with 1% glycerol and incubation at 22°C, we found 

that after 2 h, ca. 50% of the spores had germinated, and after 3 h, nearly all had 

produced a germ tube (Fig. 17A, B). In red light, 30% of spores germinated after 3 h. 

Far-red, white, blue and green-light also inhibited germination. Therefore, we 

hypothesized that FphA or LreA should be involved in light inhibition of germination 

following their activation by red or blue-light respectively. In the case of fphA mutant, 

the inhibition of germination was released irrespective of light qualities and dark 

conditions even though germination was faster in dark. This suggests that the FphA 

negatively regulates spore germination in dark and light conditions.  Similar to the fphA 

deletion strain, we hypothesized that the inhibition of germination in blue-light should 

be released in the lreA mutant strain.  Contrary to this prediction, blue-light as well as 

other lights still inhibited the germination of the lreA mutant strain. This suggest the 

presence of additional blue light photoreceptors involved in inhibition of germination by 

blue-light. Deletion of the hogA drastically affected germination in darkness and 

illumination conditions suggesting an important role for the HogA in light adaptability   
(Fig. 17A, B).  
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Fig. 17. Light regulation of conidial germination in A. alternata. Germination rates of 
conidia from wild-type and different mutant strains in darkness and under constant illumination 
conditions. A conidial suspension (105 /ml) was incubated in minimal medium on a coverslip 
and the percentage of number of germinated conidia determined after 2 h (A) and 3 h (B). The 
bars present mean values ± SD of three biological replicates. 
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2.5 LreA is involved in blue- and green-light-dependent 
biosynthesis of alternariol 

A. alternata is considered as the most important toxin producing species of the 

Alternaria genus. Since they are known as producer of a large spectrum of secondary 

metabolites among which are the mutagenic alternariol (AOH) and altertoxin (ATX) and 

are both stimulated by light, we analysed the effect of the inactivation of fphA, lreA and 

hogA on secondary metabolites biosynthesis under different illumination conditions. 

5000 spores of the wild-type and corresponding mutant strains were evenly spread on 

modified Czapek Dox broth (mCDB) agar plates and incubated for 7 days at 28°C . 

Alternariol was extracted in the agar medium using ethyl acetate and analysed with 

thin-layer chromatography (TLC). In the case of the WT, whereas we observed a slight 

increase in the amount of AOH produced in cultures exposed to red-lights compared 

to dark, there was no difference in other bands in red-light and dark (Fig. 18A). The 

continuous exposure of cultures to far-red and blue-lights resulted in the reduction of 

the amount of most bands with the exception of AOH. While there was no difference 

in the amount of bands produced in cultures exposed to white-light in comparison to 

dark, green-light promoted the amount of other bands with the exception of AOH. In 

dark, we observed no difference in the secondary metabolite profiling of the WT and 

corresponding mutant strains, though the amount of AOH produced in lreA mutant 

strain appeared reduced. The deletion of hogA resulted in the complete loss of AOH 

production irrespective of light or dark conditions. In contrast there was a large increase 

in the amount of a yellow band (probably altertoxin (ATX) produced under similar 

condition except in green-light in the hogA deletion strain. The inactivation of fphA and 

lreA resulted in reduced production of AOH under constant illumination with red, far-

red and even dark conditions.  

Furthermore, while the amount of AOH produced was drastically reduced in the 

lreA mutant strain in green-light, illumination with blue and white-light resulted in no 

AOH production in the lreA mutant suggesting an activating role for alternariol 

biosynthesis in green, blue and white-light with the exception of far-red light (Fig. 18A). 
In order to further analyze the effect of the inactivation of fphA, lreA and hogA on 

secondary metabolites biosynthesis at the molecular level , we studied the expression 

of the polyketide synthase (PKS) gene responsible for alternariol formation, pksI (Fig. 
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18B).The expression was stimulated by red and far-red light and to a lower extent by 

blue light. Red-light-dependent induction of pksI was lost in the ΔfphA, ΔlreA, and 

ΔhogA mutants. Contrary to our prediction, the induction of pksI was still observed in 

the ΔfphA mutant in far-red light suggesting additional far-red light effect which might 

be light independent (Fig. 18B).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 18. Analysis of secondary metabolites in the WT and mutant strains by thin-layer 
chromatography. (A) Extracts from the WT and mutant strains grown for 7 days on mCDB 
agar plates at 28°C in darkness or under different illumination conditions. Fresh conidia of the 
WT and fphA, lreA and hogA mutant were spread evenly on the agar surface. An AOH standard 
was applied on the TLC for comparison. (B) Expression analysis of the pksI gene involved in 
AOH biosynthesis. Liquid mCDB medium was inoculated with conidia and grown without 
shaking for 7 days. Mycelia were harvested, frozen in liquid nitrogen and processed for RNA 
extraction and real-time PCR analysis. The mean of the results from three biological replicates 
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and three technical replicates is shown. Expression was normalized to the expression of the 
H2B gene. 
 

2.6 Phytochrome, LreA (WC-1), and HogA regulate gene expression 

The red- and blue-light receptors in A. alternata appear to play similar but also unique 

roles compared to those in N. crassa, A. nidulans, B. cinerea and C. neoformans 

Therefore, the next question was about their roles at the gene level. To this end, we 

investigated light induction of five genes. The first candidate was ccgA. Light induction 

of ccgA or ccg-1 requires the FphA and hogA in A. nidulans and HogA and the WCC 

in N. crassa. Mycelia of the WT and the fphA-, lreA-, and hogA- deletion strains were 

grown in the dark at 28°C for 36 h and then exposed to white light for 30 min. After 

RNA extraction, the expression levels of tested genes were measured by real-time 

PCR and normalized to the H2B gene. Indeed, ccgA was induced to about 13-fold in 

the light compared to the dark (Fig. 19). In the fphA-deletion strain, light induction of 

ccgA was reduced to 20% and to even less in the lreA and hogA mutants. Hence, light 

induction of ccgA required the FphA, HogA, and LreA. The next candidate was the 

catalase gene catA, whose expression depended on the MAP kinase cascade in N. 

crassa. Similar to the regulation of ccgA, the inactivation of fphA, hogA and lreA 

resulted in a decrease in mRNA expression of catA. The same regulatory behaviour 

was true for a gene whose translational product shares similarity to short-chain 

dehydrogenases/reductases (AAT_PT02522). The gene was identified in A. 

nidulans in RNA sequencing (RNA-seq) approaches to isolate light-regulated genes 

Next, we tested the light regulation of ferA. This gene shares similarity to the fer gene 

of N. crassa, B. cinerea and C. neoformans; it encodes a ferrochelatase, an enzyme 

that catalyzes the terminal step of heme biosynthesis. The gene is light-regulated in a 

white collar-dependent manner In N. crassa, B. cinerea and C. neoformans. In A. 

alternata, it was strongly induced by white light. The light induction was independent 

of FphA but strictly dependent on LreA. In the hogA- deletion strain, light induction was 

still observed, although the mRNA expression was reduced in comparison to that in 

the WT. At last, we tested an orthologue of N. crassa bli-3 (blue light induced-3; 

unknown function). Light induction of this gene also required the LreA and HogA but 

not the FphA. The results indicate a complex regulatory network for light-regulated 
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genes in A. alternata, with similarities to N. crassa, A. nidulans, B. cinerea and C. 

neoformans. 

 
Fig. 19.  Expression analysis of light-induced genes in the WT, ΔfphA, ΔlreA and ΔhogA 
strains. Spores of wild type (WT), fphA, lreA and hogA mutant strains were cultured on the 
mCDB surface at 28 °C for 36 h in the dark. Mycelium was exposed for 30 min to white light. 
Control samples were collected in the dark. RNA was isolated and the transcript the expression 
levels of the selected genes were normalized using H2B. The bars present mean values ± SD 
of three biological replicates. Statistical analysis was performed with Student’s t test, *, 
P ≤ 0.05; **, P ≤ 0.01. 
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2.7 Light sensing and stress responses  

2.7.1 Multistress responses in A. alternata are dependent on FphA, 
LreA, and HogA 

The cross talk between light sensing and stress signalling cascade has been reported 

in several filamentous fungi including N. crassa, B. cinerea, A. nidulans, A. fumigatus, 

T. atroviride and B. bassiana. In order to assign a role for FphA, LreA, and HogA in the 

regulation of stress responses in A. alternata, we investigated the effect of osmotic, 

oxidative, and cell wall-degrading agents on the spores and mycelial plugs of wild-type 

and the mutant strains on medium supplemented with these chemical agents. Plates 

were incubated at 28°C for 4 days in the dark (Fig. 20A). There was no difference in 

the radial diameter of the fphA and lreA mutant to osmotic stress with NaCl and KCl or 

the cell wall stress compounds, Congo red and SDS compared to WT. 

The hogA mutant strain was highly sensitive not only to KCl and NaCl but also to other 

chemical agents tested. The inactivation of the fphA and lreA resulted in enhanced 

resistance of their spores to H2O2 and menadione compared to the WT strain (Fig. 
20A, B). We observed no significant differences between samples grown on medium 

supplemented with tested chemical agents under illumination conditions and darkness 

(data not shown). Unexpectedly, mycelia of all mutant strains were as resistant to 

oxidative stress as the WT strain (Fig. 21A, B). The results indicate that   different 

structures (mycelium and conidium) of A. alternata have different sensitivity to 

oxidative stress. 
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Fig. 20. FphA, LreA and HogA mediate stress response in conidia. (A) Colony growth of 
WT and the fphA, lreA and hogA mutant strains under different conditions (mCDB plates 
supplemented with 0.8 M NaCl, 1 M KCl, 5 mM H2O2, 1 mM menadione (MND), 0.25 mg/ml 
Congo red (CGR), or 0.1 mg/ml SDS) incubated for 4 days at 28°C in the dark. (B) 
Quantification of the colony diameter from the colonies in panel (A). The experiments were 
repeated three times and the arrow bar represents the standard deviation. 
 

 
 
 

 

 

 

 

 

 

 

 
Fig. 21.  FphA, LreA and HogA are dispensable in oxidative stress response in growing 
mycelia. (A) Mycelial plugs from the growing edge of 2-day colonies from the WT and mutant 
strains were used to inoculate mCDB plates supplemented with 4 mM H2O2, 6mM H2O2 and 
1 mM menadione (MND) and then incubated at 28◦C for 3days. (B) Quantification of the colony 
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diameter from the colonies in panel (A). The experiments were repeated three times and the 
arrow bar represents the standard deviation. 
 

In order to better understand the tolerance of oxidative stress in the conidia of 

the fphA and lreA mutant strains, we analysed the transcript levels of four superoxide 

dismutases and two catalases (CAT) genes in the presence of 4 mM H2O2 (Fig. 22). 

The transcript level of all tested genes was upregulated in the fphA and lreA mutant 

compared to the WT. Taken together, our results suggest a negative role for the FphA 

and LreA in the oxidative stress response that is independent of light.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 22.  Transcriptional profiling of light and/ or oxidative stress regulated genes and 
the role of FphA, LreA and HogA. Strains were grown on mCDB liquid medium for 18h 
(shaking) at 28◦C and then supplemented with 4 mM H2O2.  and further incubated for 30 
minutes. RNA was isolated as previously described and mRNA transcript expression levels of 
the selected genes were normalized using H2B. The bars present mean values ± SD of three 
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biological replicates. Statistical analysis was performed with Student’s t test, *, P ≤ 0.05; **, 
P ≤ 0.01. 
 

Several reports in filamentous fungi including N. crassa, A. nidulans, T. 

atroviride and B. bassiana suggested a cross talk between the phytochrome, white-

collar complex and the HOG signalling pathway. Therefore, we analysed the 

expression of selected genes (hogA, atfA, ccgA and bliC) in the WT and mutant strains 

in medium supplemented with/ without 0.8 M NaCl (Fig. 23). The inactivation of fphA 

and lreA resulted in reduced transcript levels of hogA, atfA and ccgA. LreA but not fphA 

is required for the induction of bliC. Deletion of hogA lead to complete abrogation of 

the induction of ccgA and bliC. 

 

Fig. 23. Transcriptional profiling of light and/ or osmotic stress regulated genes and the 
role of FphA, LreA and HogA. Strains were grown on mCDB liquid medium for 18h (shaking) 
at 28◦C and then supplemented with 0.8 M NaCl and further incubated for 30 minutes. RNA 
was isolated as previously described and mRNA transcript expression levels of the selected 
genes were normalized using H2B. The bars present mean values ± SD of three biological 
replicates. Statistical analysis was performed with Student’s t test, *, P ≤ 0.05; **, P ≤ 0.01. 
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2.7.2 Light induces an early transient phosphorylation of HogA 
through phytochrome and LreA  

Given that the MAP kinase cascade regulates several downstream targets once 

activated by phosphorylation and light has been reported to have stimulated this 

process in A. nidulans and T. atroviride, we then analysed if that also occurs in 

responses regulated by light through the phytochrome and LreA (WC-1) in A. alternata. 

Conidia were germinated for 3 h on coverslips in the dark, exposed for 5 min to red or 

blue light, and processed for immunostaining using the antiphospho-p38 MAP kinase 

antibody, which has been used to detect A. nidulans phosphorylated SakA (Fig. 24A). 
After illumination with red or blue light, HogA was rapidly phosphorylated within 5 

minutes and the fluorescence was detected in the cytoplasm and enriched in the nuclei.  

Phosphorylation decreased to basal level 15 minutes after the stimulus suggesting that 

HogA phosphorylation is an early light response subjected to a photoadaptation 

mechanism. Phosphorylation of the HogA was not detected in the fphA and lreA 

mutant strains. The results are in agreement with reduced expression of ccgA in the 

fphA and lreA mutant strains after illumination with red or blue-light (Fig. 24B).  
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Fig.  24. Transient phospho-activation of HogA by red and blue-light and the role of 
FphA and LreA. (A) Microscopic pictures of germlings of WT and mutant strains incubated in 
the dark or under red or blue-light. Conidia were germinated for 3 h at room temperature and 
processed for immunostaining. Scale bar = 5 µm. (B) Expression analysis of ccgA in the dark 
and under red- or blue-light conditions. Hyphae were grown for 36 h at 28°C and then exposed 
for 30 min to red or blue light. RNA was extracted and ccgA expression quantified by real-time 
PCR using H2B for normalization. The mean of the results from three biological and three 
technical replicates is shown. Statistical analysis was performed with Student’s t test, **, 
P ≤ 0.01. 
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2.8 Phytochrome is involved in temperature sensing in A. alternata 

2.8.1 Phytochrome modulates vegetative growth and asexual 
sporulation at high temperature 

There is evidence that the phytochrome is involved in temperature sensing in bacteria 

and plants (Njimona & Lamparter, 2011; Njimona et al., 2014; Legris et al., 2016; Jung 

et al., 2016; Burgie et al., 2017; Qiu et al., 2019). Most phytochromes have a C-terminal 

histidine kinase or a histidine kinase related region, which could act as temperature 

sensor. Temperature effects on the kinase activity and the absorption spectra of the 

sensory core (PAS-GAF-PHY) in vivo has been described for the bacterial 

phytochrome (Njimona & Lamparter, 2011; Njimona et al., 2014). Therefore, the next 

question was about the role of the FphA in temperature sensing in A. alternata. To this 

end, we investigated the effect of the inactivation of fphA on vegetative growth and 

asexual sporulation. We found that temperature shifts did not affect the sporulation of 

the WT strain in the dark whereas in the fphA-deletion strain, less conidia were 

produced at 33 °C than at 28 °C (Fig. 25 A, B). Light stimulation of sporulation in red 

light at 28 °C was lost in the WT after a temperature shift to 33 °C. Spore numbers 

were reduced to 72%. The loss of FphA resulted in reduced colony growth at 33 °C  

compared to the WT strain (Fig. 25 C, D). These results suggest a role for the FphA in 

adaptability to temperature changes. 
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Fig. 25. Effect of a temperature shift on sporulation and colony growth in A. alternata 
and the role of FphA (A) Colony appearance on mCDB plates inoculated with 5,000 conidia 
evenly spread on the agar surface and incubated at 28 °C and 33 °C   for 12 days in the dark 
or light conditions. (B) Quantification of the conidia produced on the plates in panel (A). Three 
independent plates of each strain were analyzed, and the mean values for the three samples 
are displayed. The arrow bar represents the standard deviation (C) Pictures of colonies and 
radial of the WT and fphA mutant strains incubated at 28 °C and 33 °C for 5 days (D) 
Quantification of the colony diameter from the colonies in (C). The experiments were repeated 
three times and the arrow bar represents the standard deviation  

2.8.2 FphA regulates gene expression in response to a temperature 
shift 

Since FphA regulates phenotypic response at high temperature, next we asked if A. 

alternata FphA could act as thermometer at the gene level. Hence, we analysed the 

transcript levels of four light induced gene (ccgA, catA, catB and catD) after the stains 

were subjected to a temperature shift.  Mycelia of the WT and the fphA-mutant strains 

were grown in the dark at 28 °C for 40 h. Thereafter, they were shifted to 28°C or 33°C 

respectively and further incubated for 15 minutes. Indeed, transcript levels of ccgA and 

the catalase genes (catA, catB and catD), were upregulated in the WT strain but 

reduced in fphA-deletion strain after a temperature shift from 28 °C to 33 °C in the dark 
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(Fig. 26). Therefore, the FphA is required for the induction of light-inducible genes at 

high temperature.  

 

Fig. 26. Expression analysis of light-responsive genes at different temperatures in A. 
alternata wild type (WT) and the ∆fphA strains. Spores of wild type (WT) and the fphA 
mutant strain were cultured on the surface of mCDB at 28 °C for 40 h in the dark. The mycelia 
were then transferred onto the surface of fresh mCDB pre-warmed to 28°C or 33 °C and 
incubated for 15 minutes in the dark. Then, the mycelia were frozen immediately in liquid 
nitrogen and RNA isolation was done as previously described and mRNA transcript expression 
levels of the selected genes were normalized using H2B. The bars present mean values ± SD 
of three biological replicates. Statistical analysis was performed with Student’s t test, *, 
P ≤ 0.05; **, P ≤ 0.01. 

2.9 Role of FphA, LreA and HogA in virulence of A. alternata  

Since A. alternata is a common food contaminant, we assayed the colonization 

potential of the WT, fphA-, lreA-, and hogA-mutant strains on tomato using conidia and 

mycelial plus of corresponding strains. Tomatoes were immersed in 70% ethanol for 5 

min, rinsed with sterile water, and air-dried in a clean bench. The air-dried tomatoes 

were wounded (approximately 1cm in depth) at the equator with a sterile scalpel prior 

to inoculation with 10 μl of 1 x 105 fresh conidia of the WT and mutant strains (Fig. 
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27A). In the case of mycelial plug assay, tomato was wounded with a cork borer 5 mm 

in diameter. Wounds were inoculated with mycelia plugs from 36 h actively growing 

plates of the WT and mutant strains (Fig. 27C). All samples were incubated at 20°C 

for 7 days in white-light and darkness for lesion development. In the case of tomato 

inoculated with conidia, we observed that necrotic lesions were slightly reduced on 

tomatoes infected with the lreA-mutant strain incubated in the dark and light as 

compared to WT (Fig 27A, B). The hogA-mutant strain did not cause any necrotic 

lesions. This could be due to the reduced fitness of the strain rather than a specific 

effect on pathogenicity. The fphA-mutant strain displayed enhanced pathogenicity 

irrespective of light and dark conditions compared to WT and the lreA-mutant strains. 

In contrast, all the strains with the exemption of the fphA mutant exhibited same pattern 

of aggressiveness on tomato inoculated with mycelia plugs (Fig. 27C, D).  
In order to further understand why the asexual conidia is more important in 

successful colonization compared to mycelia, we analysed the transcript levels of 

genes involved in reactive oxygen species (ROS) resistance in growing conidia 

supplemented with 4 mM H2O (Fig. 28). The transcript levels of all tested genes were 

upregulated in the fphA mutant with the exception of catB, in comparison to the WT. 

Deletion of lreA resulted in reduced transcript levels of all tested genes with the 

exception of the sodB and sodC genes. HogA is important for the induction of all the 

genes (Fig. 28). Taken together, our results suggest a negative role for FphA in 

virulence. 
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Fig. 27. Virulence assay on tomatoes. (A) Fresh conidia of the WT and the ∆fphA, ∆lreA and 
the ∆hogA mutant strains were inoculated on tomato fruits and incubated at 20 °C for 7 days 
in the dark or under white light. To the control tomatoes water was added instead of a spore 
suspension. (B) Quantification of the lesion areas in panel A. (C) Mycelia plugs from 36 h 
actively growing plates of the WT and mutant strains were inoculated in a 0.5 cm diameter hole 
and incubated as described above. (D) Quantification of the lesion areas in panel (C). The 
mean value was calculated from three biological replicates. The experiment was repeated 
three times. The arrow bar represents the standard deviation. Statistical analysis was 
performed with Student’s t test, *, P ≤ 0.05. 
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Fig. 28. Expression analysis of genes involved in reactive oxygen species (ROS) 
resistance in the growing conidia of WT, ΔfphA, ΔlreA and ΔhogA strains. Fresh spores 
of wild type (WT) and the mutant strains were scrapped from surface of mCDB plates, filtered 
and incubated at 28 °C for 2 h (shaking) in the dark and then supplemented with 4 mM 
H2O2.The samples were further incubated for 1 h. Thereafter, the spores were centrifuged, 
supernatant discarded, and the spore pellets were frozen immediately in liquid nitrogen and 
RNA isolation was done as previously described. mRNA transcript expression levels of the 
selected genes were normalized using H2B. The bars present mean values ± SD of three 
biological replicates. Statistical analysis was performed with Student’s t test, *, P ≤ 0.05; **, 
P ≤ 0.01. 
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3. Discussion 

3.1  A. alternata as a bridge between N. crassa and A. nidulans light 
sensing signalling cascade 

Light is an environmental signal that plays an important role for most organisms, either 

as a tool for information or source of energy. The fungal kingdom is estimated to 

contain over a million species, and it is estimated that a majority of them respond to 

light which influences several physiological and biological responses including 

vegetative growth, development, secondary metabolism and virulence. N. 

crassa photobiology is regulated by blue light in a WCC complex-dependent crassa 

(Bahn et al., 2007; Ballario & Macino, 1997; Chen et al., 2010b; Corrochano, 2007; 

Corrochano, 2011; Herrera-Estrella & Horwitz, 2007; Linden & Macino, 1997; 

Purschwitz et al., 2006). In contrast, early studies on the expression, regulation and in 

vitro photochemistry of the two red light photoreceptors PHY-1 and PHY-2 suggest a 

photobiological role which was rather unclear since  strains containing deletions 

of phy-1 and phy-2 were not compromised in any known photoresponses (Froehlich et 

al., 2005). However, few years later it was discovered that the loss of phy-2 or phy-1 

affected light- dependent expression of asexual development and early development 

genes.  phy-1 and phy-2 mutants also displayed defective sexual development. 

Protoperithecia formation commenced earlier in the Δphy-2 mutant upon exposure to 

red light suggesting that phytochromes regulates the switch between asexual and 

sexual reproduction (Wang et al., 2016).  

In A. nidulans, red and blue light induces conidiation and represses sexual 

sporulation (Blumenstein et al., 2005; Brandt et al., 2008; Purschwitz et al., 2008);  in 

contrast to A. fumigatus where red or blue light does not have an effect on asexual 

development (Fuller et al., 2013). Unlike in N. crassa, the A. nidulans LreA/LreB 

complex represses asexual development and promotes sexual development, whereas 

FphA represses sexual development and promotes asexual development (Bayram et 

al., 2010; Purschwitz et al., 2008). At the molecular level, the master regulator of 

conidiation brlA rapidly responds to light and the expression is dependent on the 

photoreceptor complex composed of a phytochrome FphA and white collar complex 

LreA and LreB as well as the fluffy genes (Ruger-Herreros et al., 2011). Similarly, blue 
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light regulates sporulation in B. cinerea and T. atroviride respectively. In B. cinerea, 

bcwcl1 mutant exhibited early and persistent conidiation under all light conditions with 

the loss of sclerotia development in comparison to the wild type. Overexpression of 

WCC prevents asexual development suggesting that the BcWCL1/BcWCL2 complex 

represses conidiation through the proliferation of aerial hyphae in response to blue- 

light. In several species of the genus Trichoderma, a brief pulse of light triggers 

conidiation (Canessa et al., 2013). Blue-light-induced conidiation in T. atroviride is 

mediated by the blue-light regulators BLR-1 and BLR-2 (Casas-Flores et al., 2004; 

Castellanos et al., 2010). Deletion of either blr-1 or blr-2 in T. atroviride resulted in the 

loss of conidiation upon exposure to light (Casas-Flores et al., 2004; Castellanos et al., 

2010). Similarly, the WCC orthologues; FgWc-1 and FgWc-2 negatively regulate 

sexual development in F. graminearum (Kim et al., 2015). However, deletion of the 

phytochrome (FgFph) exhibited no morphological defects in comparison to the wild 

type consistent with the observations in N. crassa and C. neoformans (Idnurm & 

Heitman, 2005; Froehlich et al., 2005). Phytochrome is crucial for conidiation in 

response to red/far-red light in B. bassiana (Qiu et al., 2014). 

In comparison to light-dependent asexual development in several filamentous 

fungi including A. nidulans and N. crassa, light also modulates asexual sporulation in 

A. alternata. Red and far-red promotes sporulation in A. alternata unlike in A. nidulans 

where far-red light reverses the red-light effect. In addition to this, blue, white and 

green-light inhibits sporulation. This is different from A. nidulans where blue and white 

light stimulate sporulation with the absence of a green-light effect. This suggests a 

more sophisticated photobiological response in A. alternata.  In related fungi, it was 

reported that photosporogenesis consists of two phases; inductive and terminal phase. 

Whereas light stimulates conidiophore formation in the inductive phase, the formation 

of conidia in the terminal phase is promoted in darkness. A brief exposure of conidia 

at the terminal phase to light impairs sporulation (Leach, 1967; Witsch & Wagner, 

1955). Another hypothesis in the regulation of sporulation by different light qualities in 

Alternaria is the fact that a mycochrome pigment system producing an unknown red 

substance is crucial for sporulation (Kumagai, 1986). Continuous exposure of culture 

plates to short wavelength in the blue light spectrum photooxidize the red substance 

resulting into inhibition of sporulation. However long-term exposure to red and far-red 

light (longer wavelengths) enhanced the production of this unknown red pigment 
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(Kumagai, 1986). Our findings show that FphA and LreA positively regulates asexual 

sporulation in A. alternata. The loss of function of lreA greatly impaired sporulation, 

whereas the FphA only regulates high level of spore production. Similarly, the dark role 

of the two photoreceptors in sporulation is in agreement to what has been reported in 

A. nidulans and N. crassa.  At the molecular level, both photoreceptors, phytochrome 

and the white-collar orthologue LreA, have activating functions with respect to the 

induction of asexual development genes. Another interesting observation was the fact 

that far-red light had the same effect as red-red light evident in the photoreversibility of 

blue light effect. Apparently, if red light causes photoconversion of FphA into the far-

red form (Pfr) and far-red light its reversion back to the red-light form (Pr), one would 

expect that FphA in the Pfr form is inactive and the strain should respond as in the 

dark. This apparent contradiction has been observed before in A. nidulans, Beauveria 

bassiana and  B. cinerea (Röhrig  et al., 2013; Qiu et al., 2014; Schumacher, 2017). 

The contradiction might be as a result of the possibility of a far-red sensing system with 

a maximal absorption in red light which do not affect photophysical properties but rather 

influences its molecular interactions. In plant, photoconversion and nuclear trafficking 

cycles influences phyA response to far-red light (Rausenberger et al., 2011). In fungi, 

the mechanism for far-red light responses has yet to be investigated. 

 Light may pose as a direct source of stress affecting radial growth and conidial 

germination. Similar to A. nidulans and A. fumigatus, red and blue light inhibited spore 

germination in A alternata. In contrast to A. nidulans and A. fumigatus, we observed a 

repressing role for green light in spore germination. Deletion of the fphA but not lreA 

resulted in the release of spores in light supporting the presence of additional blue light 

receptors. Interestingly, germination was already enhanced in the dark in the fphA 

deletion different from A. nidulans and A. fumigatus where there were no significant 

differences in the germination rates of the phytochrome mutants in the dark compared 

to the wild-type strains in the light. This suggests heterogeneity in phytochrome- 

mediated germination kinetics of spores across fungi.  

At the gene level, A. alternata responds to white, blue, red, far-red and green-

light producing an increase in expression of light-induced genes. This includes the 

ccgA which is unique compared to N. crassa and A. nidulans.  The expression of ccgA, 

catA and AAT_PT02522 genes are regulated by both the FphA and LreA in A. 

alternata. However, the light responsiveness of the genes is more impaired in the lreA 
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mutant compared to the fphA mutant strain. In addition, the ferA and bliC genes 

expression are strictly dependent on the LreA and not the FphA. It has been shown in 

in B. cinerea, C. neoformans, N. crassa and  P. blakesleeanus that the transcription of 

fer and bliC is induced in light in a White Collar complex (WCC)-dependent manner 

(Canessa et al., 2013; Idnurm & Heitman, 2010). In the case of ccgA, our result is 

different from N. crassa, where the expression of ccgA is strictly WC-1 dependent and 

A. nidulans where deletion of fphA but not lreA completely abrogate the induction 

of ccgA upon white light exposure. The importance of FphA and LreA in the induction 

of ccgA, catA and AAT_PT02522 might be that the LreA together with the white-collar 

orthologue LreB and the FphA acts a switch for light-dependent chromatin remodelling 

and gene expression. In the case fer and bliC, it could be that their expression is 

regulated by other modifies such as transcriptional co-regulators which interact with 

the chromatin structure.  

3.2  The MAPK HogA cascade as a hub for FphA and LreA- mediated 
responses  

The A. alternata HogA signalling pathway is similar to the stress activated protein 

kinase (SAPK) which have been extensively studied in S. cerevisiae, A. nidulans, A. 

fumigatus and other filamentous fungi (Brewster et al., 1993; Han & Prade, 2002; 

Kawasaki et al., 2002; Lara-Rojas et al., 2011; Fischer et al., 2016; Yu et al., 2016; 

Garrido-Bazan et al., 2018; Rispail et al., 2009; Manfiolli et al., 2019). SakA/Hog1p 

orthologs have been shown to have roles in osmotic and oxidative stress responses 

as well as responses to cell wall agents, injury, asexual and sexual development, 

fungicides and pathogenicity (Eaton et al., 2008; Heller et al., 2012; Lamb et al., 2012; 

Van Nguyen et al., 2013; Nimmanee et al., 2015). The SAPK pathways are activated 

via the phosphorylation of the conserved threonine and tyrosine residues in the TGY 

motif located in the catalytic domain which in turn activates the phosphorylation of 

various substrates resulting into the regulation of biological responses (Ferrigno et al., 

1998; Day & Quinn, 2019). Light acts as a stress cue  regulating DNA repair, ROS 

production, osmoadaptation transcription of genes encoding chaperones, secondary 

metabolites (Rosales-Saavedra et al., 2006; Schuster et al., 2007). 

. 
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Consistent with the role of Hog1 in osmoadaptation and various stress 

responses in S. cerevisiae, N. crassa and other filamentous fungi, deletion of hogA 

impaired virtually all physiological and metabolic processes in A. alternata. It became 

apparent that the MAPK HogA is a central regulator of all physiological and metabolic 

responses and important for fitness in A. alternata. One interesting observation was 

the fact that the conidia but not mycelia of the fphA and lreA mutants displayed 

enhanced resistance to hydrogen peroxide and menadione. These observations 

suggest that either A. alternata  uses different mechanisms of protection against 

oxidative stress in conidia and mycelia, or that germinating conidia are much more 

sensitive to stress, perhaps due to differences in in cell wall structure and composition, 

increased DNA replications and huge transcriptional shift required for germination to 

occur (Rosen et al., 1974; Sephton-Clark et al., 2018). The increased tolerance of the 

conidia of the fphA- and lreA mutants to oxidative stress is in agreement with the 

upregulated transcripts of all five SOD genes and four CAT genes in comparison to the 

WT strain. In B. bassiana, ΔBbphy showed increased antioxidant capability and 

upregulation of catalases and superoxide dismutases genes under oxidative stress 

(Qiu et al., 2014). Similarly, analysis of 15 histidine kinases mutants including the fphA 

in A. nidulans resulted into production of reactive oxygen species (ROS). However, 

there was no link between ROS production and oxidative stress response in the HK 

mutant strains (Hayashi et al., 2014). Our results suggest a repressing function of FphA 

and LreA in tolerance to oxidative stress in conidia of A. alternata. 

  Light activates the MAPKs from A. nidulans (SakA) and T. atroviride (TMK3) 

(Esquivel-Naranjo et al., 2016; Yu et al., 2016). Induction of light-inducible genes is 

impaired in both ΔsakA and Δtmk3 mutants. In A. nidulans, the accumulation of SakA 

in the nuclei is visible after few minutes of illumination with red or white light, but not 

with blue light. Light phosphorylate the MAPK SakA in an FphA-dependent manner 

(Esquivel-Naranjo et al., 2016; Yu et al., 2016). Deletion of lreA or lreA/lreB did not 

affect the SakA phosphorylation in red light/ blue light (Yu et al., 2016).  In N. crassa  

and T. atroviride, blue light activates the MAPK cascade in a WCC- dependent fashion. 

In N. crassa, dark and light responsiveness of the WCC complex modulates the 

expression of os-4 (MAPKKK) by binding to the promoter locus. Deletion of the WCC 

binding sites in the os-4 promoter affected os-4 expression and OS-2 phosphorylation 

rhythms (Lamb et al., 2011). Rhythmic expression of the histidyl-phosphotransferase 
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gene, hpt-1, which peaks in the evening was also indirectly regulated in a WCC-

dependent manner (Lamb et al., 2011). In the case of T. atroviride, the MAPK Tmk3 

was phosphorylated rapidly upon exposure to blue light in a Brl1-dependent 

manner.  In A. alternata, high-osmolarity induction of the transcription of hogA  and the 

transcription factor gene atfA depended on lreA and partially on fphA. The salt 

induction of ccgA and bliC showed a similar regulatory pattern with samples illuminated 

with white light. This is different from A. nidulans, where the MAP kinase SakA was still 

able to shuttle into the nuclei upon salt stress even in the absence of the FphA. We 

also observed a transient phosphorylation of the MAPK HogA upon exposure to red 

and blue light. Similar to red light stimulus, blue light could not cause HogA 

phosphorylation in the fphA and lreA mutant strains. Most importantly, A. alternata can 

distinguish between salt, oxidative and light signals.  This suggests a more 

sophisticated and interactive dialogue between the red and blue light receptors in A. 

alternata. 

3.3  Phytochrome as a thermometer for seasonal cues  

Bacteria respond to environmental stimuli via the two-component regulatory system 

consisting of His kinase sensors and response regulators (Gao & Stock, 2009). The 

ability to colonize and infect plant in Agrobacterium fabrum by Ti DNA transformation 

procedure has been shown to be dependent on the vir genes, which are under the 

control of the VirA-VirG two component regulatory cascade (Jin et al., 1993). At 

elevated temperature, the expression of vir genes are down-regulated due to the 

autokinase activity of virA which reduces upon temperature shift from 28°C to over 32–

37°C (Jin et al., 1993). Dark reversion of bacterial phytochrome Agp1 and histidine 

kinase activity of Agp1 and cyanobacterial phytochrome Cph1 has been shown to be 

temperature-dependent (Njimona et al., 2014; Njimona & Lamparter, 2011). Most 

importantly, the phosphorylation activity of the holo protein increases with a 

temperature shift from 5 °C to 25 °C and decreases with a temperature shift from 25 

°C to 40 °C. In addition, the spectral properties of Agp1 are influenced by temperature 

and these temperature effects are regulated via the His-Kinase domain. However, the 

effect of temperature sensing mediated by Agp1 AND Cph1 in vivo is yet to be 

established. The impact of Cph1 on gene expression is rather low and insufficient to 

be linked to a temperature effect (Hubschmann et al., 2005). 
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In plants, light and temperature regulates plant growth, development and 

metabolism. The effect of temperature on phytochrome-mediated germination has 

been investigated in Arabidopsis (Heschel et al., 2007). It was shown that phyA 

promotes germination at warmer temperature, whereas phyB was crucial for 

germination to occur across a range of temperatures. phyE deletion mutant was 

impaired in germination at colder temperature (Heschel et al., 2007).  This suggests 

the possibility that different phytochromes regulates germination at different 

temperatures indicating a differential and specialize role of individual phytochromes 

which are temperature-dependent.  In agreement with this finding, spectroscopic 

analysis of purified phyB revealed that warmer temperatures drastically induced the 

reversion of active phyB to its inactive form (Song et al., 2017; Jung et al., 2016; Legris 

et al., 2016). 

In bacterial phytochrome, temperature induced decrease of kinase activity in 

darkness and in the light as well as for the apophytochrome. P. aeruginosa 

phytochrome has been shown to regulate stress response, quorum sensing and heat 

tolerance. In filamentous fungi, the effect of phytochrome- mediated heat tolerance has 

been characterized. The human pathogenic fungus, A. fumigatus can grow at 50°C 

and even survives up to 75°C via a unique mechanism which regulates its adaptability 

to temperature changes in the environment and most importantly in the lungs  

(Hartmann et al., 2011). In addition, the MAPK SakA/HOGA pathway regulates 

adaptability to temperature shifts in both A. nidulans  and A. fumigatus (Ji et al., 2012). 

In A. nidulans, upon heat shock at 42°C, the induction of  two light-inducible genes 

ccgA and ccgB was drastically but not completely reduced in the fphA mutant. This 

suggests an additional role for the FphA in temperature sensing. In Aspergillus 

Kawachii, the transcript level of  gene  of ypdA, atfa and hogA of the HOG pathway is 

significantly downregulated upon a temperature shift from 40°C to 30°C (Futagami et 

al., 2015). Remarkably, common to fungal and bacterial phytochrome is the change of 

spectral properties at elevated temperatures. These recent findings are indicative for 

an early evolution of role of the phytochrome as a thermosensor prior to their role as a 

photoreceptor.  

In A. alternata, we provided evidence that phytochrome mediated vegetative 

growth, asexual development and gene expression in response to temperature shifts 

from 28°C to 33°C. Colony growth and sporulation of the fphA-deletion strain was 
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affected with an increase in temperature. Additionally, the stimulation of sporulation by 

red light at 28°C in the wildtype was lost after a temperature shift to 33°C. Consistent 

with that in A. nidulans, our results show that FphA regulates the expression of light-

inducible genes (ccgA, catA, catB and catD) upon temperature shifts. The loss of fphA 

resulted into a decrease in the expression levels of all tested genes compared to the 

WT. In agreement with our result, it has recently been shown that the Alternaria FphA 

Pr form absorption decreased by 10% upon a temperature shift from 15°C to 50°C, 

whereas a decrease from 50°C to 15°C promoted the full recovery of the spectra (Yu 

et al., submitted). This suggests that the observed in vivo phenotype upon temperature 

shifts may be attributed to the altered spectral properties of the His-kinase module of 

A. alternata phytochrome. Thus, the negative relationship between temperature and 

kinase activity of A. alternata FphA points to the biological role of FphA as a 

thermosensor of different seasonal cues crucial for stability and fitness of the organism. 

3. 4  Light perception and virulence in A. alternata  

Light is an important regulator of fungal pathogenesis and has been reported as a 

relevant variable with the potential to affect the outcome of the plant-pathogen 

interaction by modulating either plant defense responses, virulence of the pathogen or 

both. Supporting this concept, upon colonization or pathogen infection, light induced 

the synthesis of several compounds in plants. This includes low molecular weight 

compounds with antimicrobial properties such as phenolics, tannins, terpenoids and 

glucosinolates (Miranda et al., 2007; Mellway et al., 2009; War et al., 2012). A direct 

effect of light on fungi virulence ability is consistent with several findings on the role of 

light in the regulation of conidiation, spore germination, cell wall integrity, osmotic and 

oxidative stress responses and plant invasion by many fungi. Molecular studies have 

allowed the identification and characterization of different photoreceptors with roles in 

light-mediated plant invasion, in species such as Aspergillus, Botrytis, Neurospora, 

Sordaria, Candida, and Fusarium (Carvalho & Castillo, 2018). These light-responsive 

gadgets and photoreceptors have specific functions in stimulating asexual conidia and 

sclerotia formation, reactive oxygen species (ROS) homeostasis and secondary 

metabolism upon exposure to light or darkness (Schumacher, 2017; Yu & Fischer, 

2019). Increasing day lengths from 18 to 20–24 h with white florescent lamps suppress 

severity of powdery mildew (Podosphaera pannosa) in rose due to a reduction in the 
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quantity of spores produced and light inhibition spore germination (Suthaparan et al., 

2010). Thus, photoreceptors are involved in colonization potential of fungi. Analysis of 

the role of light or the WCC 1 orthologs, revealed a contribution to virulence though 

their precise function differs among fungi-host interactions. The involvement of WC-1 

orthologs in virulence have been shown for the causal agent of rice blast disease, M. 

oryzea as well as F. oxysporum, B. cinerea and the human pathogen C. neoformans. 

In M. oryzea and B. cinerea,  light-dependent disease suppression is mediated by the 

blue- photoreceptors WC- 1 (Kim et al., 2011b; Canessa et al., 2013);in contrast, the 

contribution of the WCC complex to virulence in C. neoformans is independent of light 

(Idnurm & Heitman, 2005). The role of the phytochrome in fungal virulence is not clear. 

In A. alternata, the link between photoreceptors, light regulation and stress 

adaptation may explain the observed effects of the inactivation of fphA and lreA on 

virulence. The release of spores irrespective of light and darkness and the upregulation 

of the intracellular concentrations of catalases and superoxide dismutases in the fphA 

mutant could directly lead to higher stress tolerance and better growth in tomato. If the 

increased tolerance of the fphA mutant is responsible for the increase in virulence, the 

question arises why the lreA mutant appeared less pathogenic. The key for the answer 

to this question could be that spore germination is inhibited by light in an FphA- 

dependent manner. Fungal spores provide protective cover against environmental 

assaults. Another reason could be the fact that LreA has a strong impact in the 

regulation of major development processes including secondary metabolite production 

and ability to cope with excessive light. In the absence of LreA,  and under white light, 

almost no AOH was produced. In agreement with this hypothesis it was recently shown 

that AOH is a colonization factor for virulence in A. alternata. Moreover, it was shown 

that the polyketide gene from the melanin biosynthesis gene cluster, pksA, was 

downregulated in the lreA-deletion strain (Saha et al., 2012). Melanin can act as a 

scavenger for reactive oxygen species and thus a reduction of the melanin content 

should lead to higher sensitivity towards the defense reactions of the tomatoes 

(Hamilton & Holdom, 1999; Heinekamp et al., 2012). As expected, deletion of hogA 

resulted in compromised lesion development.  We observed no significant difference 

in the virulence pattern of the strains when tomato was inoculated with mycelia plugs 

with the exception of the fphA mutant strain. One possible scenario is that isotopic 

growth/ spore germination is essential for the activation of transcriptional network 
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involved in cell wall biogenesis, protein synthesis and protein modification. Importantly, 

these network can serve as a regulatory unit that governs protective mechanism 

against stress and environmental stimuli (Rosen et al., 1974; Sephton-Clark et al., 

2018). Thus, the conidia are potential target for chemical inhibitors and antioxidants 

produced by the plant defense system. 

 Based on this study, we proposed a model of light signalling in A. alternata 

(Fig.30). Upon illumination, the WCC complex and phytochrome activates the 

expression of light-inducible genes via chromatin modification. The red and blue-light 

plugs into the HOG MAP kinase pathway activating downstream targets and 

responses. Several developmental processes in A. alternata are WCC and 

phytochrome-dependent though with distinct and overlapping roles. 
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Fig. 29. Proposed model of light signalling cascades in A. alternata. Red and blue light 
plugs into the HOG MAP kinase cascade activating downstream targets. Phosphorylation of 
HogA is stimulated by red and blue light and depends on phytochrome and the WC complex. 
The phytochrome and the WC complex along with VeA play probably regulates the expression 
of light-inducible genes via chromatin modification. Binding of the WC complex and of VeA to 
the promoter of light-regulated genes has been shown in A. nidulans but not yet in A. alternata. 
Many morphological and physiological processes are controlled in different ways by blue or 
red light. 
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4. Materials and Methods 

4.1 Chemicals and equipment used in this study 

Chemicals used in this study were purchased from Roth (Karlsruhe), Roche 

(Mannheim), Sigma Aldrich (Seelze), Sigma (Taufkirchen)，Invitrogen (Karlsruhe), 

Applichem (Darmstadt), IBA (Goettingen) and Serva Feinbiochemica (Heidelberg). 

DNA polymerases for PCR, restriction endonucleases, makers for DNA and 

SensiFAST SYBR & No-ROX One-Step Kit for mRNA quantification were 

manufactured by New England Biolabs (Frankfurt), Fermentas (St-Leon-Rot) and 

Bioline (Luckenwalde). Other chemicals are indicated in the text. Equipment and kits 

used in this study are listed in table 1 

 

Table 1. Equipment used in this study. 

Equipment  Type Manufacturer 

Microscopy  Axio Imager. Z1  

 

Nikon Eclipse E200 

Carl Zeiss Microimaging 

GmbH, Germany  

Nikon Instruments Europe  

BV, Amsterdam, 

Netherlands 

Autoclave  Biomedis Biomedis Laborservice 

GmbH, Germany. 

Real-Time PCR MyiQ™ Single Color 

Real-Time PCR Detection 

System 

Bio-Rad, U.S. A 

Dry oven Model 30-1060 Memmert GmbH, 

Germany 

Thermocycler  Labcycler & Gradient SensoQuest GmbH, 

Germany 

Heating block Thermo mixer 5436 Eppendorf, Germany 

Digital camera Canon PowerShot G15 Canon, Japan 
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Magnetic stirrer  Heidolph MR 3000 Heidolph, Germany 

 
Weighing instrument  

 

Kern 440-47N 

Satorius R200D 

 

Sartorius, Gottingen  

Kern, Germany 

pH meter  Hanna HI 208 Hanna, Romania 

Spectrophotometer 
 

ND- 1000 

JASCOV-550 

NanoDrop, USA 

JASCO GmbH, Germany 

Centrifuge 
 
 
Shaker/incubator 
 
 

Centrifuge 5415 R 

Centrifuge 5415 D 

Universal 320R 

Heraeus-Incubators 

series 6000 

HT Infors 

Kelinschutller KM-2 

Eppendorf, Hamburg 

Eppendorf, Hamburg 

Hettich, Tuttlingen 

Kendro, Langenselbold 

Infors AG, Switzerland 

Edmund Buhler GmbH, 

Tubingen 

Gel image 
 

FastGene® FAS-V 

Imaging System 

NEPON Genetics 

EUROPE GmbH 

Power supply apparatus  Power Pac 3000 Bio-Rad, Munich 

 

4.2 Microbiological methods 

4.2.1 Escherichia coli transformation and identification of positive 
clones  

Frozen aliquots of competent cells were first thawed on ice for 5- 8minutes, mixed with 

plasmid DNA or ligation mixture and incubated on ice for 20-30 min. The cells were 

heat-shocked at 42 °C for 45-60s and afterwards transferred on ice for 5 min. The cells 

were incubated at 37 °C at 180 rpm for 1 hr in 250 μl of SOC medium. After incubation, 

culture was pour-plated on agar medium containing ampicillin (100 µg/ml) for selection 

and incubated overnight at 37 °C. Colonies were picked and cultured in test tubes. 

Positive clones were determined by digesting the isolated plasmids with enzymes that 

excise the insert, followed by agarose gel electrophoresis. 
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Table 2.  E. coli growth media. 

Medium or stock  Composition  

SOC 2 % (w/v) tryptone, 0.5 % (w/v) yeast 

extract, 10 mM NaCl, 10 mM MgCl2, 2.5 

mM KCl, 10 mM MgSO4 and 20 mM 

glucose. 

LB 
1 % (w/v) tryptone, 0.5 % (w/v) yeast extract 

and 1 % (w/v) NaCl to pH 7.5 with NaOH. 

 

Antibiotic (1000x) 

 

100 μg/ml ampicillin. 

 

4.2.2 A. alternata transformation 

Fungal spores were harvested from an mCDB culture plate and inoculated into 200 ml 

liquid mCDB medium for overnight cultivation at 28°C and 180 rpm. The mycelium was 

harvested by filtering, washed with 0.7 M NaCl, and digested in a Kitalase suspension 

(150 mg in 15 ml of 0.7 M NaCl) for 1 h with gentle shaking at 120 rpm at 30°C. 

Protoplast quality and quantity were checked microscopically. Protoplasts were 

separated from cell fragments by filtering through two layers of Miracloth and 

precipitated at 2,430 rpm for 10 minutes at room temperature. The Kitalase solution 

was discarded, and protoplasts were washed once with 10ml of ice-cold 0.7 M NaCl, 

centrifuged at 2,430 rpm for 10 minutes. The supernatant was discarded, and 

protoplast resuspended in 400 μl STC solution. Ten micrograms of plasmid DNA was 

added to the protoplasts, followed by a 10 minutes incubation on ice. DNA uptake was 

induced with a heat shock at 42°C for 5 min, and after a 5 minutes incubation step on 

ice. The mixture was transferred to a 50 ml falcon tube and 1 ml of PEG solution were 

added to the protoplasts, followed by 15 minutes of incubation at room temperature. 
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The suspension was mixed with 50 ml warm regeneration medium and split into two 

petri dishes. After overnight incubation at 28°C, the transformation plates were overlaid 

with 15 ml warm regeneration medium containing hygromycin (80 μg/ml).  

Table 3. Solutions for A. alternata transformation. 

Buffer or Medium Composition (1 litre) 

0.7 M NaCl 40.9 g 1M 

STC 
182.2 g sorbitol, 10 ml TrisHCl 1 M (pH 7.5), 10 ml 

CaCl21M 

PEG in STC 40% polyethylene glycol 4000 in STC 

Regeneration 
342.3 g saccharose, 5 g hefeextrakt, 5 g casein-

hydrolysat, 7.5 g agar. 

Antibiotic (1000x) 80 ug/ml hygromycin 

 

 
Table 4. Media and stock solutions for A. alternata cultivation. 
Medium or Stock  Ingredients (1 liter) 

mCDB 
50 ml 20x Salt stock solution, 40 g glucose/10 g glycerol, 

pH 5.5 

20x Salt stock 
solution 

20 g NaNO3, 5 g NH4Cl, 20 g KH2PO4, 5 g KCl, 5 g NaCl, 

10 g MgSO4. 7H2O, 0.2 g FeSO4. 7H2O, 0.2 g ZnSO4. 

7H2O 
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Table 5. Strains used in this study. 

Strain Genotype Source 

ATCC 66981 Wild type Christopher Lawrence 

(Blacksburgh, VA, USA) 

SOI1 ∆fphA528 This study 

SOI3 ∆lreA3398 This study 

SOI4 ∆hogA538 This study 

SOI5 ∆fphA528 + Alt. fphA This study 

SOI6 ∆lreA3398 + Alt. fphA This study 

 

4.2.3 Culture conditions and quantification of conidiophores  

A. alternata ATC66981 cultures were grown on modified Czapek Dox broth (mCDB) 

and incubated for 12 days at 28°C. For white-light experiments, a 10-W energy-saving 

lamp (Flair energy) was used; for red-, far-red-, blue- and green-light conditions, light-

proof ventilated boxes with wavelength (680, 740, 450 and 550 nm respectively)-

specific LEDs were used. All plates were inoculated with 5x 104 conidial suspension 

quantification. Conidia were washed and harvested in 1% Tween 20, filtered for 

separation from the mycelium and diluted.  The number of conidia was counted in a 

Neubauer counting chamber.  

4.2.4. Assays for cellular stress 

Fresh conidia of different strains were collected from cultured grown on mCDB plates 

incubated at 28°C for 12 days.  Drops of conidial suspension containing 5000 of the 

WT or mutant strains of fphA, lreA and hogA were inoculated on mCDB supplemented 

with NaCl (0.8 M), KCl (1 M) for salt stress and with H2O2 (5 mM), menadione (1 mM) 

for oxidative stress. To assay tolerance to cell-wall degrading agents, Congo Red (0.25 

mg/ml) and SDS (0.1 mg/ml) were added to the medium. All cultures were incubated 

at 28°C for 4 days. The experiments were carried out in triplicate. 



Materials and Methods 

74 

 

4.2.5 Germination assay 

Fresh conidia containing 1 × 105 fresh conidia of the WT, fphA lreA and hogA mutant 

strains were inoculated into liquid minimal medium containing 1% glycerol. Four 

hundred microliters of the suspension was applied to a sterile coverslip, placed in a 

10-mm petri dish, and incubated at 22°C for 2 and 3 h in the dark or under light 

conditions (blue light [450 nm], green light [550 nm], red light [700 nm], far-red light 

[740 nm], or white light). To determine the rate of germination, a total of at least 100 

spores per sample were examined microscopically. All experiments were carried out 

in triplicate. 

4.2.6 Melanin assay 

The melanin composition of the WT, fphA, lreA, and hogA mutant strains was analyzed 

on mCDB liquid medium after incubation at 28°C (shaking culture) for 7 days. Mycelia 

of the respective strains were filtered and frozen in liquid nitrogen. The frozen mycelia 

were ground into powder, suspended in NaOH solution, and boiled at 100°C for 2 h. 

The solution was acidified to pH 2.0 with 5 M HCl and centrifuged at 10,000 × g for 

20 min. The resulting melanin solution was dissolved in 2% NaOH, and the absorbance 

at 459 nm was measured using a spectrophotometer. 

4.2.7 Extraction and analysis of secondary metabolites by thin-layer 
chromatography 

The secondary metabolites composition of the WT, fphA, lreA, and hogA mutant 

strains was analysed on mCDB plates grown for 7days at 28°C in darkness or under 

red, far-red, green, blue or white. Three disks from each plate were excised into 2ml 

Eppendorf tubes with the back of a blue pipette and the secondary metabolite 

component extracted by shaking with 1 ml ethyl at room temperature for 1h. The 

samples were centrifuged at 13000 rmp for 5 minutes and the solvent transferred to 

new 1.5 ml Eppendorf tubes. The solvent was thereafter vaporized in a speed vac and 

the pellet resolved in 100 μl ethyl acetate. 20 μl of the crude extract of the WT and 

mutant strains were applied on TLC plates coated with 0.25 mm silica gel as stationary 

phase (Pre-coated TLC plates SIL G-25, Macherey- Nagel, Düren, Germany). The 
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mobile phase composed of toluol, ethylacetate and formic acid (5:4:1).  As a standard, 

TLC-prepared AOH was used. The mycotoxins were visualized using UV light at 254 

nm.  

4.2.8 Immunofluorescence  

Fresh conidia were inoculated onto coverslips (placed in Petri dish) with 400 μl mCDB 

medium and cultivated for 3 h in the dark at room temperature. The samples were 

exposed to light or kept in the dark for 5 minutes before fixation. Fixation of samples 

was done in complete darkness with 3.7% formaldehyde in phosphate-buffered saline 

(PBS) buffer and incubated for 30 min at room temperature. The coverslips were 

washed three times for 10 minutes with 1x PBS buffer and thereafter transferred to 

new Petri dishes. The coverslips were incubated with 200 μl digestion solution for 1 h 

at room temperature. The coverslips were then washed three times for 10 minutes with 

1x PBS buffer.  The coverslips were incubated for 10 minutes at -20°C with precooled 

methanol. The methanol was removed, and the coverslips were washed two times for 

5 minutes with 1x PBS. 200 μl blocking solution were added to the coverslips and 

incubated for 15 minutes. The coverslips were transferred to new Petri dishes and 

incubated with antiphospho-p38 MAP kinase (Thr180/Tyr182) antibodies (no. 9211, 

1:400 dilution; Cell Signaling Technology, Beverly, MA) in TBST buffer with 5% BSA 

overnight at 4°C and washed three times for 10 minutes with TBST afterwards. Cy3-

conjugated anti-rabbit IgG secondary antibody (Jackson Immunoresearch, West 

Grove, PA) was used at a 1:200 dilution in 5% BSA in TBST. After 1 h of incubation, 

the coverslips were washed three times with TBST and mounted on microscope slides 

for observation. 

4.2.9 Virulence assay  

Virulence assay were conducted on pre-wounded tomato inoculated with conidial 

suspension as described previously with little modification (Zhang et al., 2014). Prior 

to inoculation, tomato was surface disinfected with 70% ethanol and carved by a sterile 

scalpel in a length of 1cm deep. 10 μl of fresh conidial suspension containing 105 of 

WT and mutant strains were inoculated on pre-wounded tomato. In the case of mycelial 

plug test, tomato was wounded with a cork borer 5 mm in diameter. Wounds were 

inoculated with mycelium plugs from 36h actively growing plates of the WT and mutant 
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strains. All samples were incubated at 20°C for 7 days for lesion development. Lesion 

on the surface of the tomato were measured manually while the extent of colonization 

was recorded using the Image J software. 

4.3 Molecular biological methods 

4.3.1 Polymerase Chain Reaction (PCR) 

Polymerase chain reaction was performed according to the manufacturer protocol with 

Q5 polymerase from New England BioLabs (Germany). Oligonucleotides were 

synthesized by Eurofins Genomics (Germany). dNTPs were purchased from Roth 

(Karlsruhe). The PCR program was modified based on the length of the amplicon and 

Tm of the primers. The program included a denaturation, initial step for 3 min at 98°C; 

all following denaturation steps for 20 s at 98°C; annealing, 5 cycles at 65°C for 20 s, 

5 cycles at 63°C for 20 s, 25 cycles at 58°C for 20 s; and elongation, 10 s at 72°C. 

Standard reaction mixture volumes were 50 μl, including 1 U Q5 reaction buffer, 

200 μM dinucleoside triphosphates (dNTPs), 0.5 μM primers, 1 U Q5, and 100 ng of 

plasmid DNA. The primers used in this study are listed in Table 6. 

4.3.2 CRISPR-Cas9 plasmid construction 

The CRISPR-Cas9 vectors with specific sgRNA genes, containing the respective 

protospacer sequences as well as a 6-bp inverted repeat of the end of the protospacer 

to complete the hammerhead cleavage site, were generated in a single cloning step. 

New protospacer sequences were inserted into the linearized pFC332 vector by 

combining two PCR fragments amplified from plasmid pFC334 and the pFC332 vector 

in a NEBuilder reaction (New England BioLabs, Frankfurt, Germany). The primers, 

which contain the variable regions, used to generate the sgRNA gene fragments were 

obtained from MWG Eurofins and listed in Table 6. The amplified fragments were 

flanked by 30-bp complementary sequences to each other and the linearized vector in 

order to generate the functional vectors in a single NEBuilder reaction. The fragments 

were amplified from pFC334 with proofreading polymerase Q5 (NEB) by a touchdown 

PCR program (denaturation, initial step for 3 min at 98°C; all following denaturation 

steps for 20 s at 98°C; annealing, 5 cycles at 67°C for 20 s, 5 cycles at 65°C for 20 s, 

25 cycles at 63°C for 20 s; and elongation, 10 s at 72°C). Standard reaction mixture 
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volumes were 50 μl, including 1 U Q5 reaction buffer, 200 μM dinucleoside 

triphosphates (dNTPs), 0.5 μM primers, 1 U Q5, and 100 ng of plasmid DNA. Plasmid 

pFC332 was linearized using PacI and assembled with the PCR fragments, following 

the NEBuilder protocol.  

Table 6. Oligonucleotides used in this study. The red letters indicate 

the protospacer sequences.  

Oligonucleotide  Sequence 5’ - 3’ 

Crispy 2.0_fwd GGTCATAGCTGTTTCCGCTGA 

Crispy 2.0_rv TGATTCTGCTGTCTCGGCTG 

Proto_fphA_fwd 
GTCCGTGAGGACGAAACGAGTAAGCTCGTCCAAC

TCTGGTCCTCCTCTACGTTTTAGAGCTAGAAATAG

CAAGTTAAA 

Hh_fphA_rv 
GACGAGCTTACTCGTTTCGTCCTCACGGACTCAT

CACAACTCCGGTGATGTCTGCTCAAGCG 

Proto_lreA_fwd 
GTCCGTGAGGACGAAACGAGTAAGCTCGTCAATA

GTCGCGCAGAACGACAGTTTTAGAGCTAGAAATA

GCAAGTTAAA 

Hh_lreA_rv 
GACGAGCTTACTCGTTTCGTCCTCACGGACTCAT

CAAATAGTCGGTGATGTCTGCTCAAGCG 

Proto_hogA_fwd 
GTCCGTGAGGACGAAACGAGTAAGCTCGTCCAA

GGACCAGCTTACTAGCCGTTTTAGAGCTAGAAAT

AGCAAGTTAAA 

Hh_hogA _rv 
GACGAGCTTACTCGTTTCGTCCTCACGGACTCAT

CACAAGGACGGTGATGTCTGCTCAAGCG 

fphA_test_fw CGTACTCTCGTCACGAGCAAG 

fphA_test_rv CTTGACGTCTAGTGCTTGGCT 

lreA_test_fw TCTGCTTGGCTGGGACATG 

lreA_test_rv GTGGCGGGATGAAGCCTT 
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hogA_test_fw ATCGCATTTGGTGCCTGCC 

hogA_test_rv AGCATGATCTCAGGGGCTC 

lreA_comp_fw GACCGGTGTTTATCGTCTCAG 

lreA_comp_rv GAAGCGAAGCAAGGCAAGAC 

fphA_comp_fw TACTCTCGTCACGAGCAAGTG 

fphA_comp_rv TGACGTCTAGTGCTTGGCTTG 

ccgA_RT_fw GTCAACTCTGTCAAGAACGC 

ccgA_RT_rv TTGATCTTGTCACCAGCAGC 

h2B_RT_fw ACAAGAAGAAGCGCACCAAG 

h2B_RT_rv CGTTGACGAAAGAGTTGAGAA 

fer_RT_fw TGGACCCTATATTGCACGGAG 

fer_RT_rv GGTGTTCGGACCATTTCCTGA 

bliC_RT_fw GACCCCTACACGCAGAAGAA 

bliC_RT_rv GGTCAACAGGCAGAACTTGGT 

AAT_PTO2522_RT_fw GTCAACGGTGCTAAGGTGTAC 

AAT_PTO2522_RT_rv CCTGCAATGTTCTGACCATGC 

hogA_RT_fw CCTGAAATACGTCCACTCCG 

hogA_RT_rv GAGACCGAAGTCGCAAATCTG 

atfA_RT_fw CACCGTACACAACCCATTCTC 

atfA_RT_rv CTCCAGGTGTCTGCAAGTTTC 

catA_RT_fw GGCATTCTTACCGACACATCG 

catA_RT_rv TGTGTAGAACTTGACGGCGAAA 

catD_RT_fw CAACGTCTCCCTCGACAAG 

catD_RT_rv CAGTGAGAAGCATCAAGTCGG 
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sodA_RT_fw ACACCACCATCTCATGGAACAT 

sodA_RT_rv CGTGTGTCTTGTTGTGGGGTT 

sodB_RT_fw GAGGCCAAGCAAAAGGAAGAC 

sodB_RT_rv GAAGAGGCTGTGGTTGATGTG 

sodC_RT_fw CATCAACCACTCGCTCTTCTG 

sodC_RT_rv GAACTTGTCCTCATCACCCC 

sodE_RT_fw GAGGCCAAGCAAAAGGAAGAC 

sodE_RT_rv GAAGAGGCTGTGGTTGATGTG 

pksI_RT_fw GGAAAACGTCACTTGGTGGA 

pksI_RT_rv TGTGCCTCTCGCAATTAGGA 

abaA_RT_fw CAAAAGTCACAACGTCACGGC 

abaA_RT_rv GTAGGTTCCTGTAGTGACGCA 

wetA_ RT_fw TACAATCAACTGAGGCACCGT 

wetA_ RT_rv AGCTGAAGGTTGGTGTTGAG 

flbC_ RT_fw CAATGGCAGTCGATAACGT 

flbC_ RT_rv GTGTGGTTGTTGTTGAGGGTA 

flbD_ RT_fw TCTGCATTGTTTTGGTGACCG 

flbD_ RT_rv GTCACAGCACGAGGATCAG 

csp-1_RT_fw GGTCGCAGAGTGTCATTGC 

csp-1_RT_rv CTGGAGGTCCTAGACTGGA 

atg1_RT_fw AGACCATGAGGAAAACGCCG 

atg1_RT_rv AATGCCTGGGACTCACGG 
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4.3.3 Purification of genomic DNA 

Prior to DNA purification, samples were loaded on agarose gel after PCR to check for 

purity and identify DNA fragments. 2 % Midori Green Advance DNA Stain (NIPPON 

Genetics EUROPE GmbH) which emits green fluorescence when bound to DNA were 

added to the gel. 1kb DNA ladder was loaded on the gel as a DNA size standard 

marker. Gels were run at 100 V – 135 V for about 20-30 minutes until and DNA was 

examined using the FastGene® FAS-V Imaging System (NIPPON Genetics EUROPE 

GmbH). DNA purification of fragments were done according to the manufacture’s 

protocol using the Zymoclean Gel Recovery kit (Zymo Research, USA). The 

concentration of the purified DNA fragments was determined by NanoDrop 1000 

(NanoDrop, USA). 

 

Table 7. Solutions for DNA agarose gel electrophoresis. 

Solution Composition 

50x TAE buffer 40 mM Tris-acetate, 1 mM EDTA, pH 8.0 

6x Loading buffer 
0.25% bromophenol blue, 0.25% xylene cyanol FF, 30% 

glycerol 

 

4.3.4 DNA digestion, cloning and sequencing 

Plasmids or DNA fragments were digested with appropriate restriction enzymes 

according to manufacturer’s protocol. Digestions was performed in 50 μl total volume 

and incubated at 37°C for 1 h. Fragments of DNA to be used for ligation was extracted 

from the gel as described in 4.3.5. Cloning of fragments was performed using 

NEBuilder HiFi DNA Assembly kit. The molar ratio of vector to insert was 1:1 in a 

volume of 20 μl incubated at RT for 30 minutes. For blunt end fragments, pJET1.2/blunt 

cloning vector was used. After the ligation, the sample was transformed to competent 

cells. Plasmid or genomic DNA fragments used for sequencing were amplified with Q5 

polymerase. Premixed DNA fragments (6ng/ul) in total volume of 15 μl with sequencing 
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primers were used for sequencing. DNA sequencing was done by commercial 

sequencing (MWG Biotech, Ebersberg). 

4.3.5 Plasmid DNA extraction from E. coli 

Plasmids used in this study were isolated from E. coli cells using a NucleoSpin Plasmid 

EasyPure kit (MACHENEREY-NAGEL, Düren). For quick and efficient way to extract 

E. coli plasmid DNA without commercial kits, the akali-lysis method was used 

(Sambrook et al., 1989).  E. coli was grown overnight in LB medium with appropriate 

antibiotics at 37°C. Cells were harvested in 1.5 ml Eppendorf tube by centrifugation at 

13000 rmp for 1 minute. The pellet was suspended in 200 μl Tris-EDTA buffer, mixed 

by pipetting or vortex. 200 μl of alkali buffer were added and mixed gently. 200 μl 

neutralization buffer were added to the mixture, inverted 4-6 times. The samples were 

incubated on ice and afterwards centrifuged at 13000 rmp for 10 minutes. 800 μl of the 

supernatant were transferred to a new 1.5 ml Eppendorf tube with 800 μl isopropanol. 

Samples were gently inverted and placed on ice for 30 minutes. Samples were 

centrifuged at 13000 rmp for 10 minutes at 4 °C. Supernatants were discarded and 

pellets were washed with 500 μl of 70% ethanol. Samples were centrifuged at 13000 

rmp for 5 minutes at 4 °C. Eppendorf were left open at room temperature to dry the 

pellet. The pellets were eluted in 20 μl TE buffer. 

 

Table 8. Solutions used for Plasmid DNA extraction (Alkali-lysis 
method). 

Solution Composition  

Tris-EDTA buffer 
2 ml 0.5 M EDTA (pH 8.0), 5 ml Tris-HCl (pH 7.5), 10 mg 

RNase in 100 ml 

Alkali-lysis buffer 0.2 M NaOH, 1% SDS 

Neutralization buffer 1.5 M Potassium acetate, pH 4.8 

TE Buffer 10 mM Tris-HCl, 1 mM EDTA; pH 8.0 
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Table 9. Plasmids used in this study. 

Name  Genotype   Source  

POI1 
fphA Cas 9 protospacer in 

pFC 332 vector 

This study 

POI2 
 

lreA Cas 9 protospacer in 

pFC 332 vector 

This study 

POI3 
hogA Cas 9 protospacer in 

pFC 332 vector 

This study 

PO14 fphA gene in pJet 1.2 vector This study 

PO15 lreA gene in pJet 1.2 vector This study  

PO16 
hogA gene in pJet 1.2 

vector 

This study  

 

4.3.6 Isolation of genomic DNA from A. alternata  

To a 1.5-mL Eppendorf tube containing 700 μl of lysis buffer, a small lump of mycelia 

from young culture is added by using a sterile toothpick, with which the lump of mycelia 

is disrupted or grind into powder using liquid nitrogen. The samples were incubated at 

68°C in a thermos mixer (gently shaking) for 30 minutes. After adding 375 μl of 8 m 

potassium acetate, samples were kept on ice for about 25-30 minutes and thereafter 

centrifuged at 13, 000 rpm for 20 minutes. 700 μl of supernatant were transferred to 

another 1.5-mL Eppendorf tube with an equal volume of isopropyl alcohol added. The 

tubes were mixed by inversion briefly and samples were incubated for 15 minutes at 

room temperature.  The samples were centrifuged at 13000 rmp for 10 minutes at 4 

°C. The supernatants were discarded, and the resultant DNA pellets were washed in 

200 μl of 70% ethanol. After the pellets was centrifuged at 13000 rmp for 5 minutes, 

the supernatants were discarded. The DNA pellets were air dried and dissolved in 50 

μl of deionized H2O or TE buffer. 1 μl of the DNA was used in 25 to 50 μl of PCR 

mixture.  
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Table 10.   Solutions used for genomic DNA extraction  

Solution  Composition 

Lysis buffer 50 mM EDTA, 50 mM pH 7.5 Tris-HCl 

8 M Potassium acetate 
5 M potassium acetate, 11.5 mL of glacial 

acetic acid, and 28.5 mL of distilled water 

 

4.3.7 RNA isolation and quantitative real-time PCR 

Fresh conidia were inoculated on the surface of liquid mCDB medium in a petri dish 

and incubated for 36 h in darkness at 28°C. Young mycelial mat was harvested in 

complete darkness or after 30 minutes of illumination (with white-light, red or blue LED 

lamps depending on the experiment) and frozen immediately in liquid nitrogen and 

stored at -80°C until RNA isolation. Frozen mycelia were ground into powder, and total 

RNA isolated using the E.Z.N.A. fungal RNA minikit (VWR). The isolated RNA was 

quantified, and an aliquot purified with RNA TURBO DNA- free KIT. RNA samples were 

diluted to a final concentration of 50 ng/ μl.  Quantitative real-time PCR reactions were 

carried out using gene- specific primers (Table 8), with SensiFAST SYBR & No-ROX 

One-Step Kit from Bioline (Luckenwalde, Germany). Each reaction mixture is 25 μl with 

0.2 μm primers and 100ng RNA. RT-qPCR was performed as follows : incubation for 

10 min at 50 °C for the reverse transcription reaction, then 5 min at 95 °C for the 

inactivation of reverse transcriptase , followed by 40 cycles of denaturation at 94 °C 

for 10 s, annealing at 58 °C for 30 s and extension at 72 °C for 15 s, followed by a 

melting curve analysis in order to check the specificity of fragment amplification. After 

each PCR, we performed melting curve analyses to show the specific amplification of 

single DNA segments and the absence of nonspecifically amplified DNA. Transcript 

levels of the target genes were normalized against with histone H2B gene expression. 

All of the measurements were repeated twice, each with three biological replicates. 
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4.3.8 Transcriptional profiling of osmotic and oxidative stress-
associated genes 

In order to investigate osmotic and oxidative stress responses, transcripts of genes 

induced by osmotic and oxidative agents were analysed. Prior to the addition of the 

stress agents, fresh conidia were inoculated in a 50-ml flask liquid mCDB medium and 

incubated for overnight at 28°C and 180 rpm.  The culture was then supplemented with 

0.7 M NaCl or 4 mM H2O2 and further shaken for 30 min. Total RNA isolation and real-

time PCR with respective primers for the genes of interest were performed as 

described above.  
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Appendix 

Suppl. Fig. S1: Inactivation of lreA and hogA using the CRISPR/Cas9 technology. (A) 
Scheme of the lreA locus with the protospacer used for inactivation indicated. The shown 
primers were used to amplify the region in WT and the ∆lreA mutant (B). (C) Scheme of the 
hogA locus with the protospacer used for inactivation indicated. The shown primers were used 
to amplify the region in WT and the ∆hogA mutant (D). (E, F) Sequence comparison of the WT 
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loci and the corresponding mutants. The dashed line shows the missing nucleotides (4,410 bp 
for lreA and 1,108 bp for hogA). The dotted line represents 949 nucleotides, which were not 
displayed here. 
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