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1 Introduction

The simultaneous production of two Higgs bosons is a promising process to obtain infor-

mation about the self-coupling of the Higgs boson and thus the structure of the scalar

potential. Although it is experimentally very challenging it is expected that this process

can be observed after the high-luminosity upgrade of the LHC.

On the theoretical side there has been quite some effort to obtain precise predictions

for differential and total cross sections for Higgs boson pair production. In analogy to

single Higgs production, for LHC energies, the numerically most important contribution is

provided by gluon fusion, followed by vector boson fusion, associated production with top

quarks and the Higgs-strahlung process (see, e.g., ref. [1]).

Exact leading order (LO) results for gg → HH have been available for more than

thirty years [2, 3]. Next-to-leading order (NLO) corrections have been computed numeri-

cally much more recently, and are available from two independent groups [4–6]. Note that

the numerical evaluations are quite expensive. For this reason it is important to have ap-

proximations at hand, which are valid in certain regions of the phase space. Among them

are large top quark mass expansions [7–9] which are available up to order 1/m12
t [8]. Fur-

thermore, in ref. [10] an expansion around small transverse momentum has been performed

and results in the high-energy region are available from [11, 12]. They have been combined
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in ref. [13] with the exact calculation from [4, 5] to provide a precise grid for the NLO

virtual corrections [14]. In ref. [15] exact results for the real radiation contribution have

been combined with the effective-theory virtual corrections. Interesting approximations for

gg → HH at NLO have been constructed in ref. [16] where expansion terms from various

regions have been combined with the help of a conformal mapping and Padé approxima-

tion. The same method has been applied in ref. [17] (using the triangle form factor results

of this paper) to the Higgs-gluon form factor, an important ingredient of single-Higgs boson

production, in order to reconstruct the full quark mass dependence.1

At NNLO exact results are currently out of range, which makes it even more important

to obtain approximations, if possible from various kinematic regions. Within the effective

theory, where the top quark mass is assumed to be infinitely heavy, NNLO corrections have

been computed in refs. [8, 19, 20]. Power-suppressed terms have been obtained in ref. [21],

where the soft-virtual approximation was constructed. Real corrections which originate

from three closed top quark loops have been computed in ref. [22]. In ref. [23] approximate

NNLO expressions are constructed on the basis of the exact NLO results [5] and further

NNLO building blocks which are also available for finite top quark mass. Other NNLO

contributions, such as the three-loop virtual corrections, are taken in the infinite top quark

mass limit. The results of this paper provide additional 1/m2
t corrections to the three-loop

gg → HH amplitude which could improve the approximations of ref. [23].

The resummation of threshold-enhanced logarithms to next-to-next-to-leading loga-

rithmic (NNLL) accuracy has been performed in refs. [24, 25] and differential distributions

up to NNLO for various observables were computed in ref. [26] in the heavy-top limit.

More recently, finite top quark mass effects have also been included [27].

At N3LO first results are available in the limit of infinitely heavy top quarks. In ref. [28]

massless two-loop box contributions have been computed and four-loop corrections to the

effective coupling of two Higgs bosons and two, three or four gluons became available

from [29, 30].

In this work we consider NNLO virtual corrections to gg → HH and compute the

three relevant form factors for a large top quark mass. We evaluate five expansion terms

for the box-type form factors and eight expansion terms for the triangle form factor, i.e.,

up to order 1/m8
t and 1/m14

t , respectively. The results for the two box-type form factors

are new. The results for the triangle form factor have been obtained in refs. [31, 32] up

to order 1/m8
t , the higher-order expansion terms presented here are new. In a previous

work [21] expansion terms up to 1/m4
t were computed for the (differential) cross section,

but not for the form factors. Our results constitute important input for the construction

of approximations. For example, it is possible to extend the consideration of ref. [16] to

NNLO. Furthermore, as already mentioned above, it might be possible to improve the

approximations of ref. [23].

The remainder of the paper is organized as follows: in the next section we introduce

our notation and define the form factors. We provide technical details in section 3, and

1Note that analytic results for the light fermion contribution to the three-loop Higgs-gluon form factor

have been obtained in ref. [18].
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mention several optimizations which were crucial to be able to perform the calculations.

Ultraviolet renormalization and infrared subtraction are discussed in section 4 and both

analytical and numerical results are shown in section 5. We conclude in section 6.

2 Setup

The amplitude for the process g(q1)g(q2) → H(q3)H(q4) is conveniently decomposed into

three form factors. In the following we outline their precise definition. We start with the

amplitude which is given by

Mab = ε1,µε2,νMµν,ab = ε1,µε2,νδ
ab (M1A

µν
1 +M2A

µν
2 ) , (2.1)

where a and b are adjoint colour indices and the two Lorentz structures are given by

Aµν1 = gµν − 1

q12
qν1q

µ
2 ,

Aµν2 = gµν +
1

p2
T q12

(q33q
ν
1q
µ
2 − 2q23q

ν
1q
µ
3 − 2q13q

ν
3q
µ
2 + 2q12q

µ
3 q

ν
3 ) , (2.2)

with

qij = qi · qj , p 2
T =

2q13q23

q12
− q33 . (2.3)

M1 and M2 can be projected from Mµν using the projectors

P1,µν = − q1,νq2,µ

(
1

q12

1− ε
2− 4ε

− q33

q12p 2
T

ε

2− 4ε

)
+ q1,νq3,µ

(
− 2q23

q12p2
T

ε

2− 4ε

)

+ q2,µq3,ν

(
− 2q13

q12p2
T

ε

2− 4ε

)
− q3,µq3,ν

(
− 2

p2
T

ε

2− 4ε

)
+ gµνq12

(
1

q12

1

2− 4ε

)
,

P2,µν = q1,νq2,µ

(
q33

q12p2
T

1− ε
2− 4ε

− 1

q12

ε

2− 4ε

)
− q1,νq3,µ

(
q23

q12p2
T

1− ε
1− 2ε

)

− q2,µq3,ν

(
q13

q12p2
T

1− ε
1− 2ε

)
+ q3,µq3,ν

(
1

p2
T

1− ε
1− 2ε

)
+ gµνq12

(
1

q12

1

2− 4ε

)
, (2.4)

where ε = (4− d)/2 is the standard dimensional regularization parameter.

The Feynman diagrams involving the triple-Higgs boson coupling only contribute to

Aµν1 , which is the only structure relevant for single-Higgs production, therefore it is conve-

nient to decompose M1 and M2 into “triangle” and “box” form factors

M1 = X0 s

(
3m2

H

s−m2
H

Ftri + Fbox1

)
,

M2 = X0 s Fbox2 , (2.5)

with the prefactor

X0 =
GF√

2

αs(µ)

2π
Tnh , (2.6)
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where T = 1/2 and nh = 1 have been introduced for convenience. Note that all contribu-

tions which involve the Higgs boson self coupling are contained in Ftri. The corresponding

Feynman diagrams contain a Higgs boson propagator which leads to the factor 1/(s−m2
H)

in eq. (2.5). We furthermore define the expansion of the form factors in αs as

FX =
∑
i≥0

(
αs(µ)

π

)i
F

(i)
X , (2.7)

with X ∈ {tri, box1, box2}. Note that F
(i)
X corresponds to the (i + 1)-loop result. In our

final expressions the strong coupling constant is defined with five active quark flavours,

which is an appropriate choice since we consider the top quark mass to be large.

In the course of the calculation it is convenient to introduce the Mandelstam variables

s = (q1 + q2)2 , t = (q1 + q3)2 , u = (q2 + q3)2 , (2.8)

with

q2
1 = q2

2 = 0 , q2
3 = q2

4 = m2
H , s+ t+ u = 2m2

H . (2.9)

It is furthermore convenient to express the final result in terms of the transverse momen-

tum of one of the Higgs bosons which is given in terms of the Mandelstam variables by

(equivalent to eq. (2.3))

p2
T =

tu−m4
H

s
. (2.10)

3 Calculation details

We generate the Feynman amplitudes with the help of qgraf [33] and obtain 11, 197 and

5703 diagrams at one, two and three loops. Note that both one-particle irreducible (1PI)

and one-particle reducible (1PR) contributions have to be considered. Sample diagrams

are shown in figure 1 together with the corresponding colour factors expressed in terms

of the Casimir invariants of SU(Nc): CA = Nc and CF = (N2
c − 1)/(2Nc). Furthermore

we have T = 1/2 and use the labels nl and nh for closed massless and massive fermion

loops respectively. For numerical evaluation we set nl = 5 and nh = 1. In the following

subsections we provide several technical details of the calculation of the form factors.

3.1 Asymptotic expansion

The programs q2e and exp [34–36] have been designed to work hand-in-hand when applying

a (possibly nested) asymptotic expansion involving a large external momentum or a large

internal mass to an amplitude generated by qgraf [33]. The output of exp is FORM [37]

code2 for each sub-diagram which has to be considered according to the rules of asymptotic

expansion (see, e.g., ref. [38]).

In this case we apply the rules of asymptotic expansion for the limit

mt � q1, q2, q3 , (3.1)

2In the computations described in this paper we mainly use the parallel version, TFORM.
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Tnh Tnh CFTnh CATnh

(Tnh)2 C2
FTnh CACFTnh C2

ATnh

CF (Tnh)2 and CA(Tnh)2 and CA(Tnh)2 (Tnh)3

CFT
2nhnl CAT

2nhnl

Figure 1. Sample Feynman diagrams contributing to gg → HH. For simplicity we show diagrams

with a triple-Higgs boson coupling only at one-loop order. A sample colour factor is shown below

each diagram. However, note that in general a diagram contributes to more than one colour

structure. Solid, dashed and curly lines denote quarks, Higgs bosons and gluons respectively.

where q2
1 = q2

2 = 0 are the incoming gluon momenta and q2
3 = m2

H . Equation (3.1) implies

that the Feynman amplitudes are expanded in powers of

{q3 · q3, q1 · q2, q1 · q3, q2 · q3}/m2
t , (3.2)

possibly multiplied by logarithms of these ratios.

The main purpose of eq. (3.1) is the reduction of the number of scales in the loop

integrals. Furthermore, the three-loop integrals are factorized into products of lower-loop

integrals. In the box diagrams we initially have the scales s, t, m2
H and m2

t and in the

triangle diagrams s and m2
t . After asymptotic expansion we find the following products

of integrals

Type of integrals for scales

hard subgraph co-subgraph

3-loop vacuum — m2
t

2-loop vacuum × 1-loop massless triangle m2
t × s

two 1-loop vacuum × 1-loop massless box m2
t × s, t,m2

H

1-loop vacuum × 2-loop massless triangle m2
t × s

Note that integrals with more than one scale only have to be considered at one-loop order;

the corresponding integral families are well-studied in the literature [39–41]. In the above

table “massless” refers to the propagator masses only. Dependence on the Higgs boson
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Figure 2. Sample three-loop diagrams (left) and the corresponding co-subgraphs (right) which

result from the asymptotic expansion according to eq. (3.1). The blobs represent effective vertices

from the hard subgraphs. They correspond to vacuum integrals.

mass is retained. In the one-loop massless box case, degenerate cases also occur for which

one of the scales is absent.

In cases in which one has to deal with products of integrals we organize the output

of exp in such a way that we perform the vacuum integrals first, since it is simpler to

compute vacuum tensor integrals than tensor integrals for families with external momenta.

In fact, at one and two loops vacuum tensor integrals with arbitrary rank can be treated.3

For three-loop vacuum integrals we implement projectors which are discussed in detail

in subsection 3.2. For the remaining massless integrations no tensor integrals have to

be solved.

The vacuum integrals are performed with the FORM package MATAD [43] and for the mass-

less integral families we use FIRE [44] to obtain integral tables which express all integrals

appearing in the amplitudes in terms of master integrals (see figure 7 of ref. [21] for graph-

ical representations). Analytic expressions for the latter can be found in refs. [21, 39–41].

Let us illustrate the procedure described above using two typical Feynman diagrams

shown in figure 2. We show the three-loop diagrams which have to be expanded in all exter-

nal momenta, and the corresponding lower-loop co-subgraphs which appear after applying

the scale hierarchy of eq. (3.1). The blobs represent effective vertices from the expanded

hard subgraphs which we do not show explicitly.

Note that due to the rules of asymptotic expansion the hard subgraphs have to ex-

panded in all small quantities, which in this case are the external momenta qi but also the

3A closed formula for the one-loop case can, e.g., be found in [38] and an algorithm for the two-loop case

is presented in [42].
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loop momenta of the co-subgraphs. This results in a multi-dimensional Taylor expansion

which we want to compute up to 5th order (i.e. up to order 1/(m2
t )

4) for the box form

factors and up to 8th order (1/(m2
t )

7) for the triangle form factor. At this point the in-

termediate expressions can become huge and special measures and optimizations have to

be applied in order to obtain the results with the computing resources available. These

methods are described in the following subsection.

3.2 Projection

A major bottleneck in the computation of [21] is the calculation of three-loop tensor vacuum

integrals. After expansion in 1/m2
t the intermediate expressions become rather large, which

cause these routines to perform very poorly. In order to avoid this issue in this work we

project the sub-diagrams which contain a three-loop vacuum integral onto a suitable ansatz,

and compute individual terms of this ansatz separately. The intermediate expressions for

each term become much smaller, and we no longer have to compute tensor integrals. The

diagrams contributing to the triangle form factor have a simpler structure, and thus use a

simplified version of the method discussed below. For this reason we are able to compute

an additional three terms in the expansion, compared to the depth of the box-type form

factors. We elaborate on this at the end of the subsection.

Each diagram can be written in the following way, (see also [45], here we extend the

ansatz to account for the additional external momentum),

A =

Lmax∑
L=0

∑
i+j+k+l+m+n=L

Ci,j,k,l,m,n (q2
1)i (q2

2)j (q2
3)k (q1 · q2)l (q1 · q3)m (q2 · q3)n, (3.3)

where Lmax depends on the depth of the 1/m2
t expansion being considered. Since we

consider the process g(q1)g(q2)→ H(q3)H(q4) we have that q2
1 = q2

2 = 0; we can therefore

set i = j = 0 in the ansatz here. Associated with the six possible scalar products between

the momenta are six derivative operators

�a,b =
∂

∂qa µ

∂

∂q µb
, (3.4)

with which one can construct projection operators Pi,j,k,l,m,n to project particular coeffi-

cients Ci,j,k,l,m,n of the ansatz A from the amplitude, i.e.

Pi,j,k,l,m,n A = Ci,j,k,l,m,n. (3.5)

It is understood that after taking the derivatives contained in the projector terms, all

remaining external momenta of the diagram are set to zero. The first few projection op-

erators are as follows, where we define the notation �i,j,k,l,m,n = � i
1,1�

j
2,2�

k
3,3�

l
1,2�

m
1,3�

n
2,3

and as above, d = 4− 2ε,

L = 1 :

P0,0,0,0,0,1 = �0,0,0,0,0,1
1

d
, P0,0,0,0,1,0 = �0,0,0,0,1,0

1

d
,

P0,0,0,1,0,0 = �0,0,0,1,0,0
1

d
, P0,0,1,0,0,0 = �0,0,1,0,0,0

1

2d
,

– 7 –
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L = 2 :

P0,0,0,0,0,2 = �0,0,0,0,0,2
1

2d2 + 2d− 4
+�0,1,1,0,0,0

−1

2d3 + 2d2 − 4d
,

P0,0,0,0,1,1 = �0,0,0,0,1,1
1

d2 + d− 2
+�0,0,1,1,0,0

−1

d3 + d2 − 2d
,

...

P0,0,1,1,0,0 = �0,0,0,0,1,1
−1

d3 + d2 − 2d
+�0,0,1,1,0,0

d+ 1

2d3 + 2d2 − 4d
,

P0,0,2,0,0,0 = �0,0,2,0,0,0
1

8d2 + 16d
. (3.6)

For the 1/m8
t terms we need such projection operators at L = 6. This is because the

vertex diagrams have mass dimension two which are built from combinations of external

momenta as required by gauge invariance. Note that contributions involving �1,1 and �2,2

are needed in the construction of the projection operators even though i = j = 0 is chosen

in eq. (3.3).

To compute these projections efficiently, we form linear combinations of the projection

operators which involve just a single derivative operator �i,j,k,l,m,n. For example at L =

2, �0,0,1,1,0,0 is present in P0,0,0,0,1,1 and P0,0,1,1,0,0. Thus, one obtains contributions to

the (q1 · q3) (q2 · q3) and (q3 · q3) (q1 · q2) terms of the expansion ansatz by applying the

linear combination[(
− 1

72
− 1

48
ε− 55

2592
ε2 − 95

5184
ε3 +O(ε4)

)
(q1 · q3) (q2 · q3)

+

(
5

144
+

11

288
ε+

167

5184
ε2 +

85

3456
ε3 +O(ε4)

)
(q3 · q3) (q1 · q2)

]
�0,0,1,1,0,0 (3.7)

to the amplitude. Here the rational polynomials in d have been expanded.

We compute all necessary derivative operators applied to the diagrams after the ex-

pansion in 1/m2
t , before we perform the three-loop vacuum integral procedures. Each

derivative operator (that is, each �i,j,k,l,m,n required) is applied as a separate task and

all results are combined at the end. This ensures that intermediate expressions remain a

manageable size, and that no derivative operator is computed more than once.

For reasonable performance it is crucial to not repeat the 1/m2
t expansion of the

diagrams for each of the above tasks, since it is a very computationally expensive procedure.

The expansion is performed just once; the intermediate result is then split into parts

containing particular numbers of each external momentum and stored. The projection

tasks can load exactly the part which will yield a non-zero result after taking the derivatives

with respect to the external momenta.

The structure of the computation is summarized below. For some aspects we provide

a more detailed description in section 3.3.

1. 1/m2
t expansion:

(a) Sum all diagrams with the same colour factor to make “super-diagrams”. Many

terms are common to multiple diagrams, so summing them reduces the total

– 8 –
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size of the intermediate expressions. At three loops there are 5703 Feynman

diagrams which form nine super-diagrams with the colour factors (considering

only three-loop vacuum sub-diagrams),

dabcd
abcn2

h, dabcd
abcnhnl, CAT

2n2
h, CFT

2n2
h,

C2
ATnh, CACFTnh, C2

FTnh, CAT
2nhnl, CFT

2nhnl. (3.8)

The super-diagrams with colour factors proportional to dabcd
abc, which arise

from Feynman diagrams with two closed fermion loops with three gluon cou-

plings each, are found to vanish after expansion in 1/m2
t in Step 1. (d) (see

below), which is why this colour structure is not listed in figure 1. Note that of

the eight three-loop colour structures listed in figure 1 only (Tnh)3 has no 1PI

three-loop vacuum contribution.

(b) For each super-diagram, multiply by one of the five Lorentz structures of the

amplitude projectors (cf. eq. (2.4)),

q1,νq2,µ, q1,νq3,µ, q2,µq3,ν , q3,µq3,ν , gµνq12. (3.9)

This produces 5×9 = 45 projected super-diagrams, to be expanded in 1/m2
t . Ap-

ply Feynman rules and perform Dirac algebra. The coefficients of these Lorentz

structures (in the round brackets of eq. (2.4)) will be included when everything

is combined in Step 2. (b).

(c) Use graph symmetries to reduce the number of terms and size of expressions.

(d) Perform the 1/m2
t expansions. These are heavy computations, for which we

use computing nodes with relatively large amounts of memory and processing

cores (at least 96GB memory and 12 cores). It is crucial to not duplicate any

work here; we make extensive use of the FORM statements Collect (to reduce

the number of terms to be processed) and ArgToExtraSymbol (to temporarily

reduce the size of the expressions). After expansion, graph symmetries are again

used to reduce the number of terms and size of the expressions.

The five most difficult projected super-diagrams are those with colour factor

C2
ATnh. To expand to 1/m8

t these each require a wall time of around 10 days.

The total size of the (gzip compressed) stored expressions for the expansions of

the 45 projected super-diagrams is 324GB.

2. Projection:

(a) For each of the necessary operators (see eq. (3.7)), load the relevant part of

the expanded super-diagram (for the example of eq. (3.7), the part containing

terms with one q1, one q2 and two q3). All other parts would yield zero after

differentiation, so do not need to be loaded.

The differentiation must be performed inside FORM CFunction arguments to

avoid an enormous blow-up of intermediate expression sizes. These tasks are

much easier, computationally, than those of the expansion steps. They are

– 9 –
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run requiring only 8GB of memory and 4 processing cores. To obtain the

1/m
{0,2,4,6,8}
t terms of the expansion there are {15, 38, 88, 174, 324} deriva-

tives to compute for each of the 45 projected super-diagrams, yielding {675,

1,710, 3,960, 7,830, 14,580} tasks to be run respectively. These tasks required

a total time of approximately 1,600 days to complete (200 of which are used to

produce the 1/m
{0,2,4,6}
t expansion terms); running tasks concurrently on our

cluster this corresponds to a wall time of about 1 month.

(b) The results of these operators applied to the diagrams allow one to construct

the result in the form of the ansatz eq. (3.3). Combining all terms, along with

the coefficients of the Lorentz structures of eq. (2.4), yields the final result for

the form factors M1 and M2.

As mentioned above, some simplifications are possible when computing the triangle

form factor. It comes only with the Lorentz structures gµν and q1,νq2,µ (see eq. (2.2)),

thus in step 1. (b) fewer projected super-diagrams are produced since we can ignore the

additional three structures required by the box-type form factors. The ansatz of eq. (3.3)

can also be simplified; only the index l needs to be non-zero. Thus, fewer derivative

operators need to be computed in step 2. (a): for the 1/m
{0,2,4,6,8,10,12,14}
t terms of the

expansion we must apply just {2, 2, 3, 3, 4, 4, 5, 5} derivative operators.

3.3 Calculation optimizations

In this section we outline a few methods by which we were able to optimize the compu-

tation, in addition to the projection procedure described above. We note that without

such optimizations, computing the expansion to a depth 1/m8
t (and likely 1/m6

t ) for the

box-type and 1/m14
t for the triangle form factors would not have been possible with the

computing resources available to us.

3.3.1 Graph symmetries

In Step 1. (c) and 1. (d) we use graph symmetries to reduce the size of the intermediate

expressions. We map the vacuum integrals to a minimal set by using rotation and reflection

symmetries, implemented by re-labelling the line momenta of equivalent graphs such that

they coincide. Some examples of this procedure are shown in table 1.

After expansion in 1/m2
t many integrals appear with higher-power (“dotted”) propa-

gators. One can move the dots around the graph, using the same symmetry relations as

described above, to obtain a smaller set of integrals.

3.3.2 ArgToExtraSymbol

In step 1. (d), the 1/m2
t expansions are performed. At this point, the FORM representation

of the terms in the expressions looks something like

+ Den(l1,mt) * Den(l1+q1,mt) * ... * Den(l2-q3,mt) * ( many terms )

where the Den functions represent the propagators to be expanded; they are of the form

1/(m2
t−(l1+q1)2), for example. The “many terms” inside the brackets are coefficients which
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Top-level Topology Graph 1 Graph 2 Relabelling

1

2 5

6
4

3

1

2

6
4

3

2

5

1
3

4

p1→ p2

p2→ −p5
p3→ −p4
p4→ p3

p6→ −p1

1 6

3

2 5

2 1

4

5 6

p1→ p2

p2→ −p5
p3→ −p4
p5→ p6

p6→ −p1

Table 1. Graphs 1 and 2 are derived from the Top-level Topology, with different lines missing.

This yields different, but equivalent, graphs. Line momenta are relabelled to make this equivalence

manifest; we show the replacements required to map Graph 1 onto Graph 2. The arrows denote

the direction of momentum flow.

do not take part in the expansion. Since there can be many thousand such coefficients, it

is crucial to keep them bracketed away during the multi-module expansion routine, to keep

the number of terms small and avoid expanding the same product of Den functions many

times. One typically achieves this with a construction such as

Bracket Den;

.sort

CFunction f;

Collect f;

which moves the bracketed terms inside the argument of f. While this does indeed keep

the number of terms small, it does not (greatly) reduce the size of the expression. If

the expression is large enough to require disk-based sorting at the end of each module of

the expansion routine, one still has a severe performance bottleneck. We resolve this by

additionally making use of the statement ArgToExtraSymbol f; after Collect f;, which

replaces the (large) arguments of the fs with unique symbols, whose definitions are stored

by FORM. More memory is required to store these definitions, but the resulting reduction

in size of the expression involved in disk-based sorting provides a large speed-up of the

expansion routine. After expansion is complete the original coefficients may be recovered

with the FromPolynomial statement.

Let us remark that the use of ArgToExtraSymbol is also essential to make possible

and speed up the calculation of the subdiagrams where two-loop vacuum tensor integrals

are needed.
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3.3.3 Compression

In step 1. (d) it was stated that the intermediate results of the 1/m2
t expansions are

compressed with gzip and stored, for use in step 2. (a). Since these compressed results

occupy 324GB, they cannot easily be stored uncompressed on the storage available to us.

In step 2. (a) the tasks can easily retrieve the relevant compressed intermediate result from

network storage and decompress it onto the local storage of the node on which they are

running, by making use of FORM’s #system preprocessor command:

#system gunzip < /network/intermediate.sav.gz > /local/intermediate.sav

Load /local/intermediate.sav;

...

As well as reducing the capacity required for the storage of the intermediate results, this

also provides a large performance improvement by reducing the I/O load of the network

and storage hardware when hundreds of tasks are running concurrently.

4 Renormalization and infrared subtraction

4.1 Ultraviolet divergences

The renormalization of the ultraviolet (UV) divergences is straightforward:

• The top quark mass (mt) renormalization is needed up to two loops. We first renor-

malize mt in the MS scheme, and then transform mt to the on-shell scheme. Note

that higher order ε terms are needed in the corresponding one-loop expression since

the NLO (two-loop) amplitude develops 1/ε2 poles, even after all UV counter-terms

are taken into account. Since the LO (one-loop) amplitude is finite the two-loop term

in the MS-on-shell conversion formula is only needed up to O(ε0).

• The gluon wave function renormalization is also needed up to two loops. Note that,

since we work in dimensional regularization, where scaleless integrals are set to zero,

only diagrams with virtual top quarks contribute. These two-point functions have to

be computed for q2 = 0 which corresponds to on-shell gluons. Note that the gluon

wave function renormalization agrees with the decoupling constant of the gluon field

needed to relate five- and six-flavour QCD [46].

• The strong coupling constant renormalization up to two loops is performed in full

six-flavour theory.

• Finally the decoupling relation for αs is needed up to two loops in order to express

α
(6)
s in terms of α

(5)
s . Similar to the MS-on-shell mass relation also here the one-loop

expression is needed up to order ε2.

The final result is expressed in terms of the top quark pole mass, and the five-flavour

strong coupling, α
(5)
s . It still contains poles up to order 1/ε4 which are of infrared nature.

They will be treated in the next subsection.
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4.2 Subtraction of infrared divergences

For the subtraction of the infrared (IR) poles we follow ref. [47], see also refs. [8, 48].

For convenience we provide explicit expressions for the subtraction terms. We apply the

IR subtraction at the amplitude level since we want the obtain finite expressions for the

form factors.

After UV renormalization we have the following colour factors at one-, two- and three-

loop order:

Tnh ,

Tnh{CF , CA, Tnh, Tnl} ,
Tnh{C2

F , CACF , C
2
A, CFTnl, CATnl, CFTnh, CATnh, T

2n2
l , T

2nhnl, T
2n2

h}. (4.1)

In the following discussion we omit the overall factor Tnh which is contained in the quantity

X0, see eq. (2.6). Note that the structures T 2nhnl, T
3nhn

2
l and T 3n2

hnl are not present in

the two- and three-loop diagrams (cf. figure 1) but only arise from UV counter-terms and

IR subtraction (see below).

After UV renormalization, at two-loop order the colour factors {CA, Tnl} come with

1/ε poles and CA also has a 1/ε2 pole. At three-loop order, highest-order pole appearing

with each colour factor is summarized in the following table,

Leading Pole Colour Factors

1/ε4 C2
A

1/ε3 CATnl

1/ε2 CACF , CATnh, T 2n2
l

1/ε CFTnl, T
2nhnl

1 C2
F , CFTnh, T 2n2

h

We have checked that all these poles cancel after applying the following IR subtraction

procedure: finite form factors, F fin
X , at NLO and NNLO are obtained via

F
(1),fin
X = F

(1)
X − 1

2
I(1)
g F

(0)
X ,

F
(2),fin
X = F

(2)
X − 1

2
I(1)
g F

(1)
X − 1

4
I(2)
g F

(0)
X , (4.2)

where, as in eq. (2.7), X ∈ {tri, box1, box2}. The quantities on the r.h.s. of eq. (4.2) are

UV-renormalized. I
(1)
g and I

(2)
g on the r.h.s. of eq. (4.2) are given by [47, 48]

I(1)
g = −

(
µ2

−s− iδ

)ε
eεγE

Γ(1− ε)
1

ε2

[
CA + 2εβ0

]
, (4.3)
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I(2)
g = −

(
µ2

−s− iδ

)2ε(
eεγE

Γ(1− ε)

)2 1

ε4

[1

2
(CA + 2εβ0)2

]
+

(
µ2

−s− iδ

)ε
eεγE

Γ(1− ε)
1

ε3

[
2(CA + 2εβ0)β0

]
−
(

µ2

−s− iδ

)2ε
eεγE

Γ(1− ε)

{
1

ε3

[1

2
(CA + 4εβ0)β0

]
− 1

ε2

[(3π2 − 67)CA + 10nl
72

(CA + 4εβ0)
]
− 1

ε

[1

2
Hg

]}
, (4.4)

with

β0 =
1

4

(
11

3
CA −

4

3
Tnl

)
,

Hg = C2
A

(
ζ3

2
+

5

12
+

11π2

144

)
+ CAnl

(
29

27
+
π2

72

)
+

1

2
CFnl +

5

27
n2
l . (4.5)

5 Results

In the following we discuss the results for the finite form factors constructed according

to the prescription of the previous section. Note that the one-loop form factors have no

dependence on the renormalization scale µ. At two and three loops the coefficients of the

log(µ) terms depend on the choice of the IR subtraction terms. In our case it is convenient

to cast the results for the two- and three-loop form factors in the following form

F
fin,(1)
X = F̃

(1)
X + lµsβ0F̃

(0)
X ,

F
fin,(2)
X = F̃

(2)
X + lµs

(
β1F̃

(0)
X + 2β0F̃

(1)
X

)
+ β2

0 l
2
µsF̃

(0)
X , (5.1)

where F̃
(i)
X = F

fin,(i)
X (µ2 = −s) with β0 as defined in eq. (4.5) and

β1 =
1

16

(
34

3
C2
A −

20

3
CATnl − 4CFTnl

)
,

lµs = log

(
µ2

−s− iδ

)
. (5.2)

The one- and two-loop results are expanded up to order 1/m14
t , the three-loop expressions

up to 1/m8
t (box) and 1/m14

t (triangle).

For illustration we show the analytic result for the leading term (m0
t ) of the three-loop

for factors. The corresponding one- and two-loop results can be found in ref. [12] and the

triangle form factor up to 1/m12
t with numerical values for the colour factors can be found

in ref. [17]. Our results read

F̃
(2)
tri = C2

F

[
9

8

]
+ CACF

[
11Lm2

t s

12
− 25

9

]
+ C2

A

[
−

7Lm2
t s

12
− 253ζ (3)

216
+

π4

864
+

19π2

108
+

19777

3888

]
+ CFnl

[
−
Lm2

t s

3
+

2ζ (3)

3
− 41

36

]
+ CAnl

[
−49ζ (3)

108
− 2255

1944
− 47π2

1296

]
+ CFnh

[
− 1

18

]
+ CAnh

[
− 5

144

]
+ n2

l

[
π2

648

]
, (5.3)
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F̃
(2)
box1 = −F̃ (2)

tri + CACF

[
11

6

]
+ C2

A

[
−7

6

]
+ CFnl

[
−2

3

]
+ CFnh [−1]

+ CAnh

[
−

2m4
HLi2

(
1− m4

H
tu

)
9s2

−
4m4

HLi2
(

m2
H
t

)
9s2

−
4m4

HLi2
(

m2
H
u

)
9s2

− 1

9
Li2

(
1− m4

H

tu

)
− 2

9
Li2

(
m2

H

t

)
− 2

9
Li2

(
m2

H

u

)
−

4Lm2
H

tm
4
H log

(
1− m2

H
t

)
9s2

− 2

9
Lm2

H t
log

(
1− m2

H

t

)
−

4Lm2
H

um
4
H log

(
1− m2

H
u

)
9s2

− 2

9
Lm2

Hu
log

(
1− m2

H

u

)
+

11Lst

54
+

11Lsu

54
+

m4
H log2

(
t
u

)
9s2

+
4π2m4

H

27s2
+

2m2
H

9s
+

1

18
log2

(
t

u

)
+

2π2

27

+
193

81

]
+ nlnh

[
−Lst

27
− Lsu

27
− 10

81

]
, (5.4)

where T = 1/2 has been chosen and the overall factor nh is contained in eq. (2.6). Fur-

thermore, we have introduced

Lst = log
(
−s
t

)
− iπ ,

Lsu = log
(
− s
u

)
− iπ ,

Lm2
t s

= log

(
m2
t

s

)
+ iπ ,

Lm2
H t

= log

(
−
m2
H

t

)
− iπ ,

Lm2
Hu

= log

(
−
m2
H

u

)
− iπ . (5.5)

We refrain from showing explicit results for F̃
(2)
box2 which has a similar structure to F̃

(2)
box1.

Note that for most colour structures F̃
(2)
box2 starts at order 1/m2

t except for the three colour

structures CFnh, CAnh and nlnh which arise from (1PR and 1PI) diagrams with two

closed top quark loops. The analytic results for the one- and two-loop box and triangle form

factors expanded up to 1/m12
t and 1/m14

t respectively, the three-loop box form factors F̃
(2)
box1

and F̃
(2)
box2 expanded up to 1/m8

t , and the three-loop triangle form factor F̃
(2)
tri expanded up

to up to 1/m14
t can be found in the supplementary file of this paper [49].

Note that at two-loop order the 1PI (colour structures CATnh and CFTnh) and 1PR

((Tnh)2) contributions are separately finite. At three-loop order this is not the case and

the whole contribution has to be considered in order to arrive at finite form factors, see

also discussion in refs. [8, 30].

Let us now briefly discuss the numerical impact of our calculation. For the numerical

evaluation we use mt = 173 GeV and mH = 125 GeV and for the transverse momentum we

introduce the parameter

rpT =
p2
T

s
, (5.6)

with rpT = 0.01 as default value. Furthermore we choose for the parameters introduced for

closed fermion loops nl = 5 and nh = 1.
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Figure 3. Real parts of one- and two-loop form factors as a function of
√
s for rpT

= 0.01.

In figure 3 we show real parts of the one- and two-loop results for the three form

factors as a function of
√
s. We include terms up to order 1/m14

t for the triangle and

order 1/m12
t for the box form factors. Lines with longer dashes include more expansion

terms. Below the threshold, i.e. for
√
s . 2mt, one observes a reasonable convergence of

the expansion in 1/m2
t as can be seen by the reduced distance between the dashed curves.

In this respect, F
(0)
box2 and F

(1)
box2 are particularly well-behaved; after including the third

expansion term the curves lie practically on top of each other. At one-loop order we also

find good agreement with the exact results (solid black curves) for
√
s . 320 GeV. For the

two-loop triangle form factor we find agreement with the exact expression (see refs. [50–52]

for analytic expressions) for
√
s . 300 GeV.

Note that the form factors also develop imaginary parts which originate from contribu-

tions with massless cuts, see co-subgraphs in figure 2. They are contained in our analytic

expressions [49], but are not plotted here.

A similar behaviour to the one- and two-loop cases is observed at three-loop order

as can be seen in figure 4. We want to stress that qualitatively the two- and three-loop

corrections show a very similar behaviour. Since the two-loop terms have proven to provide
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Figure 4. Real parts of three-loop form factors as a function of
√
s for rpT

= 0.1.

useful and important input into the Padé procedure [16], which can be used to obtain

approximations valid in the whole
√
s region, we expect that the three-loop terms are of

similar importance.

For some applications it is advantageous to rescale the higher order corrections by the

exact leading order contributions using

F̃
(n),exp
X

F̃
(0),exp
X

F̃
(0),exact
X , (5.7)

where F̃
(n),exp
X and F̃

(0),exp
X are expanded up to the same order in 1/mt. We refrain from

showing the corresponding results but simply want to mention that the differences between

the F̃
(n),exp
X and the rescaled expression (5.7) become smaller with increasing order in 1/mt.

In fact the curves which correspond to the deepest expansions are very close to each other.

6 Conclusions

We compute three-loop corrections to the process gg → HH in the large-mt limit and

provide results for five expansion terms (up to order 1/m8
t ) for the two box-type form

factors and for eight expansion terms (up to order 1/m14
t ) for the triangle form factor. As

compared to previous work [21] we have computed two4 more expansion terms, which re-

quired significant reorganization and optimization of the calculations since huge expressions

are obtained at various intermediate stages. We discuss these modifications in section 3.

Furthermore in ref. [21] only partonic cross sections, rather than individual form factors,

are available.
4three for the triangle form factor.

– 17 –



J
H
E
P
1
0
(
2
0
1
9
)
1
6
6

The analytic results for the form factors, which are provided in a computer-readable

form in supplementary material [49], are useful input for the construction of approxima-

tions for gg → HH at NNLO, both for total cross sections and differential distributions.

This concerns both the construction of Padé approximants along the lines of [16] (indeed

these new results for the triangle form factor have already been used in [17]) but also

approximation procedures which have been employed in ref. [23].
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A README for the supplementary material

In this appendix we provide a brief explanation of the notation used in the ancillary file to

this paper [49].

Our final results for the form factors are contained in the file resFF.m where the

following notation has been used:

F1tri F2tri F3tri F1box1 F2box1 F3box1 F1box2 F2box2 F3box2

F̃
(0)
tri F̃

(1)
tri F̃

(2)
tri F̃

(0)
box1 F̃

(1)
box1 F̃

(2)
box1 F̃

(0)
box2 F̃

(1)
box2 F̃

(2)
box2

The expressions have the same colour factors as in eq. (4.1) where T = 1/2 has been

chosen and the overall factor nh has been set to 1. The following variables are used

ca, cf, nh, nl, mH2 = m2
H mt2= m2

t , s, t. Furthermore the functions Li2[_] and

Log[_] are used with obvious meaning.
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