‘ KIT KARLSRUHE

Karlsruhe Institute of Technology

FRACTIONAL ORDER SPLITTING FOR SEMILINEAR

EVOLUTION EQUATIONS

ZUR ERLANGUNG DES AKADEMISCHEN (GRADES EINES

DokTORS DER NATURWISSENSCHAFTEN

vON DER KIT-FAKULTAT FUR MATHEMATIK DES
KARLSRUHER INsTITUTS FUR TECHNOLOGIE (KIT)

GENEHMIGTE

DI1SSERTATION
VON

DirL.-MATH. SEBASTIAN SCHWARZ

Referent: Prof. Dr. L. Weis
Korreferent: Prof. Dr. R. Schnaubelt

Tag der muindlichen Priufung: 17. Oktober 2019






Contents

(1 Introduction| 1
|2 Elementary proof for the cubic Schrédinger equation on ]Rd|

|3 Splitting methods for general semilinear evolution equations| 27

(3.1 Theequation| . . .. ... ... ... ... ... . . ... 27

[3.2 The splitting method| . . . . ... ... ... ... .. ..., 32

3.3 Theresultl. . . .. ... ... 33

(3.4 Thestability] . . . ... .. ... . L 37

3.5 Thelocalerror . ... ... ... ... ... . .. 39

B.6 Uniformboundsl . . . .. ... ... .. L 76

|4 Applications| 79

[4.1 Nonlinearities self-mapping on fractional domains| . . . . . . .. 85

[4.2 Schrodinger equations|. . . . . . . . . . ... L. 86

4.2.1 On L*(R%), L>(T%) and L*(M) for manifolds| . .. ... .. 86

4.2.2 Nonlinear harmonic oscillator on L“(R?)| . . . . ... ... 94

4.2.3 On modulation spaces| . ................... 96

4.2.4 Discrete Schrodinger equationon ¢P| . . . ... ... ... 99

[4.3 Parabolicequations| . . . . . ... ... L L L. 100

4.3.1 On LP(R?), LP(T%) and LP(M) for manifolds (1 < p < ). . 100

4.3.2 Onuniform LFspaces|. . . ... ... ... .. ....... 106

4.3.3 On modulationspaces| . .. ................. 108

4.3.4 Discrete Laplacianon¢?| . . . . ... .. ... ... ... 109

[4.4 Equations with random initial values| . . . . . .. ... ... ... 110

44.1 OnLP(TH) . ... ... . 111

4.42 OnLP(RY) . ... .. 113

4.4.3 Onuniform LV spaces|. . . . ... ... ... ........ 115

|5 Lie Splitting for the stochastic Schrodinger equation| 119

[5.1 Theequation| . .. ... ... ... ... ... . . . ... 119

[5.2 The splitting method| . . . .. ... ... ... ... ... .. 121

5.3 Theresultl. . . ... ... 122

[5.4 Auxiliaryresults| . . . ... ... oo oo oo 123

[5.5 Proof of propostion|5.2| . . . . ... ... 131

5.6 Proof of Theoreml5.3l . . .. ... ... ... ... ....... 146

[Bibliography| 149







Acknowledgements

First of all, I want to thank Lutz Weis for his encouragement, supervision and
especially the many hours he put into helping me finish this thesis within the
last months. I also thank Roland Schnaubelt for co-examining it and sparking
my enthusiasm for mathematics through his lectures in analysis during my first

years of study.

I thank my colleagues from the institute for analysis and also the institute for
stochastics for making it a pleasure to work here. I highly value the friendships
I have formed over the years, including but not limited to my former colleagues

Markus Antoni, Johannes Eilinghoff and Jens Babutzka.

I owe a great debt of gratitude to Dirk Hundertmark for a very important con-
versation and to Anke Vennen for arranging it. In this context, I also want to
thank everyone who lent me an open ear and offered me good advice in difficult
hours over the last months, especially Franz Nestmann. This also extends to my
sister Ramona and my mother Sandra as well as their partners Yves Schaffner

and Werner Schallmann.

Last but not least, I want to express deepest love and thankfulness to my girl-
friend Alessandra Viera for putting up with me over the last years and support-
ing me unconditionally in every single minute of this journey — it would not

have been possible without you.






1 Introduction

Partial differential equations are essential as theoretical models in many parts
of science. However, often these equations do not allow for exact solutions and
numerical approximations are necessary for the application of these models.

Among the many different approaches used in the numerical analysis of partial
differential equations, we focus in this thesis on splitting methods (see [MQO02]]
for a general overview) which have been very successful in dealing with initial

value problems of the form

w'(t) = (=Au)(t)+g(u(t)),

u(0) =ug,

(1.1)

where —A is an unbounded linear operator generating a strongly continuous

semigroup and g is a nonlinear term so that the equations

(—Au)(t), (1.2a)
I/U)={
g(u(t)), (1.2b)

with appropriate initial values can either be solved explicitly or allow further

numerical approximations. Then, after choosing a time step size, we can ap-

proximate the solution by alternately following the solution of (1.2a) and (1.2b),

starting with the initial value of the original equation and always using the most
recent value of the approximation as initial value for the next step. If in the
end, we followed all parts for the same total time, it seems reasonable to assume
that we are not far off the exact solution at that time, given a sufficiently small
size of the time steps. For better approximations, this idea can be iterated with
appropriate decompositions of the time step. For a general overview of this so
called time integration, see [Faol2].

Assuming that a unique solution to the original equation|1.1|exists, it is impor-

tant to validate such an approach by proving the convergence of the numerical



approximation to the actual solution. Moreover, the speed of convergence as
a function of the length h of the time step is of interest. In particular, one
might ask whether the error is of order h". In practice, such time integration
schemes have to be combined with spatial discretizations. We do not consider
such questions, but note that the analysis does serve as a first step to treat full
discretization. Different methods to approximate the exact solution are also
popular, see [Hoc13]] and the references therein.

In this thesis, we offer some analytical reflexions on the convergence of such

splitting schemes which concentrate on the following topics.

Error estimates for initial values with low regularity

For example for the Schrodinger equation (A =iA) with a polynomial nonlinear-
ity g(u) = +i|u>u on L?(IR?), such error estimates (e.g. for orders r = 2 in case of
the Strang splitting and r = 1 in case of the Lie splitting) are well established
under high regularity assumptions on the initial value u (e.g. uy € H*R?) for
the Strang splitting or u, € H*(R?) for the Lie splitting), see [ESS16]] or [Lub08]
and also [JMS17] for an equation involving damping and forcing.

However, the convergence of these methods for initial values of low regularity
seems to be an open problem (as discussed in [ORS19], where a more intricate
splitting is used to improve on this point). To obtain error estimates of order
r with the present splitting method it is apparently necessary to assume that
the initial value u( belongs to the fractional domain D(A") of A (see [ESS16]),
that is, in our example uy € H*'(R?). However, further hurdles in the proof
are Sobolev embeddings and Banach algebra properties of the Sobolev spaces
HS(]Rd), which require s > % in the L2 setting. To get around this obstacle, we

propose the following approaches.

* Employ different function space norms for the error estimate with more

tavourable Sobolev embeddings and Banach algebra properties. For para-
bolic problems , we use the spaces LP(Q)) and LP(QQ) N L>®(Q)) for 1 < p < o0,
where Q is RY, T? or a compact d-dimensional Riemannian manifold. The
scale of modulation spaces M, , has the advantage that the Schrodinger
group acts on these spaces as bounded operators (in contrast to the L?

scale). For these norms, we can therefore obtain error estimates for arbi-



trarily low regularity for the nonlinear Schrodinger equation as well as the

nonlinear heat equation.

* Use random initial values to improve the results. Given a 1, € L>(T?%),

we randomize its Fourier expansion Y, tig(n)e?™" by for example in-
troducing a sequence of independent standard Gaussian variables, that
is
ug =) dig(n)g,(w)e?™.
neZ

Similar randomization exists for 1, € L?(IR?), see also [BTT14]. This tech-
nique has been used very effectively in the theory of dispersive partial
differential equations in order to construct Gibbs measures for the flow of
solutions (starting with Bourgain in [Bou95]]) or to find solutions for initial
values in the subcritical domain (starting with Burq in [BTT13]], see also
the survey [BOP19] and the literature quoted therein). The point of this
randomization is that the random variable 1’ does not only take values
in L?(T%), but also in all LP(T¢) for 2 < p << co. At least for parabolic
problems, this allows us to give error estimates for random initial values
in H*(T%) for all s > 0 with respect to the norm of L®(T*).

A unified framework for higher order splitting methods

The literature contains many papers that deal with specific nonlinear equations
(for example Schrodinger equations on RY and T¢ (see [ESS16],[Lub08]), Har-
monic oscillators (see [Gaulll]) or heat and reaction diffusion equations (see
[Fao09])) with various nonlinearities and gives estimates for the Lie, Strang and
higher order splitting methods (at least up to order four).

In this thesis, we will isolate the common core of these arguments and present a
unified framework that covers a large class of diverse situations. Special atten-
tion is given to the problem of initial values of low regularity which leads us
to replace generous assumptions on Sobolev embeddings and Banach algebra
assumptions with more delicate assumptions on the differentiability of the non-
linearity g. In the proofs, we avoid Lie derivatives and commutators and prefer
iterative substitution of the solution in the variation of constants formula for the
solution, which will lead to some technical complexity for higher order methods.

These higher orders have been treated for the splitting of linear equations (see



[HO09]], [EO14]], [AHHKT6]]) and also the semilinear case (see [HOT16], [Tha08]),
but with stronger assumptions on either the operator A or the nonlinearity g.

Stochastic Schrédinger equation

A first result for the Lie splitting for the cubic stochastic Schrodinger equation
with multiplicative noise was announced by Liu in [Liul3b]. Unfortunately, his
proof contains a serious mistake (see Remark|5.9). In this thesis, we present an

alternative proof which also extends the result announced by Liu in two ways:
dd
272
well as general skew adjoint operators as the linear part of the equation instead

We also consider initial values in H*(IRY) for s € ( + 2] instead of s > % +2as

of the Schrodinger operator.

Structure of the thesis

The thesis consists of four parts and is organised in the following way.

In Chapter |2} as an introduction, we present an elementary proof for the error
estimates of the Lie and Strang splitting which is inspired by the arguments
in [Lub08]] and [ESS16], but gives more information on initial values with low
regularity and is written in such a way that it allows for considerable generaliza-
tion (see Theorem[2.9).

In Chapter |3} we develop our general scheme for error estimates for splitting
methods on general Banach spaces, semigroup generators —A and differentiable
nonlinearities g. We made an effort to also include higher order methods. It is
originally motivated by [HO16].

In Chapter [4, we present our error estimates for initial values of low regularity
in various scales of Banach spaces which are covered by our general approach in
the chapter before. This includes LP(Q)) and LP(€)) N L*(€)) where () could be
R?, T? or a compact Riemannian manifold, uniform L? spaces for 2 < p < co as
well as modulation spaces M, ;. We also introduce random initial values as a
theoretical tool in the error analysis if splitting methods.

Chapter |5|is dedicated to the error analysis stochastic nonlinear Schrodinger

equation.



2 Elementary proof for the cubic

Schrédinger equation on R

As a first specific example, we are taking a look at the Schrodinger equation

with cubic nonlinearity, namely

u'(t) = (=Au)(t) = [u(t)Pu(t),

u(x,0) = uo(x),
with —A : H?> — H? for some d € N, using the Bessel potential spaces
H® := H(RY) := {u e L*(RY) | (1 + &) 2 Fu € L%

In fact, the proof also works for different operators and spaces, as long as they
fulfil some properties (c.f. the end of the chapter). Moreover, the concept of
the proofs is the same for nonlinearities of the form |ul*1u for odd k € IN. 3,
but we would have to work with more terms, which defeats the purpose of this
section which is meant to be easy and comprehensible. A much more general
case which encompasses this case will follow in Section

According to [Kat95|, Theorem 4.1], for u, € H?, there exists a T > 0 and a mild
solution u € C([0, T], H®) which is unique in a smaller space for s > max{% —1,0}.
It even is unique in C([0,T], H®) if s > % (ford =1),s> d—gl (for d € {2,3}) and
s > % —1 (for d > 4). The former threshold is shown to be sharp in [Tho08|
Theorem 1.3]. For all dimensions, we therefore have the result for s > %, which
is all we need right now. The latter result also follows from the general result in
[Paz92| Theorem 6.1.4], since H® is an algebra for s > % (see the proof of Lemma
and therefore the nonlinearity is locally Lipschitz continuous on H”.

In order to define the splitting methods we want to use, we first need to split up



(3.1) into its linear and nonlinear part, respectively.

(—Au)(t), (2.2a)
iu'(t) =
{ u(t)Pu(1), (2.2b)

both having initial value u(0) = uy. Equation has the solution T(t)ug :=
e'**uy and equation has the solution e¥il“ol’ ;) both for all uy € L?(RY)
and t € R.

The principle behind the exponential splitting schemes is to approximate the
exact solution u of by alternately following the linear and nonlinear solu-
tions of and (2.2b). For fixed h > 0, we therefore define the Lie splitting

(for orders up to one) by

1 h Fitug)?
uLle = SLle(uO) = T(I’l)€+1t|u0| MO,

(2.3)
Ui = Slie(ufe),  (k€N)
as well as the Strang splitting (for orders up to two) by
. >
uétrang = Séltrang(u()) = T(W2)e TP T (/) o
k ._¢gh k ’
uStj;almg T SStrang(uStrang)‘ (k € IN)

This is enough to formulate the result of this section. We need a couple of
auxiliary results for the proof. Those are stated and proven after the Theorem

and its proof for clarity’s sake.

THEOREM 2.1

Let r > 0 and s > %— 2r. If ug € H*?", then there exists a T > 0, a unique
solution u € C([0, T], H**?") of and a hy € (0, T] depending on d,s, T and
M :=supo;ct [4(t)lls42 such that, provided

a) re€(0,1], we have
”uﬁ‘e - M(Nh)”s Sd,s,T,M h’

b) r €(0,2], we have
”ué\{mng - u(Nh)”s sd,s,T,M h'.

forall 0K Nh< T and h < hy.



Proof.  a) We follow the standard concept called Lady Windermere’s Fan. By

artificially generating a telescoping sum, we see that

(ST (10) = u(N)lls < ) II(SEN T (u(kh) = (S{3) N D (u((k + 1))l
0

b4

>~
Il

(2.5)

For the terms on the right hand side, we use the stability result from
Proposition[2.3|a) N —k — 1 times (r; =s,7, = s+ 2(r — €)). It says that

Stie() = Slie(), < eCM My — || (2.6)

as long as [|llss2(r—e) 1@lls2(r—e) < M for some ¢ € (0,1] with s+2(r—¢) > %.

Here, ¢ and ¢ are given by (S{’ie)N_j(u(kh)) for k€ {0,...,N}and j € {k+
1,...,N}. The fact that their H5+2(r=€) norms are uniformly bounded (by
M = 2M) for all k follows from Lemma In this Lemma, the smallness

of h; is needed. Hence, we obtain

(ST )N K (u(kh)) = (SN E D (u((k + 1))l
< eCOMIMN g (1 (kh)) - u((k + 1)h)|,.

Next, we use Proposition which says that
1S{'eat(kR)) = u((k + DRl < Ch'*, (2.7)

where the constant just depends on the variables mentioned in the Theo-

rem. This finally lets us go back to (2.5) in order to see that

N-1
(7N (1g) - u(NR)|ly < ) €M DENKL) gk (14(kh)) — u((k + 1)h)]];
k=0
N-1
< ZeC(2M,T)h(N—k—1)Chr+l < N heC@M TN ~pr
k=0
< TeCeMDT opr.



b) We replace S{lie by Séltrang and use parts b) instead of a) in Propositions
and Lemma [2.8]as well as Proposition [2.7]instead of [2.5/to obtain the

result in the exact same way as above.

Before we give the proof of (2.6) in Proposition [2.3]and of (2.7) in Propositions
and we state multiplicative properties of the H" norms.

LemMma 2.2

Let 0<ry <ryandry> %. The following inclusions and estimates hold.
a) If f e H" and ge H™?, then fg € H" and
”fg”rl Sd,rl,rz ”f”rl ”g”rz

b) IffeHw andgeHw, then fg e H™ and

18l S s If gz gl

Proof. For r, > %, if f € H2(R?), then f € L*(IR?) and by the Cauchy-Schwarz
inequality
1fllzse < IF fllee < 1+ F2) 221y,

Hence, a trivial estimate gives

1/ 8lle2 < [If Iz lIglle2 < Wlf Iy, llgllz2

for f € H”? and g € L%. If f,g € H(RY), then fg € H2(R?) with fglly, <

~

If1l,, lIgll,,. To see this, we observe that
n n n n
L+ <@+3le =yl +3117) 7 5, (L4 1€ 1) T +(1+ 1477,

seen for natural numbers r, through estimating the mixed terms by the pure
terms with highest order when multiplying (similar to the trick in the first
estimate). Together with F(fg) = (F f) * (F g), this yields

(L+ EP)ZIF(FQUEN <r, (I(L+ D)ZF 1% IF ) + (IF fl+ 11+ ) F Fel)(&)



and therefore by Young’s inequality and the same estimate as in the first estimate

gives

1/ 8llr, S5 Sl 17 gller + 1F fllLr llgllr, < £ 11, [1g1lr-

The two proven estimates mean that for fixed f € H"2, the mapping g — fg is
linear and bounded on H? and H®. Using complex interpolation between the

two (see e.g. [BL76, Theorem 4.1.2], 6 = %) gives

1/ &l < M1f I, Mgy,

for all f € H™ and ¢ € H™, which is a). Symmetry obviously also gives the

mirrored version

1/ &lly, < 1f I, Mgy,

for all f € H" and g € H™. Interpreting (f,g) — fg as a bilinear map, we can

use multilinear interpolation (see [BL76, Theorem 4.4.1] for 0 = %) to obtain

fglly, < IIfllrerz ||g||¥

2

forall f e H"2* and g€ H™7? from those two estimates, giving us b) and hence
ending the proof. []

As mentioned, the first Proposition shows the stability of the splitting scheme
used in (2.6)) of the proof of Theorem

ProrosiTtioN 2.3
Let 0<ry <ryandry,> % For ¢, ¢ € H™ with ||{ll,,, lpll,, <M , then
a) 1157:(9) = SLio(@)lly, <e“MDh Iy — o]l ,

b) ||S§ltrang(17b) - Sgltrgng(go)llrl < eC(M’T)h ||11b - (P”rl’

Proof. a) We will repeatedly need the following estimate.

i 2j
2

=

o i i

< Z% = CLelCIWln)*h  C-16(CM?h () g)

X j! - h .
=0
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We define 6(t) = eFitloP~1¥1") and use the mean value Theorem as stated in
[Car67, Theorem 3.3.2] to see that ||1 —e i/ (Ipl=1p1%) || < hsupgg,, 107(E)|l;, -

Because of 0’(t) = Fi(|p|>— |]>)0(t), we use |¢p|* - |17b|2 (P—P)P+p(p—1)
to obtain that

el =191, < CUle=lly, @1, + 191, I =Pl ) = Cll@ll, + 11l le=ll,,
As in (2.8), this yields

i 2_ 1412 2_
11— PP, < b sup (gl — [pP)e PR,

n

0<t<h
2 2 — 2_ 2
< Chlllgl = [@l*l,, sup [le*i o=l
o<tgh
c? 2 1.2
<h(ll@lly, + 1l g - ll,, sup < N =1wFl!

0<t<h
<2Mhllp - ¢ll;, oC2 Ul +IlI7) )k

< 2MheX M Tl — |,

Since T(h) is an isometry on H", we finally compute

1570 () = Sk (@), = Il — Tkl gy
< (1 — eFHIPE9E) TRy e Fhel (o — )|,
< C2||1 TP ], [leFHIF
+Clle™ P 1y - gl
< (1+2M2CeXCMPT ) (CMPh )0, Pllr,
<MD oy,

||T2

b) We replace h by #2 and ¢,y by T(¥2)@, T(#/2)i, both of which are still
bounded by M in H™ since T(//2) defines an isometry there. The same
exact computations as in a) yield

IS8 rang () = Séirang (P, <M IT(2)0 = T(W2)pll,, = e“M D@ -y,



To prove the local error estimate used in (2.6), we will need some Holder esti-

mates for semigroup orbits which we state in the following Lemma.

LemmMma 2.4

Let5>0and 0 >0. Fort >0, t; € Rand y € H*?9, the following estimates
hold.

a) For 0 € (0,1]: (T(ty +1) = T(t1))ylls < t° 19llss20-
b) For 0 € (0,2]: (T(ty +1)=2T(ty) + T(t; ~ ))ylls < t°[Iyllss20-

Proof. Recall that if A = A on H®, then D(A?) = H*?9 for 6 > 0. By part a) of
the Theorem on page 77 of [Tri95]] (p = oo, m = 1), combined with part d) of the
Theorem on page 101 of [Tri95], we have

H%° =DA% C (x e H® | lim £ ONT(H)-Dxlls <o} VO €(0,1]
as well as

H?0 =D(A% C{x e H| 11r51t OIT(t)-1)%x|ls <00} VO €(0,2].

a) For 0 €(0,1], the first inclusion gives
(T () = Dxlls < £ [1xlls120
and with x = T(t1)y
(T (£, + 1) = T(E))9lls < 12T (81)9llss20 < £ 19 llss20-
b) For 6 € (0,2], the second inclusion gives
(T (28) = 2T (¢) + Dxlls < % [1xlls 20
and with x = T(t; — t)y

(T (t; +t)= 2T (t;) + T(t; = )lls S 21T (11 = )9llss0 < 2 Wlls20-

For the local error, we first consider the Lie splitting.

11



ProrosiTION 2.5

Let r€(0,1] and s > % =2r. Ifug € HS*2" | then there existsa T > 0, a unique
solution u € C([0, T], H*?") of such that with M := sup g, <7 l[u(f)lls4 2/

we have

IS 7 (1 (kh)) = e((k + D)R)lls Sa 570 B

Proof. We start by finding a suitable representation of both the exact solution

and its numerical approximation. We fix n and k and define

2(t):= T(Hu(kh),  v(t):= ¢if T(t - 0)[Ju(kh+ ) *u(kh + )] dt
0

for t € [0, h]. For the exact solution, we obtain u(kh + t) = z(t) + v(t) and

h
u((k+1)h) = z(h) $iJ T(h—t)[)2(t) + v(t)*(z(t) + v(t))] At
0
with
l2(t) + v(E)P(2(t) + v (t) = (2(8)]* + 2()v(t) + 2(t)v(1) + [v(t)P)z(t) + |u(kh +t)>v(t)
= |z(t)P2(t) + w(t)

with

w(t) = v(®)[Ju(kh+t)> + |2(0)1 + 2(0)v(1)] + v(B)(2(1))?
= v()[lu(kh+ 1) +2(t)u(kh+ )]+ v(1)(2(t))%.

Then

h h
u((k+1)h):z(h)$iJ; T(h—t)[lz(t)|2z(t)]dt$iJ; T(h—tyw(t) dt.

:IAl :211

To represent the numerical solution, we apply Taylor’s Theorem to the function

a(t) = eFitlukh)? i zero so that

h
a(h) =1 ilhlu(kh)|2 _J (h— t)lu(kh)|4e¢it|u(kh)|2 dt
0

12



and therefore

Stie(u(kh)) = T (h)a(h)u(kh) = 2(h) FihT (h)[ lu(kh)u(kh)]

::AZ

h
—T(h)J; (= t)|u(kh)| e Tt ERE y (kh dt.

:IIQ

This gives us
u((k+1)h) = Sfi(u(kh)) = (A} = Ay) + 1) — I,

then
lu((k + 1)h) = S (u(kh)lls = A1 = Al + 11 1ls + 112l

and it remains to estimate the last three norms. We first notice that T(f) is an
isometry on H**’, hence ||z(t)llss2, = llu(kh)llsy2, < M for all t € [0,h]. Since
S+2r> %, we see by Lemmathat

”v( )||s+2r t sup ”T t—1 [lu kh+T)|2 (kh+7)]|ls+2r
t€[0,t]

= t sup [[[u(kh+1)Pu(kh+ )],
t€[0,t]

<t sup (kb + )|
7€[0,t]

<Mh

s+2r

and

w(llss2r < () l(kh+ 1) Pllgyor + W0 (8)2(8)u(kh+ Dllgsar + (1) lls12s
S o) lls2r(le (kb + )13, 5, + I2(E)llss2r (kb 4+ B)llssor + 2(DI2, 2, S

again for all t € [0, h]. We now estimate

1lls < B sup IT(h=t)w(b)llsr2r = h sup l[w(t)llsszr S MPh? < MP max({1, T}h'*
te[0,h] te[0,h]

as well as

h
Il = || 0= bR )
0

s+2r

13



<h? sup ||[u(kh)[*eT Ny (kh)|, o, < h? sup [lu(kh)]?
t€[0,h] te[0,h]

< MOCMPT max{1, T}h“r,

h
s+2r ||e+1t|u (k ||s+2r

by . Lastly, with f(t) := T(h—t)[|z(t)|?z(t)], we obtain

Hff

<h sﬁ](”(T(h_t)_T( DO 2(0)]lls + IT (B[ |2(6)1 (2(2) — 2(0))]lls

+ 1T (h)[2(£)(2(t) = 2(0)2(0)]l]s + IT (R)[(2(t) - 2(0)) |z(0)] ]Ils)

<h sup [|f(£) = f(O)ll;

5 te[0,h]

IA; - Azns—Hf F0) de~hf (0

< h sup (t’ H2(D)1P2(t)llss2r + 12(2)(2(2) = 2(0))l;

t€[0,h]

+ [l2()(2(t) = 2(0))2(0)lls + [1(2(#) _Z(O))|Z(0)|2”s)

< h sup (frllz( W0+ 22,2, T (8) = Due(kR)lls + 1z(8)lls 20
te[0,h]

1200527 [I(T () = Du(kh)lls + {l2(0 )||5+2TII(T(t)—I)u(kh)lls)

< h sup tT(M3 +3M? ||u(kh)||s+2,) <4M3HIT,
t€[0,h]

where we used Lemma[2.4]a) at several points. Those three estimates together
yield the desired result. |

For the local error of the Strang splitting, we are going to need some estimates
on cubic expressions of the linear solution which we collect in the following

Lemma.

LeMmma 2.6

Let r€(0,2] and s > % —2r. For x € H*?" and t € [0, h] we define z(t) := T(t)x
and y(t) := |z(h—t)|*z(h - t). It holds that for all t € [0,h] and ||x|ls+2, < M,

a) ||y(h/2)”s+2r ~

b) lly(2) = p(2t)llss, S MK,
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c) lly(v2+1)=2p(2) + y(2—t)lls < MI,
Proof.  a) Itis easily seen that

)l < Nl2072)13, 5, < M

b) We see that

y(W2) = y(2t) = lz(W2)]* (z(/2) — z(h - 21)))
+z(W2)(z(W2) — z(h — 2t)))z(h — 2t))
+ (z(W2) — z(h = 21)))|z(h - 2t))|

and hence by Lemmata[2.2]and[2.4]a) (§=s+7r,0 = nicefracr2),

1y (#2) = y(h = 2)llssr S N2(W2)13,2, (T (W2) = Dxllgsr
+ [12W2)lls+2¢ ll2(h = 28)lls2¢ (T (72) = T (h = 28))x][s4r
+ ll2(h = 20)112,5, (T (#2) = T(h = 20))xllss,

< M [Ju(kh)llgs2rh” < MR

c) We compute that

Y2+ 1) = 2p(W2) +y(W2—t) = [|2(W2+ 1)1 = 2|2(W2)]* + |2(/2 — t)|*]z(>2)
+[|z(W2+ t)? - Iz(h/2)|2][z(h/2 +1)—z(2)]
+ [lz(t2— 1)1 = [2(2)1*][2(2 — t) = 2(/2)]
+ lz(W2)P[z(W2 + t) — 22(12) + z(W2 — t)]
= w1 (t)z(/2)
+wy(t)[z(W2+t) —z(H2)]
+wy(—t)[z(W2—t)—z(2)]
+ lz(W2)P[z(W2 + t) — 22(W2) + z(W2— 1)] (2.9)

with wy (t) = |z(W2 + t)]2 = 2|z(W2)]> + |z(W2 — t)|* and w;(t) = |z(W2 + t)|* -
|z(1/2)|? This is easily checked by simplifying the right hand side. A similar

15



calculation yields

wy(t) = [2(W2 +t) = 22(W2) + 2(W2 — t)]2(W2) + |2(W2 + t) — z(2)]?
+ |z(W2—1t)— z(h/z)l2 +z(W2)[z(W2+ t) — 2z(W/2) + z(W/2 — t)].

Using Lemmata[2.2and [2.4](a) with §=s+71,0 = /2, b) with §=5,0 = 1),

we see that

lwills S Nlz(W2+ t) = 22(2) + 2(W2 = )|s l1z(W2)ls1 27 + llz(W2+ ) = 2(W2)||12,,
+llz(W2 = t) = 2(2)||2,, + Nl2(W2)llss 20 N2 (W2 + £) = 22(1/2) + 2(H/2 — 1))
< M?n'.

Moreover, we observe that with

wy(t) = z(W2+ t)[z(W2+t) —z(W2)] + [z2(W2 + t) — z(W/2)]z(W2),

it holds that

||w2(t)||s+r < ||Z(h/2 + t)||s+2r ||Z(h/2 + t) - Z(h/2)||s+r

+ ll2(%2+ 1) = 2(W2)lls 1 122512 < M7,

again using Lemmata[2.2|and [2.4a) (§ = s+ 1,0 = nicefracr2). The anal-
ogous estimate holds for w,(—t), hence we return to (2.9) and end up
with

ly (W2 + 1) = 29(W2) + y(W2 = t)lls < llwr ()lls [12(H2)l[542r
+ [wa ()llsar l2(2+ 8) = 2(W2) |5
+ [[wo(=t)llsr ll2(2 = £) = 2(7/2)l]54r
222 0, 12(2 + 1) = 22(W2) + 2(W/2 — 1)

< M3,
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ProrosiTiON 2.7

Let r €(0,2] and s > % -2r. Ifug € H**2" then there existsa T > 0, a unique
solution u € C([0,T], H**?") of such that with M := sup,<r l[t(t)lls42,

we have
||S£ltmng(u(kh)) - u((k + 1)h)”s Sd,s,T,M h1+r'

forall0<Nh<Tandkef{0,...,N—-1}.

Proof. We again start by finding a representation of both the exact solution
and its numerical approximation, still using the notation z(¢) and v(t) from
Proposition For the exact solution, we obtain

h
u((k + 1)h) = T(h)u(kh) iij T(h—t)[|u(kh+ t)Pu(kh +t)] dt
0

h
= z(h) ¢1L T(h—t)[|z(t) + v(t)*(z(t) + v(t))] At

and

|2(t) +v(£)]7(2(t) + v(2) = |2(8)2(2) + 2|2(£) v (1) + (2(2) v (t) + wy (t)
with

wy(t) = [w(t)*(22(1) +v(£) + (v(1)*2(t) = ()P (2(t) + u(kh + 1)) + (v(2))*2(t)

that
h
u((k+1)h) = z(h) iij T(h—t)[|2(t)|*z(t)] dt
0
:IAl
h _ h
ilf T(h—t)[2|z(t)|2v(t)+(z(t))2v(t)]dtiif T(h—t)yw,(t) dt
0 0
1 :le

17



In I we substitute v(t) by its above definition to obtain

= 2 [ T(h= 1) l2(D)2 [ T(t = s)[|(s)P=(s)] ds] dt .
O 0 TSRl de | |
2" T(h=1)[|2(t)? [, T(t - s)ws(s) ds] dt 1
+[IT(h (£)* [ T(t ~s)ws(s) ds] dt o

with

wy(s) = 2|2(s)Pv(s) + (2(5))?v(s) + 2z2(s) [v(s)* + 2(5)(2(5))* + [v(s)|*v(s)
= (Ju(s) + lz(s)P)v(s) + z(s)u(s)v(s).

For the numerical solution, we use Taylor’s Theorem with one order more than
before on the function a(t) = e™!2"2” in zero to see that

2 el .
a(h) =1 Fih|z(2)l - % J2(/2)|* = %J (h—1)? |z(/2) PeTHE2E g
0

and therefore

S&irang (1 (k) = T(W2)a(h)z(1/2) = 2(h) Fih T (4/2)[ |2(12)*2(2)]

:ZA2
h2
~5 T2 2(72)[*2(2)]

:ZB2

h
i%T(h/2)f (h—1t)?|z(12)|% it |z(12)|? z(h2)d
0

:213

This gives us

u((k+1)h) = Sl (u(kh)) = (A; = Ay) + (By = By) + I, + I, - I,

18



hence
llu((k+1)h) - Séftrang(u(kh))lls < |Ay = Asglls + 1By = Bolls + [ lls + [IT2lls + [13]]s-

and it remains to estimate the last five norms. We recall from Proposition
that

”v(t)”s+2r SMh, ||Z(t)||s+2r <M'

and therefore

”101( )”s+2r ”lv( )|2 (t)”s+2r'+ ”lv(t)lzu(kh'*'t)”s-ﬂr'+ ”(v(t))22123”s+2r
S (I, 2 112()lsszr + (kb + Dllgyr) s MPH?

as well as

lwa () < N([(s)2 + [2()P)v(s) + z(5)u(s)v ()l 2
S (s (e (N2,2, + N2(NZ,2, + N2(Z00, N (S)12,2,)
< M3n

for s,t € [0, h]. Those estimates yield

l1lls <k sup [IT(h—t)wy(t)lls+2r
t€[0,h]

=h sup |lwy(t)llsr2r S M°H> < M’ max({1, T*}h'*,
te[0,h]

followed by

t
Il < 28 sup [T =01l | 76 swats) s

tE 0 h] S+2r
t
+h sup 'T(h—t)[(z(t))zJ- T(t—s)wy(s)ds
te[0,h] 0 s+2r

t
< 2h sup | |z(t)|2j T(t—s)wy(s)ds
te[0,h] 0

s+2r

t
+h sup '(z(t))zj T(t = s)w,(s) ds
te[0,h] 0

s+2r
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< h sup ||z(t)
t€[0,h]

jt (t—s)wy(s) ds
0

< M?h? sup sup [T (¢ —s)wa(s)lls+2r
te[0,h]s€[0,t]

= M?h? sup ||wy(s)|lss2r < M°H® < M°max1, T2h*",
s€[0,t]

|k+2r s+2r

Next, we see that

h
Ll = %HI (= £)2|2(2)| ST 1(00) it
0

S+2r

1
< k3 sup [[Ju(kn)CeF I EF 2p)))
te[0,h]

(kh)|?
Sk sup [[u(kh)S, o, 12072) s, lle ™Y,
teﬂ)h]

< M7 eC?M?T max{1, TZ}h1+r

by (2.8)). Moving on, we again work with f(t) := T(h —t)[|z(t)|*z(t)] to see that

h
Al—AzzJ;f(t)dt—hf(h/z): F(tydt + th dt —2f f(h2)

- Jzf(h/z—t)—Zf(h/2)+f(h/2+ ) ds
0

Abbreviating our terms by defining y(t) := |z(h —t)|*z(h — t), we therefore obtain

h
|A1 = Aslls < 5 sup [IT(W2+t)y(W2+1) = 2T (W2)y(2) + T(W2—t)y(W2 -t
2 selo,2)
h
<5 sup ((T(W2+1)=2T(2)+ T(W2=1))y(W2)lls

te[0,h/2]

+I(T(W2+1) = T(W2)[y(2+1t) = y(72)]lls
+ (T (2—1) = T(W2)[y(W2—1t) = p(/2)]lls
+ (IT(W2)[p(W2+1t) = 29(2) + y(W2 = D)]lls)

<h sup (hr Iy (2)Nls27 + B2 Nl (W2 + £) = p(72) |5
te[0,2]
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+ WP Np(2 = 1) = g (1)l + Iy (W2 + 1) = 29(2) + p(W2 = 1))
S M3h1+r

by Lemmata [2.4]and Finally, we move on to the last term which is again
easier to handle. Defining

E(t,s) = =2T(h=)[lz()PT(t = s)[|2(s)*2(s)]] + T (h = 1)[(2())* T (¢ = 5)[|2(s)1*2(s)]],

we see that

2 2 -
0RO/, = T P 072 2072)] + T2 (02 0 2) 0]
2
= LT 0rlet2r) = B,

and therefore
h t h2
1B = By, = HJ J F(t,5) ds dt = = F (12,172
S

HJ f (W2,/2) -

< sup ||[F(W2,12) - F(t,s)||s

0<s<t<h
2
=0 sup IE(t9) - 2Fa(t )l (2.10)
0<s<t<h
with
Fy(t,5) = T 20y 2042)] ~ T(h— )](2(0)2T (¢ ~ I 2o P2(6)])
Fa(t,5) = T[22 2(02)] — T(h = |0 PT(t — ) |z()P2(5)]
With

Fy(t,5) = (T(W2) = T(h = t)[|2(W2)*2(2)]

(2(/2) = 2(t)) l2(2)|*]
2(t)(2(2) - 2(0)) |2(1/2) P2(12)]
l2()P(L = T(t = s))[|2(2)*z(2)]]
l2(#)PT(t = 5)[p(2) = y(h~s)],
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We can use Lemmata (2.2}, |2.4/and [2.6| to obtain

12 (8, )lls < (T (2) = T(h = 0)[|2(72) *2(2)]lls:.,
2(2) = 2(8))12(72)[ s+
t

+ [T (h—1)[(

+ 1T (h = 1)[2()(2(2) = 2(0)) l2(72) P2(72)]ls:.»

+ [IT(h = £)[1=( ) (I=T(t =) Iz(W2)*2(/2)]]lls+r
+ IT(h=)[|2(OI°T (£ = 5)[p(2) = p(h = 5)llls+

SH” ||lz(W2)*2 (h/2)||s+2r
+ 112(%2) = 2(#) s 2(72)l1, o,
 12(Dllss2r 12072) = 2(8)llss 1221,
1211240, I = T (¢ = s)2(v2)*2(2)] |51
120130, Iy (72) = p (= $)llsss
SH2 20722, 2,
+ 112(72) = 2() s I2(72)1, o,
+ 1202, 2, 112(72) = 2(8) s 2(W2)I12, o,
+ W22, o, 122112,

+ 11222, 9 (72) = (= 5|54
<M hf/z

for t,s € [0, h]. The estimate of F; works analogously. Plugging this into (2.10))
gives
1By = B,lls < MPh>*7? = MPh'™h'*" < M® max{1, T}h'*,

~

which is the last part we need to conclude the proof. ]

The last result we need shows a uniform bound on the H¥*?" norm of all terms
we want to use Proposition [2.3]on in the proof of Theorem

LemMma 2.8

Let ||u(t)|ls12r < M forallt € [0, T]. Choose € € (0,r] such that s+2(r—¢) > % and

put hy = min{(TeC<2+T)Tc,oc)g ,T}. C(M,T) is the the constant from Proposition

Coc is the constant from Proposition with s replaced by s + 2(r — €).
Then, for h€ (0,hg], Nh< T, ke{0,...,N}and j €{1,...,k}, we have
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a) N(SE N (u(kh)llssar—e) < 2M

B) 11(Sgsyang)™ 7 (u(kIt)llss2(r—e) < 2M

Proof.

a) We show a stronger result by induction over N, namely
(ST )N (u (k) = (N = j+ k)B)llsar—e) < TeCCM DTt (2.11)

for Nh < T and all k € {0,...,N}, j € {k,...,N}. Indeed, by the triangle
inequality and & < hg, our bound on u in H**?" and hence in H**2("~¢) and

(2.11), we get
(SN (u(kh)lsaa(r—e) < 2M. (2.12)

We start with N = 0, for which the difference in (2.12) is 0 and hence
the estimate is trivial. Assume for some N € Ny with (N+1)h< T
and all k €{0,...,N},je{l,...,k}. For k=N +1, we get j = N + 1 and the
estimate is once again trivial. For k € {0,...,N} and j e {k+1,...N + 1},
the resulting term is already covered by the induction assumption. Let
k €{0,...,N} and j = k. We compute that

(ST N1 (1 (kh) = (N + 1)R)lls42(—e)

N-k
< ) ISEIN T (e + D) = (TN (K 1+ D)z
1=0

Now, we can use the stability property from Proposition a) N-k-1
times. M can be taken to be 2M by our induction assumption (see (2.12)).
This yields

I(SEIN IR (w(kh) = (N + 1)) lgs 2o
N-k

eCOM DN (K + 1)) = St (((k + 1+ 1)) g4 2(—e)-
1=0

N

Now, we use a version of Proposition [2.5|with H® replaced by H*+?("=¢) and
r replaced by ¢, that is,

IS8 (1(kh)) = w((k + 1)) llss2(—e) < Croch™*,
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the proof working exactly the same way. Therefore, we finally obtain

N-k
S5 (kI = (N + D)llssmey < )M T Croch! ™
=0
< (N+ 1)6 (ZM,T)TC10Ch1+é < TeC(ZM,T)TclochS’

which is for N replaced by N + 1 and j = k. This concludes the
induction as well as the proof by (2.12).

b) The proof is identical, using part b) instead of a) in Proposition|2.3|and
Proposition [2.7]instead of

If we examine precisely which properties of A on L?(IR?) we used in the above
proofs, we realize that with the same argument, we actually proved a much more
general result: We can replace A on L?(IR?) by a general semigroup generator —A
on LP(Q)) if we replace the Sobolev scale H? by the scale of fractional domain

spaces D(A®). More precisely, we have the following assumption.

ASSUMPTION
(i) —A generates a bounded semigroup on a space X = LP(Q), %, u), 1 <p < oo,
on a o-finite measure space (Q),%, ).
(ii) Let Yy = D(A®) equipped with the graph norm of A® and assume that for
some so, > 0 and s > s, we have
* continuous embeddings Yy — L=(Q), %, )
* Y, is a Banach algebra with respect to the pointwise multiplication,

that is for y,y, € Y,

1919215 < Csllalls [1plls

Consider now the equation

w'(t) = (=Au)(t) £ilu(t)Pu(),

(2.13)
u(x,0) =ug(x),
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Then the arguments of this section yield the result on the convergence speed r
of the Lie and Strang splitting applied to (2.13).

THEOREM 2.9

Let r > 0 and s > %— 2r. If ug € Ys,, then there exists a T > 0, a unique
solution u € C([0,T], Ys,,) of and a hy € (0, T] depending on d,s, T and
M :=sup <7 l[t(t)lls4, such that, provided

a) r€(0,1], we have
Jull, — u(NR)lls Sgorm h°

b) r€(0,2], we have
”ué\[rang - u(Nh)”s sd,s,T,M h'.

forall 0K Nh< T and h < hy.

For a more general statement, see the Chapter |3 more precisely Section For
concrete examples, see Section
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3 Splitting methods for general

semilinear evolution equations

3.1 The equation

We are interested in numerical approximations of solutions to equations of the

form

<
~
—_
~
~

[l

(=Au)(t) + g(u(t)),

u(0) =uy.

(3.1)

Our assumptions on the operator A and the nonlinearity g are as follows, where
r > 0 will denote our desired order of convergence.
AssumpTION 3.1
Let (Y, ||-|ly) be a Banach space and A: D(A) CY — Y a linear operator such
that —A generates by T(t):=e ™ :Y - Y

* r<2: A Cysemigroup fort >0

 r>2: A Cygroup for t € R or an analytic semigroup for t in a sector
Yy :={z€ C| |arg(z)| < ¢} for some ¢ € [0, 7).

REMARK

A (semi)group generator fulfilling Assumption [3.1|has fractional powers A® with
domain X, := D(A®) for all s > 0 and the graph norm ||-||s. Each (semi)group has
the growth bound

for some C,w > 0 and all s > 0 as well as all t in question. By using the norm

- lls = supte“”“| |T(t)-||s, we see that the two are equivalent since
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llxlls < Illxllls == sup e~ T(£)x]ls < Cllxly
t
for x € X; and that |||T (to)lllx,—x, < e@ltol since

T (to)xllls = supe™ M| T (¢ + to)xll, = supe M| T (£ + to)xll;
t t

< e?lolsup e @10l T (¢ + to)x]ls < eI T (20)x]lls.
t

To simplify the following computations, we assume that w = 0. It is easily
checked that w > 0 does not pose a problem, whereas C > 1 creates a problem in
the proof of the main Theorem [3.4]since by repeatedly applying the stability result
from Proposition we obtain a factor C" where n — oo as our numerical step

size approaches zero.

Our conditions on the nonlinearity g are motivated by the paper [HO16] by
Hansen and Ostermann which considers nonlinearities g : X; — X, fors =0,...,r

with r € N assuming that
* gislocally Lipschitz on X, (*)
* gis k times Fréchet differentiable on X, j fork=1,...,r (%)

In order to accommodate more nonlinearities g, even polynomials, and also in
order to consider fractional convergence orders r > 0, we found it necessary to
weaken these assumptions in several directions. To this end, we write r = n—-1+6
with neIN and 0 € (0,1].

AssumpPTION 3.2
Let g: Dg — Y be a nonlinearity with a domain dense in Y and the following
properties.

(i) X, C Dg and g is locally Lipschitz on X,

(i1) Forb=1,...,.n—-1andb=0,0+1,...,n—2+0,r, we require that

* For some s(b) € [r=b,r], we have X, C Dg and g is [b] times Fréchet
differentiable on Xy

 Forevery M > 0 there is a constant C(M) so that for all k € {1,...,[b]}
and a; € {0,...,n—-1,0,1+0,...,.n—-2+0,r} for i = 1,...,k with
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Zle a; = b, we require that for x € X,, the multilinear map g% (x):
(Xs(b))k — X,(p) determines (see part b) of the Remark below) a con-
tinuous multilinear map

g( )(x) : Xr—a1 Xoees XXr—ak — Xib

with ||g® (x)|| < C(M) for all x € X, with |x]l, < M.

(iii) For some s € [0,r), g is Lipschitz continuous on bounded subsets of
* X, with respect to the norm of Xy =Y

* X, with respect to the norm of X;

Under this assumption, for u, € X,, there exists a T > 0 and a unique (mild)
solution u € C([0,T], X,) of in case of a semigroup and C([-T,T],X,) in
case of a group. Since the (semi)group generated by A also operates on X,,
this follows from [Paz92, Theorem 6.1.4]. The size of T for a fixed function
g only depends on ||upl|x,, as can be seen from the proof. If g is continuously

differentiable on D(Ar‘l), then we even obtain a classical solution.

REMARK

a) If one chooses Dy =Y and s(b) = r — b in Assumption one recovers the
assumption by Hansen and Ostermann mentioned above.
Indeed, for Dg =Y, (i) reduces to (). Since a; < b, we have Xi—a; © Xip
and (ii) follows by restricting (++), assuming the ||g'®(x)|| is bounded for
x in bounded subsets of X,. (iii) with s = 0 follows from () if ||g"(x)|ly
is bounded for x in bounded subsets of Y. One might also choose larger
values for s in order to get (two) different requirements on the boundedness
of ¢’(x). The assumptions on the boundedness on bounded sets seem to be
missing in [HO16|].

b) For general choices of a; in (ii) it may happen that (upon rearrangement
by symmetry)

r—ay,...,r—aj, <s(b) <r—aj,,...,r —a.
Since X,_b,Xr_ul,...,X,_ai0 2 Xy(p) 2 Xr—a,»OH:---:Xr—uk: we obtain using

these continuous inclusions for domain and range spaces a continuous
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map identical to g'¥)(x) from (Xs(b))io X Xr—a,0+1 X...X X;_g to X,y and

assume now that this map can be extended to the continuous map

—_—

g( )(x) : Xr—al X ><Xr—ak - Xr—b

required in (ii). For notational reasons, we will identify g% (x) and g(x).

Since Assumption [3.2]is very general and quite technical, we try to make
if comprehensible by restating it for small order r. Continuing with the
notation Xy = D(A®), note that Xy = Y. For details on the definition of
:gv’(x) and ?(x), check b) above.

e For 0 <r <1 (which means n =1, 0 =r), we require g to be once
Fréchet differentiable on Xy for some s(1) € [0, r]. For x € X, with
lIxll, < M, we need to extend g'(x) : Xs1) — Xy(1) to a map

§'(x): Xo > Xo with || (x)llx,x, < C(M).
for some C(M) > 0. Additionally, we need an s € [0, r) with

1§ (1) = g(@)llo < C(M;) llu —vllo

for ||ulls, [[v|ls < M and

Ig(u) —g@)lls < C(M)Ju —vl|s

as well as
llg(u) —g@)Il, < C(M)|lu -,

Sfor llully, [Vl < M.

To illustrate how these "weaker’ forms of differentiability and Lip-
schitz continuity work, we consider the example g(u) = |ul®u ,
Y = X, = LP(R?) and hence X, = H;(IRd) for the Bessel potential
spaces in LP(R?) with regularity s > 0. Choosing r > %, X, isa
function algebra (see [[RS96l][4.6.4]) and hence g is real Fréchet
differentiable on X, with

g (x)[v] = 2|x*v + x°7,



see Lemma b) and the Remark below it. Although this map
is not the Fréchet derivative of g on any X; with s < % because
the difference quotient does not converge, it still makes sense as
a map from LP(R?) to LP(R?) for x € X,, simply because of the
Sobolev embedding X, <— L®(R?) (see [RS96]][2.4.4]), which gives

the multiplication estimate

I/gllo < Ifllolligll- ¥f €Xo,8€X,.

This estimate corresponds to the extendability requirement of g’(x)

since for x,v € X, with ||x||, < M for some M > 0, we have
2 2
g’ () [v1llo < llxll7 Ivllo < M= [vllo,

letting us extend g’(x) to the required map g’(x). The three estimates
on Lipschitz continuity follow by the two multiplication estimates
when choosing % < s <r, interpolating between the two estimates to

obtain the multiplication estimate

If8lls < llfllsllglly VfeXsgeX,

for the second estimate. For details, see Lemma

For1<r<2(hencer=1+0=n-1+0forn=2,0=r—-1), we
require g to be once Fréchet differentiable on X1y for some s(1) €
[1,7]. For x € X, with ||x||, < M, we need to be able to define

g'(x): Xy = Xy with ||g'(x)llx,~x, < C(M)
as well as, since Xy(1) C Xg, a continuous extension

§(x): Xg > Xg with |Ig(x)llx,-x, < C(M),

as in Remark b) above. Moreover, we require g to be twice Fréchet
differentiable on Xy) for some s(2) € [0,7]. For x € X, with [|x]|, <
M, we need to be able to extend g”(x) : Xy(2) x Xs2) — Xs(2) to am
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map
§7(x): Xox X, = Xo with  |lg7(0)llxyxx,—x, < C(M)

as well as
§(x): Xgx X > X with  [Ig”(x)llxyxx, -x, < C(M).

as in Remark b) above. Finally, we once again need an s € [0,r) with

18 (1) = g(@)llo < C(M;) [lu —vllg

for |lulls, [[v|ls < Mg and

18 (1) = g(v)lls < C(M)]Ju s

as well as
llg(u) —g@)Il, < C(M)|lu -,

Jor llull, [[vll, < M.

3.2 The splitting method

In order to define the general exponential splitting method we want to use, we
first need to split up (3.1)) into its linear and nonlinear part, respectively.

(—Au)(2), (3.2a)
o |
g(u(t)), (3.2b)

both having initial value u(0) = uy. Equation has the solution T(t)u :=
e "y, for all uy € Y and t depending on the kind of (semi)group A generates.
Again from [Paz92, Theorem 6.1.4], setting A = 0, we obtain for up€ X, a T >0
and a (mild) solution ¢, € C([-T, T}, X,) of (3.2b), where T once again only
depends on ||ug]lx. .

The principle behind the splitting process is to approximate the exact solution
u of (3.1) by alternately following the linear and nonlinear solutions of (3.2a)
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and (3.2b). For fixed h > 0 and g € IN, we therefore define

Sh( ):T( h)uy,
sh i Mg (i), i€(l.q-1), (3.3)

iv1(t0) = T(
™ (o) := Sl (uy).

Our assumption on the coefficients a; and 8; depend on our order of convergence
r > 0 as well as the kind of (semi)group generated by —A. We first state possible
values for orders up to four. The exact requirements for arbitrary orders will be
given in Assumption [3.5|after Theorem Any reader who is not interested in
higher orders or the exact assumption on the coefficients which can be checked

to fulfil the general Assumption [3.5|which we give below, as will be shown in
Remark[3.12

REMARK 3.3

Possible splitting schemes for r < 4:
r<l:q=2,a,=0 a,=1, f; =1 (Lie Splitting),

<2:9=2,a1= % —% B1 =1 (Strang Splitting),

o _1,:V3 _1 _1 1_:V3
r<3.q—3,a1—z+1ﬁ,a2—§,a3—z 12,/))1—2+1—,ﬂz—2—1?,

if A generates a fitting analytic semigroup and 1 admits complex times

(otherwise, see r < 4),

1
_43
or<4;q:6,a1:a6:_1 l,a2:a5:_1l1a3:a4— 14:l
8-243 4-43 8-243
43 -
By = [52_/34_[35_ 1,[53_ 1,zngeneral‘esaCogroup,orq:5,
- 4—4
4 _ _ _1

if A generates a fitting analytzc semigroup.

3.3 The result

Now that we have given all assumptions on our equation and splitting scheme,
we are able to state the main result of this chapter, the global error estimate in
Y on [0, T]. We mention here once that all constants depend on the choice of the
operator A, the nonlinearity g as well as the variables g, ;, ; of the splitting

scheme implicitly.
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THEOREM 3.4

Let r> 0 and ug € X,. Let assumptions (3.1} [3.2]and [3.5] (see Remark[3.3) hold
and assume the mild solution u € C([0,T], X,) offulﬁls lu(t)llx, <R for
all t € [0, T] and some R > 0. Then, we conclude that there exists an hy € (0, T]
such that

1" () = (N B)lly < CH”
forall h € (0,hy] and all N € N with Nh < T, where C only depends on R and
T.

We give the proof directly at this point, citing three results which will be stated

and shown over the course of this chapter.

Proof. We follow the standard concept called Lady Windermere’s fan. By artifi-
cially generating a telescoping sum, we see that

N-1
(S™N () = u(N)lly < ZII ki) = (SN E Dk + D)y (3.4)
k=0

For the terms on the right hand side, we use the stability result from Proposition
3.6la) N —k—1 times. It says that

15" (w1) = $™(wa)lly < PR lwy —w,ly

as long as |lw;|[x,, [lwallx, < R; for s as in Assumption Here, w; and w, are
given by (S")N-i(u(kh)) for k €{0,...,N}and j € {k+1,...,N}. The fact that their
Y norm is uniformly bounded (by Ry = 2R) for all k and j follows from Lemma
Hence, we obtain

I(SMNK (u(kh)) = (SMNED(w((k + 1)h))lly
< eCURIBIMNTR=1) ) 6h(yy (kh)) — u((k + 1)h)lly,

where || = Zq 1 |Bil. Next, we use Proposition (3.13} which says that

15" (o) = u(Mly < C(R)A'
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as long as ||lug||lx, < R. This is the result that actually requires Assumption
and Assumptionand gives us most of the work. Since we assume [|u(t)|[x, <R
for all t € [0, T], we can just replace uy by u(kh) and end up with

15" (k) = u((k+ 1)y < Ch™,
which finally lets us go back to to see that
N-1
I(S™)N (1) = u(NR)lly < )~ CHRIPIENTDSH (4 (k) a((k+ 1) )lly

k=0
N-

;i

eCURBIHN—k-1) cprel  NpeCURIBIN Cpr o ToCAR)IBIT Cpr.
k=0

We now state the general assumption on the splitting scheme, which requires
some technical definitions. A reader only interested in smaller orders and the
well known schemes from Remark can skip these technicalities. When
comparing the exact solution to its numerical approximation at hand, we are
going to use Taylor’s Theorem on the function g and its derivatives. These

functions are going to appear in composite expressions such as for example

& (x0)[8” (02 )[83.0) 8x.2)] & (022)[8 (s g, )] g2

with additional (semi)groups in front of every derivative of ¢ which we omit
here. We will denote the orders of those derivatives by k; , € Ny (j,r € N), where
j stands for the level in the composition and r is used for numbering them
within one of those levels. In the above example, this means ky; = 3,k;; =
2,kyp=1,ky3=0,ks; =0,k3,=0,k335=1,ks; =0. We now define

L1 ki

K m
K—l = kO,l = 1, K] = Zk]"r, Sm = ZK], ]+1 Z k]+1 52
r=1 I=0

with j,m € Ny and p € {0,...,K;_;}. Notice that p = 0 renders the sum in the
upper bound empty, hence K](+)1 = 0. The K; are obviously the sum of all orders
on one level (in the example, K; =3,K, = 3,K;5 =1,K; =0, giving us the number
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of arguments we have on the next level. The K;i)l are auxiliary numbers which

add the orders of derivatives on level j+1 occurring within the first p arguments
on level j. In the example, this is only non-trivial on the third level, where
Kél) =0, Kéz) = KS) = 1 = K3, since the only (first) derivative of g appears in
the second variable. S,, is the sum of all orders up to level m (in the example,
S$1=3,5,=6,5;=7,5,=0), important to separate the easy remainder terms
from the main terms.

Moreover, repeated use of the variation of constants formula will leave us with
two types of integration sets depending on the k; , from above, namely

(kjr)

Nu'" ={0<t1 <1, 0t <tjg, forse (K" +1,.. K" }and j=2,...,m)

for the representation of the exact solution as well as

() (ij,s) . , , .
Mm]r Pi= {0 Sthp s 1, 0< tj,s < tj—l,r (lj,s = Zj—l,r)r 0< tj,s <1 (Zj,s < Zj—l,r)l

-1
2 s=K Va1, k),

j=1,....m, r=1,...,K j

j_
for the numerical approximation. Finally, we abbreviate the sum of the first
parameters a; from the linear part of the numerical approximation (see [3.3),
thatis c; := Z{Zl a;, since this is the only way they are going to appear in later

calculations. The assumption now looks as follows.

AssSuMPTION 3.5

Letr=n—-1+0 withneNand 0 €(0,1]. Let all a; be either nonnegative, real
or lie in a sector X, for a ¢’ € [0, @) depending on whether A generates a Cg
semigroup, a Cy group or a analytic semigroup. Moreover, let all p; be real, since
the nonlinear flow might not be defined for complex times. If it is, one might
also choose f; to be complex.

For all k]-!r €Ng forjell,...,n}, ref{l,...,K;

j-1} with S, < n, we require that

l]lr

Z Y. m (ﬂﬂf%s) )

i1=1 is=1j=2,., j=1 s=

(r ) (r)
r—l...,K]_2,s—Kj71 +1,..., K];l
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for all monomials P € {(t; )" | y € INg’H, ly| <n—S,_1} in multi index notation.

We are not able to prove the general existence of a g and («;), (B;) which fulfil the
equations in Assumption and can also not reduce the number of equations
for general n € IN. But we suspect that the set of equations can be drastically
reduced down to (kj,) = (ki,1,...,kn,1) = (1,...,1) for all N € {1,...,n} and the
pure monomials in #;, namely P((t;;)) = tf/ll for all M € {0,...,n—1}. This
definitely works for n < 4, as will be shown in Remark [3.12]

3.4 The stability

We start off with the stability result since it is the easier part of the proof and

we are going to need part of it in subsequent computations.

ProrosiTIiON 3.6

Let wy,w; € X, With lwillx,, llwallx, < Rs (in a)) or [[wyllx,, [lwallx, <R (in b))
and h e( _log(2) ) where || = Zq_l |Bi|. Then the following is true:

" CRR)IF)
a) ||S"(wy) - S"(wy)lly < e“PRIP wy —w,]y.
b) 11" (wy) - S"(wy)llx, < eCERWI jw; —w,||y..
¢) ISHw))llx <2Rforie(l,...,q).

Here, C is the constant from Assumption

Proof. We will use combinations (W, Xy, Ry ) € {(Y, X,, Ry), (Xs, X, R), (X;, X;, R)}
in this proof, all of which are justified by Assumption First of all, we know
that for any v € X,, 1, is the mild solution of (3.2b) and hence

Bull) =v+j0 ¢(u(s)) ds

for all t for which the solution exists. This means that for any v, v, € X, with

Ilv1llx,,» v2llx,, <R, we obtain

t
1o, (8) = b, (D)llw < [lv1 —va2llw +L 18 (1hy, (5)) = g(Pu, (5))llw ds. (3.5)
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By Assumption we obtain

Ig(v1) - g@)llw < C(R) [lvy —vallw,

which turns (3.5) into

t
[0, (8) = o, (Dllw < vy —v2llw +J C(R) [[thy, (5) = 1y, (s)llw ds.
0
By Gronwall’s inequality (see [Wal00, §29 VI.]), we conclude that

0, (£) = o, (Dl < €SP oy = v, llyy. (3.6)

We now prove the statement inductively by showing that for every i € {1,...,4},

we have
C(2R i-l1g.1p
15 (wy) = SFwo)llw < PRI EE P ) — ]y, (3.7)

The induction start (i = 1) is trivial since

IS1 (wy) = ST (wa)llw = IIT(ayh)w; — T(ayh)ywallw
= [|[T(a1h)[wy —ws]llw < llwy —wsllw,

which is (3.7] - 7) because the sum in the exponential is empty. Assuming (3.7) for

some i € {1,...,q — 1}, we see that

1571 (wn) = Sty (W)llw = IT(@isa D) [Wgh ) (Bilt) = i) (Bil) llw
< ||77bslﬁ(w1)(/5i )_Ebslh(wz)(ﬁih)nw-

— i1,
Here, we use 1) with v = Sf(wl) and v, = Slh(wz), meaning R = eC2Rw) Lz Ijlh
Ry by (3.7) for either wy = 0 or w, = 0 plus the assumption [[w1[|x,,, [[w>llx,, <
Ry, to obtain

CORWILIZ] 1Bl

ISP (wy) = SE (wo)llw <e€te WA |15 (w1) = ST (ws) -
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(2Rw) L2} 1Bl

By assumption, e© < 2. Combining this with the induction assump-

tion yields

1 C(2R —Ligh
ISE (wy) = SI | (w))llw < eCERWIBICERWI LI Bl ) 1

= ORI P oy iy,
which is (3.7) for i + 1 instead of i. This ends the induction.

The results now follow from (3.7): Part a) by using (W, X, Ry) = (Y, X, Ry)
and i = g — 1, part b) by using (W, Xy, Ry) = (X, X, R) and part ¢) by using
(W, Xw,Rw) =(X;,X,,R) and w, = 0 as well as the upper bound on h. [

3.5 The local error

We start off by developing the exact solution at time / in terms of orders of h.
We fix h > 0 and begin by noticing that the mild solution u of (3.1) fulfils the

equation

h
u(h) = T(h)u0+J; T(h—t)g(u(t)) dt (3.8)
=:u)(h)
=ttty (h)

in X, (and also on all X; where g is at least once differentiable by Assumption
by the variation of constants formula. Replacing u(t) in the integral by the
same formula, using Taylor’s Theorem and iterating this process, we get the

following representation.
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ProrosiTiON 3.7

If g is n-times Fréchet differentiable on some X, then

1’1—5]‘_1
hsn—l
u(h) = (h) + 1 K f (kjr)F(kj,r)((tj,rh)) dtyk, - dt
kjr= j=1 [ kj,r! Ny
j=L..,n-Lr=1,.,K;4
Sn—lsn
n 1=Sj-1 1
hsm—l — _s
+ Z . F(k4 )m[( g(km’r)(An mil(tm s))
m K]'_] | N(k],r) 117 0 km,s ’
m erO ]':] l_[r=1 k]',r- m+1

(r)
[T FCTCPON ) o 13 i (905

with

jr)j=1,..,m—-1
r=1 ..,K]',l

F(kj,),l[v](tl,l) =T((1-t)h)v  YveX,
Km T
o (t0)) = o] (87 (11 (0, )

(r)

(Tt = trer D) ) ()

P(k]-,,),m+1 [(vs)

for all (vs)f:’“1 e (X, )Km with (tjr) = (tjr)j=1,.,m+1 and m € N. The functions
r:l,...,Kj,l

Fik, )= F(kj_r)]. L ,_q are now just defined by

r=1,..K;_y
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Proof. We show the result inductively, meaning we want to prove

n-S;_
- ! B (kp,
u(h) = u(h) + - i B (8527 (1(25,0))
— T 1.5 & L IN
kj =0 j=111l=1 %jr p+Lh
j:l,...,p;r:l,...,K]-,l
Spsn
(1)
K K, 1
[ T(tp"_tP”’S)g(u(tP“’S)))SZPK;“”H])r; ]((tj,r)) dtp+1,Kp"‘ dtl,l
p Tl+1—5j_1 1 1
T kmr n—Sm,
* Z K; J (ki ) F(kjr)rm[(f g( ' )(Ak Htm,s))
= m Ik 1IN T ' 0 "
m=1 k]',r:O l_[]:1 l_[rzl jre m+1,h
j=1,...,myr=1,.., K]_l
Sp—1s<m;S,,>n
(r)
K Kmfl
[(T(tm,r - tm+1,s)g(u(tm+1,s)))S:K’(ﬂr—l)+1] dé)rzl ]((tj,r)) dJL111+1,K,71 dtl,l:

(3.10)

N, ={0<t;1<h 0<tj;<tjy,forse {K(r_1>

i T 1,...,K;i)1} and j=2,...,m}.

(3.11)

For p = n, this is our desired formula. Comparing the two, we see that this
is the case since on the one hand, we obtain the integration set N,(fj’r) from
Nr(,:(’];) through the simple substitution (¢; ;) (%S), giving us a power of h for
every t and a factor h in front of every t as well. On the other hand, we have
ki =---=kyk,_, =0, which means we do not need to sum over those indices,
S, =S,-1 and the t,,; , do not occur. To see that this is in fact true, notice that
for ky,; = 0, the sums over k, ; are empty, so that they only occur for k;; > 1.
This in turn means S; = 1+k; 1 > 2, so that the upper bound for those sums is at
most n— 2. This pattern continues, hence after iterating this process for a total
of n times, the newest indices k,, ; all need to be zero.

Starting off with p = 1, we use Taylor’s Theorem for a function f : R — X;. If f

is n-times differentiable, then

—_

Bl AN
fm=y S [ e e 3.12)

0

=
Il
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We set f(s) := g(u;(t) + su,;(t)) and compute

FO(s) = g0y (1) + st (1)) [t (£), .., i (£)],

k times

therefore

(k)
g(u(t) = f(1)= 8 (ul(t))[unlift),...,unl(t)]

k=0
1
%J; & (uy (1) + Ettyy (1) 141 (£), .., iy (£)] AE.

Inserting the definition of u,,(t) into this and pulling out the integrals yields

n—1 t t
g =) g | | e (T s)gu(s ) I dsie-- s
k=0 """
t t 1
+% . J; J; g(n)(uz(t)+éunl(t))[(T(t—s,)g(u(sr)))rzl] d& ds,--- dsy.

(3.13)

We plug this into (3.8) while renaming (k, t,s;) by (k1,1,t1,1,15,j) to arrive at

o et et @R )T (t 1 - t2,)8(u(t2,)) 1]
=i+ Y g [, o 1

1 h tl,l tl,l 1 (k
dtagy, et | | g e + £,
+JO0 JO 0 0

[(T(t1 - t2)g(u(t2,)))_ dEdtag -+t

which is (3.10) for p = 1. Now we assume that (3.10) is true for some fixed
pe{l,...,n—1} and show it for p + 1. We leave the first and the third term (u;(h)

and the sum over m) be, since they are the same for p + 1. For the second term,
we first notice that

F(kj,r),p[(g(kp’r)(ul(tp,r))[(T(tp,r - tp+1,s)g(u(tp+1,s)))szp r—1)+1])KP71 ]((tj,r))

~ K

= L(kj,)p+1 [(g(”(tpﬂ,s))) pl ]((tj,r)).

S=
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Now, we replace the terms g(u(t,1,s)) by (3.13), this time with n+1 - S, instead
of n, while splitting the result according to whether S,,; < n (which means
there are no remainder terms involved) or S,,; > n (which means there might

be remainder terms involved, see (3.9)). This yields

I’Z—S]'_l
1 K,
p— ki) Fik ,p+1[g p+1s))] ((t,) dtprk, -~ dtr
k=0 1_[]'21 r=1 Kj ! I Npiin
j=L..pir=1,..,K; 4

Sp<n
1’1—5‘,1 n-S
B j p 1 1
- L B T
' kj =0 kp+1 Lreess p+1Kp =0 ]_[] ll_[ 1T l_[j:l kp+1,j'
]:1,...,p;r:1,...,K]-_1 SP+1<n
Sp<n
t t
Per—l Per—l —~ k
J b J J ...... J J P(kj,r),p+1[(g( P+l,r)(ul(tp+1,r))
p+1h 0 0
ky,1 times kPer—l times
(r)
K K
p+l P
[(T(tpﬂ,r - tp+2,s)g(u(tp+2,s))) (r-1) ]) ](( jir r) dtpyr, Kpi1 ™ -dty
S:KP+1 +1
n-S;_1 n-S
j- P 1 1
* Z{ Z / 1 N(k],r)
_ ki =0 kp+1,10-kps1,k,=0 l_[] lnr 1 k]r n] 1 P+1] ptLh
j=1... ,p,r L...Kj Spe1>n
Sp<n
t t t t 1
p,1 p.1 PKp-1 PKp-1 — k n-S
P
J J ...... J‘ J‘ F(kj,r)'P"'l[(J‘ g( P+1,r)(Ak +ls(tp+1,s))
0 0 0 0 0 L
S ———
kp,1 times kp,Kp_1 times
(r)
K K
T(tye1, —t w(tyens))) "oy |dE) T ((t;0) e dt
[( (p+1,r p+2,s)g( (p+2,s)) S:K[(:ll)+1 r=1 (( ],r)) p+2,Kp41 1,1
1’1—5];1 1
T k
- Z 1 (kj )P(kjr)'p+1[(g( pﬂ'r)(”l(tpﬂrf))
pr P INS
k; =0 l_[ l_[ ],r- p+2,h
j:l,...,p+1;r:1,...,Kj,1
Spr1sh
(r)
K K
p+l 14
[(T(tp+1,r - tp+2,s)g(u(tp+2,s))) (r-1) ]) ](( jr )) dtp+2 Kpi1 ™" dtl,l
5= Kp+1 +1
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I’l—Sj,l

1
1 ~ k n-S§
p
+ z (k; )F(k-r),p+1[( g( p+1'r)(Ak (tp+1,5))
P+1 1 JN jr ] 0 p+1,s
kj =0 ]_[ l_[ ,r- p+2,h
j:1,...,p+1;r:1,...,Kj,
Sp<n; Sy >n+l

(r)

[(T(tp+1,r - tp+2,s)g(u(tp“‘z'S)))fp]Jr(l‘():ll)-kl] dé)

K

2l dtpak,., o iy

Plugging this into (3.10), the second part becomes the new summand (m =p + 1)
for the third term in and we end up with

n—S]-_l
1
um=mis Y e [ Bl )
k]-,:o l_[ l_[ ',r' p+2h
j=1,., p+1;r:1,...,K]-
Spr1sn
(r)
K,/ K
[(Ttnr=tpr2slgultpra)) T ]),2 [0 dtpa, - di
+1
p+1 I’H—l—S]',l 1
n S
+Z Z m Kj J m[J- Finsr) Ky l(tm,s))
m=1 kj,rZO j=1 l_[rzl k]',r! Nm+1h
j=L...myr=1,.,K; 1
S—1S$1;5,,>n
()
(T~ tassr )8t D)y ] AE) (050 b, -+ b,

m

which is (3.10) for p + 1 instead of p. This concludes the induction and therefore
the proof. n

REMARK 3.8

Although the system behind the inductive definition of the integrand is quite
straightforward, the structure of the nesting might not be clear at first glance.
For this reason, we want to explicitly write down the terms for n up to four. For

n =1, we obtain

h h ot
u<h>=uz<h>+f0 T(h—tl,ng(uz(tl,l))dtl,l+f0 fo Tl t1)g (AL (11))

[T(t2,1 —t1,1)8(u(ty,1))] dtoy dty g, (3.14)

the last term being the remainder.
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For n =2, we get

h
u(h) = uy(h) +f0 T(h—t1,0)g(m(tr,0) di

h b
+ f J T(h- tl,l)g’(ul(tl,l))[T(tl,l - t2,1)g(ul(f2,1))] dtyq dty

J‘J‘ J‘ h=h)g (ul(tl'l))[T(tl,l_tz,l)g’(A%(tz,l))

[T(t3,1—ty1)g(u (t3,1))]] dts;; dty; dty

h 1
+%J;) T(h_tl,l)L g//(A%(tl,l))

[T(tyy —t1,1)8(u(ty1)), T(ty2 —t1,1)8(u(ty2))] dE dty 5 dtyq dty g,
(3.15)

the last two being remainder terms. For n = 3, we end up with

h
u(h) = uy(h) + J;) T(h—ty,1)8(u(t1,1)) dti

Wt
+J j T(h_tl,l)g/(ul(tl,l))[T(tl,l_t2,1)g(”l(t2,l))] dty 1 dty

JJ J h—t1,1)g (ui(ty,1))

[T(tl 1 —t21)8 (uy(t21) [T tr1 —t3,1)g(ul(t3,1))]] dt3; dty; dty

JJ J- h—t11)g" (u(t1,1))

[T (t1,1 —t2,1)8(ui(t2,1)), T(t11 —t2,2)8 (2, 2))] dty, dty; dty;

1,1 t21
JJ J h—t11)g (ul(tll))[T(tll—tzl)g(ul(tzl))

[J 1t T (kg1 - f3,1)g(”(f4,1))]] d(f] dtyy dts; diyq dtyy

3k11

t11 f11
+ h—t
D B ) L LT

k1'1 =1 k271,...,k21k1,1
kl,l +k2,1+"'+k2,k1 1 >3

1
3-k
g(kl,l)(ul(tl’l))[(T(tlr_tl’l)J g(kz,r)(Ak L1

0

)[(T(t3,s - tZ,r)

2,r
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atut ) et an,

+— | T(h- t1,1)J & (At )T (t2,1 = t1,1)8(u(t2,1)),
n:Jo 0

T(tyo —t1,1)8(u(tr2)), T(tr3 —t1,1)8(u(ty3))] dE dty 1, (3.16)

where the last three summands (including the double sum which gives four

terms) are remainder terms. For n = 4, we have

h
u(h) = uy() +f0 Tl ty)g(ur(t0)) dby

h g
+J- f T(h_tl,l)g/(”l(tl,l))[T(tl,l_t2,1)g(ul(t2,1))] dty 1 dty

J J‘ J- h=t1,1)g (u(t1,1)) [T t—t2,1)8 (ui(ta1))

[T (t2,1 —t3,1)8(u(t3, 1))” dt;; dty; dty

J~Jt11J‘ h—t1)g (“l(tl,l))[T(tl,l—tz,l)g(ul(tz,l)),

T(t1,1 —t22)8(ui(t2,2)) ]dt22dt21dt11

JJ J‘t“J‘ h—t1)g (”l(tl,l))[T(tl,l_tz,l)g/(ul(l‘z,l))

[T ty1 —t31)8 (ui(ts1))[T(ts —t41)g(ul(t4,1))]” dty; dts; dty; dty

JJ J J h=t1,08 (t(t1,1) [T t1—t2,1)8" (ti(ta,1))

[T tr1 —t3,1)8(ui(t31)), T(tr1 — 13 2)8(”1(%,2))” dt3, dtz; dty; dty g

ff _[ J h—t1,)8 (ul(tl,l))[T(tl,l_tZ,l)g’(”l(tZ,l))

T(ty1 —t3,1)8(u(t31))], T(t11 —t2,2)8(u(t2,2)) ]dt31 dt;, dty; dty

t11 (tin t22
JJ f f h—ty1)g" (1y(ty,1) [Tfll—tzl (u1(t21)),

T(t11 —t22)8 (ui(tp )T (t2,0 —t31)8(141(t3,1)) ]dfal dt;, dt;; dty

f J .f J ~h1)8 (”l(tl,l))[T(h,l —1t2,1)8(ui(t2,1)),

T(t1,1 —t22)8(ui(tz,2)), T(t11 — 1, 3)8(”1“2,3))] dty3dtydty; dty )



11—5]',1

y

m=1

hsm—l —
Fi
71—1 l'lfi? ki ! N i) (Kj,r)m

kj,r:() m+1
jl Sr=1,.,K

Sm—1<mSy>n

1 (r)
[( ], 8"y 5ty DT = i IR D) ]

dg)™" ](( 1) Aty k,, -+ dbyy, (3.17)

where we didn’t elaborate on the remainder term, since its details bear too little

importance for the space they would use.

We now move on to developing the numerical approximation of the exact
solution at time h in terms of orders of h. For q > 2, our splitting scheme

is given by
Sq(0) = T(agh)Pss ) (Bg-1h), (3.18)

see (3.3). We begin by noticing that by (3.2b), the nonlinear solution from above
fulfils the equation

ﬁq—lh
Dt By-th) = Sl (o) + fo 8 (1) 1 (3.19)

—ul ™ (By1h)

by the variation of constants formula. Replacing u(t) in the integral by the same
formula, using Taylor’s Theorem and iterating this process, we get the following

representation.
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ProrosiTioN 3.9

If g is n-times Fréchet differentiable on some Xj, then

j-1 Sut
b 3 hon-
TSI S S
ki .= ]1]_[ ]r111— is=Lj=2..n
j=1,..,n-1;r=1,..,K;_y _ ) _gr-1) (f)
s, i<n ] r 1...,K]_2,s Kj_1 +1,...,K]_1
n K] 1
]r ]5
(11 T80, ™ F e,
]: 1 s=1
n n-S;j1 1 q-1 i1,
* ) )
m Kj1 1. . 4
m=1 kj»=0 j=1 nr:l jre in=l ijs=1;j=2,..,m+1
j:l,...,m;r:l,...,K]-,l =1...K: :K(rfl) 1. K(")
Sm—1<1;S,,>n e A
m+1K 1 (i)
7 (k) (gl
(T f s Tl [ 0
j=1 s= m+1 0
K(r) m 1
(T i, MEWsH ()t sD). e, ] 4E) ]

m+1,s m

((Ci]-,sh)) dtyeik,, - dfi 1,

where we recall the definitions made in subSection[3.3|and Proposition[3.7)and
define

ul(cimrh) ’ km,r <n=Su-1
ijjirl)'(ijﬁ)(tm,r) = T(Ci0+1,im,,h)(sh (Mo) + 5Ma ([)’10 )) 1km,r =n-S,,_1, ip < im,r!
Sfm(”o) + éua ' )(tm,r) rkm,r =n—=Spy_1,ig= im,r
(3.20)
forme{l,...,n}, where ip := min{i,,,; 5| s € {K(r g 1,...,K,(ﬂr)}}.

Proof. Again, we show the result inductively, meaning we want to prove

I’Z—S]'_l 1 q—l ij—l,r
heo oy _
Stuo)=wm(m+ ) ) )
ki =0 ﬂ l_[ kilii=1 i 5= 13 =2, p+1
j=L..,p;r=1,...,Ki_y _ RN o) (r)
Sp<n J= r=1..,K;_2;s K]_1 +1,...,K]_1
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s
(r)
K
p p-1
t ) ]) ] h)) dt dt
( 5};’“5( )( p+l s)) P iy I (( ijs )) p+1,K 1,1
p Tl+1—S]‘,1 1 -1 1]71 r
v ) ) )
m=1 kj =0 j=1 nr:l jre ip1=1 ijs=1;j=2,.,m+1
]:1; L= 1; ;K]l r:llej—Z;SZK;111)+1"'.’K](1)1

Sm 1S Sm>n

(k‘,r)'(i’,s)
J(ijys) m[ J‘ '”T T’l’l{l-l : (tm’r))[(T(Cim+1,5+1'im,rh)
M i. h)
s
(r)

m+1,(B;
m Kmfl
8t (ugtmens)) e, | 4€), 7 (e 1) b, o
(3.21)
for p e {1,...,n}, where
ag ik iis) 0< h 0< =1 0<t;s<pBi h
m'(ﬁfjsh) = { ﬁzll X s t] 1,r ( Lis = Zj—l,r)r = tj,s = ﬁij,s

2 s=K" Va1, k).

(s <ijeaphj = Lo, 72100 Kiy s = KT j

]

For p = n, this gives the desired formula. Comparing the two, we see that this
(kjr )i s)
from

0 through the simple substitution (¢; ;) ( i h) giving us again a power

is Ehe) case since on the one hand, we obtain the integration set M,
Lis
Mm{,(ﬁi]-'s
of h for every t as well as the corresponding  and a factor Bh in front of every
t. On the other hand, we have k,; =--- =k, g, _, = 0, which means we do not
need to sum over those indices, S, = S,,_; and the ¢, , as well as the i, ; do
not occur. Hence, the integrands in the second term are constant, so that the
integral is actually just the volume of the integral set M,(ZIJ’S). The fact that this is
true follows with the exact same argument as in the beginning of the proof of

Proposition 3.7
Starting off with p = 1, we actually need a second induction in that we show

9-1 Bii  h
1 i1,1
Sh) = Tlcpnhisfluols ) ) o | T

) ]—[11,1 AN
i (i1,1 i=pK1,1°
b pkll’ Sk 207 TP

Z“k11<n
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(j)
1

q-1 Biry

B 1 11,1
T(cp+1,i1,1h)ufzp)(/3ph)]dtLl+ 2 Z —(ﬂ,J
= o Tk Jo

® .. ,
ki’ times i1
, A 0) _
Yl kl,l—n

]=P
DOm0y i ) (i1.1-1)
T(Ci1,1+l,qh) g =it (Blyﬁ)[ua (tl,l),T(ailrlh)ua (ﬁi1,1—1h)""’
0 ~—
kiill’l) times kil‘ll 1_1) times
T(cprniy, M (Bph)] dE dty (3.22)

k(f 1) times

forpefl,...,q—1}, where

s | TG S (o) + € (i) o < iy,

(i1,1) .
Sﬁyl(u0)+5ual“ (tl,l) »Jo = 11,1
with jo :=min{j € {p,..., 711} | ky; > 0}. This we show with an inversed induction,
so starting with p = g — 1. We use Taylor’s Theorem (see (3.12), this time with
f(s)= g(Sg’_l(uo) + su(q_l)(t)), to see that

FO(s) = g WIS () + sV () [ud™ (1),

~—_——
k times
and therefore
n-1 1 ( )
8Wst ) =F(1)= ) 8™(S (wo))[ua" (1)
k:O . W_/
1 ) k times (3.23)
n -1 -1
| S (o) + Eug” V(N[ (1)) e
. ~—_—
n times
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Plugging in (3.23) into (3.19) and this into , we arrive at

ﬁq—l ql
Shu) = TlayhiSf )+ ) %L Tagh)g () (1)

(
0<k)’ q Yen k1,1

Pa- 1h Yk (q-1)
[Ha ]dtll‘*‘—j J g (Sg-q(ug)+Eug ~(t1,1))

kg?l ) times

[uéq_l)(tl,l)] d¢g dty g,

| —

n times

which is exactly (3.22) for p = g— 1. Now we assume that (3.22) holds for
some p € {2,...,q — 1} and show the same for p — 1. This is done by replacing

1,1 ()
T(Cﬁ+1,qh)sg(”0) and g():]:p' ki1 (T(cps1,i, 1h)Sg(uo)), respectively. To this end, we
see that

Bp-1h
T(cﬁﬂ,il,lh)sg(uo):T(c,a,il,lmsg_l(uwT(cﬁ,mfo 2t (B drs

(p-1)

=Uq (ﬁﬁ*lh)

by definition in (3.3)) and therefore, using (3.23)) with p — 1 instead of g —1 and
i1,1 = q above,

L L 1 Bs-1h
T(Cp+1,qh)sﬁ(uo):T(Cﬁ’qh)sﬁ_l(uO)‘F ~ 1) J; T(Cﬁ’qh)

B

1,1 times
1

Ppa® Lyl (p-1)
L] . T(Cﬁ,qh)fog (Sp_1(uo)+&ua” (t1,1))

[uﬂ(lﬁ_l)(tl,l)] d& dty g,

|

7 times
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as well as

i1 () i i 1)
g (T (s s MSEu) ™ (b0 1), Tty yul™ (B 1),

|

(i1,1) . i1 1-1) .
kl,l times k(ll’l ) times

1,1
T(cpeni,, Wud (Bsh)]

k(llf 1) times

n-1-L k) o
[ sy 2y h
_ (ﬁ_l) ]=P ’ (T(Cﬁ:il,l h)Sﬁ u() [I/la tl,l)’
kl,l ! —_—

111)

(p-1)_
k1,1 =0 (i1,1) .
k1,1' times

T(as, s By 1k Tep s W (Bp )]

k(il,rl) k(ﬁfl)

11 times 11 times
1 1 .
T km)'fog(”)”‘cﬁ'l‘uhﬂsﬁ—l<uo>+éué” '(B5-1))
n_
j=p—-1"1,1

[Mc(zilll)(tl,l) T(azllh) (i11- 1(ﬁ111 1]’!) (P111 )uéﬁ—l)(ﬁﬁ—lh)]déy

[ —
3

i11) ,. i1 1-1 1
,11‘1 times killl'l )times kY] ) times

by Taylor’s Theorem. Inserting these observations into (3.22)), we obtain

] -1)
s MSE (o) ™ (1), ey, yul™ (B, 1) ..

L1 .. (i11-1) ..
1 times k1 11’1 times

- 1
T(cp,iy h)uc(zp )(ﬁﬁ—lh)] dty + Z Z 0.

‘ , Uy
~ PR >0 251 kit
k(lp;l) . ,

1,1 ) _
Z]':;5—1 kiy=n
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lgil,lh 1 111~ k(j) ~(i1 1) (i1 1)
J T(Cil,ﬁwh)_[- g 1'1)(311,1;51—1)[”;1’1 (1,1),
0 0

S————
i .
k(l,ll’1 ) times

1 1 p—1
T, ud™ (B ah)es T, Wl (Bp )] dE diy g,

i11-1) . (p-1) ..
11’1 times kfl times

3
where the summands for i; ; = p—1 are the two last summands from T(cj,1,4h)

Sg‘(uo) above. This is (3.22)) for p replaced by p— 1. For p = 1, we get the
representation

q-1

1 ﬁil,lh
sg(uo):u,(cqh)+z Z —]'L T(c;, ,+1,4h)

10 1 -1)
g M’(m(cil,lh))[ué”'“m,l),T(ail,lm Bl

|
kiill’l) times kil;ll’rl) times
1)
T(eoi, Wua (Brh)] dty,
k“times
q-1 Bii  h 1
1 11 (n)(RliL1)
: T Ry
ipi=1,1)  (i1,1) i=1"1,1
M ek 200

1 11 1—1 1
[l (1 0), Tlas, W™ ™ (Biy 1) T(eas, Wul (Bi1)] dE diy .

L) . it1-1) . 1.
ki, times kizll’l ) times kgl) times

(3.24)

Next, we want to get rid of the asymmetry in the arguments of the g derivatives.

For fixed i; ; and k(l])l, if instead of arranging the arguments as above, we let the
r-th argument be

(i2,r)
T(Cizrr+1,l‘1,1 h)ualz (ﬂilrh)
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for some i, <iy, and ug (1) if iy, = i11, we just need to assume that k\/) of
the i, , take the value j to obtain the same value from the g derivative, since it is

actually symmetric in its arguments. Combinatorially, there are

ways to achieve this, which is why we must divide by this number in order
to obtain the equivalent of one term of the g derivative. Naming the sum

le ! kg )1 as ki 1 and summing over all p0331b111t1es for the k1 1» which gives us
all possibilities for the i, ,, changes (3.24) into

n—1 q-1 i1

doo-ueps ST Y[

(
k11:0 ’ 1= 1121, ,12k11—1 2,(B;

[(T(Ci2'r+1,i11 ) (ll)sh uo)(tz T)))r ]] dt2 kll ' dt2,1 dtl,l

1 61— i1,1 8 1 () B(kj,r),(i]-,s)t
+E Z Wi T(ci, y+1,4h) )¢ (B, (t1,1))
111 1121 ..... 12’,1 ,

[(T(Cizrr+1,l’1,1 h)g(gbslhzr(uo)(t2,r)))r:1] dtZ,n e dtZ,l dé dtl,li
(3.25)

where we also inserted the definition of the ua () This is (3.21) for p = 1, using
that for all n € IN, the first condition coming from Assumption (3.5|is ¢, =1 (see

Remark (3.12)).

We now assume that (3.21)) is true for some p € {1,...,n—1} and show the same

for p replaced by p + 1. We do that by replacing the innermost appearances
of g in the first big sum, the rest will remain untouched. Again, we need a
second induction showing that for fixed k]-,r (j=1,...,p,r= 1,...,K]-_1) and i]-,,
(j=1,...,p+1,r= 1,...,K]-_1) as well as for fixed s € {1,...,Kp}, we have

1 (Zi_PfLS k(j)l ) L
= _— = +1,s B )
(lpSIthl ( 0)(tP+1,s)) - Z l_[ip+1’5 k(]) 'g 1=P p (T(Cp+1'lp+1,sh)sﬁ(u0))
p) (ip+1,s) s !
k;’il,s,...,kpflfss so lj=p "p+ls
L5 ko s<n=Sy
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(ip+1,s) (ip+1,s—
[1a" 1 (tp+1,s):T(aip+1,5h)uap ' (ﬁzp+15—1h) T(c Co+1, 1P+1Sh)ua (ﬁp )]

| —
; ) . B _
k;lfii’s times k;lfii’s 2 times k‘l()Jr)1 . times
1 .
z 1 il p ki) (Gjs) o (ipets)
+ _— g(z‘] =p p+1s)(B A )[uaw 5 (tp+1 s)’
- l_[lp*'l's (]) 1 Jo Lp i
k2 les) o Mlj=p Rpris’ ,
p+1,87 " p+l,s (ip+1,s) .
; . k)0, times
p+ls k(]) —n-S p+l,s
Lizp kpe1s=n=5p
(ip+1,s_1) (ﬁ)
T(a;,, h)ug Byt T, Il (Bh)] A (3.26)
i1 -1 ) L.
k;lfl*’i s71) times kz(fi)l,s times

forpefl,... iy}, where

ki iis) T(Cj0+1,ip+1,sh)(5ﬁ)(uo)+5“2]0)(/3]'0}1)) 2 Jo <ipiis
p+Lp T gh (

(ip+1,s)(
ip+1,s

ug) + &y tp+1,s) Jo = ip+1,s-

where jo := min{j € {p,..., 1,414} | k;jll’s > 0}. We show this via an inversed

induction, so starting with p =i,,; ;. We have

(ips1,s)
8Wsh (o) (tpr1s)) = 8(SE | (1g) + 11" (tyy1,5)

Ip+l,s Ip+l,s
n-S,-1 )
P (ip+1,s) ,
L k5 ch (ips1,5)
= Z g pHls (Sz (ug))[uq (tp+l,s)]
(i k( p+1, s)' p+ls
p+1, s) +1,5 ° S —
kp+15 =0 P k(,'PHIS) |
pil,s  times
1 . .
1 ki Miie) o (ipsrs)
n-S Jr I\t p+l,s
+ =S ),f g( p>(Bp+Ll-p+1S)[ua (tp+1,5)]dg,
—_ p): 0 , - =
k;lfii'S) times

by Taylor’s Theorem, which is (3.26) for p = i,,; ;. Now we assume it holds for
p€{2,...,ips1,s} and also show it for p — 1. This is done by replacing

lp+~15 (7)
g(Z]:p ”“’S)(T(Cﬁ+1,ip+1,sh)51§l(”0))'

To this end, we see that
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T(Cpet,iynr Sp(0) = T(cpi ., WSH_ (1)

ﬁp 1h
+ T(Cﬁ'ipﬂ,sh)jo g(¢52_1(u0)(t1,1)) dtl,l

—Ma (ﬁp 1h)

by definition in and therefore

lp+~1$ () (i + ,s) (i + ,s_l)
§H (T, MSEuo)tta” " (tpyr) Tla , )ua”™ " (B 1),

|
(ip+1,s) . (ip+1.5-1)
kp+1,s times kpf;—s‘s times

T(Cpeniy ) (Bsh)]

kl(,;)l , times
n—l—Z;‘p:;Ls kéjzl,s L
(2] P+ i +1 s) h
- Z (ﬁ—l)'g e (T(Cﬁ'ilﬂl,sh)sﬁ—] (u9))
Wi S
el prt.s” (5-1)
[uap+ s (tp+1,5)’ T(aip+1,sh)uap+ s (ﬁlerl 5_1]’1) ( p’ p+ls )ua (ﬁﬁ—lh)]
S
k;if;?) times k:f;i'fl) times k}(frl S) times
1 : (n) h (p-1)
- psls 1.(j) g (T(Cﬁ'ipﬂ,sh)(sﬁ—l(uo) + &g (ﬁﬁ—l)))
(n_Z,]:ﬁ_l kp+1,5)! 0
) Upets™ (p-1)
[ua m (tp+1’5)’ T(aip*-lfsh)ua p+5 (IBIPH s—lh) ( P 1p+1 s )uﬂ (ﬂﬁ—lh)] dé
S —
k;if;i,S) times k;ifii’s_l) times k:ﬁl 5) times

Plugging this into (3.26) gives us

_ 1 <z”
g(abs;; +175(uo)(tp+1,s)) = Z —‘g

Ip+l,s
Ay k p+1s l_[] =p-1 p+ls

p+l,s7 p+1 s >0

+1,s

=p-1 P”5)(T(Cﬁ,ip+1,sh)sg—1(MO))

p+1s
Z4] =p-1 p+1 5<n+1_SP
(ip+1,s) (ip+1,s_1) (ﬁ—l)
[ua™ " (tps1,5), T(aj,,, h)ua (Bipor—1h) -, T(cpi,,, Mua” " (By-1h)]
|
(ip+1,s) . i -1 i-1) ,.
kpfiss times k(plfii's )times k;’il’s) times
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1 ‘prs ki) Gjs) o (ips1s)
- Z —f g p+15)(Bp+]1,p Dt (b1 ,0)
1 Jo

l—[ Ip+l,s

—————
k(P 1) kp-%—ls> ]pl p+15 .
p+l,s7 p+l k(1p+1'5)

P+15 p+1s
Z] =p-1 p+1 =nH1=5,

(ips1,5—1) p—1
T(aj,,, hua"" (ﬁipﬂrs_lh),..,T(Cﬁ,iwl,sh)ué(lp \(B5-1h)] dE,

times

k(ip+1,s—1)

L)
p+1,s

pils times

times

where the first sum just changed into the sum over the additional variable and

the old second sum is still part of the second sum for kerl S) 0. This is (3.26

for p replaced by p — 1, which ends this induction. Settmg p= 1 and using the

symmetrization argument that gave us (3.25), replacing k1 | by kp 11,¢- transforms
this into
‘rl—Sp 1 p+1 s
g(lzbsﬁ (uo)(tp+1,s)) = " (kp1,5 (ul(clp+1sh))
Ip+l,s kp+1 5* p+25
kp+1,s:O ’ P*zs_l
kp+1,5<”+1_sp 5= K;H )+1 KP”
K,
. . ~ p+ .o
[(T(C1p+2,s"+1flp+ls ) (IPS}:} 25( 0)(tp+2,5))§: ;i__ll)+l] dtp+2,K:)s_21 tp+2 K(+1 )+1
iptl,s
1 ” gn-5p) gk
" (n+1-S5,)! MUp+2,9) p+2 (fp+1,5)
p+2 5—1
e (s—1)
§=Kyoy 1o kY,
K4,
(T (€t oty W51 (g Fpr29) e JAE AL 0 ot e,

where MU»+25) is the canonic subset of Mp+2)h( S). We plug this into (3.21)) for

every s € {1,...,K,} where we notice that

g

GO LT Io ) [ (TR 1 R (YN )) I | i (158

iptl,s s:KI() r=1 g

= Fog poni[ (80 | qu(tpen)). 2, e )

+1,s

)
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to obtain

n-S;_1 1 q-1 i1,
h _
TETITD W — Y
kj =0 [T- ﬂ ]r'111 1 i15=13 /=2, p+2
i=1,..,p+1;r=1,..,K;_ _ (r-1) (")
] PS e j-1 r=1..,Kjp;5=K; | '+1,.,K ")
n-1x
T (kps1,s) , . .
JM(,.N [T [ (NN ) (VA R
P+2»(ﬁi]-,5h)
(s)
K K
P+1 p . .o
(Ebs’; 2 | o)(tp+25))§ K;il)+1])5=1]((clf'sh)) dtp+2,Kp+1 dtl,l
I/H-l—S]',l 1 q—l ij—l,r
+
I —— DD
ki =0 [T n ki =1 i} =15 =202
j=Lep =1, Ky r=1..,K;_ys=K" V41, k!
Sy<r;Sps1>n =22 TR -1
1 .
= (kpy1.s) ¢ ki WAijs) , .
J (k)i s) F(kj’,),p+1[(J g (Bp+2 (tp+1,7‘))[(T(C1p+2’g+1,1p+1,5h)
My 0
s
(s)
K K
1)) Pl ) p ]
g(’ubsf; , ol O)(tp+2,s))s KD, ]d5 oy e B dtpin i, o Aty
p n+1—Sj_1 1 q_l ij—l,r
*) 3 )
m=1 ki, =0 11_[ iorting=1 i =15 j=2p,m+1
‘:1; 1mr 11 1K —_ . e— (T—l) (r)
J j-1 r=1..,Kj0;s=K; 41, KD

Sm_1<m;Sy,>n

(k',r)'(i',s)
fM(k],) | m[f ) B 1 WP i )

m+1,( ﬁ,

K
). ] de). ] i, 1)) Aty i, - diy g,

(3.27)

8(Wgh (o) (Eme1,s))

'm+1,s m

where we split up the sum according to whether S,,; <nor §,,; > n and the
definition of Bm+1) & j’S)( tmr) has exactly the right cases to cover the resulting
terms. Moreover, we put together all the M (p+25) with M(H)(/(;]S) n) to obtain

kj r)\tj,s . . .
M;(JJZVZ)(;:,' )h) and collected all the sums over i,,, , as well as the factorials. This

way the second sum becomes the last summand (m = p + 1) in the third sum
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and since. Therefore, (3.27) is (3.21) for p replaced by p + 1. This concludes the
induction and therefore this proof. ]

REMARK 3.10

Again, we want to write down the explicit formulas for n up to four. Let k;j , € Ny
forje{l,...,n}, ref{l,...,K;_1} with S,,_; <n. We define the function F )by

= K- (kjr)
F(k] r)i=1,.mr=1, Kj 1((t] r)] n;r:l,...,Kj,l) = un[(g(ul(tn,s))szll] V(tj,r) eNn]

For n =1, we obtain
S (1) = () + Z piFolen )+ )
i1= ip1<iy,15q-1

1 .
7 otk s)
J;) g (BZJ ! (tl,l))[T(Cizyl+l,i1,1h)g(lll)sflz1(u0)(t2,1))] dg dt2,1 dtl,l’
(3.28)

<k],)(] RACHRPL)

M, (B

the last term being the remainder. For n = 2, we get

h2
St (ug h)+h Z Bi,  F Czl,lh)"'?( Z /31'21,113(1,0)(01'1_1h,CiMh)

i,1= i1,159-1
+ Z 2ﬁi1,1ﬁi2,1F(l,o)(cil,lh’ Ciyy h))
i1 <i1,1<9-1
1 / (kj,r)r(ij,s)
o) TR A - URY)] AT

M, Big

(ll)sh () (F2,1)) T(€iy 41,y 1)E (%h (110 (tzz))]dfz,z dty; dfy

+ Z M(k] r) ) T(Cl‘1'1+1,qh)g’(ul(cl‘1_lh))[T(Ciz,l-f—l,il'l h)
3 (ﬁz )

i9,1,i2,2<11,159 -1

13,1 <ip,1 11,1 <41

1 .
) (k',r)’( ',s)
J g'(By (t2,1))[T(Ci3,1+1,i2,1h)g(¢sh3l(uo)(ts,l))]] d& dis dip dfy )
0 i,
(3.29)
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the last two being remainder terms. For n = 3, we end up with

SZIZ( ) +hZﬁ111 6111 )

111—

Z B Fuoci, hicip h)+ Z Zﬁim/31-2_113(1,0)(@-1,1h,ciz’lh))

i1,1<9-1 ip1<i1,159-1

Z ﬁil F(l’llo)(cil,l h, Cira h, Ciy h)

i1_1<q—1

+ Z 3ﬁi21,1/3i3,1P(1:1;0)(Ci1,1h' i by ci )

i3,1<i1,1<q-1

+ Z 3[51'1,1/31'22,11:‘(1:1;0)(61'1,1h’ Ciz,lh’ Ciz,lh)

ip,1<iy,1<q-1
+ E 6B, Bir, Bis F1,1,0)(ci  hociy b, Cimh))
i3'1<i2_1<i1’1<6]—1
o1
3
+ —- E( E ﬁiMF(Z,O,O)(Cil,lh’ Cil,lh’ Cil,l h)

3 .
i1,159-1

3 2
+ Z Eﬁil,l ﬁiZ,l F(Q:O’O)(Cil,l h, Ciz h, Ciyq h)

1.2’1<l.1’1 Sq—l

3 2
+ Z 5/31'1’1/J)iQ'zF(Z,O,O)(CiMh: Ci1,1h’ Ciz,zh)

i7,<i1,1<9-1

+ Z 3ﬁi1,1ﬁiz/lﬁizle(Z,O,O)(Cimhr Ciz,lh’ Ciz,zh))

ip,1,i2,2<i1,1<q~1

1 7 (k’,r)r(i',s)
o) i TCigh)g (B2 0,0)

12,1,i2,2,02,3<01,1 <9 =1 72,85 )

[T(Ci2’1+1,i11 ) (lpsh (ug (t21)) T(Ci2’2+1,1’1,1h)g(¢sf22(u0)(t2,2))l

T(Ciyyr1i >g<¢s;;3(uo)<tz,3>>] dty3dby, diy dty

2 3-ki1 i

+Z Z k11'k21 ko ! Z Z

k1,1:1 kzyl""'kZ,kl_l 11 1= 112 1se+ ,lz kl 1

kl,l +k2’1 +"'+k2,k1 1 >3
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12,1’

Yo Tl g (e, )
i

i3,s:1 3,(B;. h)
r=l.ky;s=KS V1, kY

1 )
(kjr)(ijs)
[(TCeniah [ g2 B 1, (Tl o,
0

K0
(’Psh MO)(t3s))) K dé) ]df31< - dtyp diy g

+ Z k r C11’1+1,qh)g’(ul(ci1’1h))liT(Cl.z’l-Fl,iLlh)
M

i4,113,1<lp,1 <11 €9 -1 ﬁz

, b i)

g <uz<cimh))[T(ciwl,iz/lh) 8B s Wty (ta)]|
dé dt4]1 dt3’1 dtZ,l dtl,l (330)

where the last three summands (including the double sum which gives four
terms) are remainder terms. For n = 4, we get the terms from n = 3 minus the

remainder terms plus the terms

+_( Z /3111 lllO(Czllh Clllh Clllh Clllh)

i159-1

3
+4 z ﬁil,lﬁiz_lp(lrlylro)(cil,lh’ Ciz,lh’ Ciz,lh’ Ciz,lh)

i2’1<i1’1<q—1

3
+4 Z ﬁil,lﬁi4,1F(1»1!1r0)(Ci1,1h’ Cil,lh’ Ci1,1h’ Ci4,1h)

ig,1<i1,1<q-1

2 2
+6 E ﬁil,lﬁi3,1F(1,1,1,0)(ci1,1h’ Cil,lh’ Ci3,1h’ Ci3,1h)

i3,1<i1,1<9-1

+12 Z, /31'21,1/31'3,1 ﬁi4,1F(1,1x1;0)(Ci1,1h’ Cil,lh’ Ci3,1h' Ci4,1h)

i4,1<13,1<11,159-1

+12 Z /31'1,1/31'22,1 ﬁi4,1F(1’1:1’0)(Ci1,1h’ Ciz,lh’ Ciz,lh’ Ci4,1h)

i4_1 <l.2’1 <l.1'1 Sq—l

2
+12 Z /51'1,1ﬁi2,1/31'3,11:(1;1:1;0)(@1,1h’ Ci2,1h’ Cia,lh’ Ci3,1h)

i3]1 <i2_1 <l'1’1 <L]—1

+24 z ﬁil,lﬁiz,lﬁi3,1ﬁi4,1F(1r1'1r0)(Ci1,1h’ Ciz,lh’ Ci3,1h’ Ci4,1h)
i4,1<13,1<ip,1<i1,1 g1
1 Kt
4
+ E . E( Z ﬁil,l P(1,2,0,0)(Ci1,1h’ Cil,l ]’l, Cil,lh’ Cil,lh)
i1,1<q—1
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+

+

3
+2 Z ﬂim /31'3,1 P(1,2,0,0)(Ci1,1 h, Ciy,1 h, Ciz ) h, iy h)

i3,1<i1,1<q-1

3
+2 E ﬁil,lﬁia,zF(l,z,O,O)(Cim h, Ciy,1 h, i,y h, Ci”h)

i3,2<i1,1<9~1

3
+4 E /31'1,1 ﬁiz,lp(l,Z,O,O)(Cil,lh’ Ci?rlh' Ciz'lh' Ciz'lh)

ip1<iy1<q-1

2
+ 6 Z ﬁilrl ﬂi3'1ﬁi?),ZP(lrz;OvO)(Cil;l h, Cilrl h, Ci3’1 h’ Ci3'2h)

i3,1,i3,2<11,1 <41

2
+6 Z ﬁim /31'2,1 ﬁi?,,l P(1,2,0;0)(Ci1,1 h, Cizy h, Cis, 1 h, Ciz h)

i3,1<ip,1<iy,1<q-1

2
+6 ) B B B Fazoo(c, by, e, b, h)

i3,9<ip,1<i1,1<q-1

+12 Z Biy, Bis,y Bis, Bis . F1,2,0,0/(ciy 1 ciy i By Ci3’2h))
1'3,],1'3’2<l'2’1 <il,1 <q_1
1 nt Z 4
2 ?( /51'1,1 F(2,1,0,0 (Cil,l h, Ciy, 1 h, Ciy h, Ciy h)
i1159-1
8 3 h,c; hoc; hoc; h
+ 3 Z ﬁimﬁi3,1P(2,1,0,0)(Ci1,1 2 Ciy 1 Gy y 11 Gy )
i3,1<iy,1<q-1
4 Z 3
+ 3 ﬁiLl ﬂiz,zF(Z,LO,O)(Cil,l h, Ci 4 h, Cirp b, it h)

1.2’2<1.1’1 <q_1

2 2
+2 E /31'1'1ﬁiZVIF(Z,l,O,O)(CiLl h’ Cillh’ Cil'lh' Ciz’l h)

ip<iy1<q-1

2
4 Z Bl BiaBis, Fa1,00/(Ciy huciy iy by ciy )

ip,2,13,1<i1,1<q~1

2
+4 Z ﬁil,l /31'2,1 ﬁi3,1 P(2,1,0,0)<Ci1,1 h, Cip h, Cirg h, Cis,y h)

i3,1<fp,1<i,1 <41

2
+4 Z ﬁil,lﬂiz,lﬁiz,ZF(Z,l,O,O)(Cil,lh’ Ciz,lh’ Ci2,2h’ Ci?rlh)

i2,1,i2,2<11,1 <4 ~1

+8 Z ﬁimﬁiz,lﬁiz,zﬂi3,1F(Zfl:o'o)(cil,lh’ C"Zlh’ Ciz'zh' Ci3'1h))

i3,1<ip,1 <i1,1<q—15ip <0} 1

1 ht
2 ?( Z ﬁfn P(Z,O,I,O)(Ci1,1 h, Cirg h, Ciy g h, Cirg h)

i1,1<9-1

8
* 5 Z ﬁi?’l,l ﬁiS,lP(sztlfO)(Cil,lh’ Cil,l h’ Cilrl h, Ci3’1h)

i3,1<i1,1<q-1



4
"3 Y B B Feonofe, b, ey b, h)

ip,1<i,1 <41

2 2
+2 Z ﬁil,lﬂiz,zF(ZfO’LO)(Cil,lh’ Cil,l h, Ciz,zh' Ciz,zh)

1'2,2<1'1,1 Sb]—l

2
+4 Z /3’1'1'1[3)1'2,2/51'3,1P(Z,O,I,O)(Ci1_1h: Cil,lh’ Ciz,zh’ Cis,lh)

ip,2,13,1<i1,1<q-1

2
+4 Z :81'1,1ﬁiz,lﬁi3,1P(2’0)1’0)(C1‘1,1h’ Ciz,lh’ Cil,lh’ Ci3,1h)

l‘3_1<l.2’1<1.1’1 Sq—l

2
+ 4 Z Biy Biry By, F(2,0,1,0)(¢i 1o €i iy By iy B)

ip,1,i2,2<i1,154-1

+8 Z Biv Pir, Bira i, F(zzo’lxo)(cil,lh’ Ciz,lh’ Ciz,zh’ Ci3,1h))

i3,1<ip,2<11,1<9—13i2,1<i1 1

1 h*
+ g . Z( Z /3141'11:(3,0,0,0)(@1_1 h, Ci“ h, Cil,l ]’l, Cil,l h)

1'171 Sq—l

3
z /51'1,1 ﬁi2,1 F(3'0r0'0)(ci1,1 h, Ciy h, Ciy 1 h, Ciry h)

i2’1<i1’1<q—1

3
z ﬁil,l ﬁi2,2F(3,0;0,0)(Ci1,1 h, Ciia h, Ciy,s h, Cirg h)

ip2<iy,1<q-1

3
Z ﬁil,l ﬁi2’3F(3,0,0,0)(Ci1,1 h’ Cl'l,l h’ Cil_l h' Cl.2'3 h)

ip,3<iy,1 <41

2
+2 Z /31'1,1ﬁi2,1/31'2,21:(3'0,0,0)(Ci1,1h’ Ciz,lh’ Ciz,zh’ Ci1,1h)

ip,1,42,2<i1,15q—1

2
+2 Z ﬁilllﬁiz,lﬁi2,3F(3rox0»0)(Ci1,1h’ Ciz,lh’ Cil,lh’ Ci2,3h)

ip,1,i2,3<i1,1<q-1

2
+2 Z ﬁiuﬁiz,zﬁiz,sP(iOrOrO)(Ci1,1h’ Cil,lh’ Ciy,s h, Ci2,3h)

ip,2,i7,3<i1,15q-1

+4 Z Bi,, ﬁiz,lﬁiz,zﬁiml:(?’;oxo»o)(Cil,lh’ Ciz,lh’ Ci3,1h' Ci3,2h))

i2,1,12,2,12,3<11,1<g~1

+ +

_|_
Wi Wl Wl

4 n n=Su-1 1 q-1 Z‘j—l,r
£) ) ) )
K.
m j-1 . . .
m=1 "k 1=0  ky,1,kmx,,_,=0 ]_[]':1 nr:l kj,r! i;,1=1 ijs=1;j=2,..,m+1
Spo1<n,  Sp>n r:1...,1<]»_2;s:K](:”H,...,K;ﬁ)l

Yk ki)
m,r [

JM(kj,r)r(ij,s) u(kj,r)j:l,...,m—lr(ci]-’sh)j:l,...,m[(J; 8 (Bm+1 (tm,r))

m+1,(ﬁi].'s h)
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&

[(T(Cimﬂ,su,z’m, )8 (g (uo)(ﬁierLstm+1,s)))s_mK(V—1)+l]dé)f:ml_l]

'm+1,s —om

dtyi1,k,,  din1 (3.31)

where we didn’t elaborate on the remainder term, since its details bear too little
importance for the space they would use. We see that the number of terms grows
rapidly in n. In fact, the number of terms newly added for n is the (n—1)th

Catalan number C,_;, where

_ (2n)!
C (n+1)n!

In each of these terms, we obtain 2"~! sums with possibly different coefficients,
since we have n — 1 indices that may or may not be equal to their respective

predecessor in the hierarchy.

We continue by considering the difference of the two representations we just
obtained. Using Propositions[3.7]and we arrive at

hsn—l
() - Sl = - (f( Fg (6,1 dtyg - diy
— j— T T T Ry ’
kj,r: 7:11 l_[ril1 k]'yf’! N
j=L.,n=Lr=1,...,K; 4
Sn,1<7’l
-1 Li-1,r (k )( ) n K]_1
(s
-y > U s ) Rt h))) (3.32)
i11=1 ijs=1;j=2,..,n j=1 s=1

n I’Z+1—S]_1
K Sm —
(k ) n Sm—l
* m K] 1 (k] r) (k]r")’m[(g " (A m,r )
m=1 . k] =0 ] 1 r=1 k] r Nm+1

(r)

[(T((tm,r - tmﬂ,s)h)g(u<tm+1,sh>>)fj,<$1>ﬂ ])K_’”;l [((t,0) At i, - dt
q-1 li-1,r n

- Z Z J (kj ) j,s) (l_“_[ﬁlﬁ) jr)
ip1=1 ijs=1;j=2,..,m+1 M, j=1 s=

r=1..,Kj;s=K\ 1, K

(5B, B, o (T, )
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K1(]:) Km—l
g(thgn (uo)(ﬁim,rtm”'sh)))s:[(,(;_l)ﬂ])rzl

"m+1,s

]((Ci]-,sh)) dtyiik, - At )
From the remainder terms, we obtain at least n+1 orders of h. We want to achieve

orders in (1,1 + 1] for the terms in the first sum, which gives us conditions on «;

and ;. The result looks as follows.

Lemma 3.11

Letne Nandkj, € Ngforje{2,...,n}, re{l,....K;_1} with S,y <n. IfF(k].,r)
is n—S,,_1 times Fréchet differentiable and Assumption holds, then

HJ ) Fti () bk, - di g
N,
q-1

& Wbt (T T
s
— E E |M, |( l |ﬁij,s)F(kj,r)((Cij,sh))
i1=1 i 5=15]=2,0m j=1 s=1 Y
-1
r=1..,Kj;s=K\ 1, K

_ (kjr)(a;j)(B;)
<hsm N MY up DY Eg ((8,0) DY Eg (s, 1)y

_ (ki r)
|)’|—ﬂ—5n71 tj.T’Sj,reN,l 1T

with

kiap() (4= 1)1 (maxjeq,.,q-1) |Bj]) - (Maxjeqy ... g lcj) "5

C =
V4
7/! JN(kj,r)(tj,r)y dtn,Kn_l Tt dtl,l

n

Proof. We use Taylor’s Theorem in S,_;-dimensions around the origin up to

order n—S,,_1, to see

iy Fie (8, ) dty e, o diy g
N,

S i), (T
o)
=) ) M (] T8 ) Feoties, )
in=1 is=1;j=2,.,n j=1 s=1
-1
r=1.Kigs=K{ V1, K

[yl<n=S8,-1
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ip1=1 ijs=1;j=2,..,n j=1 s=1
r=1.,Kigs=K V1, K
hn—Sn_l 1
+ Z —l(f (kj,r)(tj’r)yJ\ DYF(k];Y)((ét]'rh)) dg dtn’Kn—l dtlll
|V|=”—5n 1 4 N 0
] 1,r n Kj—l
Z Z i (TT1 185, ) (€3, D7 g 5 )
i= ]s—l ] j=1 s=1

1]1r

s, 1
:hn5122_ PRTTET dt“Z Z

11,1= ]s—1 j=
(r ) (r)
r—l...,K]_Q,s—K]._1 +1,...,Kj_1

n

| ﬁﬁ)f ([ D7 61300

] S=
—-D7F, . ((&ci; h) 5)dfn,1<n_1"' dty 1,

where in the last step, the terms of lower order vanished by the assumption,
which we also inserted in the highest order terms to match the coefficients and
receive the difference between the derivatives of F in the integral. Applying
|I-|ly and using very rough estimates gives the desired result: We pull out said
difference with the supremum, estimate the integral and the volume by one, the
B and c by their maximum and lastly the sum over 7 by its number of summands,
which is bounded by (g —1)5-1.

If we wanted, we would be able to obtain better constants here, but for the sake

of simplifying the formulas, we stick with the estimates we mentioned. [

REMARK 3.12

Neither are we able to prove the existence of a q and («;), (B;) which fulfil the
equations from Proposition nor can we reduce the number of equations
for general n € IN. But we strongly suspect that the set of equations can be

drastically reduced down to

(kj,r) = (kl,lf'-';kN,l) = (11'--11) VN € {1,...,1’1}
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and the pure monomials in t| 1, namely P((t;)) = t{\ffl forall M €{0,...,n—1}.
To justify this conjecture, lets look again at small n up to four. For n =1, we

obtain

=1, (3.33a)
) B, =1 (3.33b)

l.],] Sq—l

The most popular example for this is the Lie splitting (9 =2, a; =0, ap =1,
p1 =1). For n =2, we obtain the additional equation

1
Z BiuiCiny = 5 (3.34)

iLISq—l

as well as

2 Z Biy Piy,y + Z B =1,

ip,1<i1,159-1 i1,159-1

which is just (3.33b)%. The most famous example for this would be the Strang
splitting (g =2, ay = %, a, = %, p1 =1). For n =3, we obtain

Z ﬁil,lcl'zlll = 57 (3-35a)
i1,1<q—1
2
2
2 Z ﬁil,lﬁiZlCil,l + Z ﬁil,lcil_l = 3 (3.35b)
ip,1<iy, 141 i1 <q-1

as well as

2 2 3
6 Z /J)i1,1 ﬁiz_l ﬁi3,1 +3 Z (ﬁil,l ﬁiz,l + /31'1,1ﬁi2’1)+ Z ﬁi]y] =1

i3,1<ip,1<i1,1 <41 ip,1<iy 1541 i1,15q-1
) 1
2 z ﬁ11,1/312,1clz,1 + 2 ﬁil,lch,l - 3
ip1<iy,1<g-1 i1,1<9-1

Here, the first equation is just (3.33b)3, while for the second one, we rearrange

into
) Bu=l= ) By

i2,1<i1,1 i1,1502,15q-1
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plug this into (3.35b) using on the term that comes from the 1 above to

get
1
2 _
2 Z ﬂi1,1ﬁi2,1ci1,1 - Z ﬁil,lcil,l T3’

11,150,154 -1 i1,1<g9-1

and finally combine the case iy | = iy, with the second sum and swap the names
of the indeces in the remaining sum. Those four equations are just coming from
the case (ki 1,kp1) = (1,1). We get another equation from ky 1 = 2 (see ),

namely

3 2
3 Z ﬁil,lﬁiz,lﬁiz,z + D) Z ﬁi1,1ﬁi211

ip,1,i2,2<i1,1<q~1 ip1<i,1<g-1

3 2 3
+ E Z IBlLl ﬁl‘z’Q + Z ﬁil,l = 1

l2’2<l1’1<q—1 i1,1<¢]—1

To show that this equation is also superfluous, we split up the first sum by
l2,1 < l2'2, l2,2 < iZ,l and l2’1 = lz'z. The latter is artiﬁcially Splll' in half and
combined with the second and third sum, respectively. The fourth sum is also

split in half, so that after rearranging, we receive

3 Z. ﬁi1,1ﬂiz,1ﬁiz,z+% Z. (ﬁ111ﬁ122 ﬁlllﬁlzz Z [3111

ip,1<ip 2<iy 1591 ip2<iy,15q-1 11 159-1
3 E > E 2 E
+ ﬂl’1_1ﬁi2,1/31'2,2+5 (ﬁil’lﬁizl /5111ﬁ121 /5111
ip,2<ip 1 <iy,1<g-1 ip,1<i1,159-1 11 159-1
=1,

which we know is true by the first already superfluous equation from above,
which times one half is added twice here, (i3 1,11,11,1) replaced by (iy1,15,11 1)
and (ip,1p1,11,1), respectively. One example for coejﬁcients fulﬁlling these
equations would be g = 3, a; = 1 +i\§, ay = é, a3 = 4 "1/25, Bi =73 +i£,
Br=1- 1— if A generates a fitting analytic semigroup and the nonlinear flow
is defined for complex times as well.

Otherwise, we can take an option which also fits for n = 4. In this case, we have

the equations

1
3
Z B, =7 (3.36a)

i1,159-1
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1
2 2 2
2 Z ﬁil,lﬁimciu + Z ﬁil,lcil,l = > (3.36Db)

i2,1<i,1<q-1 i1,1<9-1
2 2
6 Z ﬁi1,1/3i2,1ﬁi3,1ci1,1 +3 Z (ﬁi1,1ﬁi2,1 +ﬁi1.1ﬂiz,1)ci1r1
i3,1<i,1 <iy1<q—1 ip,1<iy,1 <41

3
3
+ ) B =7 (3360

as well as

24 Z Biy, Pir, Bis, Biyy +12 Z Biy, Bir, Bis, (/31'1,1 + Biy, +ﬁi3,l)

iy <i3,<in<i;1<q-1 13,1 <lp,1<i,1 <41
E 2 2 E 4 _
+ ﬁiLl ﬁiz,1(4ﬁi1,1 + 6ﬁi1,1 ﬁiz,l + 4ﬁ1’2]1) + ﬁil,l - 1’
i2'1<i1,1<q—1 il,lsq_l
2 § > 2 .
/))i1,1ﬁi2,1ci1,1ci2,1 + ﬁil,lcilrlcill Ty
1.2'1<1'1'1<q—1 i1,1<q_1
2 2 2 _ 1
2 § ﬁ11,1ﬂ12,1ci2,1 + z ﬁil,lciz,l T 6
in<i11<q-1 i1,1€9-1
6 Biv, Bis, Bis, Ciny +3 (7, Bis, Cir, + Bir, By i)
11,1 P11 P131%121 i1, P21 71,1 1P 71
i371<i271<i1/1<q—1 i2,l<il,l<q_1
3. 1
v ) B =3
i1,15q-1
2 2
6 § ﬁi1,1ﬁi2,1ﬁi3,1ci3,1 +3 z (ﬁimﬂill +ﬁi1'1ﬁi2,1)ci2r1
i3,1<i,1<iy1<q—1 ip,1<iy,15q-1

1

3 . e —

+ E ﬁi1,1C11,1_4'
i1,159-1

The first one is just (3.33b)*, while the second one is 2. The third one fol-

lows similarly as before by using } ;i Bir; =1 =1 <ip <q-1Piry i1 ,
swapping the indeces and using . For the fourth one, we use the same fact
in the the term 3} ;  .i <41 /3121 By, Ciy, of (3.36¢), giving us amongst other

terms 3 Zil,l<q—1 /31'21,1‘:1'1,1' which we replace using (3.35b). We combine the term
that arises from that with the first sum in (3.36c)), allowing us to use
again to simplify. In the end, this gives us the fact that 3 equals the left side of
the forth equation plus the left side of (3.36d), giving us the desired result. For
the fifth one, we use (3.33b)? on the term 3) iy <it <q-1 ﬁiuﬁz ¢i,, of (3.360).

i21
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70

Using (3.33b)), this gives us the fact that 3 equals the sum of the fifth and the
forth left side, which vyields the fifth equation because of the forth one.

Again, we also obtain more equations from the other cases. Firstly, there are

2
3 Z ﬁil,lﬁiz,lﬁiz,zcil,l +3 Z ﬁil’lﬁiz,lcil,l

ip1,i2,2<11,1<q~1 ip1<iy,159-1
3 1
+ z , ﬁil,lcllrl 4
i1,1<q—1
3 E > E 2
ﬁil,lﬁim/jizzcizl + D) ﬁil,lﬁiz,l (Ciz,l + Cil,l)
ip,1,42,2<i1,15q-1 ip1<iy, 1591

1
3 —_——
* Z BiyiCing = 8’

i1,1<9-1

from the case ki 1 = 2 and polynomials of degree one, both of which trace back to
and the forth and fifth equation from above by breaking up first sums
into the cases iy <15, i1 =iy, i1 > ip o and rearranging cleverly. From the
cases (k;,) €{(1,1,1),(1,2),(2,1,0),(2,0,1),(3)} for constant polynomials (see
3.31)), we obtain the equations

2
12 Z Biii iy, i1 Pis, +12 Z ﬁi1,118i2,1ﬁi3,1

i3,1,13,2<1,1<11,1 <91 i3,1<ip,1<i1,1<g~1
E 2 E 2 2 § 4
+6 ﬁl‘lyl ﬁiS,l/))i&Z + 4 ﬂil,l ﬁill (ﬁi2,1 + /))1'171) + ﬁil,l - 1’
i3,1,i3,2<11,1<q~1 iy, <i1,1 €91 i1,1<q9-1
2
8 Z ﬂ11,1ﬁ12,1ﬁ13,1ﬁ13,2 +4 Z ﬂil,lﬁlz,lﬂls,l
i3,1<12,1,i2,2<11,1<9~1 i3,1<ip,1<iy,15g-1

+4 Z ﬁil,lﬁiz,lﬁi2,2(ﬁil,l+ﬁi2»1)

ip,1,i2,2<i1,1<q~1

2 4
+2 Z ﬁilylﬁi2,1(2/3i1,1 T 1/3i2,1)+ Z /3i1,1 =L

iy <iy1<q-1 i1,154-1
2
4 2 ﬂ11,1ﬁ12,1/313,1ﬁ13,2 +6 z ﬁil,lﬁlz,lﬁlz,z
i2,1,12,2,i2,3<i1,1<9—1 i21,i2,2<i1,1<9~1
3 4 _
+4 z , ﬁimﬁlll + z ﬁim =1
ip1<iy,15g-1 i,1<q9-1

which all trace back to (3.33b)* in the same way. Popular solutions to these

1
) . -43
equations are either g = 6, ay = ag = ;l, Oy =5 = %, a3 =0y = 1-4

T
8-2-43 4-43 8-2:43



1
— — — __1 _ 43 _ _ _ 1 i 1 — —
Pr=PBr=Ps=Ps=—1,p3=—1o0rq=5 a1 =as=15—i35, ay =ay =
4 2 41 - 1

15 +ifs, a3 = 15 —iz, f1 = B2 = B3 = P4 = 5, depending on whether A generates

a Cy group or an analytic semigroup.

We can now finally put everything together to get to a local error estimate in
Y. To this end, we combine Propositions and to obtain (3.32)) and use
Lemma to start estimating it. Taking a close look at the appearing terms
gives us sufficient conditions on the derivatives of g and the regularity of X,

compared to Y in order to end up with the desired order of convergence.

ProrpositioN 3.13

Let r =n—1+0 >0 and |lu(t)llx, <R forall t € [0,T]. Moreover, assume
that Assumption (3.5 and Assumption[3.2|hold for n. Then, the one-step error
between the exact solution of (3.1) and its numerical approximation fulfils the
estimate

llu(h) = S (uo)lly < Ch™,

where 50nly depends on R, T, n and the maximum of the f; and c;.

of Proposition We start by restating (3.32)), which followed from Proposi-
tions[3.7]and

h n_sj_l hsn—l
w(h)=Shug)= ) — i Flg (1) At -+ dt g
Kir=0 j=1 [Tp2y Kjpt VN
j:l,...,n—l;r:l,...,K]-_l
Sp-1<h
-1 i‘fl, K‘,l
3 < M (T - 3 23
- | n | ﬁi]',s (kj'r)((cl'/'ys )) ( . 7)
il,lzl i]-/5:1;j:2,...,n ]:1 s=1
-1
r=1..,Kj_;5=K\"] ’+1,.,.,K]@1
n n_sj—l hsm
+ Z Z m K]'_l ‘(J\ (kj,r) u(kj,r)j:l,...,m—lr(tj,rh)jzl,...,m
m=1 k]’,rZO ]:1 l_[T:1 kj’r- Nm+1

j:l,...,m;r:l,...,Kj_l
Sm—l <7’1;Sm>1’l

1 y
[(J; g(km,r)(AZ_S”'1)[(T((tm,r—tm+1,s)h)g(u(tm+1,sh)))Km)' ]dé)iﬂ;]

m,r S:K&71)+1
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q_l ij—l,r n
dtm+1K dtl 1~ é (k] r)(’]S) ( | I /31]5)
i =1 ij5=1;j=2,.,m+1 mt1 j=1 s=1
—1
r=1 K]_z,s:K;ﬁl Vi1, K]([)l

1 .
(k',r)’(l‘,s)
u(kj,r)]-_ly_,,,,n_l,(ci].sh)]._lmm[(f gkme)(g I (,Bimlrtm,rh))[(T(Cim+1,s+l,im/rh)
’ 0

Kin
g(lPSh (uo)(ﬁim,rtm‘Fl,Sh)) =g -1 ]dé ] m+l,Km dtl,l)

Ym+1,s

=:D+R

R is relatively easy to treat, since it doesn’t force any loss of regularity. By
Assumption for some 7 € [0, 7], all derivatives of g up to g™ exist on X; and

we start off with

- 5 S (ki)
IRIly <) : il sup
m l_[ j-1 k (k; )
m=1 kj'r:0 j=111r=1 "pr (t ,rh)]': m NmJ]rll
j=1,.., m;r—l ..... K]_l

K
gt ), ] )l

. « Uiz, (T T
+ ) > o T ) sue
ip1=1 ij=1;j=2,..,m+1 j=1 s=1 ()i, 'HEM;:(i’lr),(lj,S)
r=1..,Kj 5=k e, K

1 o
[ ———— m[(fo g B (B b [T (et e, 1)

(
8(gr (uo)(ﬁim,,tmﬂ,sh)) KU ]dé - 1]” )

tm+1,s
n Yl—S]'_l S _n-o
< W0 L su Hu
= m Kj—l | P i) (kj,r)]*l ,,,,, m— 1,(1‘] rh)] .....
m=1 kjrr:() l_[]:] l_[rzl kj’r. t] rh) mewa]L’lr
j=L...m;r=1,.,K;_;
Spm_1<1m;5,>n
! (k )An—sm—l T h h K,(ﬂr) d Km—l
[( gty (T = bt ISt ) i, | 4E), 7
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' )5
’ Z_ ’ Z ey Pl TP

||u<k]-,r>]-_1,...,m_1,<c,,,5h>j_1,..,,m[(fo g BByt [(T(exy 1, 1)

K
S5t Bt ) g ] 06) 1
The terms in the norms are nested (semi)groups T followed by derivatives g(¥).
We lose the (semi)groups easily via their uniform boundedness in t and estimate
the multilinear maps g*) by the fact that they map (X;)* to Xz. The only thing
left are the respective operator norms, which depend on the X,-norm of their
arguments. These arguments are mostly of the form u(t) = T(t)u,, which makes
them bounded by R in X, since uy = u(0).

If in the first norm, the argument has the form u(t) + Eu,,;(t) or u(t) for some
£€(0,1)and t € [0,h], hence u;(t)+Euy(t) = Eu(t)+(1—&)uy(t) for some & € (0,1]
and and t € [0, 1] (see (3.8)), it is in the same way bounded by R in X,.

If in the second norm, the argument has the form B$+1) & A'S)(t), hence T(t )[Sf(u0)+
gug(ty)] = T (E)[EPgn()(F2) + (1 - 5)5 ug)] for some ty,t, € [0, max{|B;[}h],
iell,....q)and & € [0 1] (see (3.20) and (3.19)). By Proposition those
terms are bounded by constants dependmg on Rand T in X,.

After this, we can estimate everything very roughly: The norms by the biggest
value out of all the above estimates, the factorials by 1, the sum over i by
(g —1)5»1, the sum over k by the sum of the first n — 1 Catalan numbers (see
Remark , Sm_1 by nand S,, by e.g. n?. This shows that

IRIly < Ch",

where C depends on R, T, n, g and the maximum of the §; and c;. We move on
to the term D. By Proposition we have

hsn 1
ID[ly < HJ Kj,r) ]r Jh)dtyk, - diyg
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q—l ij—l,r (k )( ) n K]',l
Wi,
- Z 2 M, |( ﬁij,s)F(kj,r)((cij,sh))“
i1=1 ijs=1;j=2,.,m j=1 s= Y

_ e (r=1) (r)
r—l...,K]»_z,s—K].f1 +1,...,K].71

H—S]‘,l

1 (kjr)(a;)(Bj)
n s ] ]
<h Z n-1 1Kj-1 | Z C%q
kj,r:0 j=1 l—[l’ZI k]"r- |)/|=11—Sn,1
j=1..., n—l;r:l,...,Kj,l
Sp-1<n
sup(k. )”DVF(kj_r)((tj,rh))_DyF(kj’r)((sj,rh))”Y
jr

tj,rxsj,VENn

At this point, we arrive at the crucial part of the proof. The functions Fig, )
consist of a nesting of (semi)groups T and derivatives g. Differentiating once
with respect to an arbitrary variable gives a sum of terms, each of which differs
from the the original function in that is has a +AT instead of T, or a gk+1 with
added argument Ay, instead of g¥. Repeating the process gives the additional
possibility of changing such a Ay; into a A%u; and so on.

Therefore, an arbitrary derivative of order n —S,,_; consists of the standard
nesting with a summed total of S,,_; — 1 to n—1 orders in the derivatives of g, as
well as n—S,,_; times A in the form of either A'y; in an argument of g(k)(ul) or
as +A! in front of a (semi)group T.

In the next step, we have to build the difference of this derivative at two arbi-
trary points. The standard procedure of inserting a telescopic sum, where two
consecutive summands only have different variables in one of the terms (that
is, in one T or one u;) gives basically the same expression as before, the only

difference being the single occurrence of either
[T((t=t2))-T((s1-s2)W)]v,  wy(th)—wy(sh), or  g¥(u(th)—g®(u(sh)[vy, ..., ve]

By the mean value Theorem for Fréchet differentiable functions (see [AP95,

Theorem 1.8]), we can write

g B (uy(th)) - ¢ (uy(sh)) vy, ..., v

1
:L E D (Euy(th) + (1 = E)uy(sh))[vy, ..., vio wy(th) — wy(sh)] dE,
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reducing the third difference to the second one while gaining another derivative
order. Since u;(th) = T(th)uy, the second and first difference are of the same
structure. Estimating this gives us 6 orders of h while loosing the same order of
regularity, that is

T (k) = T(sh)Jolly < B ol

This result is justified by part a) of the Theorem on page 77 of [Iri93] (p = oo,
m = 1), which connects the above norm to a real interpolation space, combined
with part d) of the Theorem on page 101 of [Tri95], where this interpolation
space is compared to the fitting fractional domain. We also need to use an easy
reiteration argument (see [Tri95} 1.15.4]).

Now, estimating ||D7P(k].’r)((t]-,rh)) - DVF(kj,,)((Sj,rh))”Y/ we start off with a differ-
ence of r = n—1+ 0 in regularity orders compared to the space X, and at the
same time at most n — 1 occurrences of A worth one order of regularity plus
one occurrence of a difference (in our case) worth 6 orders of regularity. Since
by assumption, we can distribute the order difference to r amongst all argu-
ments whenever estimating ¢g'¥), we do this exactly in the way that keeps the
necessary distance to process the terms A and the difference while still staying
under r orders of regularity. By this we mean that in every argument vy,..., vy of
g (u;(th))[vy,...,vk], we count the number of times an A occurs (I € {0,...,n—1})
and the number of differences ([ € {0,1}) so that we can stay in the space Xp—l—i)
with this argument.

Lastly, we justify that the higher derivatives only need to exist and allow the
required estimates in bigger spaces. For g'¥) to show up, S,_; must at least be
k +1 by definition. Hence, we take at most n — k — 1 derivative, giving us at most
n—k—1 occurrences of A. m € {0,...,n—k — 1} of those derivatives are taken
with respect to the variable involved in the argument, increasing the order of

k+m)

derivatives to g( . As we have seen above, the resulting m occurrences of A

k+m) linearly depends on, so at most

(k+m)

appear inside one of the arguments that g!
n—k—m—1 of them can appear in front of said g . Including the difference,
this makes for a loss of regularity of at most n—1+ 6 — (k + m) before reaching

(k+m)
8

on spaces bigger than X,_;). This finally yields

, meaning we only need the estimates mentioned in Assumption 3.2|for g’

() = S5 (w0)lly < Ch™*?,
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where C only depends on R, T, n, q and the maximum of the f; and c;. ]

3.6 Uniform bounds

The last thing we need to ensure is the uniform boundedness in X; of all the
terms on which we want to use Proposition 3.6/a) in the proof of Theorem

This is done in the following Lemma.

LemmMma 3.14

1
. = Jlog(2
If llu(t)llx. <R for all t € [0,T]. Put hy = mln{(TeC(4R§ﬁlT Cloc) oA T),
where C(R) is the the constant from Proposition and Cy,. is the constant
from Proposition with Y replaced by X;. Then, for h € (0,hy], Nh < T,

ke{0,...,N}and je{l,...,k}, we have
IS™¥ (u(km)lx, < 2R
Proof. We show a stronger result by induction over N, namely
I(S"N T (u(kh)) = u((N = j + k)h)|lx, < TeCERIFT Cpr=s, (3.38)

for Nh< T and all k €{0,...,N}, j € {k,...,N}. Indeed, by the triangle inequality
and h < hy, our bound on u in X, and (3.38)), we get

I(S"YN (u(kh))llx, < 2R. (3.39)

We start with N = 0, for which the difference in is 0 and hence the estimate
is trivial. Assume for some N € Ny with (N+1)h< T and k € {0,...,N}.
For k = N +1, we get j = N + 1 and the estimate is once again trivial. For
ke{0,...,N}and j e {k+1,...N + 1}, the resulting term is already covered by the
induction assumption. Let k € {0,..., N} and j = k. We compute that

I(S"N 1R (w(kh)) - u (N + 1)h)lx,
N-k
<Y SN (ke + 1Y) = (SMYN T u((k + 1+ 1)),
1=0
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Now, we can use the stability property from Proposition [3.6]b) N —k — I times.
R, can be taken to be 2R by our induction assumption (see (3.39)). This yields

I(S"N I (w(kh)) - u (N + 1)h)lx,
N—-k
<y eCHRIBIMNTR= 1y (K + 1)h))) = S (u((k + 1+ 1))l
1=0

Now, we can use Proposition with Y replaced by X;, n+ 6 replaced by r —s
and uy by u(kh), that is

ISt ((kI)) = u((k + D))l < Cioch*.

All the necessary estimates are covered by Assumption[3.2Jonce again. Therefore,

we finally obtain

N-k
(SN (u(eh)) = (N + D)llx, < ) eCHRIPRNED ) plers
1=0
< NeC(4R)|/3|h(N—k—l)C10Ch1+r—s < TeC(4R)|/>’|TCIOChr—s'

which is (3.38) for N replaced by N + 1 and j = k. This concludes the induction
as well as the proof by (3.39). |
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4 Applications

After establishing the theoretical framework, we now turn to several examples.
We recall the definition of the splitting scheme: For fixed h >0 and g € N, let

S} (uo) := T(ayhug,
St (10) := T(@ist MYgh (Bih), i€ (l,..,q=1), (4.1)
§"(uo) = S5 (uo),

where T was the solution to the linear part and i the one to the purely nonlinear

part. Possible schemes for orders up to four were given in Remark namely

r<l:g=2,a,=0,a,=1, B =1 (Lie Splitting),

<2:9=2,a =3, a; =%, B =1 (Strang Splitting),

V3 _1 V3
3 q_3 a1_4+1121a2_21a3 lz’ﬁl 2+1 ﬁ2 ——1—,

if A generates a fitting analytic semlgroup and ¢ admits complex times

(otherwise, see r < 4),

1
Co _ _ 1 _ _ 1 _ _ 1-43 _
cr<4q=6a =0=—"7,0 =0 = —7, @ = A4 = ™ P1 =
8-2.43 4-43 8-243
P2 =Ps=p5 = 11, 3= — 431, if A generates a Cy group, or q = 5,
1 e 2_43 1
a1 =0s5=15 130;6¥2 a4 =15 +115;053 5'ﬁ1 Po=PB3=Ps=71

A generates a fitting analytic semigroup.

For the general Assumption [3.5|and more details, we refer to Section A
result on polynomial nonlinearities which will be used throughout this chapter

concerns Assumption 3.2
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LemmMma 4.1

Assume that Y admits the definition of pointwise multiplication and there exists
an s, > 0 such that for s > s, it holds that for u,v € D(A®), we have uv € D(A®)
and for u € D(A®), v e Y = D(A), we have uv € Y with

luvlls < llullslivlls, — luvllo < flulls[vllo,

respectively. Further assume that the fractional domains of A form a complex

interpolation scale and complex conjugation does not change the norms.

a) Let n € N as well as a;,b € [0,s) with )" a; = b. If u; € H*™%, then
]_[l Lu; € H b and

n n
I I
i=1 =1

b) Let k € N be odd. Then g: H® — H*, g(u) = |ul*"u is infinitely often
real Fréchet differentiable with

ksl
2

) Y [Tl e

(u)[vl,...,vn]: wy wke{uv1 ..... v,) j= :kT
#{1 w;=v;}=1Vj

0 n>k.

for all n € N. For all u € H® and n € N with a;,b € [0,s] and } "', a; = b,

the derivatives are extendable to a multilinear operator

n
g(”)(u) : ®HS_“i 5 H5?

i=1

with || (u)|| < C(R) for |lulls <R

c¢) For s>3>s., and u,v € H°, we obtain

lg(u) - g@)llo < C(R)|Ju —vllg
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for ||ulls, lvlls < R and any R > 0 as well as
Ig(u) = g@)lls < C(R)Ju —vlls and [Ig(u)-g@)lls < C(R)[lu -l

for |lulls, llvlls < R and any R > 0.

REMARK

a) Notice that we have shown all of Assumption|3.2]in this lemma. Also notice
that if we choose a spacer Y bigger than Y on the same interpolation scale
and have the basic estimate on Y instead of Y, the estimate on Y follows
directly by interpolation. This is relevant in the subsequent examples if we
take Y to be for example a Sobolev space H® for s > 0 and only show the

multiplication property on L2,

b) We mention here that the nonlinearities can be generalized to so called alge-

braic nonlinearities (see [Chal8|][Definition 4.4]) without complications.

These are defined by
gu) =) clul*u

kGNO

with ¢, € C and limy_,, v/ |cx| = 0, that is, an appropriate series with
the above nonlinearities as summands. The decay of (cx) allows for no

problems concerning convergence.

Proof of Lemma a) We use induction over n € IN . n =1 is trivial and we
also need n = 2 in the induction assumption, so that is where we start. Let
ay,a,, b e[0,s] with a; +a, =b. The two required estimates mean that for
fixed u € H®, the mapping v > uv is linear and bounded on H® and H®.

Interpolating between the two (see e.g. [BL76, Theorem 4.1.2], 6 = %) gives

luvlls-p < llullsllvlls-p

for all u € H® and v € H*™’. Symmetry obviously also gives the mirrored
version

Nuvlls—p < lluells—p llv]ls
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for all u € H"? and v € H®. Interpreting (1, v) — uv as a bilinear map, we
can use multilinear interpolation (see [BL76, Theorem 4.4.1] for 6 = %1) to

obtain

||MU||5_b < ”u”s—al ”v”s—az

for all u € H*"" and v € H*™*2 from those two estimates (using a; +a, = b),
giving us the desired result for n = 2.

Now we suppose the result holds for some n € IN. Let a;,b € [0,s] with

"'4; = b and u; € H*%. By induction assumption, we have [T, u; €

Hs—(b—anﬂ) and
n n
u; S]_[ Uills—a;-
I N I L
i=1 i=1

Now we only need the bilinear result once more to see that ?;Lll u; e Hb

with
n+1 n
Hl [ "ls—p [ l !
i=1 i=1

n+1

s—(b—ay,,1) ”un+1”s—an+1 < 1_1[ ”ui”s—ai'
1=

We once again use induction over n € INg. n = 0 is trivial, since the
given formula just reproduces g itself. Now assume that g is n times
differentiable and ¢! has the given form. If n > k, the result is trivial,
since the derivative of the zero function is again zero. For n = k, g\"(u)
does not depend on u, so g"*1(u) = 0 by definition. Hence, let now be

n < k. For u,vy,...,v,,1 € H®, we have by induction assumption

k1
2

k
g+ vy (v, vy = Z w;j ]_[ wj

W e W E{UAV 41,0100V} J=1 j:k#
#iw;=v;}=1Vj<n

k
=) v | |

w1,...Wke{u,v,,ﬂ,vl',...,v,,} j=1 i_k+3
#iw;=v;}=1Vj<n



expanding the product regarding the terms u + v,;; in the second step.

Comparing this to

rvl= ) e | |

W, W, vy,...,v,} j=1 j:hT3
#iw;=v;}=1Vj<n

again by induction assumption. We see that the terms are identical up to
the missing choice of the term v, , hence the terms missing v,,,; in the

first sum cancel out with the second sum, that is

g
g(n)(u+vn+1)[vlv--’vn]_g(n)(u)[vl’--"vn] = Z wj ]_[ W]
W1, WEE{ U, V] ey Vg1 } J=1 j:k+T3

#iw;=v;}=1Vj<n
#{i:wizvn+l>l}

Comparing this to the alleged formula for ¢"*!(u)[vy,...,v,,], that is,

kel
2

k
g )y, s v ] = E w; l | wj,
c_k+3
==

W, W E{U, V1 ey Vi1 } J=1
#iw;=v;}=1Vj<n+1

we see that it cancels out the part of the sum above where #{i : w; = v, | =

1}, leaving us with

18" (1 + vui1) w1 vl = €)1,y v] - €

- H ) wi | | =

W, WEE{U, V1, Vpg1 ) J=1 j
#{i:wiZVj}:1Vj<n
#liw;=v,.1>2}

< 3]

W1 Wk E(U, V1 ey Vpir ) j=1 j
#limw;=v;}=1Vj<n
#iw;=v,,122}

n
2
$||Vn+1||s| |||Vi||s § | | llw;lls-
i=1

W Wh(n42) €W Vpe1} J=1

83



84

If n =k -2, the last sum is empty and set to be one. We used the algebra
property of the multiplication in H® as well as the fact that |[w]|; = ||w]|
for the norms at hand. Divided by ||v,,1[ls, the result converges to zero
as z,,1 goes to zero in H®, which shows the validity of the formula for
G (W) 01, Ui )

Regarding the extendability, we note that for n < k (n > k is again the
trivial case), every summand in g!”)(u)[vy,...,v,] contains vy,...,v, (or the
complex conjugate) once and u (or its complex conjugate) k —n > 0 times.
We split off all occurrences of u by the bilinear version of a) for a; =0,
a, = b and then use the multilinear version plus the algebra property to

obtain

n n
lg" @) lvrs vl | [illca Il <R[ ] llvills,
i=1 i=1

The previous parts hold true for s replaced by §. Let u,v € H® with either

lulls lIvlls < R or ||ulls, ||vlls < R for some R,R > 0. Using the representation
1

g(u)—g(v){o ¢(En+ (1= &) —v] de,

we first observe that the H® or H® norms of {u + (1 — &)v are also bounded

by R or R respectively. From the we obtain from b) that

lIg(u) —g(@)llo < 581[1)131]||g'(€u +(1=&)v)[u —v]llo < C(R)[Ju —llo

as well as

lIg (1) —gW)lls < ;1[10131]||g'(5u +(1=&)v)[u —v]lls < C(R) [lu — vl

and

lIg (1) —g)lls < ;1[10131]||g'(5u +(1=&)v)[u —v]lls < CR)[Ju —v|ls



4.1 Nonlinearities self-mapping on fractional

domains

First we show we can recover a (generalized) result by Ostermann and Hansen

from our general method. We still work with the equation

w'(t) = (-Au)(t)+g(u(t)),
u(0) = uy.

and keep the assumption on the operator A in all its generality:

AssumPTION [3.1]

Let (Y, ||-|ly) be a Banach space and A: D(A) CY — Y a linear operator such
that —A generates by T(t):=e " :Y > Y

* r<2: A Cysemigroup fort >0

e r>2: A Cygroup for t € R or an analytic semigroup for t in a sector
Yy :={z€C| |arg(z)| < ¢} for some ¢ € [0, 7).

As for the nonlinearity g, we assume

AssumPTION [3,2F

g is locally Lipschitz on X, = D(A") as well as [b] times differentiable on X,
forbelk,k—-1+6}(k=1,...,n—1) and b = r with

I8 (ONB(x,_pxxx, x4 < C(R)

for 1 =0,...,[b], as long as ||x||x, , < RforallR>0. Forl=1and b=r, it
should also hold as long as ||x||x, < R.

This is obviously a stronger assumption than Assumption|[3.2](we have s(b) = r-b
and we can choose s = 0 here). Hence, we derive the following result directly
from Theorem
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CoOROLLARY 4.2

Let r> 0 and ug € X,. Let assumptions n [3.2F]and [3.5] (see Remark[3.3) hold
and assume the solution u € C([0,T], of(-)fulﬁls lu(t)llx, < R for all
t € [0,T] and some R > 0. Then, we conclude that there exists an hg € (0, T]
such that

I(S™)N (ug) = u(Nh)lly < CH’

forall h € (0,hy] and all N € N with Nh < T, where C only depends on R and
T.

For r € IN¢y, this result is contained in [HO16], which was also the inspiration
for our generalization. The fact that Assumption [3.5|the exact same as in [HO16]]
is shown in Remark (see also Remark [3.3). The boundedness on bounded
sets is not mentioned in this paper, but we strongly suggest it (or a slightly
different version as mentioned in the Remark after Assumption is implicitly
used and necessary.

4.2 Schrodinger equations

In the following examples, we work with operators related to the Laplacian as
well as polynomial nonlinearities. We use H® (with ||-||; := ||:||gs) to denote the
fractional Sobolev spaces (on RY, T4 and compact manifolds M), which will be
defined in the respective examples. The following Lemma is important for all

examples.

4.2.1 On L*(R%), L*(T?) and L*(M) for manifolds

a) We take a look at the equation

i/ (x,t) = ((=A)7u)(x,t) = [u(x, ) Lu(x, t),

(4.3)
u(x,0) =ulx),

for 0 >0 and k € N odd as well as (x,t) € R? x R, where u° € L>(R%). To

adapt the main Theorem to this equation, we set A, = —i(—A)? and define
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the fractional Sobolev spaces by the Bessel potential spaces
H®:= H*(RY) := {f e LA(RY) | (1 + |€])2 F f € L*(RY))
for s > 0 with their natural norm. We see that for r > 0 and f € H%,

(=AY FI2 + 1F122)7 ~c 0= AF fllze = 1+ ERYF fllzz = 1fll2s

where we used the main result in [DGO8]| for the equivalence. Therefore, if
we take Y = H® as a our base space, we obtain D(A”) = H**2°7, Since (-A)°
is positive and self-adjoint on L?(R%), —A generates a Cy group on all H?,
so Assumption [3.1]is fulfilled. We now check the assumptions in Lemma

* For s> %, if f € H*(R?), then f € L*(R?) by the Sobolev embedding
Theorem. Indeed, by the Cauchy-Schwarz inequality

Iz < IF Fllr < N+ D72 1 Nl

Hence, a trivial estimate gives

1/ &lle2 < Mlfllzellglle2 < Mlf s llgll2

for f € H*(RY) and g € L>(RY).

* For s > 4,if f,g € H(RY), then fg € H*(R?) with [|fgll; < IfIlslIglls-
To see this, we observe that

(1+1EP)2 <A +31E =1l +31717)2 < (1+ [E =522 + (1 + |72,

seen for natural numbers s through estimating the mixed terms by
the pure terms with highest order when multiplying (similar to the
trick in the first estimate). Together with F(fg) = (Ff)*(Fg), this
yields

(L+IEP 2 IF(FUEN S5 ((1+ )2 F flx|F ) (E)+(IF flel(1+]42) 2 F (&)
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and therefore by Young’s inequality and the same estimate as in the

first estimate gives

1/ 8lls s 1 Is 17 gl + 17 fll llglls < 11£1ls llg]ls-

Therefore, we choose Y = HS(IRd) for some s > 0 such that s + 207 > %. This

lets us obtain the required estimates in Assumption [3.2]from Lemma

d

where s can be chosen freely in (3,

result from Theorem

s+ 2r). We now obtain the following

CoroLLARY 4.3

Let 0 >0, r>0and s > 0 such that s+ 20r > %. Let Assumption
(see Remark hold for the splitting scheme . If ug € H"2°" and

the solution u € C([0, T], H**2°") offulﬁls |t (t)ls5 267 < R for all
t € [0, T] and some R > 0, there exists an hy € (0, T] such that

("N (1) - u(N )|l < CH”

forall h e (0,hy] and all N € N with Nh < T, where C only depends on R
and T.

1

Cases of interest are for example the square root of the Laplacian (o = 3),

the Laplacian itself (0 = 1) or the Bilaplacian (0 = 2). We rewrite the
result for those examples and add some values for s and orders up to two.

Starting with the Laplacian, we have the equation

i/ (x,t) = (=Au)(x,t) + |u(x, )< u(x, 1),

(4.4)
u(x,0) =ulx),
with the result

CoROLLARY 4.4

Let r > 0 be arbitrary and s > 0 such that s+ 2r > %. Let Assumption
(see Remark hold for the splitting scheme . If ug € H*?" and the
solution u € C([0,T], H*+?") offulﬁls ltt(t)|ls0r S R forall t €0, T]



and some R > 0, there exists an hg € (0, T] such that
15" (o) —u(NB)ll; < CH

forall h e (0,hy] and all N € N with Nh < T, where C only depends on R
and T.

This result for d < 3, k =3, s =0 and r < 2 can be found in [ESS16]] and
before for r € {1,2} in [Lub08]]. For the Strang splitting (or for r < 1 also

the Lie splitting), we have for example

Dim. Y Conv. Order Initial Val. Remarks

1 IL? re(4.2] H? b) c)
1 H?> re(0,2] H2(1+1) a)
2 L? re(%,Z] H? b) ¢)
2 H?> re(0,2] H2(+1) a)
3 1? re(2,2] H? b) c)
3 H? re(0,2] H2(1+1) a)

Next, we take the square root of the Laplacian for the equation

i/ (x,t) = (V=Au)(x, t) £ [u(x, ) u(x, t),

(4.5)
u(x,0) =ulx),
and the result

COROLLARY 4.5

Let r > 0 be arbitrary and s > 0 such that s +r > %. Let Assumption
(see Remark[3.3)) hold for the splitting scheme (4.1)). If ug € H**" and the
solution u € C([0, T], H**") of (4.5)) fulfils ||lu(t)|lss, <R for all t € [0, T]
and some R > 0, there exists an hg € (0, T] such that

1(S")N (1) — u(Nh)|l; < CH”

forall h e (0,hy] and all N € N with Nh < T, where C only depends on R
and T.
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For the Strang splitting (or for r < 1 also the Lie splitting), we have the

possible values

Dim. Y Conv. Order Initial Val. Remark

1L €(32] H' )
1 H €(0,2] a7 a)
2 L? €(1,2] H' b)
2 H! €(0,2] HT a)
3 L? (g 2] H" b)
3 H' re(2] H* b)

Finally, we take the Bilaplacian with equation

i/ (x,t) = ((=A)u)(x,t) £ |u(x, ) u(x, t),
u(x,0) =ul%x),

and the result

COROLLARY 4.6

Let r > 0 be arbitrary and s > 0 such that s + 4r > . Let Assumption|3.
(see Remark-) hold for the splitting scheme . Ifu € H*4" and the
solution u € C([0,T], H+*") offulﬁls l|et(t)||s4ar S R forallt €[0,T]
and some R > 0, there exists an hg € (0, T] such that

1(S")N (1) = u(Nh)|ls < Ch"

forall h e (0,hy] and all N € N with Nh < T, where C only depends on R
and T.

For the Strang splitting (or for r < 1 also the Lie splitting), we obtain

Dim. Y Conv. Order Initial Val. Remark

1 L*  re(32] H* b)
1 H* re(0,2] HA41+) a)
2 L re(§2] HY b)
2  H* re(0,2] HA41+7) a)
3 I? re(3,2] HY b)
3 H* re(0,2] HA41+7) a)



REMARK

a) These results are optimal in the sense that the required smoothness
of the initial value is apparently necessary to obtain the convergence
order r in the norm Y and there are no restrictions on the order r

(except for r < 2)

b) Here, the required smoothness of the initial value is still optimal for r

starting from a lower threshold, but not for all r > 0.

c) In these cases, results by [[ESS16l] and [Liul3al] are contained.

b) The Laplacian on the torus T can be treated very similarly to the one on

the full space. The equation is

iu,(x,t) = ((=A)7u)(x, t)+ |lulx, ) Lu(x, t),
iug(x,t) = ((=A)7u)(x, )+ u(x, ) u(x, t) (4.7)
u(x,0) =ux),

for 0 >0, k€ N odd and (x,t) € T xR, where u® € LZ(Td). We set A = —iA,

and define the fractional Sobolev spaces by the Bessel potential spaces
H® := H(T?) := {u € LX(T%) | (1 + n?)24(n)), cpa € €%}

for s > 0 with their natural norm. Compared to the full space, we therefore
just replaced the Fourier transform F u by the sequence (ii(n)),, of Fourier
coefficients. For a thorough treatment of these spaces and more references,
see [BO13]]. We get D(A") = H¥*2°" for a base space Y = H® by [DG08] if
we just extend the functions canonically from T? to R? by zero. Since —A
is positive and self-adjoint on L>(T%), —A generates a Cy group on all H?,
so Assumption [3.1]is fulfilled.

The assumptions in Lemma follow exactly as in the case of the full
space, since we again have the inversion formula and Young’s inequality
for discrete convolutions. We just need to replace Fu by (1i(n)),, £ by n as
well as the L! and L? by the ¢! and ¢ norms, respectively.

We now obtain the following version of Theorem
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CoroLLARY 4.7

Let r > 0 be arbitrary and s > 0 such that s + 201 > %. Let Assumption

(see Remark hold for the splitting scheme . If ug € H¥*207
and the solution u € C([0, T], H**?°") offulﬁ'ls |t (t)||s4267 < R for
all t € [0, T] and some R > 0, there exists an hg € (0, T] such that

1(S")N (1) = u(Nh)|ls < Ch"

forall h e (0,hy] and all N € N with Nh < T, where C only depends on R
and T.

This result for d <3, k=3,s=0and 1 <r < 2 can be found in [ESS16]

Finally, we take the equation

iup(x, 1) = (=Appu)(x, t) £ Ju(x, £)F L u(x, ),

(4.8)
u(x,0) =ux),
for k € N odd and (x, t) € MxR with u® € L?(M). Here, (M, g) is a smooth, d-
dimensional complete Riemannian manifold which is closed and A = —iAy,
is a multiple of the Laplace-Beltrami operator.
As fractional Sobolev spaces, we use the analogue of the Bessel potential
spaces for manifolds, that is

H®:={ueL*(M)|(1-Ay)ueL*(M))

with their natural norm. In [Str83 Thm 4.4], the same norm equivalence as
in the two previous examples is shown, therefore, using Y = H®, we again
obtain D(A”) = H¥*?". Since —A, is positive and self-adjoint on L?(M), —A
generates a Cy group on all H®, so Assumption [3.1]is fulfilled. We now
check the assumptions of Lemma

e For s> %, if f € H®, then f € L*°(M) and we have

/1o Samps If1ls-



This is shown in [Aub98, Lemma 2.22], mentioning that the result
we need is not exactly stated, but proven in 2.23. Hence, a trivial

estimate gives

1/ 8lle> < [If e llglle2 < 11 f1ls lIgllz2

for f e H and g € L.

For s > %, if f,g € H®, then fg € H° with |[fglls <m.s lIfls]Iglls- To see
this, we need to take a finite Atlas {(U;, ¢;)};=1,.., and a correspond-
ing partition of unity {a;};-1 . ,. We cite results from [vdB02[] below,
where charts are used to define the Sobolev spaces H*(M) via the
Bessel potential spaces H*(IR?). This definition coincides with the one
we use, since the Laplace-Beltrami operator can be defined via charts
and the Laplacian on IR?, which gives exactly the same correspon-
dence of D((~Ay;)??) to the the Bessel potential spaces H*(RY). We

now see that

I/l = H(iaif)(iaig)ﬂs < asPagliw,
i=1 i=1 1j=1

103 _ _
s ) l@if o @7 ajg o @7l
ij=1

n
= ) l@if o 97" )ejg o 97 Mirrscwey
i,j=1
n
Sas ) _laif o o7 gsrayllaig © 7 lgsqrey
i,j=1

n
= ) llaif o 9 lsstguumy llasg o @7 lascpuivny

i,j=1

104 & &

Sws ) Naifllmsw, lajgliaswy < ) llaifllellagll
i,j=1 1,j=1

10.5
<ms I 15 liglls,

where we extended «; f o (pi‘l and a;go (pi‘l by zero outside of ¢;(U;).

93



This gives the same conditions on smoothness as before. Theorem

translates here into the following corollary

COROLLARY 4.8
Let 0 >0, M be a d-dimensional, closed Riemannian manifold, r > 0 be
arbitrary and s > 0 such that s+2o0r > %. Let Assumption (see Remark

hold for the splitting scheme . If ug € H*2°" and the solution

u € C([0, T], H**2°7) of (4.8) fulfils ||u(t)lls; 20, < R for all t € [0, T] and
some R > 0, there exists an hy € (0, T] such that

1(SM)N (ug) — u(Nh)|l, < ChH"

forall h € (0, hy] and all N € N with Nh < T, where C only depends on R
and T.

4.2.2 Nonlinear harmonic oscillator on L?(IR%)

We set A = i(~A + |x|?) and get the equation

i (x, 1) = (=Au)(x, )+ [xPulx, t) £ [u(x, ) u(x, t),

(4.9)
u(x,0) =ul(x),

for k € N odd and (x, t) € RYxIR, where u® € L?(IR?). The fact that A is self-adjoint
follows from [Mik01, Theorem 2.6.8] or [DL90), p. 38-39] since it is symmetric,
linear, unbounded and has a compact resolvent, see [DL90, p. 64-67]. Therefore,
we once again work with fractional orders. As fractional Sobolev spaces, we

once again use the Bessel potential spaces, that is
H® :={u e L*(RY)| (1 + &) Fu € L*(RY))
with their natural norm. Furthermore, we define

M= {ue LA(RY) | A2u € LX(RY))
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for s > 0. For u € H®, we have

1l = (=2 + B3£I+ 1F122)7 ~as 1=A)7 Fllz2 + 1 Fllzz + [1£1lz2

s (4.10)
~d,s L =22 fllp2 + [lxP flle2 = Wf s + NxP fllez = 11f s

where we used the main result in [DGO08] for the equivalences. This renders
the H/ norms equivalent to something comparable to the Bessel potential space
norms with the inclusion H* < H* for all s > 0. We now check the assump-
tions from Lemma which we then may use for the spaces H; according
to the Remark given after it. This works since A has spectral multipliers (see
[DOS02][Theorem 7.10 and 7.11]) and therefore has bounded imaginary powers,
which implies that the fractional domains of A define a complex interpolation
scale (see [Tri95][1.15.3]).

* For s> %, if f € H°, then f € L*(IR?) and by same computation as for the
Laplacian on IR?, using we obtain

1fllees < IF fllgr < N+ P N2 1f s Sas 1F s

Hence, a trivial estimate gives

1/ gllLz < Nlfllee lIgllee < 115 1 Mgl
for f € H® and g € L°.

e For s> %, if f,g € H*, then fg € H* with |[fgllys <as If I3 lIglls. To see
this, we once again use what we already know from the results for H® and

[4.10/to see that

£ 8l Sas 1 lls + HxF fgll> Sas NFNslglize + 11f lze gl + I Iz gz

Sa,s I lls + WxP £llz2)11glls + 1f Nls lglls

< (IFlls + P £ll2)Clgls + HxPglliz) Sas 1l gllzes

Therefore, we choose Y = H® for some s > 0 such that for our desired order 7,
D(A") = H5*?" is smaller than H%. Theorem [3.4|translates here into
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CoRrROLLARY 4.9

Let r > 0 be arbitrary and s > 0 such that s + 2r > %. Let Assumption (see
Remark hold for the splitting scheme . If ug € H*?" and the solution
u € C([0,T], H**?") offulfils |t (t)|l3gs+2r < R for all t € [0, T] and some
R >0, there exists an hy € (0, T] such that

I(SM)N (119) = (N h)llps < Ch"

forall h € (0,hy] and all N € N with Nh < T, where C only depends on R and
T.

A similar result, albeit with different methods and only for k = 3, s > d even and
r=1aswell ass =0, r =2 and a loss of regularity of strictly more than d + 2,
can be found in [[Gaull, Theorem 3.1].

4.2.3 On modulation spaces

In this subsection, we once again work with the equation

i/ (x,t) = ((=A)u)(x, t)+ lu(x, )T u(x, t),

(4.11)
u(x,0) =ulx),

for 0 > 0 and k € N odd as well as (x,t) € R? x R. Instead of L?(R%), we are now
looking at modulation spaces, which are a useful tool in time frequency analysis,

theoretical harmonic analysis and the theory of evolution equations.

DEerINITION 4.10

Let 1 € C®(RY) with suppp C {|x| < Vd}, p(x) >c >0 for x € [-3,31% and

Y ezdW(x —n) =1 for all x € R%. A function u : R — C belongs to the
modulation space Mf,’q(IRd)for seRandpe[l,0], g€ [1,00), if

q

lallagg, = ( S UF W Full | < 00

nez4

with (ny:= (1 + [n2)? and p,, = P(- — n).
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Here are some useful properties of the M;,,q(le) spaces.

a) M;,q(IRd) are Banach spaces with respect to the norm ||-[|pss  (see [Chal8]
[Proposition 2.11]).

b) They form a complex interpolation scale (see [Chal8][Proposition 2.19]).
c) (i) Mpyq(RY) = My} 4, (R?) for p1 < py, 41 < g2, 51 > 5 (see [Fei03]
[Proposition 6.5],

(ii) M;}ql (RY) < M;fqz(IRd) for s;—s, > d(ql—z—ql—l) (see [Chal8]| [Proposition

2.31],
(iii) Mgo}l(IRd) < Cp(R?) (see [Chal8][Proposition 2.32],
(iv) Mglp,(IRd) < LP(R?) (see [Chal8][Proposition 2.34]).

d) MZ’Z(IRd) =~ H*(IRY) (see [Chal8][Proposition 2.33].

e) M;’p,(IRd) < L=(R%) for p > %, p = 2 (follows from [Fei03][Proposition 6.7]
and the Sobolev embedding Theorem).

f) The Bessel potential (I —A)™" defines an isomorphism
r. s+2r (md s d
J": My (RY) — M, (R7)

(see [Chal8l][Proposition 2.35]), which means that if we define the Lapla-
cian on Mf,’q(IRd), then D((-A)") = M;fq”(le) with the graph norm.

g) A big advantage of the modulation spaces is that the Schrédinger group is
defined on them, namely
e gz ey < CC1Y*12 77!
B(Mp,q(R?)) =
forallteR,s€Rand p,q €[1,0] (see [Chal8|][Theorem 3.4]). For g < oo,

this group is strongly continuous (see [Chal8][Proposition 3.5]). The
proofs allow to get the same result for the group generated by —i(-A)°.

h) The modulation spaces also enjoy nice multiplication properties: The space
M;,q(IRd) is an algebra for s > % (see [Fei03]|[Proposition 6.9 and Remark
6.4]), while M;'q(le) ﬂMgo,l(IRd) is an algebra for s > 0 and p,q € [1, o]

(see [Chal8||][Proposition 4.2]).
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Finally, by ¢)(i) and (ii), we have M;’q(le) < Mgoyl(IRd) for s > %, which
together with the continuous multiplication

- MJ (R x M, | (RT) > M (RY)
(see [CNO9]|[Proposition 3.5]) gives us the continuous multiplication
g0 (md d 0 (d
- MY, (RY) x M3 (RY) — M, (R?)

for s > %.

Now we are in a position to state our results. We fix 0 > 0, p € [1,00] and
g€[l,00). Byg), A=—i(—A)? generates a C; groupon Y = Mf;,q(IRd) for any s > 0,
hence Assumption is fulfilled. By f), the fractional domains are given by
D(A”) = M3t (IRY).

As for Assumption h) gives both estimates needed in Lemma [4.1/and by b),
they form a complex interpolation scale, so that said Lemma gives all needed
results. Hence, Theorem [3.4]takes the form

CoroLrLAry 4.11

For fixed 0 >0, p € [1,00] and q € [1,00), let r > 0 be arbitrary and s > 0 such
that s+20r > %. Let Assumption |3.5|(see Remark|3.3) hold for the splitting
scheme Afug e M;jf‘”(le) and the solution u € C([0, T],M;jf‘”(le)) of
fulfils ||u(t)||M;+qzm <R forallt €[0,T] and some R > 0, there exists an
hy € (0, T] such that

18" (1t0) — (N llyss, < CI"

forall h e (0,hy] and all N € N with Nh < T, where C only depends on R and
T.

For the second result, we notice that by g), A also generates a Cy group on
Y = M;’q(le) N Mgo’l (R?) for any s > 0, hence Assumption is fulfilled. By f),
the fractional domains are given by D(A”) = M;fjf‘”(IRd) NnM fff (RY) (see Lemma
4.16)).

By h), all fractional domains are Banach algebras, hence Lemma gives
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the differentiability and the estimates in Assumption follow by inclusion.
Theorem |3.4{now states the following (note that Mgo,l (R?) < L®(IR?) by ¢) (iii)).

CoRrOLLARY 4.12

For fixed 0 >0, p € [1,00] and q € [1,00), let s > 0 and r > 0 be arbitrary. Let
Assumption [3.5] (see Remark [3.3)) hold for the splitting scheme (4.1). If ug €
M;Ezgr(Rd)ﬂMfo"’f(Rd) and the solution u € C([0, T],M;;IZG’(]I?d)ﬂMfo‘f{(le))
of (4.11) fulfils ||M(t)||M;E20rmMOZO(TIV < R forall t € [0,T] and some R > 0, there
exists an hy € (0, T] such that

I(S™)N (14) = u(Nh)llagg o < CH

forall h e (0,hy] and all N € N with Nh < T, where C only depends on R and
T.

For s =0 and p = g = 2, we obtain a error estimate of order r > 0 in L?>(R%) by d)
even if 207 is not larger than %, as long as the initial value is not just in in H?7,
but also in the modulation space Mfoo:l’(le) — H207(RY).

4.2.4 Discrete Schrodinger equation on {7

We now mention discrete evolution equations

i(17(8) = (A1) (1) 2 [(21, (8))F (1)), (4.12)

where A is a bounded operator on Y = ¢P for 1 < p < co. An interesting case is

the discrete Laplace operator defined by
Auy) = (Up1 — 20y + 1y 1)

for (u,) € €P. All such operators generate Cj groups on Y.

By the generalized Holder inequality, the space Y and all spaces X; = Y are

Banach algebras with respect to pointwise multiplication. Indeed, for f,g €
4 . . .

(P, we get fge {2 C{P. Hence, Assumption is true with Lemma (no

interpolation is needed since we have the stronger algebra properties). Therefore,

Theorem [3.4] amounts to
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CoroLrLARY 4.13

Let r> 0 and 1 < p < oo be arbitrary. Let Assumption [3.5| (see Remark[3.3)) hold
for the splitting scheme . If ul € ¢P and the solution (u,) € C([0,T),€P) of
(4.12) fulfils ||(u,(t))llee < R for all t € [0, T] and some R > 0, there exists an
hy € (0, T] such that

I(S"N () = (u,(N))lle < CH

forall h € (0,hy] and all N € N with Nh < T, where C only depends on R and
T.

4.3 Parabolic equations

4.3.1 On L*(RRY), LP(T?) and LP(M) for manifolds (1 < p < o)

We now take a look at parabolic equations on Q € {R?, T% M} for a compact
d-dimensional Riemannian manifold M and d € IN. Note that T? is covered
by the those types of manifolds. To this end, let A be the negative Laplace
or Laplace-Beltrami operator on Q. For Q = RY, it is also possible to use a

uniformly elliptic second order differential operator

QU

d
A:i=— Z Biai]-(x)a]- + Zbi(X)ai +Ccu
ij=1 i=1
with real, continuous coefficients g; i b; and c € R, where
d
2

Y @08 > clel
ij=1

for some ¢ > 0 and all x, & € RY.

REMARK

Our approach covers more general situations which we only quote here to avoid

lengthy explanations.

* Elliptic systems on RY as in [KW04][Section 6]
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» Complete Riemannian manifolds with finite geometry and positive injec-
tivity radius and the Laplace Beltrami operator (see [Iri92][Chapter 7],
[CRTNO1]])

» Connected unimodular Liegroups endowed with a family of left-invariant

Hormander vector fields and the associated sublaplacian (see [CRTNOI|][Theorem

1 and Theorem 2]

* Doubling metric measure spaces (M, d, p) and the associated Markov gen-

erator —A endowed with a "carré de champs” (see [BF18)])

Note that if A has a sectoriality angle w(A) # 0, then A? is only defined for

o< ﬁ and defines an analytic semigroup for o < %(AW (see [KWO04/][Theorem

15.16]). The equations we treat have the form

w(x,t) = (=A%u)(x,t) + |u(x, ) u(x, 1),

(4.13)
u(x,0) =u’x),

for o € (0, %(AW] on (). We will study the convergence of the splitting method
for these equations in three different spaces: LP(Q)) with 1 < p < oo, L*(Q)) and
LP(Q) N L®(Q). The advantage of moving away from the L? scale is that the
function algebra properties of these spaces allow in various ways to reduce the

smoothness assumptions in our convergence estimates.

4.3.1.1 On LP (1 <p <o)

On LP(R?) for 1 < p < oo, —A is the generator of an analytic semigroup (see
[KWO04][8.1]). On LP(M, u), where p is the Riemannian measure, the same holds
for A being the Laplace-Beltrami operator (see [Dav89] or [Str83][Theorem 3.5
and Section 4]).

We again work with the Bessel potential spaces, defined by

H5(RY) = {f € LP(RY) | FH (1 + |EP)2 F f e LP(RY))

for Q = R and

Nlw

HS(M) := {u € LP(M) | (1 = Ap)u € LP(M))
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for () = M, both with their natural norm ||-[|; ,. It follows that for Y = H;(Q),
D(A") = H;*zr(Q) if we use the graph norm. Now let s > %. We get the Sobolev
embedding H;(Q2) € L*((Q2) and hence

1/ 8lle < [If e lIgllee < Nl f1ls,p lIg e

for f € Hy(Q), g € LP(Q)). We also have that H;(() is a function algebra as well,
that is

1/ 8lls,p < M1f lls,p l1g]ls,p

for f,g € Hy(Q). For Q) = RY, this is shown in [RS96]][2.4.4 and 4.6.4]. The same
holds for H;(M) which can be deduced from the above via charts as in c).
For direct quotes see [Tri92][Chapter 7] or [CRTNOT/][Section 4], since compact
manifolds have a positive injectivity radius and bounded geometry. Since the
spaces Hp((2) define a complex interpolation scale (see [Tri92][1.6.4 and 7.4.5],
we can use Lemma in order to get Assumption Hence Theorem
amounts for (4.13), we obtain

CoroLLARY 4.14

Let 0 € (0, #(Aﬁ]’ r > 0 be arbitrary and s > 0 such that s+2or > %. Let Assump-

tion (see Remark hold for the splitting scheme . Ifuye H;”‘”(Q)
and the solution u € C([0,T], H;JFZGV(Q)) offulﬁls lu(t)lls+20r,p < R for
all t € [0, T] and some R > 0, there exists an hg € (0, T] such that

IS™N (o) = u(N)llyp < CH

forall h e (0,hy] and all N € N with Nh < T, where C only depends on R and
T.

4.3.1.2 On L*®

If we choose Y = L®(IR?) as the norm for the error estimate, we encounter the
problem that the domain of A in L®(IR?) takes the form

D(A)=fue() WP | u, Au € L=(R?)},
p>1
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see [Lun95]|[Theorem 3.1.7, Theorem 3.1.9]. Then D(A) = UC(R?) and the part
of —A on UC(RR?) generates an analytic semigroup. However, the fractional
domains of A are complicated and most certainly not function algebras.

As a way out of this impass we propose to choose the slightly smaller Besov
space Y = 320,1(Q) C L®(Q) (see [TriZ8]|[Theorem 1, p.133] for Q = R and
[Tri85]][Theorem 5] for (2 = M) whose elements have the same regularity (in
terms of derivatives) as L*(Q2). For Q = M, By (M) is defined as the real
interpolation space (Pls,?p(M), F;}p(M))G,q for 1 <p,g<ocoand —oco<s5<s<sy <
oo with s = (1 —0)sg + Os; (see [Tri85]][Definition 3]).

Then —A? generates an analytic semigroup on Bgo’l (Q) in the sector Xz and X,, =
D(A%) = ngfl(Q), since (—A)?® and therefore A* maps le,oo(le) onto lefoi“(ﬂid)
(see [RS96][2.1.4] for Q = R? and [Tri85][Theorem 6] for QO = M).

Because for Q = RY, X,, is a function algebra for all a > 0 (see [RS96][4.6.4]), our
nonlinearity is infinitely often differentiable on those spaces (see Lemma
b)) and all estimates from Assumption (see Lemma b) and ¢)) follow by
inclusion, except for the local Lipschitz continuity in Y = X3 on bounded sets in
some X; and all estimates for b = r on the derivatives of g. For those, we use the

continuous multiplication
B2 [(RY) x B, | (R?) — BY, | (RY)

for € > 0 (see [RS96]][4.6.1, Theorem 2]) to obtain local Lipschitz continuity in
Xy on bounded sets in any X,. For b = r and a; < r for all i, we can just use the
inclusion of Xg in X;_nax(q;) followed by the algebra property of this space and
further inclusions in the spaces in question. If without loss of generality, a; = r
and hence the rest of the a; are zero, we use the above estimate for ¢ = r to keep
the first variable in X and then the algebra property on X,. We mention that the
above multiplication property is necessary, since Bgo,l is in fact not an function
algebra (see [ST95]][Remark 4.3.5].

For Q) = T, both the algebra property and the multiplication estimate still
hold. For () = M, we restrict ourselves to compact manifolds for which the
same is true, but we conjecture that this is the case for all compact Riemannian
manifolds. Hence, we obtain from Theorem that for (4.13))
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CoroLLARY 4.15

Let o € (0,#(&], r > 0 be arbitrary and let Assumption (see Remark

hold for the splitting scheme . If uy € Bgﬂ(Q) and the solution
u € C([0,T], B>°7(Q)) of (4.13) fulfils ||u(t)||Bzg{ <R forallt €[0,T] and some

00,1

R >0, there exists an hy € (0, T] such that

1(S")N (49) = u(Nh)l| L= < CH

forall h e (0,hy] and all N € N with Nh < T, where C only depends on R and
T.

Note that C*(R?) € B, | (R?) for all a > 0.

43.13 OnLPNL*® (1 <p <)

We are interested in LP(Q)) N L*°(Q)) estimates, because these spaces are function
algebras for all 1 < p < oo and Bgo,l(Q) C L*°(Q). This provides an opportunity
to find a way around Sobolev embeddings. Given the difficulties surrounding
the fractional domains of A in L™ mentioned in b) we again replace L*(Q)) by
Bgo'l(Q), that is, we fix p € (1, 00) and put

X, := Hp*(Q) N B ,(Q)
for s > 0. Note that

(i) X, is a function algebra for all s > 0 and the multiplication from X, x X; —

X is continuous for all s > 0.

(ii) —A with D(A) = X; generates an analytic semigroup on all X; with D(A%) =
X, for a > 0.

(iii) g is infinitely often Freéchet differentiable on X; for all s > 0, where g(u) =
|ulF1u for odd k > 3. Additionally, all estimates from Assumption are

true as well.

Proof. (i) X, = (Hgs(Q) NL®(Q))N Bij}l(Q) is a function algebra for s > 0 since
both HgS(Q) N L*(Q)) and ng}l(Q) are function algebras (see [RS96[][4.6.4]
for Q = R? and [Tri92][Chapter 7] or [CRTNOI] for Q = M). Since the
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additional multiplication estimate also holds true on both spaces of the

intersection, it also holds for X;.

(ii) Since we know from a) and b) that —A generates analytic semigroups
on LP(Q)) and on Bgo,l(Q) with fractional domains HgS(Q) and ngll(Q),
respectively, the claim follows from the next Lemma.

(iii) The differentiability follows from (i) with the same proof as in Lemma
b). The estimates from Assumption [3.2|follow from (i) as in b).
|

LemmMma 4.16

Let Xy, X, be Banach spaces continuously embedded into L' (Q) + L®(Q). Let
T;(t) be a strongly continuous semigroup on X; fori = 1,2 so that on X = X;NXj,
llxllx = lixllx, + lIxllx,, T1(t) = Ta(t) for t > 0. Then

a) T(t)=T(t) = T,(t) is a strongly continuous semigroup on X.

b) If —A; and —A are the generators of T;(t) and T(t) on X; and X, respectively,
then

D(A)=D(A;)ND(A,) and Aix=Ax=Ax for xe D(A).

c) D(A%) = D(AY) N D(A9).
Proof.  a) This follows from the assumptions and the definition of ||||y.

b) D(A)= D(A;)ND(A,) again follows directly from the definition of a gener-

ator and of ||-||x.
c) By [KWO04]|[Prop. 15.23], for u > 0 large enough, there are isomorphic
maps

(+A)®: X 5>D(A%),  (u+A;)*:X; >D(AY) (i=1,2)

with (u+A)™%y = (u+A;) %y fory € X and i = 1, 2. by the functional calculus
and furthermore (p+A)*x = (u+A;)*x for x e D(A%*) and i = 1, 2. Hence, if
x € D(A%), then thereisay € X with x = (y+A) *y and x = (u+ A;)"%y; for
some y; € X;, so that x € D(A{) N D(A9). The reverse argument also holds.
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We are now in the position to deduce from Theorem [3.4] that for (4.13), we have

CoRroOLLARY 4.17

Let 0 € (0, %(AW] and s > 0, r > 0 be arbitrary. Let Assumption (see Remark
hold for the splitting scheme . Ifug e H”zm(Q) N B 17 (Q) and the
solution u € C([0, T],H;”“ﬂBgﬁm) of (4.13) fulfils ||u(t) ||Hs+2Ur(Q)mB.Z:’21Gr(Q) <

R for all t € [0, T] and some R > 0, there exists an hy € (0, T] such that

I1(S")N (1g) = u(NB)llpzzs,, < Ch”

forall h € (0,hy] and all N € N with Nh < T, where C only depends on R and
T.

In particular, for s = 0, we obtain error estimates in the norm of LP(Q) N L*>(Q))
under assumptions on the regularity of 1, which are optimal also for small r

and therefore initial values with little regularity.

4.3.2 On uniform L?P spaces

We once again treat the equations

w(x,t) = (—Au)(x, 1)+ |u(x, ) u(x, 1),

(4.14)
u(x,0) =u®x),

where A is the Laplacian or more generally speaking a second order differential

operator

d d
A=) iladj+ai(x)+ ) bi(x)d;+c(x),
i,j=1

i=1

with real coefficients in L (IR%) or

A= Za”a 3 +Zb,-(x)8i+c(x)
=1
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with real, Holder continuous coefficients. In both cases, we assume the ellipticity

condition
d

Y a)EE; > clel

i,j=1
for some ¢ > 0 and all x,& € R?. As an alternative to the spaces L?(IR?), we now

use the uniform LP spaces and their Bessel potential spaces UHI’,‘(IRd) defined by

UHE(R) := {u € HII;’IOC(]Rd) | sulR}?i el g1}
xXe

for ke Ny and 1 < p < 0. For s > 0, that is s = Ok + (1 —0)(k + 1) for some k € IN,
we define UH;(]Rd) as the complex interpolation space

UH;(RY) := (UH,(R?), UHS" (RY)).

Notice that UL®(R?) = L®(IR?). The advantage of these spaces is that constant
and periodic functions belong to them, but clearly not to H;,(IRd). We now collect

the necessary properties of the uniform L? scale.

« —AY generates an analytic semigroup ULP(IR?) for and for Y = UH;(IRd),
we have D(A") = UH;”r(IRd) (see [ACDRBO04][Theorem 2.1, Theorem 2.2,
Theorem 2.3])

* Since H,(B(x,1)) is defined by means of an extension to H;(IRd) (see
[Tri92]][5.1], all multiplication estimates from Subsection can be
transferred over to the UH;(IR”Z) spaces.

Hence, we can copy the results from Subsection to obtain the following

results.

CoroOLLARY 4.18

Let 0 >0, r >0 be arbitrary and s > 0 such that s+ 20r > %. Let Assumption

(see Remark hold for the splitting scheme E‘) If ug € UH;””(IRd)
and the solution u € C([0,T], UH;*z‘”(IRd)) of (4.14) fulfils |lu(t)llyp; <R for
all t € [0, T] and some R > 0, there exists an hg € (0, T| such that

(8" (10) = u(N I)llyrgg < CHY
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forall h € (0,hy] and all N € N with Nh < T, where C only depends on R and
T.

CoOROLLARY 4.19

Let o > 0ands > 0, r > 0 be arbitrary. Let Assumption|3.5|(see Remark|3.3) hold
for the splitting scheme (.) Ifug € UH“Z‘”(]Rd) B”Z(”(IRd) and the solution
u € C([0, T], UH3*2"(RY) N B3 (RY)) of (4.14) fulfils ||u(t) (#)lgg020rpes2or < R
forall t € [0, T] and some R > 0, there exists an hy € (0, T] such that

IS"N (ug) = u(NI)luznme, , < CH

forall h € (0,hy] and all N € N with Nh < T, where C only depends on R and
T.

4.3.3 On modulation spaces

In analogy to Subsection we take the equation

w(xt) = (=(=A)u)(x,t) [u(x, ) ulx,t), (4.15)

for 0 > 0 and k € N odd on the modulation spaces M;,’q(le). All needed prop-
erties have been mentionned before except for the fact that A (and similarly
—(—A)?) generates a (contractive) Cy semigroup on all M;,q(]Rd)' This is shown in
[IwalOl][Proposition 2.10] and we get the similar (up to the inclusion of g = o)
results on M, , and M; , N L* by Theorem

CoroOLLARY 4.20

For fixed 0 >0, p,q € [1,00], let r > 0 be arbitrary and s > 0 such that s+ 2r > q—
Let Assumption [3.5] (see Remark [3.3) hold for the splitting scheme CIf
ug € M;,jf‘”(IRd) and the solution u € C([0,T], M”z‘” R%)) of(-) fulfils
||u(t)||MFsJ:i—qZ(rr <R forallte[0,T] and some R >0, there exists an hg € (0, T] such
that

I(S")N (140) — (N h)llpg5, < CH'
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forall h e (0,hy] and all N € N with Nh < T, where C only depends on R and
T.

CoRrOLLARY 4.21

For fixed 0 >0, p,q € [1,00], let s > 0 and r > 0 be arbztrary Let Assumption

. (see Remarkﬂ) hold for the splitting scheme (4.1). If ug € M5+2(”(1Rd)
MZ%{(RY) and the solution u € C([0,T], M”zm(le) N M2 (RY)) of (.

fulfils ||u(t) ||Ms+2(7rmM2ar R for all t € [0,T] and some R > 0, there exists an
hye(0,T] such that

I(S")N (140) = (N B)lngs, e < CH
ora € (0, and all N €e N with Nh < T, where C on epends on R an
Ilh ho d all ith Nh h ly depend d

T.

4.3.4 Discrete Laplacian on ¢?
Complete analogously to Subsection we have the equation

() = (A1) (x, 1) + |, (D) (1, (1)),

(4.16)
) = (u),

<
3
—_~

(=]

where A is a bounded operator on Y =¢P for 1 < p < 0. An interesting case is

the discrete Laplace operator defined by
A(uy) = (g1 — 20y + 1y 1)

for (u,) € €P. All such operators generate C groups on Y.

By the generalized Holder inequality, the space Y and all spaces X; = Y are

Banach algebras with respect to pointwise multiplication. Indeed, for f,g €
4 . . .

(P, we get fg e {2 C{P. Hence, Assumption is true with Lemma (no

interpolation is needed since we have the stronger algebra properties). Therefore,

Theorem amounts to
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CoOROLLARY 4.22

Let r> 0 and 1 < p < oo be arbitrary. Let Assumption [3.5| (see Remark[3.3)) hold
for the splitting scheme . If ul € ¢P and the solution (u,) € C([0,T),€P) of
(4.16] fulfils ||(u,(t))llee < R for all t € [0, T] and some R > 0, there exists an
hy € (0, T] such that

I(S"N () = (uy(N 1))l < CH

forall h € (0,hy] and all N € N with Nh < T, where C only depends on R and
T.

4.4 Equations with random initial values

In our analysis, Sobolev embeddings and the Banach algebra properties of a
Sobolev space play a big role. The order of for example the Sobolev embed-
dings are optimal, but it is reasonable to expect that the counterexamples of
functions that show that inequalities are sharp are ‘rare’ among a large class of
‘generic’ functions of the same smoothness that enjoy better Sobolev embeddings.
One way to quantify these better behaved functions is through randomization.
Roughly speaking, given a decomposition u =), u, of a function u € H®, for
example with respect to a basis of H*, we introduce an appropriate sequence of
independent, identically distributed random variables g, on a probability space
(Q),P) and show that

u® = Zgn(w)un Yw e Q)
n

belongs almost surely to H;, for all p > 2. In this way, we obtain functions much
better behaved than an arbitrary element of H° and we can obtain stronger
results for such initial values. Also note that in numerical experiments, one

often uses random initial data of some kind. We are working with the equation

u'(x,t) =(-Au)(x,t)+ |u(x,t)|k‘1u(x,t), (4.17)

u(x,0) =ux),

on either T? or R%.
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4.4.1 On LP(T9)

Let {e,} be the trigonometric basis of L*(T%) and for u € L*(T%), denote the

Fourier coefficients of u by 1i(n). Hence,

u= Z (n)e,

nez4

Let now (g,) be a sequence of complex, independent random variables which
satisfy
36>0: E(e*n) < e’ Vo eRneZ.

To avoid trivialities, we also require (g,,) to not accumulate in 0, that is
dc,6>0:1P(|g,l>¢c) >0 Vnez.

Notice that this holds for Bernoulli random variables or more precisely for all
families of random variables with mean zero and a support uniformly bounded

in n as well as for standard Gaussian random variables. Now define

u® = Z g (w)ii(n)e, Yw e Q.

We obtain the following result.

Lemma 4.23

Let u € H¥(T?) for some s > 0.

a) For 1 < p < oo, we have u" € H;(Td) almost surely. Moreover, the

following large deviation estimate holds:

~aAY/|u

da,a>0: IP(IIuwllH;(qrd) >A)<e H(TY) YA > q.

b) If u g H(T?) for some §> s, then u¥ ¢ H*(T*) almost surely.

The first part shows that randomization of the Fourier expansion of a u € H*(T%)
improves the integrability of almost all u“ drastically, while the second part

shows that it does not improve on the regularity of u® over u. It also shows that
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{u® | w € Q) is not a 'thin’ subset of H® as for example a dense subset of C*(T%),

but rather a relatively large set of ‘true’ H® functions.

of Lemma[4.23]  a) For u € L?(T?) this result is shown in [Burll][Theorem
2.2] (for d = 1) or [BTO8][Lemma 3.1] (for general manifolds). For u €
H(T%), put v := (I - A)? € L(T%) and apply the result to v. Then v® €
LP(T%) almost surely and hence % := (I — A)_%v“’ € H;(Td) almost surely.
Finally we see that

ﬁw:(I—A)_%vw:Zgn( 1+|n| % Zgn )i(n

nez neZ

b) This is shown in [Burl1l][Theorem 2.5] (for d = 1) or [BT08][Lemma B.1]
(for general manifolds).

From Subsection we now obtain the following result

CoOROLLARY 4.24

Let s > 0 and ug € H¥(T%) and 0 < r < 5. Let Assumption n (see Remark
[3.3) hold for the splitting scheme (4.1)). Then for almost w € Q) and the initial
data uy, there exist T(w), ho(w) > 0 and a unique mild solution of in
C([0, T(w)], HZ"(T4) N BZ | (T9)) for p > & and

1(S™N (1g) = u(Nh)l| L < Cew)h"

forall h € (0,hg(w)] and all N € N with Nh < T(w).

Proof. Sete:=5-r>0andletp > £. By Lemmal}4.23, ug € H;(Td) almost surely.
We have

H3(T%) < HZ*(T) < B (TY) < B2 (T7).

The first inclusion is the usual Sobolev embedding, the second is proven in
[BL76][Theorem 6.2.4] and third is shown in [RS96][2.2.1] for R? which transfers
naturally to T. Hence,

f € H7(T%) A B, (1)
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almost surely. Since this space is an algebra, the existence of a local solution
follows as usual by [Paz92}, Theorem 6.1.4]. The norm of 1§ and hence the upper

bound on the norm of the solution depends on w and we obtain from Corollary

that
I(S")N (14) = (N B[ < IN(S™)N (o) - u(NB)llppngo | < Clw)h’

for all h € (0,hy(w)] and all N € N with Nh < T(w). [

REMARK

Looking at Lfmma we see that ||u‘“||H; < Cllullys on a set of measure at
least 1 —e~%C", This norm determines T (w) and hy(w) as well as an upper bound
on the norm of the solution in Hﬁr(l’d) N ng’l(rﬂ"d). The size of € determines p

and hence also influences the constants.

4.4.2 On LP(RY)

For Lp(le), a different randomization, the so called Wiener randomization, is
needed. To this end, let ) € S(RY) be a "'window function’, that is supp ) C
[-1,1]4, ¥ ,czd (€ —n) = 1 for all & € R, Since F~'¢ € S(IRY) the operators
(D —n) defined by

D= = [ e pie - g

are bounded on LP(IR?) and for u € LP(R?),

Z Y(D -n)u =u.
nez4
The random variables g, are as in the preceding subsection and we define
U = Z G(@PpD-nmu  YweQ.

nez4

Analogously to before, we obtain the following result.
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Lemma 4.25
Let u € H¥(RY) for some s > 0.

a) For 1 < p < co, we have u" € HS(IRd) almost surely. Moreover, the

following large deviation estimate holds:

~aA%/|ju|
e

da,a>0: H)(||Uw||H;(1r)>/\)< HS®RY) YA > q,

b) If u g H (R?) for some 5 > s, then u™ ¢ H*(R?) almost surely.

Again, the randomization improves the integrability but not the smoothness of

the given function u.

of Lemma([4.25  a) For u € L?(RY) this result is shown in [BOP14][Lemma
2.3]. For u € H5(R?), put v := (I —A)% € L*(R%) and apply the result to
v. Then v® € LP(R%) almost surely and hence #¥ := (I — A)"3p® € H;(IRd)

almost surely. Finally we see that

TR Zgn )1 + [n]?) %ﬁ(n)en = Zgn(cu)ﬁ(n)en =u®.

nez nez

b) This is proven in the same way as on T¢, see [Burll][Theorem 2.5] or
[BTO8][Lemma B.1].

From Subsection we now obtain the following result

CoOROLLARY 4.26

Let s > 0 and ug € H(R?) and 0 < r < 5. Let Assumption |3.5| (see Remark
2 p
3.3|) hold for the splitting scheme (4.1). Then for almost w € Q) and the initial
P g
data uf, there exist T(w), ho(w) > 0 and a unique mild solution of |4.17|in
0 q
C([0, T(w)], HZ’ le)ﬂB2r (R%)) for p > 2 == 2r and

1(S")N (9) = u(Nh)|l e < C(w)h”

forall h € (0,hg(w)] and all N €e N with Nh < T(w).
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Proof. Sete:=5-r>0andletp> %. By Lemma|(4.25} u;’ € H;(le) almost surely.
We have

H3(RY) — HZ*(R?) < BZE(RY) < BY | (RY).

The first inclusion is the usual Sobolev embedding, the second is proven in
[BL76l[Theorem 6.2.4] and third is shown in [RS96][2.2.1]. Hence,

uy € Hy'(R) N BZ | (RY)

almost surely. Since this space is an algebra, the existence of a local solution
follows as usual by [Paz92), Theorem 6.1.4]. The norm of 1§ and hence the upper

bound on the norm of the solution depends on w and we obtain from Corollary

that
I(S™)N () = (N )l < 1(S™)N (u0) - u(NWlippape | < Clw)h’

for all h € (0,hy(w)] and all N € N with Nh < T(w). [

4.4.3 On uniform L?P spaces

To introduce randomization on locally uniform LP spaces, choose @ € C*(IR%)
with supp ¢ C (-7, 1), Yjezi@(x—j)=1forall x e R. For UL?(IRY), defining

uj(x) := @(x — j)u(x) and using the trigonometric functions e,(x) = e?™i ¥ we

= Z Z ij(n)e,(x) Vx e R%.

j€z4 nezd

hence have

Choosing a sequence of random variables g; ,, as before, we define

Z Z n)2~ |]|g]n (w)e,,(x) VxeRY weQ,

jez4 nezd

where |j| = Zle |j;|. By applying the reasoning for LP(T“) to each summand for
afixed je 7% we obtain

Lemma 4.27

Let u € UH(R?) for some s > 0.

a) For 1 <p < oo, we have u” € UH;(]Rd) almost surely.
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b) If uj € H(R?) for some §> s, then u¥ € UH*(R?) almost surely.

Proof. a) Note that a ball B(x,1) can be covered by finitely many intervals
j+ (-1, m)% for j € Z? and vice versa. Also, every ball only intersects
with finitely many such intervals and vice versa. Hence, the norm on
UH;(IRd) is equivalent to the norm taking the supremum over all intervals
j+ (=1, m)%. We obtain

Ellu” e < Esup 27 Ml me < Y 27l llgs oy
jez4

jezd
<) 2V lgmey < ) 27l lasrey
jezd jezd
< sup||u ”Hs Rd Z 2- |]| < ||M ”UHS Rd
jezd jezd

where we used the Lemma a) to obtain the estimate on IE ||u;~”||H;(]Rd).

b) Let uj & H¥(RY) for some j€ Z%. Then, we can use the result on the torus to
see that u]‘.‘) ¢ H*(IRY) almost surely. Hence u¥ & UH?*(IRY) almost surely. If

it was, we could cover the support of u]?’ by finitely many balls and obtain
that u]f" € H¥(RY).

From Subsection we now obtain the following result

COROLLARY 4.28

Let s> 0 and ug € UHY(R?) and 0 < r < 5. Let Assumption (see Remark

hold for the splitting scheme (4.1). Then for almost w € Q) and the initial

data ug, there exist T(w),ho(w) > 0 and a unique mild solution of [4.17] in
C([0, T(w)], UHzr IRd)ﬂBzr (R)) for p > 2 = 2r and

1(S")N (9) = u(Nh)|l e < C(w)h”

forall h € (0,hg(w)] and all N €e N with Nh < T(w).
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Proof. Set e := 5 —r>0andlet p > %. By Lemma |4.27}, ug’ € UH;(IRd) almost
surely. We have

UH;(RY) — UHZ*(RY) = HY*(R?) — BZ(RY) < B2 | (RY).
The inclusions follow as in the case H;(Td). Hence,
ug € UH)(R) N B2, (R?)

almost surely. Since this space is an algebra, the existence of a local solution
follows as usual by [Paz92) Theorem 6.1.4]. The norm of u; and hence the upper

bound on the norm of the solution depends on w and we obtain from Corollary

that
1" (10) = (N Bl < 1™ (o) = (N Bl oo | < Cle)h”

for all h € (0,hy(w)] and all N € N with Nk < T(w). [
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5 Lie Splitting for the stochastic

Schrédinger equation

5.1 The equation

In this part, we are working with the formal stochastic evolution equation

idu =-Audt+g(u)dt+B(u)o dW,
M(O) = Uyp.

(5.1)

on a Hilbert space Y < L?(U, u) for some measure space (U, ). We start off by
stating the assumptions on the equation, followed by the Ito form of the above

Stratonovic equation as defined in the literature.

AssuMPTION 5.1

» Let A: D(A) C Y — Y be linear operator such that T(t):=e*A:Y - Y
defines a Cy group for t € R.

e Let g:Y — Y be given by g(u) = +|u*"'u for some odd k € N.

* Let (Bx) be an independent sequence of Brownian motions associated
with the filtration {F; | t > 0} of a probability space (QQ, F,P), {ex} be an
orthonormal basis of a separable Hilbert space Y and define the white noise
W by

W(twx)= ) Bilt,w)ec(x)

keZ
fort>0, weQand xe U.

* For the convergence order 6 € (0,1], let Y and D(Ae) (with the graph
norm) be an algebra with respect to the pointwise multiplication in
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L*(U, p). Also, let
luwlle < lluello [[wllo + Il lwllo
for u,w € D(A?).
« Let B: Y — L5(Y,Y) be defined by
B(u)v =u-dv

where ® € L,(Y,D(A%)) C L,(Y,Y). By L,(Y,Y), we denote the space of
Hilbert-Schmidt operators with their norm

2 _ 2
I, 7.y = )_I1Pell-
kez

Equation (5.1) is the Stratonovic version, which we will only use in its Ito form

idu =Au dt+(g(u)+%Fq>u)dt+B(u)dW, (5.2)
u(0) = u, |

with F = Y ;7 (Per)?. With our assumptions, this makes sense of the equation
in the interpretation by Da Prato and Zabczyk (see [DPZ14][Chapter 6]).

Because of problems arising when trying to prove convergence results for equa-
tion , we need a version of it in which we cut off the nonlinearity according
to the size of the normin Y: Let ©® € C®(R) withO(x) =1 (x €[0,1]) and ©(x) = 0
(x > 4) as well as Op(w) := O [

R2
obtain the equation

) for R>0and w € Y. With gz := Org, we

idug = Augdt+(gr(ug) + Fpug) dt + B(ug) dW, 5.3

ur(0) = uy.

Since this makes the nonlinearity Lipschitz continuous and both gz and B fulfil
the linear growth condition, [DPZ14][Theorem 7.4] gives a unique mild solution
of among the processes which are almost surely in L?([0, T], Y) for arbitrary
T >0 as long as u is an Fy-measurable Y-valued random variable.
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REMARK

The operator A could be one of the following.

e The Laplacian —A on L*(R?), L*(T%) or L>(M) for a d-dimensional Rie-

mannian manifold M which is complete, smooth and closed
* The fractional Laplacian (-A)° on the above spaces for ¢ > 0
* The harmonic oscillator on L*(IR%)

These operators all generate Cy groups. Their fractional domains are the usual
Bessel potential spaces H® (or comparable spaces H® in the case of the harmonic
oscillator), see Section for details. There, it was also shown that these spaces
are algebras for s > %. Observing the estimates that gave us the algebra property

more precisely even gives us the stronger estimate

”fg”s’ < ||f||s’||g||s + ”f”s”g”s’

holds for s’ > s > % and f,g in H® or H*". Hence, by choosing Y = H® or Y = H*
for s > %, we know the multiplication estimates from Assumption to be true.

5.2 The splitting method

In order to define the Lie splitting, we first need to split off the operator A from
the rest of equation (5.1).

—Av dt, (5.4a)
idv = i
{ (g(v)+EFq>v) dt+ B(v) dW, (5.4b)

both having initial value v(ty) = v for a t; € IR. Equation (5.4a)) has the solution
T(t)v, for all vy € Y and t € R. Equation (5.4b) has the solution

V"ot = yoexp(=i[(t - to) [vol ™ + W(t) — W(tp))).

This follows by Ito’s formula (see [DPZ14][Theorem 4.17]) as seen in [Liul3a]][Theorem

2.1].
The idea behind the splitting is the same as for deterministic equations, namely
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alternately following the linear solution of (5.4a)) and then the solution of (5.4b).
For fixed h > 0, we therefore define v° = u, and

v = T(h)exp(=i[hlv" ' [F! + DW(nh) - dW((n— D)h)])»"'  VYneN. (5.5)
We also split up equation ([5.3) to obtain

i dUR = gR(vR) dt + B('I)R) odW,

vr(0) =wp.
with solution
V""" = vg exp(—i[(t — to)Or(vo) [Tt + DW (£) —DW(t)]).
The adapted Lie splitting now reads vy = 1 and
vi = T(h)exp(=i[hOg(vE ) i L+ DW (nh) —OW ((n - D)R))wit (5.7)

for all n € IN.

5.3 The result

We now go on stating the result for the cut off equation (5.3).

ProrosiTION 5.2

Let Assumption [5.1|hold and let R, T > 0. For Fy-measurable initial values u
with IElluollleJ < Mg < oo for p € {2,4}, there exists a constant Cg depending on
R, T,Mg and |||z, (y,p(a0)) S0 that

E max |[vg(nh) - villo < CrhC.
osn<T

From this, we will be able to derive the result for the original equation (5.1).
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THEOREM 5.3

Let Assumption hold. For Fy-measurable initial values uy with 1E||uo||§ <
Mg < o0, L, T > 0 and the stopping time t; = inf{t < T, ||[v(¢)||o = L}, we have

lim P( max |[v(nh)—v"||o = Kh?) =0

K—co O<n<7L

5.4 Auxiliary results

Before we start with the proof, we need some auxiliary results. The first rather

trivial one concerns the operator B.

LemmaAa 5.4

If Assumption[5.1] holds, we have that

||T(t)B(”)||[;2(17,y) < ||CD||£2(?,D(A6))”””0
||T(t)B(u)||£2(17’D(A9)) < ||®||[2(7,D(A6))||u”6

I(T(t) - T(S))B(”)HEZ(Y,Y) < |t_5|6 ”CDHLZ(?,D(AG)) llullo
for t,s € R and u in the respective space.

Proof. Using Assumption[5.1]and the fact that T(t) operates on D(A*), we obtain

ITOB 7 ooy = 2_NTOBelZ =) IT(t)(u - Dep)2

jeIN jeN

2 2 2
<) llu-Del2 <) flul? lDesll

jeIN jeN

= Null2 ) I0ejly = P12 ¢ o, Il

jeIN

for s € {0, 0}, which gives the first two inequalities. For the third one, we see that

T ()= TEB 7y, = )T ()= T(s)(u- eyl
jeN
<) lt=sPlu-Dejll;
jeIN

= [t =sP° Bl ., 7 piasy)
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Next, we check some estimates for ¢ and its derivatives.

LeMmmA 5.5

Let g(u) = |u*"'u for some odd k € N and 6 € (0,1]. Then g is infinitely often
Fréchet differentiable on both Y and D) and for all u,v and w in the respective
spaces and ||u|lo < M for M > 0, we have

lIg(u)lls < CM)|lulls
lg’(w)[wlllo < C(M)llvllo (5.8)
187 (w)[v, wlllo < C(M)][vllollwllo

for s €{0,0}. Additionally, if u € L*(Q), D(A?)) is Fi, measurable, |[u(w)llo <M
forall w e Qand 0 <ty <t; < T, we have

f
U u) dWis W M)TIPll, 7 paoyEllull-  (5.9)

Proof. We recall from Lemma [4.1]that g is infinitely often Fréchet differentiable
on any algebra with a norm that does not change upon conjugation, which is
given here for Y. We have also already proven the estimates on g, g’ and g” in

Y. For the other two estimates, we recall from Assumption that

1/ 8llo < [Ifllollgllo + [1f1loligllo

holds. An easy induction yields

k
g
i=1

., Znu ”eﬁ”“ l (5.10)

li]

for u; € D(A%) and k € N. Using this, we see that

k-1 k-1 k-1
" ullg < kllully™ llullo < kM™"[[ullo.
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With the formula for g’ from Lemma [4.1]as well as (5.10), we obtain, using the
Ito isometry, that

g'(u)Utl s awi |

t 5 o (B 2
uZHZJ Bu) dw(s)+ HL, St j B(u) dW(s)H
2 t 2 0

151 2 2(k-1 2(k-1
e B(u)dW<s>Ho“ullo< 't + g |
to

T e,
0

IE

2
) dW(s)“e

< [ BB Tl ) AW
to

1
+£0 BBl w02, g ey AW
< TP, 7 pro) Elluellf ™ 1ull3

CM)T DI, 7 o\ Ellull3
2( )

We go on by deducing the differentiability of and estimates for gz from the

respective properties for g.

LEmmaA 5.6
Let© €(0,1]and Assumptionhold. If® € CA(R), Then gg : D(A?) — D(A?)
defined by gr(u) := O( e ||0)g(u) is two times Fréchet differentiable with

[i115
RZ

[u ||0

@( R2

)Re(u,v)og(u) +O(—5-)g (u)[v]

and

]

” ”O)R <u v)ORe<U w>0g( ) (F

g{{(u)[v, ]——®”(
|| IIO

8" (u)[v, w]

2o (T2 ) [Re{w,whog(u u) +Re(u,v)o g"(u)[w] + Re (u,w) g'(u)[v]]

RZ
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Additionally, we obtain the estimates

Igr()lls < C(R) lulls
g () llo (R)IIvllo
llgg (1)[v, wlllo (R)[vllo llwllo (5.11)
(R)
(R)

NN

N

llgr(11) — gr(u2)llo R) [ty —usllo

Igr (11)[v] = gr(u2)[]llo

C
C
C
C

N

R)l[llolluy = u>llo

for s €{0,0} and all u,uy,u,,v and w in the respective spaces. Additionally, if
uel?(Q,D(A?))is Fy, measurable and 0 <ty <t; < T,

2
N He SR IOl 750, 1406 (5.12)

gﬁuﬂﬁlewﬂww

Proof. Letu,he D(AG) with h = 0. We see that

llg llgr(ae + ) — gr (1) — gh()[hlo < nmbw@ﬂ'%

g (e +h) = g(u) = g"(u)[hlllo

e + G [lullg [lullg
+ 1hllg" 1©( ) - O(10) - 2 ©(*agl) Re (u, ) g (e + h)llo
s R2 R2’ R2 " R? o ,
<[Inllg* <C(h small)
42 llulld h—0
+ ”hllglﬁl@( — 3o IRe (u, ol llg(u + h) = g(u)llg — O,

<llullo likllo =00

which proves the existence and formula of the first derivative. Next, let u,v,h €
D(A?) with h = 0. We compute

Il g+ )] - gk [v] i Al

ﬂ%?MRaummmgu+m—gurgwmwme

o+ 11
R?

< il =10

+ IIhllélél(@ ( )l Re(h,v)ol llg(u+h) —g(u)llo

<llklle lIvlle h—0

0
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12 N hl} llull3
+||h||91ﬁ|®( Rz %) -0'( O)I IRe (h, v)olllg(w)llo
——
o <lkllglivlle
—>0
12 llu+hll3 lJull3 llull3
+ [Ihlly" = 1©'( ) -0 )— —@"( )Re(u, h)l
_ 9 R? R2 R2’ R27 R
<[Inllg*
IReu, v)ol llg(u + h)llg
————
<C(h small)
lJull3 7 "
+ [Ihlly" 1©( O)IIIg (u+h)[v]-g'(u)[v]-g"(u)v, hlllo
_ ||M+h||0 llull3 llull3
+ [kl 1©(———2) - O ) - —0/( )Re(u, h)ol llg’(u + h)[v]llo
" R2 R2 R2 R? <o 7
< ||h||61 <C(h small)
||t ||o h—0
+ |Inllg" Rz| ( )| IRe (u, i)l llg’(u + h)[v] - g(u)[v]llg — O,
<llullg l1Rlle h—=0 0

which gives us the existence and formula for the second derivative. All conver-
gences which were not explicitly stated follow from the differentiability of ¢ and
O including the chain rule. Coming to the estimates on g, ¢’ and g”, the first
three follow more or less directly from their counterparts in (5.8)), estimating
every Y norm by 2R if in the same term includes a factor of ®¥) with the same

norm as part of its variable. We start with gz and

[ IIO [u ||0

lx()ll < 10( g lig(u)lp < [O(TagIC(2R) ully < C(R) e
go on with g with
, 2 o I,
Ikl < 316 (Feg )l Re (e, )olllg(ul + 1O g g (w) w1l
3|@<”””5>||| ol it s
210" (gl CC2R) lly + 1©( g IC(2R) el
< C(R) vl
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followed by g with

4 o ull
710" (7

+ o1l I8 1070w wll+ 1071 W15 ) e o, wholligal

+|Re<u v)olllg (w)[wlllo + [Re(u, W>o|||g( )[v]llo]

[lullg Jullg
R20)|Ilu||8IIVIIo|IWI|oC(2R)|Iu||o+I (% °

llu ||o

lIgg () [v, w]llo < )l [Re (u, v)ol[Re (u, w)olllg(u4)llo

- |®//(

2" (w)[v, wlllo

R2 O (T NIwllo wlloC2R) g + lullo 1v1lo C(2R) lawllo
+ ||u||o||w||0 (2R)][v]lo]

< CR)[2llo lwllo-

For the last two estimates in (5.11), we use Taylor’s Theorem and the above
estimates on g and gz in Y to see that

1
lgwton) gl = || (1= E)giceun + (1~ Eilin —uz)de ]
< sup llgp(&uy + (1 = E)uy)[uy —uzlllo < C(R)llug — usllo

£e€[0,1]

as well as

llgr(u1)[v] = gr(u2)[v]llo = HJ (1-&)gr(Euy + (1= &)up)[v, uy — uy] dEHO

< s?p]llgR(éul +(1=&)un)[v, uy —uy]llo < C(R)||vllg |luy — uzllo-
£€[0,1

Moving on to (5.12), we first define

o u@) S flu(w)llo < 2R,
il(w) =
0, llu(w)llo > 2R.
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to see that ||ti(w)||gp < 2R for all w € Q) and then estimate

8ﬁ(u)l£t13(u)dW(s)“|Z51E|® Il i ‘< J W(s)> gt
lu IIO [J 2 dW (s ]“

<1E||u||0|\j @) dw (s g

g [ s awe ||

rt 2
<E|| Bllalolialon) dw(s)

Jt,

E

113'@

+E

112
+E|fall

o

i 2
SE| | Biallialn) aw(s)| +Ellal

Jt,

t
= | BB N2, ds + Elal?

to
. 112 )
< Ellallgllalle + Ellallg < Ellillp

< Ellull,

where we used Ito’s isometry and Lemmata[5.4]and |

Next, we take a look at one very special function which seems to make the

biggest trouble in the proof.

LeMmma 5.7

Foru e L*>(Q,Y) and j € N with (j+1)h < T and t € [jh, (j + 1)h) fixed, define
(F(u))(@) := gp(u(w)) U B(u()) dW(S)] (@).
J

If holds, Then F : LZ(Q,Y) - LZ(Q Y) and for almost all w € Q, F,,
L*(Q,Y) — Y defined by F,(u) = (F(u))(w) is Gdteaux differentiable, F (u)[v ]

is given by
t
+8r(u(w)) l(fh B(v(") dW(S)) (w)l
]

129

t
Fo,(u)[v] =g{{(u(w))[(f B(u(") dW(S))(w),v(w)
]

ih




and, with the same dependencies of the arising constants as in Proposition

E||F (1) = F(u)ll5 < Elluy - uall§
Proof. We start off by showing that F is well-defined. For u € L?(Q),Y), it holds

that
R(u) Uj;B(u) dW(s)Mi < C(R)IEHJ;;B(u) dW(s

t
[ B0, 5, 45 CONDIE 7, HEINI <

E|[F(u)|lf =E

hence F(u) € L?(Q),Y) and therefore (F(u))(w) € Y for almost all w € Q). Next, we
estimate that for u,v € LZ(Q, Y),

”(u)u;B(u)dW(s),v Hi

t 2
SE( 1 <an) (1 M w0 dw)|| ||v||0) \LB(v)dW(s)o

—E HLhB(||v||0]l{||,||0<2R}(u)u)dW(s)Hi)-ﬂE'LtB(v)dW(S) 2

E||F,(u)[v]lI5 =E

t
:IEJ Bl L g, <ary ()80, 5 s
jh Y

t
+IEJ IBW)I> ~.. ds
ih Lo(Y,Y)

< T||q>||2 7 vy EUlloLji0<2r) (1) luel13) + T||®||22(yly)1E||v||§
<4R2T||CD||2 IE||V||o+T||CP||2 IE||v||0 E|[vll5,
hence especially F/,(u)[v] € L?(Q),Y) and therefore (F(u))(w) € Y for almost all

w € Q). If we can show that F,, is the derivative of Fw, then by virtue of Taylor’s

Theorem and Hoelder’s inequality
EIIF(u1) - F(u, ||0-1E\|f (1~ )F (€ + (1= Eug)luy — uy] ]|

2
“EUO (1- 5)||Fw(5u1+(1—5)u2)[”1—uz]”0d5)
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1 1
< IE(L (1-¢) dé)(J; 1E] (S1ty + (1 = & )uay) 1ty — I3 dE

1
sn3L|w;@uru1—émﬁhn—uﬂ%da
1
=J;EWPM€W4%1—€Wﬁhn—uﬂ%dé
1
SJ;Wn—uﬂ%d€=Wu—umé

To show the differentiability, we note that for u,v € L*(Q,Y), for almost all

w € Q, u(w),v(w) and hence ( jh ) dW(s))(w) and ( jh ) dW (s))(w) lie in
Y. We suppress w now and deduce from the d1fferent1ab111ty of g as well as
Taylor’s Theorem, that

F(u+ev)—F(u) _,
|=———-Fn],
g +ev)[[L B(u) dW(s)] - g2 (w)[ [ B(u) dW(s)] ‘
o[ Jin o Ji —%wﬂijmmeO
jh

+ “gl’{(u +ev) lL;B(v) dW(S)l - gr(u) U;ZB(U) dW(S)]Ho

g(u+ev)[ [} B(u) dW(s)] - gx(w)[ [ B(u) dW(s)] ¢
<= b Gl —ﬁwﬂijmwwm
]

ih

0

+¢& sup ”gR u+£gv)U‘tB(p)dW(s),VlH0
J

&ef0,1]

<

”gﬂu+evj¢ u) AW (s)] - gh(w)] [}, Bu) dW(s)] L[t‘>d““>W

+5M v) dW (s ” llo =% o.

5.5 Proof of propostion

We now prepare the proof of Proposition [5.2|by finding a suitable representation
of the exact solution and its numerical approximation. For the numerical

approximation, we first define the right-continuous function @ by @(0) = v,
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and for 0 <n < %

exp (~i[(t - (n = DO (@r((n— D)) r((n — LE + W(nh)~ W((n - 1)h)])
Pr(t) = ‘pr((n—1)h),

T (h)lim,_,,; @r(t)

for t € ((n—1)h,nh) and t = nh, respectively. We notice that ¢(nh) = v" for all
n € IN and since in ((n — 1)h, nh), it moves along the solution of (5.4b)), we also
have the integral equality

t t

ige(pr(5) + 3Fopr(s)ds—i | Blpr(s) dW(s

Pr(t) = pr((n—1)h) _J (n-1)h
(5.13)

(n-1)h

for t € ((n—1)h,nh). Using the definition of ¢y, we arrive at

t

orh) = T(gr((n= 1)~ [ T(0)igalerls) + 3 Forrls) ds

(n—1)h

t

o L CETREIETE)
(n—1)h

Replacing the first term in (5.13)) by the above equation while changing n to

n—1, we arrive at

t

r(t) = T(h)pr((n-2)h) - J; _2)h(]l[(n—2)h,(n—1)h]T(h) + Lj(=1)h,nn)) (18R (PR (S))

1 (!
+ EFCD(PR(S)) ds - IL 1)h(]1[(n—z)h,(n-1)h]T(h) + Lj(n=1)h,nn]) B(@r(s)) dW(s).

Repeating this process, that is, replacing the first term in the equation above by

the one before with n — 2 instead of n, we inductively end up with

nh

v" = pr(nh) = T(nh)vg —ifo T,(9)gR(Px(5)) ds

nh uh
_%J; Tn(S)an(PR(S)ds—iJ; T,.(s)B(pr(s)) dW(s) (5.14)

with T,,(s) = Z’?:_é Lijnj+1yn)(8)T((n—j)h) and 0 < n < % We are also going to need
a version of (5.13)) with n—1 replaced by j. For 0<j<n—1andt€[jh (j+1)h),
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we end up with

t 1 t
Pr(t) = (pRUh)—j igr(@r(s)) + 3 Fo@r(s) ds—ij B(gr(s)) dW () (5.15)
jh jh

i1 1,2
=:py (t) =@y (1)

=g (1)
For the exact solution, things are easier, as we obtain the two integral equations

nh

vr(nh) = T (nh)v _ijo T(nh—s)gr(vgr(s)) ds
nh nh
_ %J(; T(nh—s)Fpvg(s)ds —iJ;) T(nh—s)B(vg(s)) dW(s) (5.16)

forOgns%aswellas

t t

Tt~ $)iga(vn(s) + 3Fovn(s) ds=i [ Tt 9)Blun(s) dWs)
jh

vlt) = s<t—jh>vR<jh>—f

jh

i1 2
=y (1) =y (t)

=wp(t)
for0O<j<mn-1andteljh(j+1)h).
From and (5.17), Taylor’s Theorem gives us the equations
R (9R(1) = R (T (¢~ jh)r(jI) + g (T(¢ = fH)pr(jh) | @h(t)]

1 . ‘ .
+%JO (1—E)gz’z/(T(t—jh)(PR(jh)+5(P{z(t))[(p{2(t),(p{2(t)] d& (5.18)

and

e (ve() = e (Tt~ fh)un(jh) + g (T(t = ih)un(jh) | vh(o)|

L (Tt iMon(ih) 5 £0] |
o3 | a-os (T e+ suo) vk, vio] as 519
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for some & € [0, 1]. Starting off with (5.14), we obtain

n-1 (j+1)h 1
T () vo+Z[ f 1) (igr(@r(t) + 5 Fopr(t)) dt
]
(j+1)h .
—if T<t”—f>B<<pR<t>>dw<t>}
jh

n—1

-51
V0+Z
j=

(j+1)h ) (j+1)h , ‘1 .
—if_ T(#"9)B(gr(jh) dwm—if (Bl (1) + 92 (1)) AW (1)
jh jh

J]H T(t" [1gR((PR(]h))+1Fq)(pR(]h)] dt

(j+1)h . , ,
- [ e igtoxm+ SFogrt) ok o)+ o 0] a
jh

Ul I
_%J; T(t”—])J; (1 —é)gfz'(qoza(]'h)+€<p}{(t))[cp{2(t),<p{2(t)] dé dt]

ih
e n-1 (j+1)h
P 1y, [ |, re [isstontim+ SEaputin] a
j=0
(5.20a)
(j+1)h . ] t
wi [ igaloni + SForrh)| [ Bloxm)dwe)| dr
(5.20b)
(j+1)h .
S [ e ) W) (5.200)
jh
(j+1)h ¢
—i.f] T(t”—f)BU B((pR(jh)) dW(s)) dW(#) (5.20d)
]h tj
. (DR ol . . .
3, T | 0 Osienin - cokon [oan.ohtn] az ar
(5.20e)
(j+1)h 1 il
[ o= gkt + 5Fo [ )] a (5.201)
jh
(j+D)h i
A [ - Bk o) awo), (5.208)
jh
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where we used (5.15) on @g(s) in the definition of (p{e’z. Similarly, starting from

(5.16) and artificially inserting the same sum that naturally occurred above, we

arrive at

n—1

(j+1)h
hyvo + [ j nh—t)[igR<T(t—jh>vR<jh>>+%P@vwh)] dt
i=0

—.

(5.21a)

(j+1)h 1
“Lh T 1) (igk(T (¢ = Jh)v( ) + 5 Fovr(jh)

Jt T(t - s)B(T(s — jh)vg(jh)) dW(s)] dt

j

(5.21b)
(j+1)h
—iJ T(nh—t)B(T(t - jhyvg(jh) dW () (5.21¢)
jh
(j+1)h ¢
—ij T(nh—t)BU T(t—s)B(T(s—jh)vR(jh)) dW(s)) dW (1) (5.21d)
]]’l t]‘
: (j+1)h 1 )
3, TR [ 0T + svhen[vh.vhon]| ae a
(5.21e)
(j+1)h
-f T(nh—t)(ig,g( (t = ihyop(ih) + = PCD)[ ]dt (5.21f)
jh
(j+1)h 1
—ij T(nh—-t)B(vh (t))dW(t)}. (5.21g)
ih

The last thing we need to do before we start estimating is giving estimates on
the terms defined in (5.15) and (5.17)).
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LeMmmA 5.8

If (5.8) holds, then, with the same dependencies of the arising constants as in
Proposition[5.2| (plus p), we have

Ellpr(t)ly <1, Ellvr(t)ly s 1

and therefore
, , ,
Ellpr(llg sh?,  Ellwg(oliy s h

for p € {2,4} as well as

. ;
Ellgh' (OI2 <h:  Elvg ()12 < h?

Proof. For the estimates on vg, we look at the integral representations
t

vR(t) = T(t)vo—iJ; T(t-5)gx (v (5)) ds—%fg Foug(s) ds—ifo T(t-5)B(vg(s)) dW(s)

for t € [0, T]. From this, we deduce

Elvg (1l < Ellvolf) ”EM: T(t-5)gr(vr(s)) ds|[ ”EHE T(t-5)(Fova(s)) ds]|]

p
0

— d

+IE|'L T(t - 5)B(vg(s) AW ()
t 14 t p

<Elvll) + B jo IT(t - s)gr(vr(s)lo ds) +1E(f0 It = 5)(Eovr(s)lle ds)

rt P
T(t - 5)B(vg(s)) dW(s)H

+E sup

o<t'<t 0

JO

t p t p
< Elfvollf + E f lIgr(vr(s)llo dS) +1E(J IFollollvr(s)llo dS)
0 0

t /2
— 2 —~
VB [ 7= 9B, 50,

S Ellwollg + (TP CRY + TPHIDIL & ) o)
t
P % p
+ T2 ”q)”[lz(?,D(Ae)))IEJO ”vR(S)”Q ds

t
<1 +f Ellvr(s)|l] ds,
0
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where we used Burkholder’s inequality (see [BP99][Theorem 7.3]) followed by
Holder’s inequality plus all estimates from the Lemmata before. Gronwall gives

the desired result. For v{{, we repeat its definition

t

. t 1
(0= | T(-9Nige(on(s) + 3 Fovels) ds=i [ T(1-9)Blun(s) aws
]

ih jh

for t € [jh,(j + 1)h). Compared to vg, the first term is missing and the integrals
have a range bounded by & instead of T. Therefore, the exact same estimates

deliver, using the first result at the end

. t
Ellk(0)ll) < (# CRY + W1 @I, oo B0 YD(AQ))>L1E||vR<s>||§ ds
]

< (WPC(R) + 1P || +h? ol

P
2

,(Y,D(A?)) YDAG)))

(T2C(RP +T? |I<1>||p

14
2

<h + [l ) S he.

,(Y,D(A?)) £,(Y,D(A%))

Finally, v{z’l is defined by

“(t) —JtT(t—s)(i (v (s))+lF vg(s)) ds
VR - i SR\VR S TOUR

for t € [jh,(j + 1)h). Hence it consists of the first two terms of V{e’ meaning that

the crucial term preventing an estimate by h” vanished. This gives

t
;
Ellvg' (15 < (hC(R)? + h|[@ YD(AQ))>fh1E||vR<s>||é ds
J

S (CR)? + [[OI, & ) S H.

~

D(A?))

For @g, we start with (compare (5.14))

t t

T(SFopr(s) ds=i | TiB(pa(s) AW (S

0

. (! 1
oalt) =T | TiSIgntgnls) ds— |
0 0
for T;(s) = Zgzo]l[lh,(lﬂ)h](S)T((]' —-1)h),0<j<n< and te[jh,(j+1)h). Hence
we can use the same estimates as for vg. The only difference is T;(s), which
pointwise is just some T((j —I)h) and therefore handled like T(t —s) before.
Again, Gronwall gives the result. (pR and (pR are defined analogously to their

137



' i1 )
counterparts v{z and v;{ without T(t —s), meaning that the same arguments as
above yield the last results. ]

Proof of Proposition[5.2] We start estimating the term in question (with T re-
placed by a € [0, T], namely

[E max |jvg(nh) - vﬁll%.
O\H\h

First of all, we make some general observations. Building the difference vg(nh) -

vy, the first term in (5.20{and (5.21) cancel each other out. Secondly, taking the

norm |[vg(nh) - vﬁ”% lets us loose T(nh), since it operates on Y. After that, we
group together the terms (5.20a)) to (5.20d) with their counterparts (5.21a)) to
(5.21d). The rest of the terms are left by themselves (all terms containing the sum

over j), leaving us with ten terms. We then use the triangle inequality to get the
norm inside those terms and then also pull the square inside, giving us a fixed
constant for the estimate (since we are dealing with ten terms independently
of any variable). Since the expectation and maximum are monotone and (sub-
)linear, we also spread those two on all terms.

This procedure leaves us with two kinds of terms, depending on if the outermost
integral is deterministic or stochastic. In the first case, we estimate, using
Holder’s inequality,

\Zf

(j+1)h

Fi(t) dtH = [E max

O<n<

E max
O<n<

1[ EZLhﬁl (0F; (1) |

2
<[ 15 ool o
<IE0r21a<xath irom(OF; (0] dt
% 2

<ET LB ()| dt

aL%J
:TJ‘ Wy (ORI de. (5.22)

0 %
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In the second case, we obtain, mainly using Burkholder’s inequality (see [BP99]
[Theorem 7.3])

j+1 nh L)1

n—1 ( )h 5 )
E max, ZJ Gj(t)dW(t)HozlEorgga f Z]l[jh,<j+1>h]<t)Gj(t)dW(t)HO
h 7j=0 jh h 0 7=0
g1 ,
<E sup J Y ]l[jh’(]-ﬂ)h](t)Gj(t)dW(t)HO
0<s<a 0 i=0
a L%J_l 2
<E i (s 1)G;(t dt
< Jo ]:Z(; Lin(j+1n) (F)Gj(t) L)
aL%J_l
~ [ ) L EIG O 5, dr
(5.23)

In both cases, the last equality follows pointwise and by Fubini’s Theorem. F;
and G; are appropriate functions, respectively.

Next, we take a look at the expressions IE||Pj(t)||S and IE”GJ'(t)”Z(?,Y for the ten
terms from (5.20) and (5.21)) mentioned above. We regularly use as well as
Lemmata and The constants in the estimates implicitly depend on
T,R, ||CD||Z E|[voll2, Ellvolls.  lies in (jh, (j+ 1)+ 1].

(Y,D(A%))
For the difference of (5.20a)) and (5.21a)), we estimate
s . 1 . . . 1 NI
E|| (i) (ige(er(jh) + 5 Fopr(im) - (1) (igr(wr(jm) + 5 Fove(jh|

S E||(T(j) - T(-0) (ig(@r(ih) + S Fopr(in)|.
+E|IT(~t) (gr(9r(jh)) - gr(vr(G))II3
+E|IT(~) (gr(vr(jh)) - gr(S(t = jh)vr(jR)IIZ
+E|IT(~t)Fg (pr(jh) - vr(jh)II3
< 127 [iga (el i) + 5 For(in)|, + Ellge(pr(jh) - selve(h)IZ
+E|lgr(vr(jh) — gr(S(t = jh)vr(jR)II3 + EllFo (9r(jh) — vr (GRS
< W E|Igr(@r(GhIE + BOEIFo @r(iI3 + Ellpr(ih) - vr ()2
+E|(I - S(t - jh)vr(jR)I + E||Fo (@r(jh) - vr(jh)I3
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S OB pr(iMlg + FIPIE, 5 1 o Ellor(iIE + Ellpr(ih) - ve(in)I
+Ellvr(Gh)IG + IRI, 7 a0 Eler(il) ~ R
< W% + Ellpg(jh) —vr(jh))II3.

For the difference of (5.20b)) and (5.21b), we have

slrmfsonsn- o)

t
f B(m(jh))dW(s)]
jh

2

t
f S(t—s)B(S(s—jh)vr(jh)) dW(S)]HO
j

ih

= T(-0)(igk(S (¢~ fhyun(jh) + 5Fa |

S B|(7=jh - T(-0) (igk(@r(j) + 5Fo

t . )
| potimy awis |

t

ih

t
+ T(—t)(igz’a(w(jh)) U_hB(wR(jh)) dW(s)l —igr(vr(jh)) U B(vg(jh)) dW(S)])Hi
] ]

+IB||T (1) gk (v (i) ~ igg (S (¢ - jh)vg(jh)) UthR(jh)) dW(s)]Hz
J

" 2
+E||T(~)Fq th«pR(jh)—vR(J‘h))dW“)Ho
J

+ || T (igk(wr(i) + 1&;)”71 = T(t-5))Blug(jh) dW<s>]\|2
2 jh 0

1 f . : 2
+ || T(=1)(igk(vn(jh) + EF‘D)Uh T(t=)B((I - T(s = jh))vg(jh) dW(S>M0
]

= I+II+III+IV+V+ VI

We follow this up by estimating the six terms, using F(u) = igp(u) [Lth B(u) dW(s)]
and Lemma [5.7|for II, to estimate

I< hzeEH(ig,g(@R(jh)) + %P@)U;B(w(]’h)) dW(S)MZ
]
< WOR(pr ()G + 1+ 5 IFoll) M;Bw(ih» awe|,
]
< hOE M; B((lprl il + Dpx(jh) dW(s)|
]

t
SHIE 5 oy | VoI Tl ds
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SOOI & o TEIQRGIIE + Ellpr(iIZ) < 129,

t

I1 S E|figh(@r(jh) Uh B(r(jh) dw<s>] ~igk(vR(jh) U B(u(jh) dW <s>]\|§
j )

ih
= E[|IF(pr(jh) = F(vr(iM)II5 < Ellpr(ih) - vr(iMII5,

11T < B||(igk (ve(jh) - igk(S(t - jh)vr(jh))) UthR(jh)) dW(s)]Hz
J

t

S E|gR((1 - &(@))or(jh) + E(@)T(t - jhyvr(jh) U
]

 B(w(jh) AW (s), (I—T(t—jh)vR(jh)le

t 2
SE| [ Bt awis)], 10T~ vl
]
t 2 t 2
< thEHLBwR(jh)) W s (il < hleHhB( lor(iler(jh) AW )|
] ]
t

20 . 2 . 2

<h IEL 1Bl GRIGvRGINIE, 7 g0y 4
t
20 2 . 4 20 2 . 4 20
L 1 g . 2
1v < B(igk(wr(ji) + EF‘D)Uh” ~T(t-5))B(vr(jh)) dW<s>]HO
]
t 2
SE| [ (17098 aws)|
jh 0
t
SE [ W0=T(=s)BrGIIE, 5, ds
]

t
< hZGIEf ||B(7/R(]'h))||2 ,(Y,D(A9)) ds

< k¥ |jo|2 TE[lvr(ihlig s h*°,

YDA9
t

v SE|Fo th B(qr(jh) ~vr(jh)) dW(S)Hz

SIPIE. ¢ o) IEHJ (pr(j) ~va(j) dW(S)|
< ||®||§2(?,D(Ae))lﬁfjh I1B(rih) v, 5, ds
ST 5 o o TEIPR() ~ (GRS Ellpr(jh) - ve()IR,

VIS E|igktva(in) + %F(D)U]h T(t=$)B((I = T(s - jh)v(jh) dW(s)MZ
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t 2
<k LTU_s)B«I = T(s = jh)vr(jh) dW )|
sk fjh IT(t =$)B((I = T(s = jh)v(GWIE, 5 , ds
t
s ELhHBW = T(s=jh)er(iMI, 7.y ds

t
S 191, 7y B | 10T st s

g ]l TE lvr(jh)lly < h*°.

,(Y,D(A9))

We then return to the original term to obtain

t

E[| Tt (igkl (i) + %P@)Uh B(pr(jh) dW<s>]
]

_T(—t)(i ' (S(t = ihog(ih)) + ~F ) fs:(t—s)B(S(s— h)vg(ih) dW (s) ”2

&R Jn)vR\J Sho i Jn)VR{] 0

< 120+ Ellor(jh) = vr(imIG,
For the difference of (5.20¢) and (5.21c), we obtain

E||T(~jh)B(¢r(jh) = T(=H)B(T(t = jhyvr(i)lZ 5,
SEIT (=) - T(-0)B(er(FMZ, 7.y,
+B||T(~t)B(q@g(jh) - T(t - ]h)VR(]h))”iz(?,Y)

S HOEIB@RGMI, 3 pao)

+E|IB(@r(jh) - T(t = jhvr(hIZ 5 )
SHONPIE ¢ a0y EIORGMIG
HIPIZ 3 paoy Eler(h) = T(t = jyvr(iIg
<SHO +E|(I-T(t - jh)pr(jh)|I§ + EIIT(t - jh)(vr(jh) - @r(j)II3
< 120 + h2OF |l or(iMI2 + Ellvg(jh) - r(jh)]2
< W2 + Ellvg(jh) - @r(j1)I3.
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For the difference of (5.20d)) and (5.21d)), we compute
t
IEHN—jh)B(LB«pR(jh» dW<s>)
j

_ T(—t)B(J-t T(t —s)B(T(s - jh)vg(jh)) dW(s)) L
]

” Ly(Y,Y)

t 2
leH(T(—jh)—T(—t))B(f B(x(jh) dw<s>)
]

. LoT,Y)
L T@ﬂB‘;;I—TU—S”BWWUh”dM“”)ixim
+E||T(-t)B u;;T(t—S)B((I—T(S_jh)ﬁoR(]'h))dw(s)) ;um
+E|T(-1)B u;w_s)B(T(s—jh><<pR<jh>—vR<fh>>>dW(”) .zcz@:y)
= [+II+III+]V.

We now turn to the four terms separately to obtain

I hZQIEHB(ﬂB«oR(jh)) dW<s>) 2
]

£,(Y,D(A?))

0
SHOIDIZ & o |

t . 2
| moxim awe;
rt

- h26 ||CD||2 YD Aa))IEujh ||B(¢R(]h))”2 Y D(AQ)) ds

t

S HOIPIE 5 o | (il ds

TIEIIsoR(Jh)IIQ < h,

2 4

Lo(Y,Y)

2
1< IEHB(I (I-T(t~5))B(er(jh)) dW<s>)
jh
t 2
SIRIE ¢ go B HL(I = T(t=5)Blgr(jh) W)
)
t
= IO 5 o | I~ T~ DBlprlRIE 7 0
]

t
<1201 DI2 OWIE
<h ||®||£2(Y,D(A@))1Efjh IB(RGINIE 5 0 ds
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SHONOIE ¢ 1o TEIRRGIIG < 5,

III<E HB(L T(t—$)B((I - T(s — jh)gg(jh)) dW(s)) j:zm)

t 2
SIDIE, 5 o B | 7069081 = T(s= gt dw (s
jh

rt
2 . . 2
< 0I5 g B | T8 =SB0 =T (o= el 5, i
rt
2 . . 2
< IO, 5 g B | BT =T MR 5,
rt
SIPIE ¢ pouoyE | I =T(s = el ds
Jjh
SHONDIL o o TElpr(RIE ds < 17,
f 2
IVsIEHB(j T(t—s)B(T(s—jh)((pR(jh)—vR(jh)))dW(s)) _

2

< ”q’”iﬁﬂm@»m”ﬁh T(t=3)B(T(s = jh)r(jh) - vr(j)) W)

al

S IO 5o B | IT(E=SIBCT (s = () vl DIE, 7y, s
rt
4 . . a2
S IPIE 5 g B | IBCTG = (@R ~vR I, 7.y, ds
rt
4 . 2
< [1@lf, YDAe))IEJ]hIIT(S—]h)(QR(]h) vr(jh))llp ds
4 (! 2
S I 5 g0 | I = vl

SIRNE 5 aoy TEIPR(H) ~vR(IIE < Ellr(ih) - va(ih)I},

Returning to the original term, this means that

1E1|T<—jh>B(jj;B<<pR<jh>> aw )

2

LH(Y,Y)

- T(—t)BU T(t —s)B(T(s — jh)vg(jh)) dW(s))
]

ih
< W29 £ E|lpr(jih) - vr(jh)II3.
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For (5.20e]), we estimate

m"—iT(—jh)fu —5)g{{(¢R(jh>+ 590{20))[(952(”’ (P{z(”] déHZ

S sup [ atjin + ot )|kt ekio|[| < Elokong <

For (5.20f), we obtain
. . . 1 '1 2
IE"—T(—]h)(lgfa((PR(]h))+ EFCD)[?”;% (t)]Ho
. . 2 SUINIG
sIEHgfa(w(Jh))[@ﬁ (t)]”()”EHP@(Pﬁ (t)Ho

j,1 1
S Elleg (0115 + EllFo [l lleg (0113

1 j,1
SElleg (4)llg + P17, 7 poso) Eller (0I5

< k2.
For (5.20g), we have
) . il il
E[[HTmBeR 1), ,, S EIBIOR (e,

j,1
S IE”B((P{Q (Ol ?D(AG))
< ||CD||2 D(A9)) Ellpg (01l

< h?

For (5.21€]), we compute

i

B-Sren [ (12154 (T i+ i) [kt o) e

< sup [lgi (T(t - jhyve(ih) + k() [ok(o)vheo
&€(0,1]

< Elvk(t)lig < 1

For (5.21f), we obtain
=T (-0)(igk(T( - e + 5Fo ) [0k 0|
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t—]h)vR(]h))[vR ]H +IB||Fov} )Hi

SE[R} (01F + ElEal3 I} (1113
<
SEIE (O + 1012 5 o EIVE (03

< h?

For (5.21¢g), we estimate
. i1 i1
EIT0B@E N2 ¢, SEIBOE I o) S EIBER O ;o)

< |2 IEllv (Ol < 7.

,(Y,D(A9))

Plugging all of these results into (5.22) and (5.23), taking into account the
explanation before, we obtain

2 L7l-1
E max |[vg(1h) - vill; NJ Z Lijn,jr1ym (t h 20 +1E||(PR(jh)—VR(fh)||5) dt

0\ \h

< h*? +J E max |[vg(nh) —vp|[s dt.
0

0<n<h

By Gronwall’s inequality, we finally obtain

E max \lvr(nh) — vR||0 < h?9,
0\ \h

before Jensen’s inequality yields the final result. [

5.6 Proof of Theorem

We denote the errors of the original and cut off equation by e" := v" — v(nh)
and ey := vg —vr(nh). We start off with the set whose probability we want to
investigate. We observe that for L,K > 0

{ max lle"llo > Kh?} c { max fle"llp > > Kh%}n N{ max [[v"llo <R} N { sup [lv(t)llp <
O<”<7 0<n<7 0<n<7 0<t<tg

U{ sup [[v(t)llo > R} U{ max [[v"[lo > R}

0<t<T] o<n< Ik
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< { max [legllo > Kh®}U{ sup llv(#)llo> R} U { max [[v"ll > R}. (5.24)

0<7’l<7 o<st<ty O<7’l<7

While the first inclusion is obvious, the second one follows from the fact that for
maxo<n< ° llv"™|o < R and SUPg<p<r, |[v(t )||0 R, respectively, we have v" = vy for

0<n< s aswellasvp(f) =v(t) for O<n <ty If MaX e, L [[v"lg < R, we obtain

v" = T(h)exp(—i[hV([v"7|) + DW (nh) = PW ((n - 1)h)])p""!
= T(h)exp(=i[h O (v" ) V("7 |) + DW (nh) - PW ((n - 1)h)])v" "},

~—_———
S|
which means that v, obeys the same equation as vy. Since both algorithms start

with v, we have v" = vp for 0 <n < % If SUPo<y<r llv(t)llo < R, we see that

v(t) =T(t)vg —iJ: T(t—s)g(v(s)) ds

; t
_% fo T(t-s)Fou(s) ds i J T(t—s)B(v(s)) dW(s)

0

t
= T(t)o —iL T(t - ) Or(v(s) g(v(s)) ds
=1

) J T(t—s)Fpv(s)ds— ij T(t—s)B(v(s)) dW(s),
0 0
which means that v(t) obeys the same equation as vg(t) ans therefore vy(t) = v(¢)
for 0 < Tr.
Next, we take a look at the probability of the three terms in (5.24). For the first
term, by Chebychev’s inequality and proposition using 7; < T, we obtain

P( max [legllo > KI®) <

o<n<k Kho o<n<k Kh o<n<l SK

For the second term, taking R > L, by the definition of the stopping time, we
have

P( sup |lv(t)llp > R)=P(rg < 7) = 0. (5.26)

0<t<ty
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Concerning the last term, we want to show that

P( max [[v"]lp > R) B2, (5.27)
O<n< T

uniformly in h € (0, T]. To this end, we define

fr(h) :=P( max |[v"||p >R) Vhe(0,T].

O<n<TL

This makes fr a continuous function (amongst others things because of the
continuity of the Brownian motion) which is monotonously falling. Moreover,

we obtain the pointwise convergence

R—o0
fr(h) —— P( max [[v"]|p = c0) =0
0<n<7L

by the o-continuity, since for fixed &, we take the maximum over finitely many
finite values (note that 7, < T fixed). We now assume that supj,¢ o 1) fr(h) does
not converge to zero for R — co. Since we are interested in the limit, we impose
the restriction R > L + 1. We infer that

3€>OVR>L+13hRE 0, T] fR hR

This yields
P( max_[le"lly > 1) =P( max [le"lly>1)+P( sup [lo(t)llo > R~1)> fr(hg) > €
0<n<k o<k 0<t<ty

(5.28)
for all R> L+ 1. On the other hand, for h € (0, T], we have

{ max |le"[lo > 1} € { max |lef,;llo > 1},

O<n<TL osn<L

since if max ), u u lle™|lg = 1, there exists n; := min{n < %, lle"]|lo = 1}. Moreover,
by the definition of 11, we have |[v(t)]|o < L for t < nyh < 17 and therefore ||v”||0 <
lv(nh)llg + lle"llo < L+ 1 for n < n;. As in the proof for the inclusion in , we

conclude e" = ¢}, for n < n;. Setting n = n;, we obtain MaX g, L ||eL+1||0 >
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Therefore, we arrive at

P( max [le"lly> 1) < P( max llef,illo > 1) <E max [lef,yllo < Cpoahfy (5.29)

0<n<h—L O<n\h O<n\h

where we use Proposition Comparing (5.29) to (5.28), we obtain hy €

= \l/e ;
[(#ﬂ) , T], which means that suphe[ﬁj] fr(h) does not converge to zero for
R — oo in contradiction to the uniform convergence of monotonously falling,
pointwise converging function sequences. Hence, the assumption is wrong and
(5.27) holds.

To end the proof, we return to (5.24). Let ¢ > 0 and take R > L to be large
enough for lP(maX0<n<u llv"lo > R) to be smaller than § (possible due to (5.27)).

Afterwards, take K large enough such that P(max,_, @ u llegllo = Kh9) is smaller

than 5 (possible due to (5.25)). Finally, since R > L, usmg (5.26), (5.24) yields

P( max fle"lly > Kh?) < P( max [[v"llo > R)+P( max leklly > Kh9)<§+§:e

o<n< o<n< o<n<k

for K large enough.

REMARK 5.9

As mentionned in the introduction, a similar result has been stated in [Liul 3b)].
In his much shorter proof of Proposition Liu does use neither derivatives of
the nonlinearity nor reiteration of the variation of constants formula, but at one
point, he estimates terms of the form

2

[E sup

O<s<t

S

| ste=n-nen awe],
by the Burkholder inequality (see [BP99][Theorem 7.3]), which is not possible
due to the integrand depending on s. To get around this difficulty, we chose a
significantly different approach in our proof. Moreover, the proof of Theorem
includes some technical mistakes which can be corrected. For one of them, the
stopping time has to be bounded by an arbitrary T (which Liu does not demand),
since otherwise, the use of the Proposition is incorrect.
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