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Abstract This article investigates the effect of graph symmetry on modularity
optimal graph clustering partitions. The key finding is that there actually exists
an impact of graph symmetry, as more than 22 % of the analyzed graphs have
an unstable partition. The results are based on an empirical analysis of 1254
symmetric graphs, which are a subset of the 1699 graphs that were analyzed by
Ball and Geyer-Schulz (2018a). For each graph a modularity optimal partition is
computed by a graph clustering algorithm. Additionally, the generating sets for
the automorphism group of each graph are obtained. All computed partitions
are tested for stability, which means that the symmetry that is captured by the
automorphism group does not change this partition. Furthermore, definitions that
allow to distinguish local and global symmetry of graphs are presented.
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1 Introduction

The investigation of symmetry phenomena goes back to observations from the
Stone Age (Reber, 2002) and examples of symmetry in ancient years (e.g.
Sumerian and Greek engravings) are also used in the beginning of the relatively
famous book ofWeyl (1952). Moreover, in many scientific disciplines, especially
in physics (Gross, 1996), symmetry effects play a major role in the theories
and models. However, symmetry considerations in data analysis are not very
common. For instance, Viana (2007) presents how a symmetry relation on
the labels of structured data can be defined and how this leads to symmetric
decompositions of the data. Murtagh (2009) shows how hierarchy in data, which
can be represented by a dendrogram, can be interpreted in terms of equivalence
by using the distances between the data points in the dendrogram. These distances
are defined by an ultrametric. As a consequence, data points in the same branch
of the dendrogram have the same distance to data points in another branch of the
dendrogram. Thus, they are equivalent. Another example that is connected with
data analysis is by Jabbour et al (2013). The authors introduce a pruning method
for the well known apriori algorithm for frequent itemset mining (Agrawal
and Srikant, 1994). The goal of apriori is to systematically identify sets of
items that appear more often than a threshold from a set of transactions. Each
transaction is itself a set of items. An obvious application is the analysis of
(retail or online) shopping carts with the goal to generate recommendations on
which products to buy in addition to those that are already in the shopping cart
of a customer. The method of Jabbour et al (2013) finds equivalent items in the
data, and if one of these items is infrequent, i.e. it can be excluded from the
further search of apriori, all the equivalent items are infrequent, too.
Graphs can be used to model numerous situations, where it is necessary

to portray the relations (the edges) between entities (the nodes). Besides this
flexibility, graphs have the convenient property that the symmetry is already
contained in the data and needs not to be defined separately. For example, the
method of Jabbour et al (2013), roughly described above, transforms the frequent
itemset problem into a graph representation and then finds the symmetries of
the graph. This first example of symmetry that exists in graph data, however,
shows a situation where symmetry is sought as part of a data mining algorithm
instead of a situation where a given graph is analyzed exploratively and possibly
even without prior knowledge about its structure. There are only few studies in
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the literature that deal with symmetry of real-world graphs, i.e. graphs which
emerge from some practical situation in reality: MacArthur et al (2008) show
that symmetry exists in real-world networks, is caused by growth processes,
often has a simple form, and they conjecture that symmetry may affect network
properties such as robustness. For biological networks, Xiao et al (2008) study
core relationships between biochemical control motifs by network quotients
(the set of equivalence classes of vertices and the relationships between the
equivalence classes). This removes the functional redundancy of biological
networks introduced by growth processes with vertex and partial network
duplication. In many biological networks, symmetry increases redundancy and
thus serves as a reinforcement against damage. This seems also to hold for
economic trading networks (Wang et al, 2009). Last, but not least, symmetry
can be systematically exploited for speeding up graph symmetry discovery
algorithms as Darga et al (2008) and Wang et al (2012) show. Consequences of
symmetry are often known theoretically (e.g., shortest paths of equivalent nodes
are all equivalent), but the practical impact on data analysis is neglected.
This paper is motivated by and part of a small research program on the role

of symmetry in graph clustering algorithms and diagnostics. From a purely
mathematical point of view, symmetry obviously affects the uniqueness and
stability of optimal partitions (e.g. for the clustering of completely transi-
tive graphs as the Petersen Graph (Ball and Geyer-Schulz, 2020)) and, for
graph diagnostics, requires the use of invariant graph partition comparison
measures (Ball and Geyer-Schulz, 2018b).
Practitioners of data analysis tend to discount such mathematical results as

irrelevant, since they have been demonstrated on toy examples only.Many of them
claim that, first, symmetry is unlikely to occur in real-life graphs and that, second,
if it occurs, it does not affect the results of graph clustering algorithms.

The work of MacArthur et al (2008) is a first indication that symmetry exists
in real-word graphs, but only for a very small number of graphs. We have
investigated the claim that symmetry does not exist in real-world graphs in
two related studies on datasets from networkrepository.com. The first
study showed that only 272 of the 902 graphs investigated are asymmetric Ball
and Geyer-Schulz (2018a). A more detailed analysis revealed that many of the
asymmetric graphs have been artificially generated for benchmark purposes.
The second study, which includes the graphs of the first study and has the
largest published size (n = 1699), shows that over 70 % of all analyzed graphs
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are symmetric (Ball and Geyer-Schulz, 2018a). Although the graphs from
networkrepository.com do not constitute a random sample, our studies
provide strong evidence for the existence of symmetry in real-world graphs.

This article is motivated by the second objection, namely that symmetry has
no effect on the results of graph clustering algorithms. It poses the question,
whether graph symmetry affects the graph clustering result, i.e. whether there are
nodes in the resulting partition that can be exchanged between different clusters
due to symmetry. A direct consequence of instability in terms of this article
(we become more formal in Section 3) is the existence of multiple solutions
of the same quality. This may not seem to be a big issue for practitioners, but
when it comes to comparisons of graphs partitions, uniqueness of solutions
is essential for traditional partition comparison measures. For non-unique
partitions, similarity and dissimilarity measures are not unique and invariant
versions of these measures are needed (Ball and Geyer-Schulz, 2018b). The
practical conseqences of cluster instability depend on the application and are
not studied in this contribution.
We restrict our investigation to modularity graph clustering (Newman and

Girvan, 2004), which is, however, no restriction in general, as the whole
analysis framework that we propose is irrespective of the used clustering
method. More precisely, the analysis framework is not even restricted only to
clustering, but works on a partition of the graph’s node set and the symmetry
group that acts on the nodes.

The following pages are structured as follows: Section 2 provides the necessary
preliminaries, namely the definitions of a graph, of graph clustering, and of graph
symmetry. In Section 3 we present five measures that allow the quantification of
local and global graph symmetry, as well as the average size of a cluster and the
average number of nodes affected by local symmetry. Local symmetry means
that the different symmetries of a graph can be divided into several independent
subsymmetries in comparison to the overall symmetry of the graph.We use these
measures in Section 4, where we briefly describe how the analysis is conducted.
After that, we present the analysis results, which are divided into simple and
simplified graphs. Simplification tends to increase symmetry. Therefore, for
the latter, even more partitions are unstable compared to the former. Finally, in
Section 5, we wrap up our results and point into directions of future research.



The Impact of Graph Symmetry on Clustering 5

2 Preliminaries

Before we can analyze graphs in terms of clustering partition stability we have
to introduce and define several concepts. A graph G = (V,E) is called simple if
V = {1,2, ... ,n} is a finite set of nodes and E ⊆ {{u, v} | u, v ∈ V, u , v} is a
set of symmetric binary relations, called edges. Edges {u, v} are abbreviated uv.
Furthermore, we assume graphs to be connected, which implies m B |E | ≥ n−1
and for every possible partition V = V1 ∪ V2 (V1 ∩ V2 = ∅ and V1,V2 , ∅) there
exist u ∈ V1, v ∈ V2 so that uv ∈ E . Graphs that are not simple as defined
above are called non-simple. This means they either have directed, weighted, or
multiple edges, possibly contain loops (i.e. edges from one node to itself), or
are characterized by some other additional properties that are defined on the
nodes or edges. Of course, also a combination of more than one such property
results in a non-simple graph.
There does not exist a unique definition for graph clustering, but in general

this means to partition the set of nodes V by some algorithm. A partition P(V)
(or just P if the context is clear) is a set of clusters Ci , ∅ so that

⋃
i Ci = V and

Ci ∩Cj = ∅ holds for all Ci,Cj ∈ P, i , j. How a partition of a graph is formed,
depends on the used method. Some try to divide the graph into a fixed number
of clusters (e.g. Sanders and Schulz, 2013), others (e.g. Flake et al, 2004)
minimize the cuts between clusters and maximize the cuts within clusters. A cut
between two clusters is simply the number of edges that connect the two clusters.
The nowadays still very popular modularity of Newman and Girvan (2004) is
defined in a similar manner. It is a measure of graph partition quality, which is
formed as the difference of the intra-cluster edge fraction (eii) and the expected
quantity of edges that have the same type in terms of their incidence (a2

i ). These
per cluster differences are summed up for the whole partition

Q B
∑
Ci ∈P

(
eii − a2

i

)
. (1)

Given two clusters Ci and Cj , ei j B
|{uv∈E |u∈Ci ,v∈C j } |

2m is the number of edges
that connect a node in Ci to a node in Cj divided by twice the number of
edges. As ei j = eji, 2ei j is the ratio of edges in G that connect Ci and Cj ;
eii is the fraction of edges within cluster Ci. Each cluster Ci is characterized
by its incidence information, i.e. the ratio of edges of G which are incident
to the cluster. This is ai B

∑
C j ∈P ei j . Therefore, eii is the probability for an
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edge of G to be part of Ci and a2
i is the probability for an edge to connect two

other (randomly chosen) clusters with the same incidence characteristics as Ci .
That concludes the definition of Q: If eii − a2

i is large, most of the structurally
equivalent nodes (characterized by edge incidence) are part of the same cluster
and the cluster is a good one. Consequently, if this is true for all clusters,
the partition is a good one.
More details on the mathematical definition can be found in Newman and

Girvan (2004) or Geyer-Schulz and Ovelgönne (2012); Ovelgönne and Geyer-
Schulz (2013). For the rest of this article we understand graph clustering as the
optimization of modularity, which here means maximization. However, most of
our upcoming definitions and analyses are completely independent of the used
clustering approach and can also be applied to other graph clustering strategies,
as in fact only a graph partition is needed, independent of its origin.
Graph symmetry can informally be described as the possibility of a cyclic

reassignment of the node labels under the constraint that the edge relations stay
the same. Formally, the relabeling is defined as a permutation, which is called
graph automorphism in this context. A permutation π : V → V is a bijective
map of nodes onto nodes, i.e. for every u ∈ V there exists a unique image
u 7→ uπ and uπ ∈ V , where uπ is the image of π applied to u. To explicitly
write a permutation we use the condensed cycle notation π = c1 · · · cl. Each
ci is a cycle of nodes ci = (u v . . .w) so that u 7→ v, v 7→ . . ., and finally
w 7→ u. Cycles of length one fix this node and they are normally omitted in
the notation. A permutation π is an automorphism of G iff Gπ = G. That
means (Vπ,Eπ) = (V,E) with Vπ B {uπ | u ∈ V} and Eπ B {uπvπ | uv ∈ E}.
The condition V = Vπ always holds by definition and E = Eπ reflects the
constraint of unchanged edge relations. These definitions imply the applicability
of permutations not only on single nodes but also on sets (like clusters) and on
other combinatorial objects (like partitions). In particular, Pπ B {Cπ | C ∈ P},
and Cπ is covered by the definition of Vπ above.
Two permutations π and τ can be catenated so that uπτ = (uπ)τ is the

successive application from left to right and πτ = ρ is again a permutation. The
set of all automorphisms of G is denoted Aut(G), which is a permutation group
with the following properties:

• Identity: 1 ∈ Aut(G) : 1π = π1 = π ∀π ∈ Aut(G)

• Inverses: π ∈ Aut(G) ⇐⇒ π−1 ∈ Aut(G) with ππ−1 = π−1π = 1

• Closure: ∀π, τ ∈ Aut(G) : πτ ∈ Aut(G)

• Associativity: ∀π, τ, ρ ∈ Aut(G) : (πτ)ρ = π(τρ)
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These properties allow a compact representation of Aut(G) in terms of a subset
S ⊂ Aut(G) that generates the whole group, denoted 〈S〉 = Aut(G). The gener-
ation informally means to successively create new permutations by catenating
all possible combinations of elements of S until Aut(G) is recreated.

Often it is possible to decompose an automorphism group into several normal
subgroups H1, ... ,Hk , denoted Hi C Aut(G). A subgroup is simply a subset
of the permutation group Aut(G), which is itself a group, and normality of a
subgroup is the property that ∀π ∈ Aut(G) : πHiπ

−1 = Hi . The term πHiπ
−1 is

defined as the set
{
πτπ−1 | τ ∈ Hi

}
and thus πHiπ

−1 = Hi informally means
that Hi is unaffected by every π ∈ Aut(G).

Transferred to graphs, this can be interpreted as the existence of an area in the
graph, expressed by a subset of nodes, that is symmetric but independent of other
such areas. This independence is nicely described by MacArthur et al (2008)
who define these groups to be support disjoint. The support of a permutation π is
the set of nodes not fixed by π: supp (π) B {u ∈ V | uπ , u} and, consequently,
the support of a group is supp (Hi) B

⋃
π∈Hi

supp (π). Composing all the
support disjoint Hi, Hj (i.e. supp (Hi) ∩ supp

(
Hj

)
= ∅ (i , j)) yields the

automorphism group
∏

i Hi = Aut(G). If such a decomposition exists (i.e.
k > 1, Aut(G) E Aut(G) is always true) it also can be carried out on the
generating set S, given its elements satisfy two conditions (irreducibility and
uniqueness (MacArthur et al, 2008, p. 3527)). We do not give the details,
but assume that these conditions hold in the following. As a consequence,
if decomposition is possible, Aut(G) =

∏
i Hi =

∏
i 〈Si〉 where Hi = 〈Si〉,

i = 1, ... , k. An example is given in Figure 1.

1

2

3

4

5

6

(a) A small graph with the automorphism group
Aut(G) = {1, (1 2), (4 5), (4 6), (5 6), (4 5 6),
(4 6 5), (1 2)(4 5), (1 2)(4 6), (1 2)(5 6), (1 2)
(4 5 6), (1 2)(4 6 5)}.

(b) The squared red and the diamond blue nodes
can both be mapped onto each other color-wise
but the two symmetries are independent: H1 =
{1, (1 2)}, H2 = {1, (4 5), (4 6), (5 6), (4 5 6),
(4 6 5)} with Aut(G) = H1 × H2. The “missing”
permutations of Aut(G) emerge from the
possible combinations πτ, π ∈ H1, τ ∈ H2.

Figure 1: Example of a small symmetric graph which has a decomposable automorphism group
(left). The two independent symmetric areas are differently colored (right) and a decomposition of the
generating set is S = {(1 2)} ∪ {(4 5), (4 5 6)}.
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3 Measures

A graph partition P is stable under the symmetry group Aut(G), if there does
not exist an automorphism π ∈ Aut(G) so that P , Pπ . However, if P , Pπ

′,
π′ is said to affect P and, therefore, symmetry has an impact on the partition.
|Aut(G)| = 1 means only the identity automorphism exists, which leaves all
nodes unchanged (mapped onto themselves), and the graph is asymmetric. As a
consequence, only symmetric graphs at all may have an impact on partitions
and asymmetric graphs can be excluded from our investigation.
Three equivalent measures of partition stability are presented by Ball and

Geyer-Schulz (2018c). One definition to capture this property is to partition the
generating set S, depending on whether an element π ∈ S affects a partition
P or not. The set S is split into two subsets Π̃intra B {π ∈ S | Pπ = P} and
Π̃inter B S \ Π̃intra, either of them can possibly be empty. If Π̃inter = ∅, the
partition is said to be stable, as no permutation exists for which P is mapped to
Pπ , P. A simple measure that can be derived is

igS B
|Π̃inter |

|S |
, (2)

which is the fraction of the number of generating elements that cause in-
stability compared to the size of the generator as a whole. It clearly takes
values between 0 and 1. Smaller values indicate less instability, larger
values indicate more instability.

The partition P = {{1,2,3} , {4,5} , {6}} of the small graph in Figure 1 is
affected by the symmetry: The generating set S = {(1 2), (4 5), (4 5 6)} is divided
into Π̃intra = {(1 2), (4 5)} and Π̃inter = {(4 5 6)}, as P(4 5 6) = {{1,2,3} ,
{5,6} , {4}} , P. Hence, igS = 1

3 .
Let us now come to measures that quantify the symmetry of a graph itself.

We call the first one relative symmetry, as it is defined as the fraction of nodes
that are affected by symmetry:

rsG B
|supp (Aut(G)) |

n
. (3)

It takes values between 0 (asymmetric graph) and 1 (completely symmetric
graph). Based on this definition, we define

gsG B
rsG

k
(4)

to be the mean global symmetry, where k is the number of support disjoint sub-
groups H1× . . .×Hk = Aut(G). Therefore, gsG is the average fraction of affected
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nodes of each independent symmetric area in the graph. The idea is to distinguish
between the graph symmetry as such and local symmetry, which means that gsG
becomes small if there are many small areas of independent symmetry.
When we apply those definitions to the graph in Figure 1, supp (Aut(G)) =
{1,2,4,5,6} and k = 2, as Aut(G) = H1 × H2 (see Figure 1b). The relative
symmetry is then rsG = 5

6 , which is a high value because all but one node
(the center node) are affected by symmetry. However, as the automorphism
group can be decomposed into two independent subsymmetries, the mean global
symmetry is smaller (gsG =

5
12 ).

The last two measures quantify the average/maximum number of nodes that
are affected by an independent symmetry subgroup or are part of a cluster.
Average support is defined as

avg (supp (Aut(G))) B
|supp (Aut(G)) |

k
, (5)

where k is again the number of support disjoint subgroups of Aut(G). To
measure the average number of nodes per cluster we define

avg (C) B
n
|P |

. (6)

This definition is in line with the findings of Fortunato and Barthélemy
(2007), which support the implicit assumption of balanced cluster sizes if
modularity clustering is used.

Again, applying these measures on the small graph G (Figure 1) and the parti-
tion P from above, which consists of three clusters, yields avg (supp (Aut(G))) =
5
2 and avg (C) = 6

3 = 2.

4 Empirical Analysis

Following our goal to find out whether graph symmetry possibly affects the graph
clustering results, i.e. more precisely, if the resulting partition is stable, we carry
out an empirical analysis of a large collection of graphs. The data base and the
analysis approach of it is similar as described by Ball and Geyer-Schulz (2018a)
and we only outline the essentials here:

• The meta-repository http://www.networkrepository.com is used
as source of many graphs of diverse sizes and from different domains like
(online) social networks, chemical / biological networks, recommendation

http://www.networkrepository.com
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networks, ... . We selected all datasets with a compressed size of at most 70
megabytes (a total of 3015 datasets; Ball, 2019). We must not assume that
our selection of graphs generalizes to every possible area of application.
Nonetheless, we cover a wide range of graphs which are relatively well
known in the scientific community (e.g. the Karate network) and believe
that our convenience sample is at least not too unrepresentative.

• Only symmetric graphs (|Aut(G)| > 1) are taken into account as it makes
no sense to investigate symmetry effects of asymmetric graphs.

• We distinguish simple and non-simple graphs and we take only connected
graphs into account. Simple graphs are defined as above (undirected,
unweighted, no loops or multiple edges). A non-simple graph is character-
ized to have at least one of the above properties, and it can be transformed
into a simple graph by removing those additional properties: Directed
edges are removed by replacing them by undirected edges, weights are
removed by forcing the weight to 1 (which is equivalent to the binary
relation defined above), loops are removed without replacement, and mul-
tiple edges between two nodes are replaced by a single edge. This leads to
the phenomenon that a simplified graph is possibly more symmetric than
its non-simple counterpart, because there are more degrees of freedom
in the symmetry definition. For simple graphs, two nodes are already
equivalent if their adjacency relations are equivalent. Two nodes of a
non-simple graphs are only equivalent if additionally to the adjacency
(i.e. the structure) the corresponding edges have the same weights, both
nodes have a loop, etc. Therefore, relaxing these properties may turn an
asymmetric non-simple graph into a symmetric simple graph. For an
example, see Ball and Geyer-Schulz (2018a, pp. 4–5).

• Partitions are computed using the “Core Groups Graph Clustering
Randomized Greedy” (CGGCRG) algorithm (Ovelgönne and Geyer-
Schulz, 2013). As it is a heuristic approach, one cannot be sure to find a
partition that has globally the maximal modularity. However, we refer
to the resulting partition and its modularity in the following as being
optimal in the sense of “best solution found”. The algorithm’s result is
always assured to be at least a (very) good locally optimal solution.
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• A generating set for the automorphism group is obtained by the latest ver-
sion of saucy (Darga et al, 2004, 2008;Katebi et al, 2012,http://vlsi-
cad.eecs.umich.edu/BK/SAUCY/, accessed September 3, 2018).Other
practically suitable algorithms are available: e.g. nauty (McKay, 1981;
McKay and Piperno, 2014), bliss (Junttila and Kaski, 2007), traces
(McKay and Piperno, 2014), conauto (López-Presa et al, 2014).
saucy is optimized to perform well on large and sparse graphs.

The first analysis to identify symmetric graphs (Ball and Geyer-Schulz, 2018a)
involved 902 simple and 797 simplified graphs. In this analysis, we build on
the previous study: For a total of 629 simple and 625 simplified symmetric
graphs identified in the first study we compute a modularity optimal partition
and a generating set for the automorphism group. From this, the indicators
n, m, |P |, Q, k, |Π̃intra |, |Π̃inter |, |supp (Aut(G)) |, and max |supp (Aut(G)) |
are derived for each graph, which allows the calculation of all measures
presented in the previous section. n and m are the number of nodes and edges
of G, Q is the modularity for the computed partition P. In (Ball and Geyer-
Schulz, 2018a) we report 630 simple and 634 simplified symmetric graphs.
The slight difference is due to the high computational complexity so that we
needed to exclude some graphs from this analysis.

In Table 1 we present descriptive statistics of some of the defined measures for
simple and simplified graphs. A comparison reveals that the former are smaller
(cf. m) on average and have a lower modularity (cf. Q). This is, however, not
unusual as modularity normally increases with the graphs’ size (Fortunato and
Barthélemy, 2007). This fact also explains the differences in the distribution
of the average cluster sizes. Furthermore, simple graphs are less symmetric
(cf. rsG) and have much more often a stable partition (cf. igS). The values of
gsG compared to rsG for either type of graphs show that the automorphism
groups are often decomposable (i.e. k > 1), but also completely symmetric
graphs with an indecomposable group exist (maximum value rsG = gsG = 1).
Table 2 shows how many simple and simplified graphs were analyzed

originally (Ball and Geyer-Schulz, 2018a) and howmany of them are symmetric.
Furthermore, we present the number of graphs with unstable partitions and the
percentages that describe the proportion of graphs compared to the number of
all graphs and to the number of symmetric graphs.

http://vlsicad.eecs.umich.edu/BK/SAUCY/
http://vlsicad.eecs.umich.edu/BK/SAUCY/
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Table 1: Partition stability statistics for networkrepository.com data sets for (a) simple and (b)
simplified graphs. The simplified graphs on average are substantially larger, have a higher modularity,
are more symmetric, and have more often an unstable partition.

m Q n
|P |

|supp (Aut (G))|
k rsG gsG igS

count 629 629 629 629 629 629 629
mean 3.713 × 105 0.558 478.500 2750.600 0.323 0.149 0.055
std 1.700 × 106 0.211 2138.700 45,495 0.285 0.249 0.220
min 1 0 2 2 1.280 × 10−5 3.557 × 10−7 0
25 % 47 0.474 6.667 2 0.103 0.049 0
50 % 71 0.600 8.400 2.115 0.238 0.073 0
75 % 103 0.663 13 3 0.446 0.114 0
max 1.785 × 107 0.999 35,517 1.049 × 106 1 1 1

(a) A total of 72 graphs have an unstable modularity optimal partition.

m Q n
|P |

|supp (Aut (G))|
k rsG gsG igS

count 625 625 625 625 625 625 625
mean 6.965 × 105 0.766 2887.500 14,394 0.709 0.267 0.208
std 1.522 × 106 0.184 21,983 69,580 0.389 0.424 0.393
min 46 0 4.001 2 3.333 × 10−5 3.539 × 10−6 0
25 % 12,540 0.708 144.600 2.946 0.380 0.000 0
50 % 1.200 × 105 0.820 510.310 12.440 0.976 0.002 1.839 × 10−5

75 % 5.821 × 105 0.894 1612.800 986 1.000 0.500 0.057
max 1.723 × 107 0.996 4.738 × 105 1 × 106 1 1 1

(b) In contrast to the simple graphs, only 310 of 625 graphs have a stable modularity optimal partition.

Table 2: Overview of the total number of analyzed simple and simplified graphs by Ball and
Geyer-Schulz (2018c), the number of symmetric graphs analyzed in this article, and the number
of graphs with unstable partitions that were found. Additionally, the percentages of the symmetric
graphs and of graphs with unstable partitions are given. The abbreviation “abs.” means “absolute”;
“rel.” means “relative”.

Total Symmetric graphs Graphs with unstable partitions
abs. rel. to total abs. rel. to total rel. to symmetric

Simple graphs 902 629 69.734 % 72 7.982 % 11.447 %
Simplified graphs 797 625 78.419 % 315 39.523 % 50.400 %

All graphs 1699 1254 73.808 % 387 22.778 % 30.861 %

networkrepository.com
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How well the automorphism groups can be decomposed is underlined by the
comparison of the distributions of rsG and gsG for simple graphs in Figure 2.
Graphs with rsG > 0.95 seem to have an indecomposable group. The situation
is similar for simplified graphs, however, the difference is even larger: Over 50 %
of the graphs have rsG > 0.95 but 75 % (more than 400) have gsG ≤ 0.05,
and for about 150 graphs gsG > 0.95 holds. We show these results in Figure 3.
Please note that the definition of gsG implies gsG ≤ 0.5 if k > 1. These findings
allow to state that symmetric real-world graphs often have either a very local
symmetry or a very global one.

0.0 0.2 0.4 0.6 0.8 1.0
rsG

0 0

50 50

Fr
eq
ue
nc
y Relative symmetry rsG

0.0 0.2 0.4 0.6 0.8 1.0
(a)

0.0 0.2 0.4 0.6 0.8 1.0
gsG

0 0

100 100

200 200

Fr
eq
ue
nc
y Mean global symmetry gsG

0.0 0.2 0.4 0.6 0.8 1.0
(b)

Figure 2: Comparison of the distributions for rsG a and gsG b for simple graphs. Most graphs – with
only a few exceptions – have a relatively local symmetry.
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Figure 3: Comparison of the distributions for rsG a and gsG b for simplified graphs.

Another interesting observation is the distribution of the fraction of generating
elements causing partition instability igS in Figure 4: Even though over 50 %
of the simplified graphs have an unstable partition, either only very few or, in
contrast, (nearly) all generating elements cause this instability. The finding for
simple graphs is similar; therefore, we do not show a visualization of it.

In Table 3 we report the names of the simple graphs that we have found to have
an unstable modularity optimal partition. The names often indicate their origin,
for instance “ENZYMES” graphs are graph representations of molecules, “soc”
indicates social networks, “web” relates to web graphs, and “rt” are retweet
networks. These graphs can be used as a starting point for further work on the
issue we outlined in this article. It would certainly be interesting to have a more
detailed look into the origin and structure of these particular graphs to gain a
deeper understanding of why the symmetry exists.
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Figure 4: Distribution of igS for the simplified graphs. igS ≤ 0.057 for 75 % of all graphs (cf. Ta-
ble 1b), although about half of them have an unstable partition. In contrast, for a large number of
graphs (nearly) the complete generator is responsible for instability.

Table 3: The list of all names of simple graphs that have an unstable modularity optimal partition in
our analysis. The datasets can be found on http://www.networkrepository.com.

Names of simple graphs with unstable modularity optimal partitions

as-22july06 com-dblp EX1 johnson8-4-4 soc-youtube
auto com-youtube EX2 keller4 soc-youtube-snap
bfly debr EX4 keller6 tech-as-skitter
bio-dmela diag fe-sphere MANN-a27 tech-internet-as
c-fat200-1 ENZYMES-g161 G48 MANN-a45 ukerbe1
c-fat200-2 ENZYMES-g272 G49 MANN-a81 ukerbe1-dual
c-fat500-1 ENZYMES-g293 G50 MANN-a9 web-arabic-2005
c-fat500-10 ENZYMES-g352 GD06-theory power web-edu
c-fat500-2 ENZYMES-g468 GD97-a rt-islam web-indochina-2004
c-fat500-5 ENZYMES-g509 GD98-c rt-retweet-crawl web-sk-2005
ca-citeseer ENZYMES-g523 grid1 se web-uk-2005
ca-dblp-2010 ENZYMES-g531 grid1-dual soc-buzznet web-wikipedia2009
cage ENZYMES-g540 johnson16-2-4 soc-flickr
cca ENZYMES-g55 johnson32-2-4 soc-gowalla
ccc ENZYMES-g578 johnson8-2-4 soc-twitter-follows

To summarize our main findings, first and foremost, we point out that the
existence of more than 10 % (simple) and more than 50 % (simplified) graphs
with modularity “optimal” unstable partitions is not a negligible percentage.
Contrary to the statement of Garlaschelli et al (2010, p. 1705), we can not

http://www.networkrepository.com
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confirm that “[t]he modular structure of real networks can be [...] seen as a
symmetry-breaking property”. Instead, we provide empirical evidence for the
impact of graph symmetry on graph clustering. We defined this impact by simply
checking whether the clustering solution is unique under the transformations
of a permutation group, which is the graph automorphism group. As a further
quantification of how the group acts on the graph and its modularity optimal
partition, we used our measures defined in Section 3. It is interesting to see that
there often is not just one large symmetric area in the graph, but many smaller
and independent parts, which goes in line with the findings of MacArthur
et al (2008). On the other hand, the fraction of generating elements which
cause the instability of the partition shows that often the complete generator
is involved. For a more in-depth analysis of the connections between local
and global symmetry and an actual impact on the clustering partition we refer
to the first author’s PhD thesis (Ball, 2019).

A consequence of all this is that researchers working in applications of graph
clustering should routinely check their results with regard to stability. Otherwise,
it could happen that multiple equivalent clustering solutions exist of which one is
not aware of. This problem is aggravated by the failure of the standard partition
comparison measures for symmetric graphs. For this problem, an additional tool
for diagnosing effects of graph automorphisms is the measure decomposition
for partition comparison measures by Ball and Geyer-Schulz (2018b).

5 Conclusion

The presented results are the continuation of our work published before, where
we (i) showed that graph symmetry exists in many real-world networks (Ball and
Geyer-Schulz, 2018a), and (ii) defined stability of graph clustering partitions
concerning the automorphismgroup of the graph (Ball andGeyer-Schulz, 2018c).
Here, we could show that graph symmetry actually has an impact on the clustering
result. In the end, 72 of 629 (11.447 %) simple graphs and 315 of 625 (50.400 %)
simplified graphs have an unstable partition.

Future work could repeatedly compute partitions for the graphs with unstable
partitions and check if they are always unstable or just randomly due to the
random behavior of the used algorithm.Moreover, the complete analysis could be
repeated with other modularity optimizing algorithms (e.g. Blondel et al, 2008)
or methods that follow another optimization criterion (e.g. Raghavan et al, 2007).
The last open problem that we want to point out is the question, how instabilities
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should be handled. Possible solutions are to simply ignore them if the effect
is small, break the symmetry in advance, use or develop other clustering
criteria (e.g. maximize modularity for stable partitions) or methods (e.g. fuzzy
clustering), or to reconsider the interpretation of the clustering result.
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