KIT | KIT-Bibliothek | Impressum | Datenschutz

Understanding the Superior Stability of Single‐Molecule Magnets on an Oxide Film

Studniarek, Michał; Wäckerlin, Christian; Singha, Aparajita; Baltic, Romana; Diller, Katharina; Donati, Fabio; Rusponi, Stefano; Brune, Harald; Lan, Yanhua 1; Klyatskaya, Svetlana 1; Ruben, Mario 1; Seitsonen, Ari Paavo; Dreiser, Jan
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

The stability of magnetic information stored in surface adsorbed single‐molecule magnets is of critical interest for applications in nanoscale data storage or quantum computing. The present study combines X‐ray magnetic circular dichroism, density functional theory and magnetization dynamics calculations to gain deep insight into the substrate dependent relevant magnetization relaxation mechanisms. X‐ray magnetic circular dichroism reveals the opening of a butterfly‐shaped magnetic hysteresis of DyPc2 molecules on magnesium oxide and a closed loop on the bare silver substrate, while density functional theory shows that the molecules are only weakly adsorbed in both cases of magnesium oxide and silver. The enhanced magnetic stability of DyPc2 on the oxide film, in conjunction with previous experiments on the TbPc2 analogue, points to a general validity of the magnesium oxide induced stabilization effect. Magnetization dynamics calculations reveal that the enhanced magnetic stability of DyPc2 and TbPc2 on the oxide film is due to the suppression of two‐phonon Raman relaxation processes. The results suggest that substrates with low phonon density of states are beneficial for the design of spintronics devices based on single‐molecule magnets.


Verlagsausgabe §
DOI: 10.5445/IR/1000099209
Veröffentlicht am 09.12.2019
Originalveröffentlichung
DOI: 10.1002/advs.201901736
Scopus
Zitationen: 41
Web of Science
Zitationen: 40
Dimensions
Zitationen: 45
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2019
Sprache Englisch
Identifikator ISSN: 2198-3844, 2198-3844
KITopen-ID: 1000099209
HGF-Programm 43.21.04 (POF III, LK 01) Molecular Engineering
Erschienen in Advanced science
Verlag Wiley Open Access
Band 6
Heft 22
Seiten Article: 1901736
Vorab online veröffentlicht am 30.09.2019
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page