KIT | KIT-Bibliothek | Impressum | Datenschutz

Engineering the Floquet spectrum of superconducting multiterminal quantum dots

Mélin, Régis; Danneau, Romain ORCID iD icon 1; Yang, Kang; Caputo, Jean-Guy; Douçot, Benoît
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Here we present a theoretical investigation of the Floquet spectrum in multiterminal quantum dot Josephson junctions biased with commensurate voltages. We first draw an analogy between the electronic band theory and superconductivity which enlightens the time-periodic dynamics of the Andreev bound states. We then show that the equivalent of the Wannier-Stark ladders observed in semiconducting superlattices via photocurrent measurements, appears as specific peaks in the finite frequency current fluctuations of superconducting multiterminal quantum dots. In order to probe the Floquet-Wannier-Stark ladder spectra, we have developed an analytical model relying on the sharpness of the resonances. The charge-charge correlation function is obtained as a factorized form of the Floquet wave function on the dot and the superconducting reservoir populations. We confirm these findings by Keldysh Green's function calculations, in particular regarding the voltage and frequency dependence of the resonance peaks in the current-current correlations. Our results open up a road map to quantum correlations and coherence in the Floquet dynamics of superconducting devices.


Verlagsausgabe §
DOI: 10.5445/IR/1000099463
Veröffentlicht am 10.01.2022
Originalveröffentlichung
DOI: 10.1103/PhysRevB.100.035450
Scopus
Zitationen: 20
Web of Science
Zitationen: 20
Dimensions
Zitationen: 23
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2019
Sprache Englisch
Identifikator ISSN: 2469-9950, 2469-9969
KITopen-ID: 1000099463
HGF-Programm 43.21.03 (POF III, LK 01) Carbon Nanosystems
Erschienen in Physical review / B
Verlag American Physical Society (APS)
Band 100
Heft 3
Seiten Art. Nr.: 035450
Vorab online veröffentlicht am 31.07.2019
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page