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Abstract Since their introduction in 1967, Lawson methods have achieved
constant interest in the time discretization of evolution equations. The meth-
ods were originally devised for the numerical solution of stiff differential equa-
tions. Meanwhile, they constitute a well-established class of exponential inte-
grators, which has turned out to be competitive for solving space discretiza-
tions of certain types of partial differential equations.

The popularity of Lawson methods is in some contrast to the fact that they
may have a bad convergence behaviour, since they do not satisfy any of the
stiff order conditions. The aim of this paper is to explain this discrepancy. It
is shown that non-stiff order conditions together with appropriate regularity
assumptions imply high-order convergence of Lawson methods. Note, how-
ever, that the term regularity here includes the behaviour of the solution at
the boundary. For instance, Lawson methods will behave well in the case of
periodic boundary conditions, but they will show a dramatic order reduction
for, e.g., Dirichlet boundary conditions. The precise regularity assumptions
required for high-order convergence are worked out in this paper and related
to the corresponding assumptions for splitting schemes. In contrast to previ-
ous work, the analysis is based on expansions of the exact and the numerical
solution along the flow of the homogeneous problem. Numerical examples for
the Schrödinger equation are included.
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1 Introduction

Exponential integrators are a well-established class of methods for the numeri-
cal solution of semilinear stiff differential equations. If the problem stems from
a spatial semi-discretization of an evolutionary partial differential equation
(PDE), the very form of the domain of the spatial differential operator enters
the convergence analysis. The stiff order conditions, which guarantee a cer-
tain order of convergence independently of the considered problem, must be
independent of the domain of this operator (which, in general, involves certain
boundary conditions). This is the main reason why stiff order conditions for
exponential integrators are quite involved (see [7] and [14]).

For particular problems, however, less conditions are often required for
obtaining a certain order of convergence.1 It was already observed in [8] that
periodic boundary conditions do not lead to any order reduction in exponential
integrators of collocation type in contrast to homogeneous Dirichlet boundary
conditions, which restrict the order of convergence considerably (close to the
stage order, depending on the precise situation). Full-order convergence for
periodic boundary conditions was also noticed in [11] and [2].

A similar behaviour can be observed for Lawson methods which are ob-
tained by a linear variable transformation from (explicit) Runge–Kutta meth-
ods (see [13] and Section 2 below). These methods are very attractive, since
they can be easily constructed from any known Runge–Kutta method. Un-
fortunately, Lawson methods exhibit a strong order reduction, in general. For
particular problems, however, they show full order of convergence (see [3], [1],
and [16]). By construction, Lawson methods do satisfy the order conditions for
non-stiff problems. Such conditions will be called non-stiff or classical order
conditions henceforth. However, Lawson methods do not satisfy any of the
stiff order conditions, as detailed in [7], [9], and [14]. This fact can result in a
dramatic order reduction, even down to order one for parabolic problems with
homogeneous Dirichlet boundary conditions.

So far, the derivation of (stiff) order conditions for exponential integrators
was based on standard expansions of the exact and the numerical solution.
There, the main assumption on the problem is that the exact solution and its
composition with the nonlinearity are both sufficiently smooth in time (see [7]
and [14]). Any additional regularity in space is not of immediate benefit in
this analysis. This is in contrast to splitting methods, where spatial regularity
usually shows up in form of commutator bounds (see, e.g., [10]).

In this paper, we study the convergence behaviour of Lawson methods for
semilinear problems. One of the main contributions of this paper is a differ-
ent expansion of the solution. It is still based on the variation-of-constants
formula but the nonlinearity is expanded along the flow of the homogeneous
problem. This expansion can be derived in a systematic way using trees as
in [5] and [14]. The expansion of the exact solution is carried out in terms

1 The same is true for ordinary differential equations (ODEs), where linear problems, e.g.,
require less order conditions for Runge–Kutta methods than nonlinear ones.
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of elementary integrals, that of the numerical solution in terms of elementary
quadrature rules. We show that classical, non-stiff order conditions together
with (problem-dependent) assumptions on the exact solution give full order of
convergence. This involves regularity of the solution in space and time. Our
main result for Lawson methods is stated in Theorems 4.7 and 4.8. We prove
that a Lawson method converges with order p, if the order of the underly-
ing Runge–Kutta method is at least p and the solution satisfies appropriate
regularity assumptions. These conditions are studied in detail for methods of
orders one and two, respectively, and they are related to the corresponding
conditions that arise in the analysis of splitting methods. In particular, this
is worked out for the nonlinear Schrödinger equation. Our error analysis also
reveals a different behaviour between the first-order Lawson method and the
exponential Euler method, which is visible in numerical experiments.

The outline of the paper is as follows. In Section 2, we recall the con-
struction of Lawson methods. The expansion of the numerical and the exact
solution in terms of elementary integrals is given in Section 3. There, we also
introduce the analytic (finite dimensional) framework which typically occurs
when discretizing a semilinear parabolic or hyperbolic PDE in space. Order
conditions and convergence results are given in Section 4. The resulting regu-
larity assumptions are discussed in Section 5. These assumptions are related to
the corresponding conditions for splitting methods. Numerical examples that
illustrate the required regularity assumptions and the proven convergence be-
haviour are also presented.

2 Lawson methods

Consider a semilinear system of stiff differential equations

u′(t) +Au(t) = g
(
t, u(t)

)
, u(0) = u0, (1)

where the stiffness stems from the linear part of the equation, i.e., from A,
which is either an unbounded linear operator or its spatial discretization, i.e.,
a matrix. The precise assumptions on A and g will be given in Section 3.
For the numerical solution of (1), Lawson [13] considered the following local
change of variables:

w(t) = etAu(t).

Note that when applied to evolution equations, this transformation has to be
done in a formal way, since etA might not be a meaningful object in our general
framework.

Inserting the new variables into (1) gives the transformed differential equa-
tion

w′(t) = etA
(
u′(t) +Au(t)

)
= etAg

(
t, e−tAw(t)

)
, w(0) = u0.

(2)
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For the solution of this problem, an s-stage explicit Runge–Kutta method with
coefficients bi, ci, aij satisfying the simplifying assumptions c1 = 0 and

i−1∑
j=1

aij = ci, i = 2, . . . , s, (3)

is considered. Transforming the Runge–Kutta discretization of (2) back to the
original variables yields the corresponding Lawson method for (1)

un+1 = e−hAun + h

s∑
i=1

bie
−(1−ci)hAGni, (4a)

Gni = g
(
tn + cih, Uni), (4b)

Uni = e−cihAun + h

i−1∑
j=1

aije
−(ci−cj)hAGnj , i = 1, . . . , s. (4c)

Here, un is the numerical approximation to the exact solution u(t) at time t =
tn = nh, and h is the step size. Note that this method makes explicit use of the
action of the matrix exponential function. Depending on the properties of A,
the nodes c1, . . . , cs have to fulfill additional assumptions, see Assumption 3.1
in the next section. Because of these actions of the matrix exponential, Lawson
methods form a particular class of exponential integrators. For a review on such
integrators, we refer to [9].

For a non-stiff ordinary differential equation (1), it is obvious that the
order of the Runge–Kutta method applied to (2) coincides with that of the
corresponding Lawson method applied to (1). It is the aim of this paper to show
that this is also true in the stiff situation, if appropriate regularity assumptions
hold (we will explain the meaning of regularity in the context of discretized
PDEs in Section 5).

3 Expansion of the exact and the numerical solution

By adding t′ = 1 to (1), the differential equation is transformed to autonomous
form. It is well known that Runge–Kutta methods of order at least one satisfy-
ing (3) are invariant under this transformation. Therefore, we restrict ourselves
henceforth to the autonomous problem

u′(t) +Au(t) = g
(
u(t)

)
, u(0) = u0. (5)

Let X be a Hilbert space or a Banach space with norm ‖ · ‖. Our main as-
sumptions on A and g are as follows.

Assumption 3.1 Let A belong to a family F of linear operators on X such
that −A generates a group e−tA satisfying∥∥e−tA

∥∥ ≤ CF , (6)
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with a moderate constant CF , uniformly for all t ∈ R and all operators A ∈ F .
It is sufficient to require that −A generates a bounded semigroup (i.e., (6) for
t ≥ 0), if the nodes ci of the considered explicit Runge–Kutta method are
ordered as 0 = c1 ≤ c2 ≤ . . . ≤ cs ≤ 1.

The set of infinitesimal generators of non-expansive (semi)groups in X is
a possible choice for the family F . In addition, the above assumption is typi-
cally satisfied in situations where (5) stems from a spatial discretization of a
semilinear parabolic or hyperbolic partial differential equation. The important
fact here is that the constant CF is independent of the spatial mesh width for
finite difference and finite element methods, and independent of the number
of ansatz functions in spectral methods. As our error bounds derived below
do not depend on A itself but only on the constant CF , they also apply to
spatially discretized systems.

Assumption 3.2 For a given integer p ≥ 0, the nonlinearity g is p times dif-
ferentiable with bounded derivatives in a neighborhood of the solution of (5).

We recall that the solution of (5) can be represented in terms of the
variation-of-constants formula

u(θh) = e−θhAu0 + h

∫ θ

0

e−(θ−λ)hAg
(
u(λh)

)
dλ.

Applying this formula recursively and expanding the nonlinearity along the
flow of the homogeneous problem yields the following expansion of the exact
solution

u(h) = e−hAu0 + h

∫ 1

0

e−(1−λ)hAg
(

e−λhAu0 + h

∫ λ

0

e−(λ−η)hAg
(
u(ηh)

)
dη
)

dλ

= e−hAu0 + h

∫ 1

0

e−(1−λ)hAgλdλ

+ h2
∫ 1

0

e−(1−λ)hAg′λ

∫ λ

0

e−(λ−η)hAgη dη dλ

+ h3
∫ 1

0

e−(1−λ)hAg′λ

∫ λ

0

e−(λ−η)hAg′η

∫ η

0

e−(η−ξ)hAgξ dξ dη dλ

+ 1
2h

3

∫ 1

0

e−(1−λ)hAg′′λ

(∫ λ

0

e−(λ−η)hAgηdη,

∫ λ

0

e−(λ−ξ)hAgξdξ
)

dλ

+O(h4), (7)

where we have used the shorthand notation

gη = gη(u0) = g
(
e−ηhAu0

)
, g(k)η = g(k)η (u0) = g(k)

(
e−ηhAu0

)
, k ≥ 1. (8)

Note that here and throughout the whole section, the constant in the Landau
symbol O only depends on CF and the derivatives of g, but not explicitly
on A itself, i.e., not on the stiffness. Also note that this expansion differs
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considerably from the previous work (see, e.g., [7,14]) where the nonlinearity
g(u(t)) was expanded with respect to t.

Next we perform a similar expansion of the numerical solution (4), which
yields (again in the autonomous case)

u1 = e−hAu0 + h

s∑
i=1

bie
−(1−ci)hAgci

+ h2
s∑
i=1

bie
−(1−ci)hAg′ci

i−1∑
j=1

aije
−(ci−cj)hAgcj

+ h3
s∑
i=1

bie
−(1−ci)hAg′ci

i−1∑
j=1

aije
−(ci−cj)hAg′cj

j−1∑
k=1

ajke−(cj−ck)hAgck

+ 1
2h

3
s∑
i=1

bie
−(1−ci)hAg′′ci

(i−1∑
j=1

aije
−(ci−cj)hAgcj ,

i−1∑
k=1

aike−(ci−ck)hAgck

)
+O(h4). (9)

As we have used the variation-of-constants formula and its discrete counter-
part, respectively, the expansions of the exact and the numerical solution re-
flect the well-known tree structure of (explicit) Runge–Kutta methods. In the
following we use the classic trees which are well-established for studying the
classical order conditions for Runge–Kutta methods; see [5, Section II.2], [4,
Section III.1] and references given there.

Let LT denote the set of rooted labelled trees; see Def. II.2.2 in [5]. Their
nodes are numbered in such a way that the number of a children’s node is
larger than that of the corresponding mother’s node. The set T of unlabelled
rooted trees is defined (as in [5, Def. II.2.4]) as equivalence classes of labelled
trees under admissible renumbering.

For S = T or S = LT , respectively, and τ1, . . . , τk ∈ S we denote by
τ = [τ1, . . . , τk] ∈ S (a k tuple without ordering) the tree that consists of a
new root which is connected to the branches τ1, . . . , τk. Furthermore, by %(τ)
we denote the order of the tree τ ∈ S. It is defined as the number of nodes of
τ . Trees of order less or equal than p are denoted by

Sp = {τ ∈ S | %(τ) ≤ p}.

For τ ∈ T the elementary differential D(τ) of a smooth function g is defined
recursively in the following way. For τ = we have D( )(w) = g

(
w
)
, and for

τ = [τ1, . . . , τk] we have

D(τ)(w) = g(k)
(
w
)(
D(τ1)(w), . . . , D(τk)(w)

)
.

Motivated by the expansion (7) of the exact solution we define elementary
integrals.
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Definition 3.3 For τ ∈ LT and 0 ≤ ζ ≤ 1 we define the elementary integral
Gζ(τ), its integrand Ψζ(τ), and the multivariate integration operator Iζ(τ)
with its domain of integration Dζ(τ), recursively in the following way.

(a) For τ = and a univariate function f , we set

Ψζ( )(λ,w) = e−(ζ−λ)hAgλ
(
w
)
, 0 ≤ λ ≤ ζ,

Iζ( )f =

∫ ζ

0

f(λ)dλ.

(b) For τ = [τ1, . . . , τk] ∈ LT and a multivariate function f in % = %(τ)
variables, we set (for 0 ≤ λ ≤ ζ)

Ψζ(τ)(λ, λ2, . . . , λ%, w) = e−(ζ−λ)hAg
(k)
λ

(
w
)(
Ψλ(τ1)(·1, w), . . . , Ψλ(τk)(·k, w)

)
,

Iζ(τ)f =

∫ ζ

0

Iλ(τ1) · · · Iλ(τk)f(λ, ·, . . . , ·)dλ.

Here, ·j refers to the %(τj) variables corresponding to the jth subtree τj ,
i.e., all the indices numbering the nodes in τj , sorted in increasing order.
The integral operator Iλ(τj) acts on the variables corresponding to τj .

Finally, we define for all τ ∈ LT the elementary integrals as

Gζ(τ)(w) = Iζ(τ)Ψζ(τ)(·, w)

and set Ψ(τ) = Ψ1(τ), D(τ) = D1(τ), I(τ) = I1(τ), and G(τ) = G1(τ).

Example 3.4 With the definition of the integrands we obtain

Ψζ(
1

4

3

2)(λ, λ2, λ3, λ4, w) = Ψζ(
1

2

3

4)(λ, λ2, λ3, λ4, w)

= e−(ζ−λ)hAg
(2)
λ

(
w
)(
Ψλ(

2

3)(λ2, λ3, w), Ψλ(
4
)(λ4, w)

)
= e−(ζ−λ)hAg

(2)
λ

(
w
)(

e−(λ−λ2)hAg′λ2

(
w
)
Ψλ2

(
3
)(λ3, w), e−(λ−λ4)hAgλ4

(
w
))

= e−(ζ−λ)hAg
(2)
λ

(
w
)(

e−(λ−λ2)hAg′λ2

(
w
)
e−(λ2−λ3)hAgλ3

(
w
)
, e−(λ−λ4)hAgλ4

(
w
))

and

Ψζ(
1

3

4

2)(λ, λ2, λ3, λ4, w) = Ψζ(
1

2

4

3)(λ, λ2, λ3, λ4, w)

= e−(ζ−λ)hAg
(2)
λ

(
w
)(
Ψλ(

2

4)(λ2, λ4, w), Ψλ(
3
)(λ3, w)

)
= e−(ζ−λ)hAg

(2)
λ

(
w
)(

e−(λ−λ2)hAg′λ2

(
w
)
e−(λ2−λ4)hAgλ4

(
w
)
, e−(λ−λ3)hAgλ3

(
w
))
.
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If f is a function of four variables, the recursive definition of the integral
yields

Iζ(
1

4

3

2)f = Iζ(
1

2

3

4)f

=

∫ ζ

0

Iλ1(
2

3)Iλ1(
4
)f(λ1, ·, ·, ·)dλ1

=

∫ ζ

0

∫ λ1

0

Iλ2(
3
)

∫ λ1

0

f(λ1, λ2, ·, λ4)dλ4dλ2dλ1

=

∫ ζ

0

∫ λ1

0

∫ λ2

0

∫ λ1

0

f(λ1, λ2, λ3, λ4)dλ4dλ3dλ2dλ1

=

∫
Dζ
(

1

4

3

2

) f(λ)dλ,

with

Dζ
(

1

4

3

2

)
= {(λ1, λ2, λ3, λ4) | 0 ≤ λ4 ≤ λ1, 0 ≤ λ3 ≤ λ2 ≤ λ1, 0 ≤ λ1 ≤ ζ}

and

Iζ(
1

3

4

2)f = Iζ(
1

2

4

3)f

=

∫ ζ

0

Iλ1(
2

4)Iλ1(
3
)f(λ1, ·, ·, ·)dλ1

=

∫ ζ

0

∫ λ1

0

∫ λ2

0

∫ λ1

0

f(λ1, λ2, λ3, λ4)dλ3dλ4dλ2dλ1,

respectively. Here, the integration domain is given by

Dζ
(

1

3

4

2

)
= {(λ1, λ2, λ3, λ4) | 0 ≤ λ3 ≤ λ1, 0 ≤ λ4 ≤ λ2 ≤ λ1, 0 ≤ λ1 ≤ ζ}.

Note that Iλ1
(

2

3) integrates with respect to the second and third variable of f

whereas Iλ1
(

2

4) integrates with respect to the second and forth one. However,

the definitions are invariant under permutation of the trees τ1, . . . , τk.

Although the numbering of the multivariate integration operator and in-
tegrands depends on the numbering of the labelled trees, the definition of the
elementary integrals is independent of it.

Lemma 3.5 The elementary integral Gζ(τ) is invariant under renumbering
of τ ∈ LT . Thus, it is well defined for unlabelled rooted trees τ ∈ T by using
one representative of the corresponding equivalence class. ut
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It is straightforward to verify that the elementary integrals satisfy the
recurrence relation

Gζ( )(w) =

∫ ζ

0

e−(ζ−λ)hAgλ
(
w
)
dλ,

Gζ(τ)(w) =

∫ ζ

0

e−(ζ−λ)hAg
(k)
λ

(
w
)(
Gλ(τ1)(w), . . . , Gλ(τk)(w)

)
dλ

for τ = [τ1, . . . , τk] ∈ T .
Our assumptions on g and A ensure that the integrand Ψζ(τ)(·, w) is

bounded if τ ∈ LT p+1 for w in a neighborhood of the exact solution of (5)
and h sufficiently small.

Remark 3.6 In the nonstiff situation, where A ≡ 0, all evaluations of g or its
derivatives are at the fixed value w. Thus Gζ(τ)(w) reduces to a multivariate
integral over the constant integrand Ψζ(τ)(·, w) ≡ D(τ)(w).

The following theorem shows how the expansion (7) can be expressed as a
(truncated) B-series. Here we use the notation from [4, Section III.1].

Theorem 3.7 The exact solution of (1) satisfies

u(ζh) = e−ζhAu0 +Bp(u0)(ζ) +O(hp+1), ζ ∈ [0, 1], (10)

where we define the B-series for w ∈ X and ζ ∈ [0, 1] as

Bp(w)(ζ) =
∑
τ∈Tp

h%(τ)

σ(τ)
Gζ(τ)(w),

with the symmetry coefficients σ( ) = 1 and

σ([τ1, . . . , τk]) = σ(τ1) · · ·σ(τk)µ1!µ2! · · · .

The integers µ1, µ2, . . . specify the number of equal trees among τ1, . . . , τk.

Proof The proof is done by induction. For p = 0, the claim follows from the
variation-of-constants formula and B0(u0)(ζ) = 0, since

u(ζh) = e−ζhAu0 + h

∫ ζ

0

e−(ζ−λ)hAg
(
u(λh)

)
dλ = e−ζhAu0 +O(h). (11)

The induction step follows the lines of the proof of [4, Lemma III.1.9] with the
following modifications: we use the variation-of-constants formula and truncate
the series in such a way that only the first p derivatives of g enter the expansion.
We omit the details. ut

Now we proceed analogously for the numerical solution starting with the
definition of elementary quadrature rules.

Definition 3.8 For τ ∈ LT we define the multivariate quadrature operators
Î(τ) and Îi(τ), i = 1, . . . , s, recursively in the following way.
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(a) For τ = and a univariate function f , we set

Î( )f =

s∑
j=1

bjf(cj), Îi( )f =

i−1∑
j=1

aijf(cj), 1 ≤ i ≤ s.

(b) For τ = [τ1, . . . , τk] ∈ LT and a multivariate function f in ρ(τ) variables,
we set

Î(τ)f =

s∑
j=1

bj Îj(τ1) · · · Îj(τk)f(cj , ·, . . . , ·),

Îi(τ)f =

i−1∑
j=1

aij Îj(τ1) · · · Îj(τk)f(cj , ·, . . . , ·), 1 ≤ i ≤ s.

As in Defintion 3.3, the quadrature operator Îj(τ`) acts on the variables
corresponding to labels in τ`.

Finally, we define the elementary quadrature rules in the following way

Ĝ(τ)(w) = Î(τ)Ψ(τ)(·, w), Ĝi(τ)(w) = Îi(τ)Ψci(τ)(·, w), 1 ≤ i ≤ s.

As for the elementary integrals, also the elementary quadrature rules do
not depend on the numbering of the nodes in a tree.

Lemma 3.9 The elementary quadrature rules Ĝ(τ) and Ĝi(τ) are invariant
under renumbering of τ ∈ LT . Thus, they are well defined for unlabelled rooted
trees τ ∈ T by using one representative of the corresponding equivalence class.

ut

It is easy to see from the recursive definitions that the elementary quadra-
ture rules satisfy

Ĝ( )(w) =

s∑
j=1

bje
−(1−cj)hAgcj

(
w
)
,

Ĝi( )(w) =

i−1∑
j=1

aije
−(ci−cj)hAgcj

(
w
)
, 1 ≤ i ≤ s

and

Ĝ(τ)(w) =

s∑
j=1

bje
−(1−cj)hAg(k)cj

(
w
)(
Ĝj(τ1)(w), . . . , Ĝj(τk)(w)

)
,

Ĝi(τ)(w) =

i−1∑
j=1

aije
−(ci−cj)hAg(k)cj

(
w
)(
Ĝj(τ1)(w), . . . , Ĝj(τk)(w)

)
, 1 ≤ i ≤ s

for τ = [τ1, . . . , τk]. This allows us to express the expansion (9) of the numerical
solution in terms of elementary quadrature rules.
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Theorem 3.10 The numerical solution of (5) satisfies

u1 = e−hAu0 + B̂p(u0) +O(hp+1), (12a)

U0i = e−cihAu0 + B̂(i)
p (u0) +O(hp+1), i = 1, . . . , s, (12b)

where we define the numerical B-series for w ∈ X as

B̂p(w) =
∑
τ∈Tp

h%(τ)

σ(τ)
Ĝ(τ)(w),

B̂(i)
p (w) =

∑
τ∈Tp

h%(τ)

σ(τ)
Ĝi(τ)(w), i = 1, . . . , s.

Proof The proof is done analogously to the proof of Theorem 3.7. ut

4 Order conditions and convergence

In this section we present a systematic way of deriving general stiff convergence
results for Lawson methods based on trees.

The expansions of the exact and the numerical solution in terms of elemen-
tary integrals and elementary quadrature rules derived in the previous section
allow us to study the local error in the same way as for classical Runge–Kutta
methods. In fact we show that the orders of these quadrature rules determine
the local error of the Lawson method. A similar strategy was used in the anal-
ysis of splitting methods by [10]. General stiff order conditions for exponential
Runge–Kutta methods have been derived in [14] and for splitting methods
in [6].

We say that the Lawson method is of (stiff) order p if the local error satisfies

‖u(h)− u1‖ ≤ Chp+1

uniformly for smooth nonlinearities and operatorsA satisfying Assumption 3.1.
This means that the constant C depends on the constant CF defined in (6)
but not on A itself.

Theorem 4.1 The Lawson method (4) is of order p if

Ĝ(τ)(u0)−G(τ)(u0) = O(hp+1−%(τ)) for all τ ∈ Tp.

Proof From Theorems 3.7 and 3.10 we have

u(h)− u1 =
∑
τ∈Tp

h%(τ)

σ(τ)

(
G(τ)(u0)− Ĝ(τ)(u0)

)
+O(hp+1). (13)

This proves the statement. ut
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Remark 4.2 The above derivation can be easily generalized to exponential
integrators with a fixed linearization

Ui = e−cihAu0 + h

i−1∑
j=1

aij(−hA)g(Uj), i = 1, . . . , s,

u1 = e−hAu0 + h

s∑
i=1

bi(−hA)g(Ui),

cf. [9]. If one replaces bie
−(1−ci)hA by bi(−hA) and aije

−(ci−cj)hA by aij(−hA)
in Definition 3.8, Theorems 3.10 and 4.1 also hold for general exponential
Runge–Kutta methods. If the stiff order conditions derived in [7] and [14] are

satisfied up to order p, then Ĝ(τ)(u0)−G(τ)(u0) = O(hp+1−%(τ)) for all τ ∈ Tp.

Example 4.3 For the exponential Euler method, where s = 1, c1 = 0, and
b1(z) = ϕ1(z), we have

Ĝ( )(u0) = b1(−hA)g(u0) = ϕ1(−hA)g(u0) =

∫ 1

0

e−(1−λ)hAg(u0)dλ

and thus

Ĝ( )(u0)−G( )(u0) =

∫ 1

0

e−(1−λ)hA
(
g(u0)− gλ(u0)

)
dλ.

The condition for order one requires that ‖g(u0)− gλ(u0)‖ ≤ Ch. In the linear
case, where g(u) = Bu, this can be written as

h−1
(
g(u0)− gλ(u0)

)
= h−1B

(
I − e−λhA

)
u0 = Bϕ1(−λhA)λAu0. (14)

Hence the condition is fulfilled if Au0 is uniformly bounded, i.e., u0 ∈ D(A).
For the convergence, we thus need u(t) ∈ D(A) for t ∈ [0, T ].

It might be interesting to compare (14) to the condition given in [9, Lem-
ma 2.13] which was proved by a Taylor series expansion of g

(
u(t)

)
. For linear

problems, it reads

‖B(Au(t) +Bu(t))‖ ≤ C. (15)

Hence both results require the same regularity, namely that Au(t) is uniformly
bounded. Note, however, that (15) does not involve the ϕ1 function. The latter
decays like 1/z as z → ∞ in the closed left half-plane, hence components
corresponding to eigenvalues with large negative real part are damped.

Corollary 4.4 If the underlying Runge–Kutta method is of (classical) order
p then

I(τ)1 = Î(τ)1 for all τ ∈ LT p, (16)

where 1 : [0, 1]%(τ) → R : λ 7→ 1 denotes the multivariate constant function
with value one.



On the convergence of Lawson methods for semilinear stiff problems 13

Proof First note that for problems with A ≡ 0, we have

G(τ)(w) = I(τ)D(τ)(w), Ĝ(τ)(w) = Î(τ)D(τ)(w).

On the one hand, classical Runge–Kutta theory implies that the local error
(13) behaves as O(hp+1) for any sufficiently smooth g. On the other hand,
the elementary differentials D(τ) are known to be independent. Hence, we

obtain that G(τ)(w) = Ĝ(τ)(w). The statement follows because the integrand
Ψ(τ)(·, w) ≡ D(τ)(w) is a constant. This yields (16). ut

Since the convergence analysis of Lawson methods also employs Taylor
expansion, we next study quadrature of monomials. For λ = (λ1, . . . , λq) ∈
[0, 1]q and a given vector κ = (κ1, . . . , κq) ∈ Nq0 of non-negative integers, we
define as usual

λκ = λκ1
1 · . . . · λκqq

and set κ! = κ1! · · ·κq! and |κ| = κ1 + . . . + κq. Moreover, we denote the
q-variate monomial function of degree |κ| by

zκ : [0, 1]q → R : λ 7→ λκ.

We note that zκ = zκ1
1 . . . z

κq
q and z0 = 1.

It turns out that a multivariate integration (or quadrature) w.r.t. τ of such
monomials corresponds to the integration (or quadrature) of the constant one
function w.r.t. a particular higher order tree stemming from τ .

Lemma 4.5 Let τ ∈ LT and κ ∈ N%(τ)0 . We denote by τ (κ) ∈ LT the tree
stemming from τ where κj leafs are added to its jth node. Then %(τ (κ)) =
%(τ) + |κ| and

Iζ(τ)zκ = Iζ(τ
(κ))1, Î(τ)zκ = Î(τ (κ))1, Îi(τ)zκ = Îi(τ

(κ))1

for i = 1, . . . , s.

Before proving this lemma, we illustrate the proof by an example.

Example 4.6 Let τ =
1

2 and κ = (κ1, κ2) ∈ N2
0. Here we have to consider

I(τ)zκ = I(
1

2)zκ =

∫ 1

0

∫ λ1

0

λκ1
1 λκ2

2 dλ2dλ1 =
1

(κ1 + κ2 + 2)(κ2 + 1)
,

Î(τ)zκ = Î(
1

2)zκ =

s∑
i,j=1

biaijc
κ1
i c

κ2
j .

Writing λj = Iλj ( )1, we observe that

I(τ)λκ = I(τ (κ))1, with τ (κ) =
1

2

,
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where τ (κ) was obtained by adding κ1 nodes to the root and κ2 nodes to the
leaf of τ , respectively. For illustration, all newly added nodes are white. They
are labelled by 3, . . . , κ1 +κ2 +2, but we do not show these labels in the graph
because they can be assigned arbitrarily to the white nodes.

Due to the simplifying assumptions, we also have Î(τ)zκ = Î(τ (κ))1. For

%(τ (κ)) = κ1 + κ2 + 2 ≤ p, the identity I(τ (κ))1 = Î(τ (κ))1 holds by Corol-
lary 4.4. In fact, this identity is equivalent to the (conventional) order condition
corresponding to the tree τ (κ).

Proof We prove the lemma by induction on %(τ). The tree τ = is the unique
tree with %(τ) = 1. For k ∈ N0, we have (k) = [ ]k, where [ ]k = [ , . . . , ]
denotes the bush with k leafs. Using λ = Iλ( )1 and the recursive definition of
Iζ(τ) we obtain

Iζ( )zk =

∫ ζ

0

λkdλ =

∫ ζ

0

(
Iλ( )1

)k
dλ = Iζ([ ]k)1 = Iζ(

(k))1.

Analogously, for i = 1, . . . , s, the simplifying assumptions yield ci = Îi( )1 and
this gives

Îi( )zk =

i−1∑
j=1

aijc
k
j =

i−1∑
j=1

aij
(
Îj( )1

)k
= Îi([ ]k)1 = Îi(

(k))1

and Î( )zk = Î( (k))1.

For the induction step, consider the tree τ = [τ1, . . . , τm] ∈ LT and assume
that the statement holds true for all τj , j = 1, . . . ,m.

We consider the monomial zκ with |κ| = ρ(τ) and write it according to
the tree structure of τ as zκ = zk0zκ1

1 . . . zκmm . Here z
κj
j denotes the monomial

containing the variables corresponding to the labels in τj with exponents given

in the multiindex κj ∈ N%(τj)0 and zk0 denotes the monomial corresponding to
the root with exponent k ∈ N.

The recursive definition of Îi(τ) and the induction hypothesis imply

Îi(τ)zκ =

i−1∑
j=1

aij Îj(τ1) · · · Îj(τm)ckj z
κ1
1 · · · zκmm

=

i−1∑
j=1

aijc
k
j

(
Îj(τ1)zκ1

1

)
· · ·
(
Îj(τm)zκmm

)
=

i−1∑
j=1

aij
(
Îj( )1

)k(
Îj(τ

(κ1)
1 )1

)
· · ·
(
Îj(τ

(κm)
m )1

)
= Îi(τ

(κ))1
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for i = 1, . . . , s, where we used that the sprouted tree can be cast recursively
as

τ (κ) = [ , . . . ,︸ ︷︷ ︸
k

, τ
(κ1)
1 , . . . , τ (κm)

m ].

The assertion for Iζ(τ) and Î(τ) can be shown analogously. ut

The following theorem provides a sufficient condition for Lawson meth-
ods being of (stiff) order p. Here, Ck,1(Rd, X) denotes the space of k times
continuously differentiable functions which have a Lipschitz continuous kth
derivative.

Theorem 4.7 Let the integrand Ψ(τ) of G(τ) satisfy

Ψ(τ)
(
·, u(t)

)
∈ Cp−%(τ),1

(
D(τ), X

)
for all τ ∈ LT p, (17)

where u(t) ∈ X is the solution of (5), 0 ≤ t ≤ T . If the underlying Runge–
Kutta method is of (classical) order p, then the Lawson method (4) is of (stiff)
order p.

Proof Let τ ∈ LT p. We approximate Ψ(τ)(·, u0) : D(τ)→ X by a multivariate
Taylor polynomial of degree p− %(τ). By assumption on Ψ(τ), the coefficients
and the remainder of this Taylor polynomial are bounded. Using the linearity
of the multivariate integrals and quadrature rules, we have by Lemma 4.5

G(τ)(u0)− Ĝ(τ)(u0) = I(τ)Ψ(τ)(·, u0)− Î(τ)Ψ(τ)(·, u0)

=
∑

|κ|≤p−%(τ)

1

κ!
Dκ(Ψ(τ))(0, u0)

(
I(τ)− Î(τ)

)
zκ +O(hp−%(τ)+1)

=
∑

|κ|≤p−%(τ)

1

κ!
Dκ(Ψ(τ))(0, u0)

(
I(τ (κ))1− Î(τ (κ))1

)
+O(hp−%(τ)+1).

Here we used ‖DκΨ(τ)‖ = O(h|κ|) to bound the remainder term. Since the
Runge–Kutta method is of order p, the claim now follows from %(τ (κ)) =

%(τ) + |κ| ≤ p and Corollary 4.4 which implies I(τ (κ))1 = Î(τ (κ))1. ut

This result now allows us to prove an error bound for Lawson methods
which is uniform for all problems (5) with A satisfying Assumption 3.1.

Theorem 4.8 Let u be the solution of (5), let Assumption 3.1 and the as-
sumptions of Theorem 4.7 be satisfied. If the underlying Runge–Kutta method
is of (classical) order p, then there exists h0 > 0 such that for all 0 < h ≤ h0
sufficiently small,

‖u(tn)− un‖ ≤ Chp, tn = nh ≤ T,

where C and h0 are independent of n, h, and A.



16 M. Hochbruck, J. Leibold, and A. Ostermann

Proof In the case of a group, we define an equivalent norm by

‖v‖? = sup
t∈R

∥∥e−tAv
∥∥ . (18)

Then, e−tA is a group of contractions in the corresponding operator norm∥∥e−tA
∥∥
?
≤ 1 for all t ∈ R. (19)

If −A only generates a bounded semigroup, we take the supremum in (18)
over t ≥ 0 only. This shows that −A generates a semigroup of contractions in
this equivalent norm.

By assumption, g is locally Lipschitz continuous. Then (19) and Theo-
rem 3.10 show that the Lawson method is locally Lipschitz with respect to
the initial value with a Lipschitz constant of size 1 + O(h). This implies the
required stability.

The error bound follows in a standard way using Lady Windermere’s fan;
see [5, Fig. I.7.1]. ut

5 Regularity conditions and applications

It remains to discuss the regularity conditions (17) and to give some appli-
cations. We first examine the conditions for orders one and two, respectively.
The extension to higher orders is a tedious but straightforward exercise. It
turns out that these regularity conditions can all be expressed in terms of
commutators, very much like in the case of splitting methods.

In order to obtain simple sufficient conditions, we replace the space
Ck,1(Ω,X) in condition (17) by the subspace of k + 1 times partially dif-
ferentiable functions with uniformly bounded partial derivatives on Ω in the
following discussion. This is also justified by the fact that Lipschitz continuous
functions are almost everywhere differentiable (Rademacher’s theorem).

5.1 Condition for order one

Since p = %(τ) = 1, we only have to consider the tree τ = in (17). Differen-
tiating

Ψ( )(λ,w) = e−(1−λ)hAgλ(w) = e−(1−λ)hAg
(
e−λhAw

)
(20)

with respect to λ yields

∂λΨ( )(λ,w) = he−(1−λ)hA
(
Agλ(w)− g′λ(w)Ae−λhAw

)
= he−(1−λ)hA[FA, g]

(
e−λhAw

)
,

(21)

where [FA, g] denotes the Lie commutator of g and FA(w) = Aw, defined as

[FA, g](w) = F ′A(w)g(w)− g′(w)FA(w) = Ag(w)− g′(w)Aw. (22)
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From this calculation, we conclude the following result. If the bound

sup
0≤λ≤1

sup
0≤t≤T

∥∥∥e−(1−λ)hA[FA, g]
(
e−λhAu(t)

)∥∥∥ ≤ C (23)

holds with a constant C that is allowed to depend on CF , then a Lawson
method of non-stiff order one has also stiff order one.

5.2 Conditions for order two

Stiff order two is achieved if we require the following two regularity conditions

Ψ( )(·, u(t)) ∈ C2([0, 1], X) and Ψ( )(·, u(t)) ∈ C1([0, 1]2, X).

Here, we omit the numbering of the tree with two nodes because it is unique.
We commence with the first condition and exploit the fact that ∂λΨ( )(λ,w)
is of exactly the same form as (20) with g replaced by the vector field [FA, g].
Hence from (21) we have

∂2λΨ( )(λ,w)
d

dw

(
[FA, g]

)
(e−λhAw)Ae−λhAw

)
= h2e−(1−λ)hA

[
FA, [FA, g]

](
e−λhAw

)
.

Therefore, the bound

sup
0≤λ≤1

sup
0≤t≤T

∥∥∥e−(1−λ)hA
[
FA, [FA, g]

](
e−λhAu(t)

)∥∥∥ ≤ C (24)

should hold with a constant C that is independent of ‖A‖.
Next, we move to the second condition. Differentiating

Ψ( )(λ1, λ2, w) = e−(1−λ1)hAg′λ1
(w)e−(λ1−λ2)hAgλ2

(w)

with respect to λ1 and λ2 yields

∂λ1Ψ( )(λ1, λ2, w) = he−(1−λ1)hA
(
Ag′λ1

(w)e−(λ1−λ2)hAgλ2(w)

− g′′λ1
(w)
(
e−λ1hAAw, e−(λ1−λ2)hAgλ2(w)

)
− g′λ1

(w)Ae−(λ1−λ2)hAgλ2
(w)
)

= he−(1−λ1)hA[FA, g]′
(
e−λ1hAw

)
e−(λ1−λ2)hAgλ2

(w),

since by definition (22) the derivative of the commutator satisfies

[FA, g]′(w)v =
d

dw

(
[FA, g]

)
(w)v = Ag′(w)v − g′′(w)(Aw, v)− g′(w)Av. (25)

commutator of two operators, and Moreover, we have

∂λ2
Ψ( )(λ1, λ2, w) = he−(1−λ1)hAg′λ1

(w)e−(λ1−λ2)hA[FA, g]
(
e−λ2hAw

)
,
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respectively. From these two relations, we infer that the bounds

sup
0≤λ2≤λ1≤1

sup
0≤t≤T

∥∥∥e−(1−λ1)hA[FA, g]′
(
e−λ1hAu(t)

)
e−(λ1−λ2)hAgλ2

(u(t))
∥∥∥ ≤ C,
(26a)

sup
0≤λ2≤λ1≤1

sup
0≤t≤T

∥∥∥e−(1−λ1)hAg′λ1
(u(t))e−(λ1−λ2)hA[FA, g]

(
e−λ2hAu(t)

)∥∥∥ ≤ C
(26b)

should hold with a constant C that is independent of ‖A‖.
From the above calculations, we conclude the following result. If the con-

ditions (23), (24), and (26) hold with a constant C that does not depend on
‖A‖, then a Lawson method of non-stiff order two has also stiff order two.

5.3 Conditions for higher order

The following lemma provides the formulas to derive the order conditions for
orders larger than two in a systematic way.

Lemma 5.1 Let m ≥ 1.

(a) For τ = we have

∂mλ Ψζ( )(λ,w) = hme−(ζ−λ)hA[FA, g]m
(
e−λhAw

)
,

where
[
FA, g

]
m+1

=
[
FA, [FA, g]m

]
with [FA, g]1 = [FA, g] denotes the

(m+ 1)-fold commutator.
(b) For τ = [τ1, . . . , τk] ∈ LT we have

∂mλ Ψζ(τ)(λ, λ2, . . . , λρ(τ), w)

= he−(ζ−λ)hA
[
FA, g

](k)
m

(
e−λhAw

)(
Ψλ(τ1)(·1, w), . . . , Ψλ(τk)(·k, w)

)
for λ ∈ R, and where ·j are the %(τj) variables corresponding to the subtree
τj, j = 1, . . . , k, sorted in increasing order.

Proof Both parts are proved by induction on m.

(a) For m = 1 the statement was proved in (21). The induction step is
proved by the same arguments as were used for m = 2 above.

(b) To prove the statement for m = 1, we first note that for τ = [τ1, . . . , τk]
the integrand of Gζ(τ) is given recursively as

Ψζ(τ)(λ, λ2, . . . , λρ(τ), w) = e−(ζ−λ)hAg
(k)
λ

(
w
)(
Ψλ(τ1)(·1, w), . . . , Ψλ(τk)(·k, w)

)
.
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Since ∂ηΨη(τ) = −hAΨη(τ) for any tree τ , we obtain

∂λΨζ(τ)(λ, λ2, . . . , λρ(τ), w)

= he−(ζ−λ)hA
(
Ag

(k)
λ (w)

(
Ψλ(τ1)(·1, w), . . . , Ψλ(τk)(·k, w)

)
− g(k+1)

λ (w)
(
Ae−λhAw, Ψλ(τ1)(·1, w), . . . , Ψλ(τk)(·k, w)

)
− g(k)λ (w)

(
AΨλ(τ1)(·1, w), Ψλ(τ2)(·2, w) . . . , Ψλ(τk)(·k, w)

)
− . . .

− g(k)λ (w)
(
Ψλ(τ1)(·1, w), . . . , Ψλ(τk−1)(·k−1, w), AΨλ(τk)(·k, w)

))
.

On the other hand, by definition (22), we have

[FA, g](k)(w)(v1, . . . , vk) = Ag(k)(w)(v1, . . . , vk)− dk

dwk
(
g′(w)Aw

)
(v1, . . . , vk).

Using induction on k it is easy to see that

dk

dwk
(
g′(w)Aw

)
(v1, . . . , vk) = g(k+1)(w)(Aw, v1, . . . , vk)

+ g(k)(w)(Av1, v2, . . . , vk) + . . .

+ g(k)(w)(v1, . . . , Avk).

This proves the claim for m = 1. If it holds for some m ≥ 1 then it does also
for m+ 1, since the same calculation can be done with [FA, g](k) in the role of
g(k). ut

The lemma thus shows that all derivatives arising in the order conditions
can be obtained recursively from the tree structure. Moreover, only commu-
tators, iterated commutators and their derivatives appear.

5.4 Specialization to linear problems

For the linear evolution equation

u′ +Au = Bu, u(0) = u0

with bounded operator B on X, the above conditions (23), (24), and (26)
simplify a bit. Having g(u) = Bu, the Lie commutator coincides with the
operator commutator of A and B

[FA, g](w) = ABw −BAw = [A,B]w.

A first-order Lawson method is of stiff order one if

sup
0≤λ≤1

sup
0≤t≤T

∥∥∥e−(1−λ)hA[A,B]e−λhAu(t)
∥∥∥ ≤ C. (27a)
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For second order, the conditions read

sup
0≤λ≤1

sup
0≤t≤T

∥∥∥e−(1−λ)hA[A, [A,B]]e−λhAu(t)
∥∥∥ ≤ C, (27b)

sup
0≤λ2≤λ1≤1

sup
0≤t≤T

∥∥∥e−(1−λ1)hA[A,B]e−(λ1−λ2)hABe−λ2hAu(t)
∥∥∥ ≤ C, (27c)

sup
0≤λ2≤λ1≤1

sup
0≤t≤T

∥∥∥e−(1−λ1)hABe−(λ1−λ2)hA[A,B]e−λ2hAu(t)
∥∥∥ ≤ C. (27d)

We recall that such conditions also arise in the analysis of splitting methods;
see [10].

Using Lemma 5.1, the above analysis can easily be generalized to higher
order, since for linear problems, only long trees have to be considered. For all
other trees, which have at least one node with two branches, the integrand Ψ
vanishes.

5.5 Nonlinear Schrödinger equations

For the time discretization of nonlinear Schrödinger equations

u′ = i
(
∆u+ f(|u|2)u

)
, (28)

split-step methods are commonly viewed as the method of choice. In recent
years, however, exponential integrators have been considered as a viable alter-
native for the solution of (28). For instance, [2] studied exponential integrators
in the context of Bose–Einstein condensates; [3] and [1] reported favorable re-
sults for Lawson integrators of the form as discussed in this paper. Rigorous
convergence results, however, are still missing for these methods.

As an application of our analysis, we will use the above regularity condi-
tions (23), (24), and (26) to verify second-order convergence of Lawson meth-
ods. We refrain from any particular space discretization and argue in an ab-
stract Hilbert space framework. Note, however, that our reasoning carries over
to spatial discretizations (by spectral methods, e.g.) without any difficulty.

For this purpose, we consider (28) with periodic boundary conditions on
the d dimensional torus and smooth potential. Then it is well known (see,
e.g., [12, Thm. 4.1]) that the problem is well posed in Hm for m > d/2. The
regularity of an initial value u0 ∈ Hm is thus preserved along the solution.
Henceforth we choose m > d/2.

Second-order Strang splitting for (28) with f(u) = ±u was rigorously anal-
ysed in [15]. There it was shown that commutator relations similar to our
conditions (23), (24), and (26) play a crucial role in the convergence proof
for Strang splitting. The analysis given here shows that Lawson methods con-
verge under the same regularity assumptions as splitting schemes. This will
be worked out now in detail for first and second-order methods.

Let A = −i∆ and g(u) = iβ|u|2u, β ∈ R, i.e. f = βI. By

g(u+ w) = iβ(u+ w)2(u+ w) = g(u) + iβ(u2w + 2uuw) +O(|w|2),
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the Fréchet derivative of g is given by

g′(u)w = iβ(u2w + 2 |u|2 w).

The first commutator [FA, g] then takes the form

[FA, g](u) = Ag(u)− g′(u)Au

= −i∆g(u) + g′(u)i∆u

= β∇ · ∇(u2u) + iβ
(
u2(i∆u) + 2 |u|2 i∆u

)
= β∇ ·

(
2uu∇u+ u2∇u

)
+ β

(
u2∆u− 2 |u|2∆u

)
= β

(
2u∇u · ∇u+ 2u∇u · ∇u+ 2 |u|2∆u+ 2u∇u · ∇u

+ 2u2∆u− 2 |u|2∆u
)

= 2β
(
u∇u · ∇u+ 2u∇u · ∇u+ u2∆u

)
. (29)

We next show that the commutator can be bounded in Hm if the solution
is in Hm+2 for m ≥ 0.

Lemma 5.2 Let Ω ⊂ Rd, d ≤ 3, be a bounded Lipschitz domain. Then there
exists a constant C which only depends on Ω and d such that

‖[FA, g]u‖m ≤ C ‖u‖
3
m+2 . (30)

Proof Note that by the Sobolev embedding theorem we have the following
bounds

‖uvw‖0 ≤ C ‖u‖1 ‖v‖1 ‖w‖1 , (31a)

‖uvw‖0 ≤ C ‖u‖0 ‖v‖2 ‖w‖2 , (31b)

‖uvw‖1 ≤ C ‖u‖1 ‖v‖2 ‖w‖2 , (31c)

‖uvw‖m ≤ C ‖u‖m ‖v‖m ‖w‖m , m ≥ 2; (31d)

see [15, Section 8].
For m = 0, the bound (30) follows from using (31a) for the first two terms

and (31b) for the last one in the explicit expression (29) of [FA, g]. For m = 1
we apply (31c) to all terms and for m ≥ 2 the bound follows from (31d). ut

For Lawson methods, a first-order convergence bound in Hm thus requires
Hm+2 regularity of the exact solution, which is the same regularity as required
for the first-order Lie splitting.

For second-order methods, one has to estimate the double commutator
[FA, [FA, g]]. A simple calculation shows that a bound in Hm requires Hm+4

regularity of the exact solution. This situation is exactly the same as for second-
order Strang splitting (see [15]). Using (29) we conclude that the derivative of
the commutator [FA, g] can be expressed as

[FA, g]′(u)w = 2β
(
w∇u · ∇u+ 2u∇u · ∇w + 2w∇u · ∇u+ 2u∇w · ∇u

+ 2u∇u · ∇w + u2∆w + 2uw∆u
)
.

This commutator can again be bounded in Hm for u,w ∈ Hm+2. We thus
conclude that Lawson methods require the same regularity for second-order
convergence as Strang splitting.



22 M. Hochbruck, J. Leibold, and A. Ostermann

5.6 Numerical examples

Lawson methods exhibit a strong order reduction, in general. For particular
problems, however, they show full order of convergence (see [11], [2], [3], [1],
and [16]). Most of the problems considered in these papers result from space
discretizations of partial differential equations posed with periodic boundary
conditions.

After space discretization (by finite differences, finite elements, or spectral
methods) the evolution equation (5) becomes an ordinary differential equation

u′(t) +ANu(t) = gN
(
u(t)

)
, u(0) = u0 (32)

with a matrix AN ∈ CN×N and a discretization gN : CN → CN of g, where N
denotes the employed degrees of freedom. In order to satisfy Assumption 3.1
the space discretization is required to provide matrices AN such that∥∥e−tAN

∥∥ ≤ CF (33)

holds with a constant CF being uniform in N and t ∈ R.

In the previous sections we showed that full order of convergence is only
guaranteed if certain regularity conditions are satisfied. The aim of the follow-
ing numerical examples is to show that order reduction can also be observed
numerically, if some of these regularity assumptions are violated. In fact, such
order reductions can even be observed for linear problems. Hence we abstain
from presenting numerical examples for semilinear problems here. Numerous
such examples can be found in the literature mentioned above. We also restrict
ourselves to the first order schemes covered by our analysis, the exponential
Euler and the Lawson–Euler method, since they already show interesting (and
different) convergence behavior.

We consider the linear Schrödinger equation

ut = iuxx + if(x)u, x ∈ [−π, π], u(0, ·) = u0, (34)

with periodic boundary conditions and discretize it using a Fourier spectral
method on an equidistant grid. Let N be even and denote by FN the discrete
Fourier matrix. Then matrix AN is given as

AN = iF−1N D2
NFN , where DN = diag(−N2 + 1,−N2 + 2, . . . , N2 ),

and

gN (u) = BNu, BN = i diag
(
f(x−N/2+1), . . . , f(xN/2)

)
, xm = m 2π

N .

With this notation, the exact solution of (32) is given by

u(t) = et(−AN+BN )u0. (35)
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Example 5.3 The aim of this example is to explain that the concept of reg-
ularity is relevant even in the ODE context. In order to show what regularity
means here, we carry out the following experiment. For each N = 27, . . . , 212

we choose a regularity parameter α ≥ 0 and a vector r = (rm)
N/2
m=−N/2+1 ∈ CN

of Fourier coefficients whose entries contain random numbers uniformly dis-
tributed in the unit disc. Then we define an initial function as the trigonometric
polynomial

ũ0;N (x) =

N/2∑
m=−N/2+1

νmeimx, νm =
rm

(1 +m2)
1
2

(
1
2+α+ε

) , ε = 10−6.

In the limit N →∞, this sequence of trigonometric polynomials converges to
a function in the Sobolev space Hα

per = Hα
per((−π, π)) equipped with the norm

‖u‖2α = 2π
∑
m∈Z

(1 +m2)α |ûm|2 for u =
∑
m∈Z

ûmeimx.

For α = 0 we have the standard L2 norm

‖u‖20 =

∫ π

−π
|u(x)|2 dx.

Then we define an initial vector u0 ∈ CN for (32) corresponding to a function
u0 ∈ Hα

per by setting the jth component as

(u0)j = u0;N (xj), j = −N2 + 1, . . . , N2 , (36)

where u0;N = ũ0;N/ ‖ũ0;N‖0 has unit L2 norm. The discrete Sobolev norms in
CN corresponding to ‖·‖α can be computed via

‖u‖2α,N = 2π
∥∥∥(I +D2

N )α/2FNu
∥∥∥2
CN

,

where ‖·‖CN denotes the Euclidean norm in CN . This yields ‖u0‖α,N = ‖u0;N‖α.
In Figure 1 we plot ‖u0‖µ,N for different values of µ against the number

of Fourier modes N . The three graphs clearly show that ‖u0‖µ,N is bounded
independently of the number N of Fourier modes only for µ ≤ α. This cor-
responds to the continuous case, where obviously, the Sobolev norm ‖u‖µ is
bounded for all functions u ∈ Hα

per for µ ≤ α.

The example clearly shows that regularity of the corresponding continuous
function is crucial to obtain error bounds which do not deteriorate in the limit
N →∞.

After these introductory explanations, we now fix the spatial discretization
and set N = 2048. We consider (34) for two different functions f :

f(x) = sinx, (37a)

f(x) = (x/π)2. (37b)
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Fig. 1 Illustration of discrete regularity: the discrete Hµ
per-Sobolev seminorm ‖u0‖µ,N is

plotted against the number N of Fourier modes, where u0 is chosen as in (36) (and thus
corresponds to a function in Hα

per).

Example 5.4 In Figure 2 we show the numerically observed orders of the
exponential Euler and the Lawson–Euler method for the smooth, periodic
potential (37a) for different values of α such that the corresponding initial
function is contained in Hα

per. The leading error terms of the new analysis for
the exponential Euler and the Lawson–Euler method are given in (14) and
(27a), respectively.

Since B : Hα
per → Hα

per is a bounded perturbation of A, the exact solution
of the continuous problem is guaranteed to stay in Hα

per for initial values in

Hα
per for α ≥ 0. For the discrete problem, e−λhAN and eλh(−An+BN ) are uni-

tary matrices, which means that they leave all discrete Sobolev norms ‖·‖α,N
invariant. Thus the expression in (27a) can be bounded by∥∥∥e−(1−λ)hAN [AN , BN ]e−λhANu(t)

∥∥∥
0,N
≤ c1

∥∥e−λhANu(t)
∥∥
1,N

= c1 ‖u(t)‖1,N

= c1 ‖u0‖1,N .

Here, the first inequality was proved in [10, Lemma 3.1] with a constant c1
independent of N and AN .

Hence, the (sufficient but not necessary) order condition (27a) for the
Lawson–Euler method yields order one convergence for initial values bounded
in ‖ · ‖α for α ≥ 1. Numerically, we observe an order reduction for α = 0
for the Lawson–Euler method, while the exponential Euler method, which re-
quires initial values in H2

per = D(A), cf. (14) or (15), shows order reduction for
α ≤ 1. For α = 0 the error of the exponential Euler method has an irregular
behaviour for larger step sizes. To better visualise the order, we added thin
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Fig. 2 Discrete L∞((0, 1), L2(Ω)) error (on the y-axis) of the numerical solution of (34)
with periodic potential (37a) plotted against the step size h (on the x-axis) for starting values
in Hα

per. The top graph shows the exponential Euler method and the bottom graph shows
the Lawson–Euler method. The values of p in the legend show the numerically observed
orders of the schemes.

lines (blue in the colored version) to all curves related to α = 0. The slopes p
of these lines are also given in the legends (blue in the colored version).

Example 5.5 In Figure 3 we present the same experiment for the quadratic
potential (37b). Here, the commutator bound of [10, Lemma 3.1] does not
apply, since it requires a C5 smooth and periodic potential f . The situations
differs considerably for the exponential Euler method which suffers from order
reduction for all α ≤ 2 due to the nonsmooth potential f . In contrast, the
Lawson–Euler method still converges with order one for α ≥ 0.5.

Note that for these examples, the convergence behavior is slightly better
than predicted by our theory. This is not a contradiction, because the order
conditions are only sufficient but not necessary. To be more precise, our analy-
sis contains a worst case estimation of the error propagation from the local to
the global error by using Lady Windermere’s fan in the proof of Theorem 4.8.
Nevertheless, the examples clearly show the different behavior of the exponen-
tial Euler method and the Lawson–Euler method. Which of the two methods
yields better results depends on the given problem, as reflected by our error
analysis.
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Fig. 3 Discrete L∞((0, 1), L2(Ω)) error (on the y-axis) of the numerical solution of (34)
with quadratic potential (37b) plotted against the step size h (on the x-axis) for start-
ing values in Hα

per. The top graph shows the exponential Euler method and the bottom
graph shows the Lawson–Euler method. The values of p in the legend show the numerically
observed orders of the schemes.
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