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Abstract: A key element in robust transit-time ultrasonic
flowmeasurement is the accurate estimation of the transit-
time difference. Conventional methods, such as cross-
correlation or the estimation in the phase domain, are lim-
ited in their robustness against signal distortions, inter-
fering signals or noise. In this work, we present a novel
method to estimate the transit-time difference through the
fusion of selected analytic wavelet packet coefficients. The
combination of the complex coefficients, which represent
a projection of the signal on analytic wavelets, with a con-
figurable time-frequency resolution allows a sub-sample
estimation at the frequency of interest. After giving an in-
troduction into the fundamentals of analyticwavelet pack-
ets based on multi-scale filtering, we introduce two fea-
tures that correlate strongly with the transit-time differ-
ence. The selection and fusion of these features is done
by using correlation coefficients with a calibration set and
principal component analysis. Finally, using a clamp-on
flowmeasurement system, the robustness against temper-
ature variation andmeasurement noise is shown and com-
pared with conventional methods.

Keywords: Time-frequency analysis, ultrasonic flow me-
tering, analytic wavelet packets.

Zusammenfassung: Ein wichtiger Baustein zur robusten
Ultraschall-Durchflussmessung, basierend auf dem Lauf-
zeitdifferenzprinzip, ist die genaue Schätzung der Lauf-
zeitdifferenz. Konventionelle Methoden, wie die Kreuzkor-
relation oder die Schätzung im Phasenbereich, sind in ih-
rer Robustheit gegenüber Signalverzerrungen, Störsigna-
len oder Rauschen beschränkt. In dieser Arbeit präsen-
tieren wir eine neue Methode zur Schätzung der Lauf-
zeitdifferenz durch die Auswahl und Fusion von Koef-
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fizienten aus analytischen Wavelet-Paketen. Die Kombi-
nation der komplexen Koeffizienten, die eine Projekti-
on des Signals auf die analytischen Wavelets darstel-
len, mit einer einstellbaren Zeit-Frequenz-Auflösung er-
laubt eine sub-sample-genaue Schätzung bei der relevan-
ten Frequenz. Nach einer Einführung in die Grundlagen
der auf Multiraten-Filterbänken basierenden analytischen
Wavelet-Pakete führen wir zwei Merkmale ein, die stark
mit der Laufzeitdifferenz korrelieren. Die Auswahl und Fu-
sion dieser Merkmale wird mithilfe von Korrelationskoef-
fizienten an Kalibrierdaten und der Hauptkomponenten-
analyse durchgeführt. Abschließend wird die Robustheit
gegenüber Temperaturänderungen und Messrauschen an
einem Clamp-on-Durchflussmesssystem gezeigt und mit
den konventionellen Methoden verglichen.

Schlagwörter: Zeit-Frequenz-Analyse, Ultraschall-Durch-
flussmessung, analytische Wavelet-Pakete.

1 Introduction

Using the transit-time difference (TTD) of ultrasonic sig-
nals for flow measurement, as shown in Fig. 1, has many
advantages, such as the possibility of a non-intrusivemea-
surement, the non-existence of moving parts and the fact
that no impurities in the fluids are necessary [6, 12]. It is
based on the principle that the waves sent in upstream di-
rection propagate slower than those sent in downstream
direction. The accuracy of transit-time ultrasonic flow
measurements is mainly dependent on the estimation
quality of the TTD [10], which, depending on the appli-
cation, may need to be better resolved than the sampling
time [12]. Therefore, classical methods for the TTD esti-
mation, such as cross-correlation [1] or the calculation of
the time interval between specific points, need to use an
interpolation and work with a high precision [12]. These
methods differ in their robustness against signal distor-
tions,measurement noise, and additive interfering signals
withoutmeasuring effect, which are caused by ultrasound
solely propagating through the pipe walls. Especially the
latter can cause high measurement errors [17] and needs
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Figure 1: Principle of transit-time based ultrasonic flowmeter.

to be damped using constructive methods [11] or algorith-
mic approaches [7, 16]. While the cross-correlation is ro-
bust against noise, it takes the whole signal into account
and is therefore problematic when there is an additive in-
terfering signal. In contrast, calculating the time interval
between specific points such as zero-crossings allows a lo-
cal information extraction, but is sensitive to noise. In or-
der to combine the advantages of the different methods,
ourmain objectivewas to findamethod for TTDestimation
that allows a compromise between local and global infor-
mation extraction and uses only signal parts with a high
robustness against both noise and interfering signals. For
this purpose, we use wavelets with compact support for
the analysis of the measurement signals, because of their
tunable time-frequency resolution.

In the context of ultrasonic flow measurements, sev-
eral methods to improve the TTD estimation are reported.
Kupnik et al. [10] improved the robustness against noise
and signal distortions by applying a linear fit in the phase
domain, but the evaluation area was still limited to one
period and the method is limited to narrow-band signals.
Aweighted version of the fit in the phase domain using the
envelope as weights was presented by Roosnek [16], who
also integrated a reduction of interfering signals by using
flow statistics. Another possibility is to reduce the noise
directly in a preprocessing step by the wavelet denoising
method shown by Hua et al. [6]. Unlike the local TTD es-
timation using specific points, correlation based methods
need to be combinedwith an interpolation to reach the de-
sired sub-sample precision. This in turn corrupts the ro-
bustness against noise, what, as shown by Guetbi et al.
[4], can be alleviated by relying on the cross-wavelet trans-
form.

A different approach to estimate the TTD uses the shift
theorem of the Fourier transform. It states that a shift in
the time domain turns into a modulation in the frequency
domain, which allows better time-delay resolutions, if
the Nyquist-Shannon sampling theorem is satisfied. If the
measurement signals have a narrow-band characteristic
and the dominant frequency is known, the TTD can then

be calculated from the phase shift between the upstream
signal x0(t−tu) and the downstream signal x0(t − td) by the
equation

Δtest =
1

2πf0
arg(

F{x0(t − td)}|f=f0
F{x0(t − tu)}|f=f0

) , (1)

with the estimated TTD Δtest, the dominant frequency f0
and the Fourier transform F{⋅}. However, applying a time
window before the Fourier transform is necessary to take
only signal parts with a measuring effect into account,
leading to the short-time Fourier transform (STFT).

Time-frequency analysismethods, such as the STFT or
the wavelet transform, are widely used in ultrasonic sig-
nal analysis. The range of application includes signal com-
pression [15], classification [13], denoising [4], frequency
or direction analysis in Doppler ultrasound systems [9, 19]
and filtering [14]. In our approach, we pick up on the idea
of using local frequency analysis to calculate the phase
shift between the upstream and downstream signal. For
this purpose, analytic wavelet packets (AWP) are used to
analyze both the upstream and the downstream signal re-
sulting in complex coefficients that describe the signals
in a time-frequency domain. In this context, AWP, first in-
troduced by Weickert et al. [22], represent an extension of
real-valued wavelet packets to get complex base functions
which build a Hilbert pair. Using this property, we can
read the phase shift directly from the argument of the com-
plex coefficients. In the next step, two features, namely the
phase shift and the magnitude of the difference between
the upstreamanddownstreamcoefficients, are calculated,
due to their linear correlationwith the TTD. In the last step,
these features are weighted and fused to estimate the TTD.

The remainder of this paper is organized as follows. In
Section 2, the fundamentals of the transformation, based
on the AWP, are summarized. Then, the algorithm with
all the necessary steps, such as the feature extraction,
selection, and fusion, is described in Section 3. Finally,
the robustness of the proposed method against noise, tur-
bulence and interfering signals is validated using ultra-
sonic flow measurements at different temperature condi-
tions and compared against themethodproposed byRoos-
nek [16].

2 Time-frequency analysis

The objective of time-frequency analysis is the transforma-
tion of signals into a domain, where the local frequency
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components, which are changing over time, are observ-
able. For time-discrete signals, this is equivalent to a de-
composition

x[n] =∑
s
∑
m
cs[m]ψs,m[n] , (2)

where the signal energy of the base function ψs,m[n] is
concentrated in a specific time range tm and frequency
range fs. Therefore, the coefficient cs[m] represents the fre-
quency component fs of the signal x[n] at the time tm. If
the base functions ψs,m[n] are orthogonal, the coefficients
cs[m] can be calculated by the inner product

cs[m] = ⟨x[n],ψs,m[n]⟩n . (3)

In the literature, several approaches to design thebase
functions can be found. One method, called the discrete
wavelet transform (DWT), is based on a multi-scale filter-
ing and uses a cascaded filter bank, where each level con-
sists of a low-pass filter gLP[n] and a band-pass filter gBP[n]
with a subsequent downsamplingby 2 (see theDaubechies
wavelets [3] for further details on the filter design). The re-
sulting base functions can be formulated as

ψs,m[n] = 2
−s/2 ψ[2−sn −m] , (4)

with the integer scale s, representing the number of levels
in the cascade, and the time shiftm in samples.

Since the DWT works with downsampling, a time-
shifted signal can lead to a completely different result in
the time-frequency domain. Another problem of the real
DWT is the oscillation of the resulting coefficients even if
the signal energy in the corresponding frequency range is
constant. This effect can be explained by the phase de-
pendency of the inner product between real-valued har-
monic signals. An extension of the DWT to enable a time-
frequency analysis with complex base functions, compa-
rable to the Fourier transform, is realized by an additional
tree for the imaginary part of the base functions. The base
function of the imaginary tree ψIm

s,m[n] and the real tree
ψRe
s,m[n] need to build a Hilbert pair, so that the complex

base function

ψs,m[n] = ψ
Re
s,m[n] + jψ

Im
s,m[n] (5)

is an analytical signal. This is important to lessen the
aforementioned oscillations of the resulting coefficients
and to improve the translation invariance of the transfor-
mation. The resulting complex coefficients can thenbe cal-
culated by

cs[m] = ⟨x[n],ψs,m[n]⟩n
= ⟨x[n],ψRe

s,m[n] + jψ
Im
s,m[n]⟩n

= cRes [m] + j c
Im
s [m] . (6)

Figure 2:Multi-scale filter bank for the AWP.

This method, called the dual-tree complex wavelet trans-
form (DT-CWT), was described by Selesnick et al. [18].

For the analysis of ultrasonic signals, using the stan-
dard wavelet bases with high frequency resolution for
lower frequencies may not yield the best representation
and is not adaptable enough. Therefore, in this work, the
measurement signals of the ultrasonic transducers are an-
alyzed using the AWP (see Fig. 2 for an example with two
levels). Compared to the DT-CWT, the band-pass signals
are also split up further, resulting in a full tree with a spe-
cial filter arrangement, as explained in [22]. Note that the
notation of the resulting coefficients cRes,k[m] and c

Im
s,k[m] in

Fig. 2 is extended to contain the AWP scale s and the fre-
quency sub-band k. For the application of the AWP, the
free parameters scale s, filter types and filter length need
to be set. As described in Selesnick et al. [18], the first level
filters have to meet different requirements than the subse-
quent filters in order to get analytical base functions. For
the first level filters the relation

gImLP,0[n] = g
Re
LP,0[n − 1] (7)

has to be fulfilled, which can be realized through the
Daubechies-10 wavelets [3] and a shift by one sample. For
the subsequent filters the so called half-sample-delay con-
dition

gImLP [n] = g
Re
LP[n − 0.5] (8)

has to hold. Therefor a special type of filter, which is
conform with (8), has to be used, such as the Q-shift-14
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wavelets [8]. The lengths of both filters are chosen consid-
ering the steepness of their frequency response and the
similarity of the resulting base functions with the mea-
surement signals. The choice of the scale s is dependent on
the frequency range of interest and the sampling rate. Un-
der the assumption that the frequency band is equally split
at each level and the signal x[n] has half the sample rate fs
as frequency resolution according to the Nyquist-Shannon
sampling theorem, the scale-dependent frequency resolu-
tion Δf can be approximated by

Δf = fs
2s+1
. (9)

This leads to s ∈ [5, 10] as reasonable choices, when the
frequency of interest is between 500 kHz and 1MHz and
the sampling rate fs = 50MHz is used.

The result of the AWP, using the signal x[n] as input, is
a set of coefficients cRes,k[m], c

Im
s,k[m], which canbe combined

to complex-valued coefficients cs,k[m] using (6). Applying
the AWP to a typical measurement signal (see Section 4)
results in the time-frequency representations depicted in
Fig. 3. It can be observed that the scale s = 6 leads to a
higher time resolution, whereas s = 8 leads to a better fre-
quency resolution. Becausewe only use coefficients on the
same scale and to improve clarity, the index for the scale
is omitted in the following section.

Figure 3: Different time-frequency representations resulting from
the normalized magnitude of AWP coefficients of an example signal:
scale s = 6 (left) and s = 8 (right).

3 Robust estimation of the
transit-time difference

The principle of ultrasonic flow metering using TTD, as
shown in Fig. 1, can be explained as follows. An excita-

tion signal is sent in both directions, upstream and down-
stream. Since the signals need a different time to propa-
gate through the fluid, depending on the fluid velocity, the
measurement model can be described as

xu(t) = x0(t − tu) + eu(t) + nu(t) , (10a)
xd(t) = x0(t − td) + ed(t) + nd(t) , (10b)

with the direct propagation signal x0(t), the electronic
noise n(t), and the various deterministic effects like reflec-
tions or interfering signals eu(t), ed(t). In this measure-
ment model, the indices u and d denote upstream and
downstream components, respectively. From the geome-
try of the setup with the axial distance Δx and the speed
of sound c0, the fluid velocity

vF ≈
Δt c20
2 Δx
, Δt = tu − td (11)

can be derived approximately, if the relation c0 ≫ vF
holds [6]. Further examination of (11) shows that the TTD
at constant flow is dependent on the speed of sound c0,
which in turn is dependent on the temperature [5]. For ex-
ample, assuming that water is used as medium and the
flow is kept constant, an increasing temperature in the
range [20 ∘C, 70 ∘C] leads to a reduced absolute transit-time
of the ultrasonic waves and a reduced TTD, because c0 is
increasing. It has to be noted that only the average velocity
along the propagation path is calculated by (11). In order
to get the real average velocity, the flow profile has to be
considered by a correction factor, which is dependent on
the Reynolds number [21].

3.1 Feature extraction and calibration

The measurement signals xu[n], xd[n] are transformed by
the AWP, as described in Section 2, to get a set of AWP co-
efficients cuk [m], c

d
k [m], respectively. Now robust features

have to be extracted which have a linear relationship with
the TTD. Therefor, a set of features

F = {
!!!!!c
u
k [m] − c

d
k [m]
!!!!! , arg(

cuk [m]
cdk [m]
)} ,

k = 1, 2, . . . ,
m = 1, 2, . . . ,

(12)

containing a magnitude feature and a phase feature for
all the sub-bands k and all the time shifts m, is calcu-
lated. Since the interfering signals are almost identical for
the upstream and downstream direction, their influence
is suppressed by calculating the magnitude of the signal
difference. If the TTD is sufficiently small against the pe-
riod duration of the dominant frequency, a linear relation-
ship between the amplitude of the difference signal and
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the TTD is to be expected. Instead of subtracting the sig-
nals of each other and calculating the AWPafterwards, the
order can be reversed and the time-frequency coefficients
can be subtracted like in the magnitude feature presented
in (12). This works due to the linearity of AWP and has the
advantage that both features can be calculated at the same
point. The secondkind of feature in (12) ismotivated by the
shift theoremof theFourier transform, as formulated in (1).

The elements of the feature set ξ ∈ F have to be eval-
uated regarding their linearity with the TTD. Therefore, a
calibration set with L measurements and the correspond-
ing ground-truth data Δt = [Δt1, . . . ,ΔtL] is needed. The L
measurements lead to L realizations for every single fea-
ture ξ in the feature set F . These realizations and their
ground-truth can be used to calculate the correlation co-
efficient

rΔt,ξ =
L
∑
l=1

(Δtl − Δt) ⋅ (ξl − ξ )

√∑Ll=1(Δtl − Δt)2 ⋅∑
L
l=1(ξl − ξ )2

(13)

as an evaluation of the linearitywith the TTD, for every fea-
ture ξ in the feature set F . Note that ̄(⋅) denotes the arith-
metic mean over the realizations. If the magnitude of the
correlation coefficient is almost 1, the feature has a lin-
ear relationship with the TTD, and due to this, is robust
against interfering signals.

Figure 4 shows the magnitude of the correlation co-
efficients calculated by (13) in dependency of their corre-
sponding time tm and frequency fk . In this example, the
calibration set which is presented in Section 4, is used.
In comparison with Fig. 3, it can be seen that the highest
correlation coefficients relate to the dominant frequency
of the signal. Furthermore, the correlation coefficients in-
crease at the arrival time of the direct propagation signal.
The highest correlation coefficients in both feature maps

Figure 4: Correlation coefficients of the magnitude feature (left) and
the phase feature (right).

are almost equal to 1, which confirms the choice of the fea-
tures.

For the selection of robust features, a threshold γ has
to be defined. Every feature whose correlation coefficient
satisfies |rΔt,ξ | ≥ γ is selected. Figure 5 shows the selection
of the features for the threshold γ = 0.995, represented
as a mask for the time-frequency domain of both features.
It can be seen that all selected features are from similar
branches, mostly at the absolute arrival times of the direct
propagation path and the first reflection.

Figure 5:Mask of the selected features (γ = 0.995): the magnitude
feature (left) and the phase feature (right).

Suppose P features were selected, then these features
can be arranged with their L realizations in the matrix

Ξsel =
[[[

[

ξ1,1 . . . ξ1,L
...

. . .
...

ξP,1 . . . ξP,L

]]]

]

. (14)

In order to build a relation between the features and the
TTDs, the matrix Ξsel needs to be transformed by using a
linear model.

T = Â Ξsel + b̂ I
T (15)

with

IT = [1, . . . , 1] ∈ ℝ1×L , (16)

Â = diag(â) ∈ ℝP×P , (17)

âp = median{ Δtl − Δt
ξl,p − ξ p

}
l
, (18)

b̂p = Δt − âp ⋅ ξ p . (19)

Equation (15) can be interpreted as follows. For every fea-
ture, the model parameters âp, b̂p of a separate linear
model have to be estimated, which can be done by a least-
squares estimation or a median-based method. Since the
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least-squares estimation is susceptible to outliers, the me-
dian based method (18), (19) is preferred and listed in this
method.

After the P selected features are mapped onto the
ground-truth vector Δt, resulting in P estimations of the
TTD T, a fusion into a single improved estimation Δtest is
necessary. To this end, two different methods were devel-
oped, which differ in their complexity and their robust-
ness. Both methods deliver a weight vector w, whereby
a weighted arithmetic mean can be calculated. The first
method, named the AWPMax, uses the feature with the
maximum correlation coefficient, reducing the arithmetic
mean to a maximum operation. For the second method,
namedAWPPCA, theweight vector is calculatedby theprin-
cipal component analysis (see [2] for further reference).
Therefor, the eigenvalue decomposition of the covariance
matrix

cov(T) = (T − E{T})(T − E{T})T = VΛVT (20)

is calculated.With thefirst eigenvectorv,which represents
the direction of the largest variance over the L realizations,
the weight vector is formed by the normalization

w = v
∑Pp=1 vp

. (21)

For future measurements, the model parameters â, b̂
and weight vector w can be combined. That forms the so-
called fusion weights:

ã = wTÂ , (22a)

b̃ = wTb̂ . (22b)

3.2 Estimation algorithm

After the selection of the features and their corresponding
fusion weights, the second part of the AWP method per-
forms the estimation of the TTD for new measurements.
Because only a few features are chosen, as shown in Fig. 5,
the AWP tree is simplified to calculate only the necessary
branches, which in case of the AWPMax is only one branch.
The coefficients of these branches are subsequently trans-
formed into the feature space using (12) and arranged in
the feature vector ξ sel. Alternatively, the whole tree can be
calculated and transformed into the feature space, from
where the necessary features are chosen according to the
selectionmask. Finally, the TTD can be estimated from the
selected features by

Δtest = ã
T ξ sel + b̃ . (23)

Figure 6: Flow chart of calibration and estimation algorithm.

Figure 6 depicts an overview of the AWP method in
form of a flow chart. Summarized, the method can be sep-
arated in two parts, namely the calibration and the estima-
tion part. In the calibration part, after the signals are ana-
lyzed by the AWP and transformed into the feature space
F , every feature is evaluated by the correlation coefficient
rΔt,ξ . In the next step, the features, whose correlation co-
efficients are exceeding the threshold γ, are mapped to a
matrix T using a linear model (15). In the last step of the
calibration part, the fusion weights are calculated by the
combination of the model parameters and the weight vec-
tor using (22). Finally, the selection mask and the fusion
weights are used in the estimation part for selecting the
AWPcoefficients, transforming them into the feature space
and fusing them.
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4 Experimental results
For the validation of the proposed methods, which in
the following are referred to as the AWP method with
fused features (AWPPCA) and the AWP method with the
best feature (AWPMax), two data sets, namely a calibration
set C and a test set T , were recorded from an ultrasonic
flow measurement system with water as the medium (see
Fig. 7). Thepipewasmadeof stainless steel andwaspart of
a circular flow with a pump to control flow, a heating ele-
ment to control the temperature and a reference flowmeter
to get the ground-truth TTDs. In order to get a fully devel-
oped turbulent flow profile, a flow straightener in combi-
nation with a sufficient inlet length was used.

Figure 7: Ultrasonic flow measurement setup (not to scale). Three
different propagation paths are shown: direct propagation (solid),
first reflection (dashed) and interfering signals (dashdotted).

The data acquisition was performed at a sample rate
of fs = 50MHz using a preamplifier and a PXIe-1062 station
with a PXIe-5171 ADC module and a PXI-5412 DAC module,
which also controlled the pump and the heating element.

As calibration set C, we repeated a flow sequence

vF[m] =
{{{
{{{
{

0.3m/s m ∈ {1, 2, . . . , 60}
0.6m/s m ∈ {61, 62, . . . , 100}
1.2m/s m ∈ {101, 102, . . . , 130}

(24)

19 times with different temperatures Ti ∈ [19 ∘C, 32.7 ∘C] to
cover the whole range of process parameters. As training
set T , we performed 1911 measurements, while the flow
has been kept constant at vF[m] = 1m/s and the temper-
ature was increased from 19 ∘C to 32.6 ∘C. Every measure-
ment consists of one upstreamandone downstream signal
for each clamp-on transducer pair T1/T2 and T3/T4, which
are arranged as shown in Fig. 7. Due to the pipe material,
the geometric structure and the excitation signal

u0(t) = A ⋅ exp(−
(t − t0)2

2σ2
) ⋅ cos(2πf0t) , (25)

with A = 10V, t0 = 5 µs, σ = 1.5 µs, and f0 = 700 kHz,
the measurement signals contain a high level of interfer-
ing signals, the direct propagation signal and the first re-
flection signal.

On the basis of the calibration set and the test set,
AWPPCA and AWPMax are compared with the TTD estima-
tion that uses the absolute times of a fixed zero-crossing in
the direct signal, as proposed by Roosnek [16]. Using the
installed reference flowmeter and (11), we can calculate
the ground-truthΔt(T) for every temperature.Note that the
temperature dependency of c0 has to be considered, if (11)
is used, whereas the flow profile can be neglected in this
scope, as the relation between the features and the TTD is
calibrated (see Section 3.1) and the same calibration val-
ues are used in the evaluation of the method. Thereby, the
constant correction factor resulting from a constant flow is
eliminated and the remaining error resulting from the vari-
ation of the Reynolds number between 20 ⋅103 and 130 ⋅103

during the calibration is approximately 0.5% [23]. The rel-
ative temperature-dependent measurement error

E(T) = Δtest(T) − Δt(T)
Δt(T)

(26)

is then used to evaluate the systematic error by the peak-
to-peak difference

ΔEmax = max
T

Esys(T) −min
T

Esys(T) (27)

of the median filtered measurement error Esys(T). Further-
more, the robustness against noise and turbulence is in-
vestigated using the standard deviation of the measure-
ment error after the systematic error has been corrected:

σE = √
1

N − 1

N
∑
n=1
(E(Tn) − Esys(Tn))2 . (28)

In Fig. 8, the temperature dependency of themeasure-
ment error is shown for Roosnek’s method, AWPMax and
AWPPCA, where both AWPmethods use the whole calibra-
tion set and the AWP scale s = 6. Firstly, the algorithms
are evaluated on the same measurement set which has
already been used for the calibration (Fig. 8a). It can be
seen that the error is reduced significantly usingAWPcom-
pared to Roosnek, even if the fusion part is omitted. Sec-
ondly, in Fig. 8b, the results on the test set T are shown
to ensure that the estimation part of the AWP methods
alsoworks at different flow rates. Three conclusions can be
drawn from Fig. 8b. Firstly, all three methods show a bad
estimation quality when bubbles are present, which oc-
curred due to some leftover air in our experimental stand
that was randomly released and distributed by the pump
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Figure 8: Comparison of Roosnek’s method with the AWP method
using the whole calibration set C (d = 6, γ = 0.995) with PCA
weights and without fusion.

(see at T ≈ 21 ∘C). Secondly, the systematic error, caused
by the stationary interfering signals, is dependent on the
temperature-varying phase shift between interfering sig-
nals and fluid signals and is represented by a slowly vary-
ing error. Due to the changing speed of sound and the ge-
ometry of the propagation path, the absolute transit-time
is shifted by 1.60 µs during the temperature variation. Be-
cause one period takes 1.43 µs at f0 = 700 kHz, it is ex-
pected that the measurement error of Roosnek’s method
shows a bit more than one oscillation in the temperature
range under consideration, which is conform with the ex-
perimental results shown in Fig. 8b. This systematic error
canbe separated from thenoise-inducedfluctuationbyus-
ing a median filter. Lastly, the AWPPCA is the best in terms
of systematic error, closely followed by the AWPMax.

After the systematic error is removed by subtraction of
the median filtered measurement error Esys(T), the resid-
ual error Ẽ(T), depicted in Fig. 9, shows the susceptibil-
ity to measurement noise. It can be evaluated by the stan-
dard deviationσE. Note that outliers due to bubbles should
be suppressed, if only the robustness against noise during
normal operation is of interest. The associated histogram
in Fig. 9 indicates that the AWPPCA is less susceptible to
noise thanRoosnek’smethod. This can be explained, if the

Figure 9:Measurement errors of the AWP method and Roosnek’s
method over the temperature with compensated trend (left) and
their associated histograms with fitted Gaussian distributions
(right).

possible sources of the measurement noise are examined:
electronic noise and turbulence [20]. Roosnek’s method
calculates the TTD using a linear fit in the phase domain,
whereby one period of the measurement signal is consid-
ered in the estimation. In contrast, AWPPCA combines sev-
eral AWP coefficients, leading to a larger time range con-
sidered in the estimation and a higher robustness against
electronic noise. Furthermore, Figure 5 shows thatAWPPCA
uses information from the first reflection additionally to
thedirect propagationpath,which results in a spatial aver-
aging. Due to the limited spatial extension of the vortices
in the turbulent flow, this spatial averaging can also ex-
plain a higher robustness against turbulence.

As a calibration over the whole temperature range is
expensive, the influence of using only a small part of the
calibration set is investigated in Fig. 10. For this investiga-
tion, instead of using all 19 temperature steps, only the
steps [T1,Ti] were used for the calibration, whereas the
measurement error (26) was calculated on the whole test
set T to evaluate the maximal systematic error (27). It is
observable that repeating the flow sequence (24) for two
temperature steps to get a calibration set is sufficient to im-
prove the systematic error compared to Roosnek’smethod.
The choice of the AWP scale has little to none influence on
this result.

To verify that the AWP methods also perform well,
independently of the mixture of interfering signals and
fluid signals, the systematic error and the noise robust-
ness are evaluated on the data set of the transducer pair
T3/T4. Table 1 and 2 list the robustness against noise and
against interfering signals for the two transducer pairs and
three reasonableAWPscales. Compared against Roosnek’s
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Figure 10:Maximal systematic error (27) of the AWPPCA for three
different AWP scales when using only a subset T ∈ [19∘C, Ti] of the
calibration set.

Table 1: Noise induced standard deviation of the measurement fluc-
tuation for different paths and methods calculated by (28).

Set AWP scale Roosnek [16] AWPMax AWPPCA

T1/T2
5 0.75% 0.68% 0.55%
6 0.75% 0.74% 0.59%
8 0.75% 0.69% 0.59%

T3/T4
5 0.70% 0.73% 0.54%
6 0.70% 0.72% 0.55%
8 0.70% 0.74% 0.58%

Table 2: Systematic measurement error for different paths and
methods calculated by (27).

Set AWP scale Roosnek [16] AWPMax AWPPCA

T1/T2
5 16.59% 6.51% 2.17%
6 16.59% 4.77% 1.93%
8 16.59% 5.97% 2.41%

T3/T4
5 3.81% 4.91% 1.90%
6 3.81% 4.09% 1.35%
8 3.81% 7.83% 2.25%

method, the systematic error ΔEmax is improved from 3.8%
to 1.4% for the transducers T3/T4 and from 16.6% to 1.9%
for T1/T2, where the level of interfering signals is signifi-
cantly higher than for T3/T4. Using (28) as the criterion for
the robustness against noise, the AWPPCA achieves an av-
erage improvement of 0.15%.

5 Conclusion

The application of analytic wavelet packets to the transit-
time difference estimation in ultrasonic flow measure-

ments has been presented. For this purpose, a calibra-
tion set has been used to identify coefficients in the time-
frequency domain that strongly correlate with the observ-
able. Furthermore, a weighting scheme based on the prin-
cipal component analysis that allows the information fu-
sion of the selected time and frequency ranges was intro-
duced.

After the description of the calibration and the associ-
ated estimation algorithm, the method was evaluated in a
clamp-on flow measurement system with two transducer
pairs and compared to the method presented by Roos-
nek [16]. In this evaluation, special attention was paid to
the robustness against interfering signals and measure-
ment noise.

The results have shown that the robustness against
both interfering signals and noise could be improved com-
pared to Roosnek’s method on all measurement sets. Fur-
thermore, the investigation of different calibration sets
has shown that it is sufficient, if the flow velocity goes
through two cycles with slightly different temperatures.
A calibration set over the whole temperature range is not
necessary.

The extension of the proposed method to estimate ab-
solute transit-times and toworkwithout calibrationwill be
part of future research.
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