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Abstract

We present a complete set of decay rates of the Higgs boson with the mass of 125 GeV at the full next-
to-leading order in a variety of extended Higgs models; i.e., a model with an additional real singlet scalar 
field, four types of two Higgs doublet models and the inert doublet model. All the one-loop contributions 
due to QCD and electroweak interactions as well as scalar interactions are taken into account, and the 
calculations are systematically performed. Branching ratios for all the decay modes are evaluated in these 
models, and patterns of deviations in each decay mode from the standard model predictions are comprehen-
sively analyzed. We show how these models with extended Higgs sectors can be distinguished by using our 
calculation of the branching ratios and future precision measurements of the Higgs boson decays.
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1. Introduction

After the discovery of a Higgs boson, the Standard Model (SM) has been completed in a sense 
that the existence of all the predicted particles was confirmed experimentally. In the SM, the 
minimal form with an isospin doublet scalar field is introduced as the Higgs sector. Although the 
discovered Higgs boson shows similar properties to that of the SM under the current experimental 
and theoretical uncertainties, the possibility that the Higgs sector takes a non-minimal form is not 
excluded at all, and its exploration is one of the central interests of current and future high-energy 
physics. If the Higgs sector is extended from the minimal form, it has a different structure which 
can be classified by the number of scalar fields, their representations, symmetries and strength 
of coupling constants. There should be strong connection between these properties of extended 
Higgs sectors and the physics behind the electroweak (EW) symmetry breaking. Furthermore, a 
non-minimal structure of Higgs sectors could solve the problems which cannot be explained in 
the SM such as neutrino masses, dark matter and baryon asymmetry of the Universe. Therefore, 
the Higgs sector is one of the most important probes of new physics beyond the SM.

The most important property of a non-minimal Higgs sector is the prediction of multiple scalar 
bosons. Thus, discovery of additional scalar bosons will be a clear evidence of extended Higgs 
sectors. At the LHC, direct searches for a new particle are being performed continuously. On 
the other hand, existence of such additional scalar fields generally affects the couplings of the 
SM-like Higgs boson to the particles in the SM by the effect of mixing and the quantum cor-
rection, yielding deviations from the predictions of the SM. Therefore, detecting such deviations 
by precision measurements is also a strong signature for models with extended Higgs sectors. 
Moreover, from the pattern of deviations in various Higgs boson couplings we can indirectly 
distinguish the shape of the Higgs sector and further determine new physics models [1].

At the LHC, direct searches for additional Higgs bosons have been performed via bosonic 
channels [2–8] and fermionic channels [9–11]. From the non-observation of the signature, param-
eters of each extended Higgs sector such as masses and couplings are constrained. In addition, 
some of the Higgs boson couplings have been measured at the LHC Run-I [12] and Run-
II [13,14] experiments. Although the current data from these measurements are consistent with 
the SM predictions, the experimental and theoretical uncertainties are not small yet; e.g., about 
20% for the Higgs boson couplings to weak bosons and typically 20–50% for the Yukawa cou-
plings of the third generation at the 95% confidence level. Above experimental uncertainties can 
be much reduced at future colliders; e.g., at the High-Luminosity LHC (HL-LHC) [15,16], the 
International Linear Collider (ILC) [17–19], the Future Circular Collider (FCC) [20], the Circu-
lar Electron Positron Collider (CEPC) [21], the Compact LInear Collider (CLIC) [22] and so on. 
For example, at the ILC with the collision energy of 250 GeV and the luminosity of 2 ab−1, some 
of the Higgs boson couplings are expected to be measured with O(1%) level or better [18].

In order to extract information on new physics from these precision measurements at future 
experiments, accurate calculations with higher-order corrections are required in models with 
various extended Higgs sectors. Radiative corrections to the SM-like Higgs boson vertices have 
been studied in various Higgs sectors such as, for example, a model with a real isospin singlet 
Higgs field (HSM) [23–26], two Higgs doublet models (THDMs) [27–32], the inert doublet 
model (IDM) [33,34], the Higgs triplet model [35,36] and the Georgi-Machacek model [37,38]. 
In order to see differences of the prediction among these models, it is quite important to calculate 
the renormalized Higgs boson vertices with a consistent and systematic way. Recently, we have 
published a numerical program H-COUP (version 1.0) [39] to compute a set of SM-like Higgs 
boson vertices at one-loop level in various extended Higgs models; i.e., the HSM, four types of 
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THDMs and the IDM. Other numerical tools are also available to calculate Higgs boson decays 
with radiative corrections in models with extended Higgs sectors; e.g., Prophecy4f [40,41]
and 2HDECAY [42,43].

In this paper, we present a complete set of the decay rates of the SM-like Higgs boson (h) 
including the h → WW ∗ mode at the full next-to-leading order (NLO) in QCD and EW as 
well as scalar interactions in the HSM, four types of THDMs and the IDM.1 Some important 
results have already been highlighted in our letter paper [44], in which the calculation of the 
partial decay rate of the h → WW ∗ mode was not yet included. We then calculate the branching 
ratios of the SM-like Higgs boson at NLO in these models. One-loop calculations are consis-
tently performed based on the on-shell renormalization scheme for EW parameters [45–47] and 
the modified minimal subtraction (MS) scheme for QCD corrections [48] in these models with 
the extended Higgs sectors. We discuss the amount of the NLO corrections of the Higgs boson 
decay rates in each model with detailed descriptions of the computation. We show various corre-
lations of the deviation in the branching ratios from the SM predictions under constraints of the 
perturbative unitarity [49], vacuum stability [50], conditions to avoid wrong vacua [51] and ex-
perimental constraints. Finally, we investigate the possibility to discriminate the extended Higgs 
sectors from the difference of the prediction among the models.

This paper is organized as follows. In Sec. 2, we introduce the HSM, the THDMs and the 
IDM. In Sec. 3, we present analytic formulae for the decay rates of the Higgs boson at NLO. 
EW corrections in each decay mode are discussed in detail. In Sec. 4, we show numerical results 
of the total width, the branching ratios and correlations of the branching ratios. Conclusions are 
given in Sec. 5. In Appendix, explicit formulae for the NLO calculations are presented.

2. Models with non-minimal Higgs sectors

In this section, we define the HSM, the THDM and the IDM in order. Before moving on to 
the discussion on each extended Higgs sector, let us briefly explain constraints on a parameter 
space, as their basic notion are common to models with the extended Higgs sectors.

First of all, the size of dimensionless parameters in the potential can be constrained by impos-
ing the perturbative unitarity bound which has originally been introduced in Ref. [49] to obtain 
the upper limit on the Higgs boson mass in the SM. Using the equivalence theorem [52], this 
bound requires that the magnitude of partial wave amplitudes for the elastic scatterings of 2 body 
to 2 body scalar boson processes, including the Nambu-Goldstone (NG) bosons, does not exceed 
a certain value. Each eigenvalue of the s-wave amplitude denoted as ai

0 is required to satisfy:

|ai
0| ≤ ξ, (1)

where ξ = 1 [49] or 1/2 [53]. We here take ξ = 1/2. We note that each ai
0 only depends on the 

scalar quartic couplings as only scalar contact interactions contribute to the scattering process at 
the high-energy limit.

Next, the vacuum stability bound provides an independent constraint on scalar quartic cou-
plings. It requires that the Higgs potential is bounded from below in any direction with large field 
values. This condition is schematically written by

V (4) > 0, (2)

1 The decay rates of the one-loop induced processes, i.e., h → γ γ , Zγ and gg, are calculated at NLO in QCD and at 
leading order in EW.
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where V (4) represents quartic terms of the Higgs potential. Although in the SM this condition is 
trivially satisfied by taking the scalar quartic coupling to be positive, in models with non-minimal 
Higgs sectors it is given by a set of inequalities in terms of scalar quartic couplings [50].

Furthermore, in extended Higgs sectors, wrong local vacua can generally appear in addition 
to the true vacuum giving the correct value of the Fermi constant GF . Thus, we have to avoid 
parameter regions which realize the depth of such wrong vacua to be deeper than that of the 
true one.2 The condition to avoid the wrong vacua can be written by combinations of dimen-
sionful and dimensionless parameters in the potential [51], so that it can provide an independent 
constraint from the above two constraints.

Apart from these theoretical constraints, we need to take into account bounds from experimen-
tal data. At the LEP/SLC experiments, various EW observables have been precisely measured 
such as the masses and widths of the weak gauge bosons. These precise measurements can be 
used to constrain new physics effects which can indirectly be entered into the self-energy dia-
grams for weak gauge bosons. Such indirect effect, so called oblique corrections, is conveniently 
parameterized by the S, T and U parameters introduced by Peskin and Takeuchi [55,56], which 
are expressed in terms of two point functions of the weak bosons. From the global fit of EW 
parameters [57], new physics effects on the S and T parameters under U = 0 are constrained by

S = 0.05 ± 0.09, T = 0.08 ± 0.07, (3)

with the correlation factor of +0.91 and the reference values of the masses of SM Higgs boson 
and top quark being mref

h = 126 GeV and mref
t = 173 GeV, respectively. Flavor experiments 

also provide important constraints on a parameter space of extended Higgs models, particularly 
models with a multi-doublet structure. We will discuss these constraints in more detail in Sec. 2.2
about THDMs. As mentioned in Introduction, additional scalars have been directly searched at 
the LHC [2–11], and some of the constraints are interpreted in THDMs. Moreover, the Higgs 
coupling measurements also constrain the mixing parameters in THDMs [12–14] by using the 
so-called κ framework [58]. We note that the κ framework is constructed by the leading order 
(LO) relation, and hence the interpretation of such constraints at higher-order level might not 
be straightforward. The application of these constraints to each extended Higgs sector will be 
discussed in the following subsections.

2.1. Higgs singlet model

The Higgs sector of the HSM is composed of an isospin doublet scalar field � with the 
hypercharge Y = 1/2 and a real singlet field S with Y = 0. These scalar fields are parameterized 
as

� =
(

G+
1√
2
(v + φ + iG0)

)
, S = vS + s, (4)

where v is the vacuum expectation value (VEV) of the doublet filed which is related to the Fermi 
constant GF by v = (

√
2GF )−1/2 � 246 GeV, while vS is the VEV of the singlet field. Because 

the singlet field does not contribute to the EW symmetry breaking, the component fields G± and 
G0 in the doublet field correspond to the NG bosons which are absorbed into the weak bosons.

2 There is still a possibility of a meta-stable electroweak vacuum even if such situations are realized. By taking into 
account such a possibility a constraint from wrong vacua is more moderate. For example, see Ref. [54].
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The most general Higgs potential is written as

VHSM =m2
�|�|2 + λ�|�|4 + μ�S |�|2S + λ�S |�|2S2 + tSS + m2

SS2 + μSS3 + λSS4,

(5)

where all the parameters are real. By the reparameterization of the Higgs potential, we can take 
any value of vS without changing physical results [59]. Hence, we take vS = 0 throughout the 
paper.

In the HSM, there are two physical neutral Higgs bosons. Their mass eigenstates are defined 
as (

s

φ

)
= R(α)

(
H

h

)
with R(θ) =

(
cθ −sθ
sθ cθ

)
, (6)

where α is the mixing angle, and we define the domain of α by −π/2 ≤ α ≤ π/2. Throughout the 
paper, we use the shorthand notation for the trigonometric function as sθ ≡ sin θ and cθ ≡ cos θ . 
We identify h as the discovered Higgs boson with a mass of 125 GeV. After solving the tadpole 
conditions, the squared masses of these Higgs bosons are expressed as

m2
H = M2

11c
2
α + M2

22s
2
α + M2

12s2α, (7)

m2
h = M2

11s
2
α + M2

22c
2
α − M2

12s2α, (8)

tan 2α = 2M2
12

M2
11 − M2

22

, (9)

where M2
ij (i, j = 1, 2) are the squared mass matrix elements in the basis of (s, φ). Each element 

is given by

M2
11 = M2 + v2λ�S, M2

22 = 2v2λ�, M2
12 = vμ�S, (10)

with M2 = 2m2
S . The seven parameters in the potential are then expressed by the following five 

input parameters

mH , M2, μS, λS, cα, (11)

and the two parameters mh and v that are fixed by experiments.
Let us briefly discuss the other relevant parts of the Lagrangian in the HSM. The kinetic term 

is given by

LHSM
kin = |Dμ�|2 + 1

2
(∂μS)2, (12)

where Dμ is the covariant derivative for the Higgs doublet. Because the singlet field S does not 
have the gauge interaction, the additional Higgs boson H couples to weak bosons only through 
the φ component of H . Thus, the gauge-gauge-scalar type interactions are given as

LHSM
kin ⊃ gmW(cαW+

μ W−μh + sαW+
μ W−μH) + gZmZ

2
(cαZμZμh + sαZμZμH), (13)

where g is the weak gauge coupling and gZ = g/ cos θW with θW being the weak mixing angle. 
The Yukawa interactions are written by the same form as those in the SM:

LHSM
Y = −YuQ̄L�̃uR − YdQ̄L�dR − YeL̄L�eR + h.c., (14)
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where �̃ = iσ2�
∗, and we do not show the flavor indices here. In the above equation, QL, 

LL, uR , dR and eR are respectively the left-handed quark doublet, lepton doublet, right-handed 
up-type quark singlet, down-type quark singlet and charged lepton singlet. The singlet field does 
not couple to fermions, so that the interaction terms for h and H are extracted as

LHSM
Y ⊃ −mf

v
(cαf̄ f h + sαf̄ f H). (15)

As it is seen in Eqs. (13) and (15), the SM-like Higgs boson h couplings are universally sup-
pressed by the factor of cα as compared to the corresponding SM values.

As we already mentioned at the beginning of this section, the parameters in the potential can 
be constrained by the unitarity, the vacuum stability and the condition to avoid wrong vacua. 
For the unitarity bound, there are four independent eigenvalues given in Refs. [25,60]. In this 
paper, we use the expression for the eigenvalues given in Ref. [25], where the same notation of 
the potential parameters as that in this paper is applied. The necessary and sufficient condition to 
satisfy the vacuum stability is given by [61]

λ� > 0, λS > 0, 2
√

λ�λS + λ�S > 0. (16)

For the condition to avoid these wrong vacua is found in Ref. [59,62,63]. We use the expression 
given in Ref. [25]. In the HSM, one-loop corrected two point functions for weak bosons are 
found in Ref. [64]. Imposing the bound from the S and T parameters, we can obtain the upper 
limit on mH depending on the value of cα . Constraints on the mass of the additional Higgs boson 
and the mixing angle from the LHC data have been studied in Refs. [65–68].

2.2. Two Higgs doublet model

The Higgs sector of the THDM is composed of two isospin doublet scalar fields �1 and �2
with Y = 1/2. These doublets are parameterized as

�i =
(

w+
i

1√
2
(vi + hi + izi)

)
, (i = 1,2), (17)

where v1 and v2 are the VEVs of two doublets with v =
√

v2
1 + v2

2 , and their ratio is expressed 
by tanβ = v2/v1.

Having two doublet fields with the same quantum charges causes dangerous flavor changing 
neutral currents (FCNCs) at tree level, because both doublets couple to each type of fermions. In 
order to avoid such FCNCs, we impose a discrete Z2 symmetry, where two doublets transform 
as �1 → +�1 and �2 → −�2. One can introduce the soft breaking term of the Z2 symmetry 
in the potential, retaining the good property of the flavor sector. In the following, we discuss the 
THDM with the softly-broken Z2 symmetry and the CP-conservation.

The most general Higgs potential is given by

VTHDM =m2
1|�1|2 + m2

2|�2|2 − m2
3(�

†
1�2 + h.c.)

+ λ1

2
|�1|4 + λ2

2
|�2|4 + λ3|�1|2|�2|2 + λ4|�†

1�2|2 + λ5

2

[
(�

†
1�2)

2 + h.c.
]
,

(18)

where the m2
3 term softly breaks the Z2 symmetry. The m2

3 and λ5 parameters are taken to be 
real as we consider the CP-conserving case. The scalar mass eigenstates can then be defined as 
follows:
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(
w±

1
w±

2

)
= R(β)

(
G±
H±

)
,

(
z1
z2

)
= R(β)

(
G0

A

)
,

(
h1
h2

)
= R(α)

(
H

h

)
, (19)

where H± and A are the charged and CP-odd Higgs bosons, respectively, while H and h are the 
CP-even Higgs bosons. Similar to the HSM case, we identify h as the discovered Higgs boson 
with a mass of 125 GeV. We define the domain of α and β to be −π/2 ≤ α ≤ 0 and 0 ≤ β ≤ π/2, 
respectively, so that the viable range for β − α is expressed as 0 ≤ β − α ≤ π .

After solving two tadpole conditions for h1 and h2, squared masses of the charged and CP-odd 
Higgs bosons are given by

m2
H± = M2 − v2

2
(λ4 + λ5), m2

A = M2 − v2λ5, (20)

where M2 = m2
3/(sβcβ) which describes the soft-breaking scale of the Z2 symmetry. For the two 

CP-even Higgs bosons, the squared mass matrix elements M2
ij in the Higgs basis [69] are given 

by

M2
11 = v2(λ1c

4
β + λ2s

4
β + 2λ345s

2
βc2

β),

M2
22 = M2 + v2

4
s2

2β(λ1 + λ2 − 2λ345), (21)

M2
12 = v2

2
s2β(−λ1c

2
β + λ2s

2
β + λ345c2β),

with λ345 ≡ λ3 + λ4 + λ5. The squared masses of the two CP-even Higgs bosons and the mixing 
angle β − α are expressed in terms of the matrix elements M2

ij as

m2
H = M2

11c
2
β−α + M2

22s
2
β−α − M2

12s2(β−α), (22)

m2
h = M2

11s
2
β−α + M2

22c
2
β−α + M2

12s2(β−α), (23)

tan 2(β − α) = − 2M2
12

M2
11 − M2

22

. (24)

The eight parameters in the potential are then expressed by the following six input parameters

mH , mA, m
H± , M2, tanβ, sβ−α, (25)

and the two parameters mh and v that are fixed by experiments. In addition to these parameters, 
there is a degree of freedom of the sign of cβ−α.

Let us discuss the other relevant parts of the Lagrangian. The kinetic term for the Higgs 
doublets are written as

LTHDM
kin = |Dμ�1|2 + |Dμ�2|2. (26)

In the mass eigenbasis of the Higgs bosons, the gauge-gauge-scalar type interaction terms are 
extracted as

LTHDM
kin ⊃gmW(sβ−αW+

μ W−μh + cβ−αW+
μ W−μH)

+ gZmZ

2
(sβ−αZμZμh + cβ−αZμZμH). (27)

The most general Yukawa interactions under the Z2 symmetry are written as

LTHDM
Y = −YuQ̄L�̃i uR − YdQ̄L�j dR − YeL̄L�k eR + h.c., (28)
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Table 1
Z2 charge assignments in four types of Yukawa interactions, and the ζf (f = u, d, e) factors appearing in Eq. (29).

�1 �2 QL LL uR dR eR ζu ζd ζe

Type-I + − + + − − − cotβ cotβ cotβ
Type-II + − + + − + + cotβ − tanβ − tanβ

Type-X (lepton specific) + − + + − − + cotβ cotβ − tanβ

Type-Y (flipped) + − + + − + − cotβ − tanβ cotβ

where the subscripts i, j and k are 1 or 2. These indices are fixed when we determine the Z2
charge for right-handed fermions. As in Table 1, there are four independent types of Yukawa 
interactions depending on the assignment of the Z2 charge [70–72]. The interaction terms for the 
physical Higgs bosons are then extracted as

LTHDM
Y ⊃ −

∑
f =u,d,e

mf

v

[
(sβ−α + ζf cβ−α)f̄ f h + (cβ−α − ζf sβ−α)f f H

− 2iIf ζf f̄ γ5f A
)

−
√

2

v

[
Vudū (mdζd PR − muζuPL)d H+ + meζeν̄PReH+ + h.c.

]
, (29)

with If = 1/2 (−1/2) for f = u (d, e) and Vud is the Cabibbo-Kobayashi-Maskawa matrix ele-
ment.

Similar to the HSM, parameters in the THDMs can be constrained by both the theoretical and 
experimental constraints. For the unitarity bound, there are 12 independent eigenvalues of the 
s-wave amplitude matrix [73–76]. We use the expression for the eigenvalues given in Ref. [31]. 
The vacuum stability bound is sufficiently and necessarily satisfied by imposing the following 
conditions [50,77–79]

λ1 > 0, λ2 > 0,
√

λ1λ2 + λ3 + MIN(0, λ4 + λ5, λ4 − λ5) > 0. (30)

In addition, the wrong vacua can be avoided by taking M2 ≥ 0 [54]. We thus only take the 
positive value of M2 in the following discussion. The expressions of the two point functions 
for the weak bosons in the THDM are found in Refs. [80–84]. Constraints on the parameters in 
THDMs from the LHC data have been discussed in Refs. [67,68,85–89].

Differently from the HSM, constraints from flavor experiments are important to be taken into 
account in the THDM. These bounds particularly provide the lower limit on the mass of the 
charged Higgs boson mH± depending on the type of Yukawa interaction and tanβ . For example, 
from the Bs → Xsγ data, mH± hs to be greater than about 600 GeV at 95% confidence level 
in the Type-II and Type-Y THDMs with tanβ � 2, while O(100) GeV of mH± is allowed in 
the Type-I and Type-X THDMs with tanβ � 2 [90]. Constraints on mH± and tanβ from various 
flavor observables are also shown in Ref. [91] in four types of the THDMs.

2.3. Inert doublet model

The contents of the scalar sector in the IDM are the same as those in the THDM. In the THDM, 
the Z2 symmetry can be softly-broken by introducing the m2

3 term in the potential, while in the 
IDM it is assumed to be unbroken even after the EW symmetry breaking. Thus, the potential is 
obtained from Eq. (18) with m2

3 = 0. In addition, the second Higgs doublet �2 is supposed not 
to develop the nonzero VEV, otherwise the Z2 symmetry is spontaneously broken.
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In the IDM, the component scalar fields of �1 and �2 do not mix with each other due to the 
unbroken Z2 symmetry. Therefore, we can identify these scalar bosons (w±

2 , z2, h2, h1) defined 
in Eq. (17) with the mass eigenstates (H±, A, H, h). The lightest neutral inert scalar boson can 
be a candidate of dark matter as it cannot decay into a pair of SM particles.

The mass formulae for the scalar bosons are changed from those of the THDMs, not just 
because of the absence of the m2

3 term, but also the absence of the tadpole condition for h2. 
These are given as follows:

m2
h = λ1v

2, (31)

m2
H = M2 + v2

2
(λ3 + λ4 + λ5), (32)

m2
A = M2 + v2

2
(λ3 + λ4 − λ5), (33)

m2
H± = M2 + v2

2
λ3, (34)

where M2 = m2
2. We then choose the following five parameters to be free input parameters of the 

IDM

mH , mA, m
H± , M2, λ2, (35)

and the two fixed parameters mh and v.
The same conditions for the perturbative unitarity and vacuum stability in the THDM can be 

applied to the IDM, because these bounds are given in terms of the scalar quartic couplings. The 
condition to guarantee the inert vacuum with (〈�0

1〉, 〈�0
2〉 = (v/

√
2, 0)) is given by [92],

m2
1√
λ1

<
M2

√
λ2

. (36)

Since the tadpole condition makes m2
1 negative, and the vacuum stability condition constraints 

λ1 and λ2 to be positive, the condition given in Eq. (36) is satisfied by taking M2 > 0. We refer 
to this condition as the one to avoid wrong vacua, according to the other two models discussed 
above. For the constraints of the S and T parameters, we can use the same expressions as those 
in the THDM with sβ−α = 1.

In the IDM, constraints on the masses of the additional Higgs bosons from collider exper-
iments are relatively weak since the additional scalars do not couple to SM fermions. The 
constraints from the LEP and the LHC have been studied in Refs. [93,94] and Refs. [95,96], 
respectively. Dark matter constraints from relic density and direct detection also limit the param-
eter space; see, e.g., Refs. [96,97] for details.

3. Decay rates of the SM-like Higgs boson at one loop

In this section, we discuss the decay rates of the SM-like Higgs boson; i.e., h → f f̄ , h →
ZZ∗ → Zf f̄ and h → WW ∗ → Wf f̄ ′ at NLO in EW and QCD. The loop induced decay rates 
h → γ γ , h → Zγ and h → gg are also discussed at NLO in QCD.

We outline our one-loop calculations. For the computation of the EW corrections, we adopt 
the modified on-shell renormalization scheme which has been defined in Ref. [47], while for 
the QCD corrections we apply the MS scheme. In the on-shell scheme, all the counterterms 
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appearing in the decay rates of the h → f f̄ and h → V V ∗ → Vf f̄ modes are determined in 
terms of the one particle irreducible (1PI) diagrams for one- and two-point functions of Higgs 
bosons, gauge bosons and fermions by imposing a set of the renormalization conditions. Adding 
these counterterms, one can obtain the ultra-violet (UV) finite one-loop corrected vertices.

The on-shell scheme is a physically quite natural renormalization scheme, and it is suitable 
to apply to EW observables as they include well defined scales such as the weak boson masses. 
However, it has been known that the on-shell scheme introduces gauge dependent counterterms, 
particularly in some mixing parameters [98]. In extended Higgs sectors, a mixing between Higgs 
bosons can generally appear. We thus apply the so-called pinch technique to remove the gauge 
dependence in the renormalized vertex functions to our computations [23,32,47].

Apart from the UV divergences, there appear infrared (IR) divergences when we calculate 
virtual photon loop contributions. Such IR divergences can exactly be cancelled by adding con-
tributions of real photon emissions, where the finite QED corrections are common to those in 
the SM. The analytic expressions of QED corrections are known for h → f f̄ [99–101] and 
h → Zf f̄ [46]. Thus, we simply switch off the photon-loop contributions, and use these analytic 
formulae in our computation as the QED correction part. For h → Wf f̄ ′, on the other hand, 
we cannot separate EW corrections into QED and weak corrections. Therefore, by using the 
phase-space slicing method [102], we numerically evaluate both the virtual and real corrections 
to h → Wf f̄ ′, see Appendix D for details. For QCD corrections, we use the similar technique 
to remove IR divergences coming from virtual gluon loop contributions.

In our renormalization calculation, we choose the fine structure constant αem, the Fermi con-
stant GF and the Z boson mass mZ as the input parameters for the EW parameters. In this 
scheme, all the other EW parameters such as v, mW and sW are outputs. Using the on-shell defi-
nition of the weak mixing angle; i.e., s2

W = 1 − m2
W/m2

Z [103] and the modified relation among 
the EW parameters:

GF = παem√
2s2

Wm2
W

1

1 − �r
= 1√

2v2

1

1 − �r
, (37)

we can calculate the renormalized squared W boson mass as

(m2
W)reno = m2

Z

2

[
1 +

√
1 − 4παem√

2GF m2
Z(1 − �r)

]
. (38)

In Eq. (37), �r is calculated by [103]

�r = Re�̂WW (0)

m2
W

+ αem

4πs2
W

(
6 + 7 − 4s2

W

2s2
W

log c2
W

)
, (39)

where �̂WW is the renormalized W boson two-point function and the second term corresponds 
to vertex corrections and box diagram contributions to the muon decay rate. Including these three 
EW parameters, we choose the following parameters as the SM inputs:

αem, mZ, GF , �αem, αs, mt , mb, mc, mτ , mh, (40)

where �αem is the shift of the fine structure constant αem from zero energy to mZ . We also input 
the parameters in the potential given in Eqs. (11), (25) and (35) in the HSM, THDMs and IDM, 
respectively. We note that the parameters cα and sβ−α in the HSM and THDMs, respectively, do 
not physically mean the mixing angles for the CP-even Higgs bosons after the renormalization.
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3.1. Renormalized vertices

Important ingredients for calculations of decay rates of the Higgs boson are renormal-
ized Higgs boson vertices. In our computations, the hf f̄ , hV μV ν (V = W, Z) and hVμV ′ν
(VV ′ = γ γ, Zγ, gg) vertices are relevant, where the hVμV ′ν vertices are one-loop induced. 
Each of these vertices can be decomposed into several form factors depending on their Lorentz 
structure as written below. The H-COUP program (ver. 1.0) [39] provides numerical values of 
these renormalized form factors in the extended Higgs sectors.3 We fully use H-COUP in our 
numerical evaluation of the form factors.

The renormalized hf f̄ vertices can be decomposed into the following form factors:

�̂hff (p2
1,p

2
2, q

2) = �̂S
hff + γ5�̂

P
hff + /p1�̂

V1
hff + /p2�̂

V2
hff

+ /p1γ5�̂
A1
hff + /p2γ5�̂

A2
hff + /p1/p2�̂

T
hff + /p1/p2γ5�̂

PT
hff , (41)

where pμ
1 (p

μ
2 ) is the incoming four-momentum of the fermion (anti-fermion), and qμ(= p

μ
1 +

p
μ
2 ) is the outgoing four-momentum of the Higgs boson. For the case with on-shell fermions; 

i.e., p2
1 = p2

2 = m2
f , the following relations hold:

�̂P
hff = �̂PT

hff = 0, �̂
V1
hff = −�̂

V2
hff , �̂

A1
hff = −�̂

A2
hff . (42)

These relations are used for the calculation of the Higgs boson decay into fermions discussed in 
Sec. 3.2.

Next, the renormalized hV μV ν vertices are defined in terms of three renormalized form fac-
tors:

�̂
μν
hV V (p2

1,p
2
2, q

2) = gμν�̂1
hV V + pν

1p
μ
2

m2
V

�̂2
hV V + iεμνρσ p1ρp2σ

m2
V

�̂3
hV V , (43)

where pμ
1 and pμ

2 are incoming four-momenta of the weak bosons, and qμ is the outgoing four-
momentum of the Higgs boson. Similarly, we can define the loop induced vertices as

�̂
μν

hVV ′(p
2
1,p

2
2, q

2) = gμν�̂1
hVV ′ + pν

1p
μ
2

q2 �̂2
hVV ′ + iεμνρσ p1ρp2σ

q2 �̂3
hVV ′ . (44)

For the on-shell photon and gluon with a four-momentum pμ
i , the Ward identity holds, i.e.,

piμ�̂
μν

hVV ′ = 0. This gives the following relation

�̂2
hVV ′ = − q2

p1 · p2
�̂1

hVV ′ . (45)

This relation can be applied to the computation of the loop induced decays of the Higgs boson. 
For an off-shell photon appearing in the h → Zγ ∗ → Zf f̄ decay mode at NLO, Eq. (45) cannot 
be used, so that �̂1

hVV ′ and �̂2
hVV ′ separately appear, as it will be discussed in Sec. 3.3. We note 

that the form factor �̂3
hVV ′ is non-zero only when the Higgs boson is a CP-mixed state. In this 

paper, we consider the case with CP-conservation in the Higgs sector, so that this form factor 
becomes zero.

3 We are now preparing the next version of H-COUP program (ver. 2.0) [104] providing numerical values of decay 
rates of h at NLO which are calculated in this paper.
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Table 2
Scaling factors for the Higgs boson couplings to fermions (κ

f
) and 

weak bosons (κ
V

) in the extended Higgs models at tree level. The ζf
factor in the THDMs is given in Table 1.

HSM THDMs IDM

κf cα sβ−α + ζf cβ−α 1
κV cα sβ−α 1

All the renormalized form factors for the hXX vertices defined above are further decomposed 
into the tree level and one-loop level parts as follows:

�̂i
hXX(p2

1,p
2
2, q

2) = �
i,tree
hXX + �

i,loop
hXX (p2

1,p
2
2, q

2). (46)

The tree level contribution to each form factor, denoted as �i,tree
hXX, is given as

�
S,tree
hff = κf mf (

√
2GF )1/2, �

1,tree
hV V = 2κV m2

V (
√

2GF )1/2, (47)

where the scaling factors κf and κV are given in Table 2 for each extended Higgs model. All the 

other form factors are zero at tree level. The one-loop contributions (�i,loop
hXX ) are decomposed by

�
i,loop
hXX (p2

1,p
2
2, q

2) = �
i,1PI
hXX(p2

1,p
2
2, q

2) + δ�i
hXX. (48)

The first and second terms of the right-hand side are the contribution from 1PI diagrams and 
counterterms, respectively. As we mentioned at the beginning of this section, counterterms are 
determined by a set of on-shell conditions by which these are written in terms of 1PI diagrams for 
one- and two-point functions with a fixed value of squared momenta. Analytic expressions for the 
contributions from 1PI diagrams and counterterms to these renormalized Higgs boson vertices 
are presented in Ref. [24] for the HSM, Refs. [31,105] for the THDMs, and Refs. [34,105] for 
the IDM.

For the computation of the partial decay rates of h → V V ∗ → Vf f̄ , we also need to calculate 
the one-loop corrected Vf f̄ vertices and box diagrams in addition to the above Higgs boson 
vertices. In the massless limit for the external fermions, the renormalized Vf f̄ vertices are the 
same as those in the SM, while the contribution from the box diagrams is simply given by the 
SM expression multiplied by the scaling factor κV . For the completeness, we present the analytic 
expressions for one-loop corrections to the Vf f̄ vertices in Appendix B and those for the box 
corrections in Appendix C.

3.2. h → f f̄

At NLO, the partial decay rate of the h → f f̄ (f 
= t) process can be written in terms of the 
EW correction part �f

EW and the QCD correction part �f

QCD as

�(h → f f̄ ) = �0(h → f f̄ )
[
1 + �

f
EW + �

f

QCD

]
, (49)

where �0 is the decay rate at LO expressed as

�0(h → f f̄ ) = N
f
c

8π
mh(�

S,tree
hff )2

(
1 − 4m2

f

m2
h

)3/2

, (50)
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with Nf
c being the color factor, i.e., Nf

c = 3 (1) for f to be quarks (leptons). The expression for 
the tree level form factor �S,tree

hff is given in Eq. (47). The EW corrections �f
EW can be further 

decomposed into weak corrections �f

weak and QED corrections �f

QED as:

�
f
EW = �

f

weak + �
f

QED. (51)

Here, the weak correction means contributions from W , Z and scalar boson loops, namely all 
the loop contributions except for the photon and gluon loops. We also use this terminology in 
the later discussion. The expression for �f

weak is given in terms of the form factors defined in 
Eqs. (41) and (46) as

�
f

weak = 2

�
S,tree
hff

Re

{[
�

S,loop
hff + 2mf �

V1,loop
hff + m2

h

(
1 − m2

f

m2
h

)
�

T,loop
hff

]
(m2

f ,m2
f ,m2

h)

}

− �r, (52)

where �r is given in Eq. (39).
The QED (QCD) corrections are obtained by taking into account contributions from the virtual 

photon (gluon) loops and those from the real photon (gluon) emissions. We can obtain simple 
expressions for these corrections by neglecting the term proportional to m2

f /m2
h.4 For the leptonic 

decays, f = �, the QED correction in the on-shell scheme is given by [99–101]

��
QED = αem

π
Q2

�

(
9

4
+ 3

2
log

m2
�

m2
h

)
. (53)

For the hadronic decays, f = q , the QED and QCD corrections in the MS scheme [106] with the 
renormalization scale μ are given by

�
q

QED = αem

π
Q2

q

(
17

4
+ 3

2
log

μ2

m2
h

)
, �

q

QCD = αs(μ)

π
CF

(
17

4
+ 3

2
log

μ2

m2
h

)
, (54)

where CF = 4/3. In the numerical evaluation, we set μ = mh, and replace the quark mass in the 
tree level form factor �S,tree

hff in Eq. (50) by the running mass m̄q(μ = mh). From Eqs. (53) and 
(54), we can see that there is no additional Higgs boson mass dependence in their expression, 
so that these corrections do not provide deviations in the Higgs boson decay rate from the SM 
prediction at NLO.

3.3. h → ZZ∗ → Zf f̄

We calculate the partial decay rate of the Higgs boson into a pair of weak bosons at NLO in 
this and next subsections. Because the mass of the discovered Higgs boson is about 125 GeV, 
at least one of the weak bosons must be off-shell. We thus calculate the process with 3-body 
final states, i.e., h → V V ∗ → Vf f̄ . Throughout this paper, we neglect the masses of external 
fermions in the h → V V ∗ → Vf f̄ processes. In Fig. 1, all the diagrams contributing to the 
process are shown.

4 In the numerical computation, we use the exact formula for the QED correction with the m2
f

/m2
h

term, which is given 
in Ref. [100].
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Fig. 1. Diagrams contributing to the h → ZZ∗ → Zf f̄ (h → WW∗ → Wf f̄ ′) mode at NLO. Each diagram denotes 
the contributions from hV V vertex corrections (a), oblique corrections (b), Vf f̄ vertex corrections (c), hf f̄ vertex 
corrections (d) and box corrections (e).

Similar to the h → f f̄ mode, the decay rate for the h → ZZ∗ → Zf f̄ mode at NLO is 
expressed as

�(h → Zf f̄ ) = �0(h → Zf f̄ )
[
1 + �Z

EW + �Z
QCD

]
, (55)

and the EW correction can separately be expressed by the weak corrections and the QED correc-
tions:

�Z
EW = �Z

weak + �Z
QED. (56)

The LO contribution to the decay rate of h → Zf f̄ is expressed by

�0(h → Zf f̄ ) =
(mh−mZ)2∫

0

|MZ
0 |2 ds, (57)

where s is the Mandelstam variable defined by (pμ
f + p

μ

f̄
)2, and another variable u defined by 

(p
μ
Z + p

μ

f̄
)2 is already integrated out in the squared tree level amplitude |MZ

0 |2 expressed as

|MZ
0 |2 = g2

Z(�
1,tree
hZZ )2

256π3m3
h

v2
f + a2

f

(xs − xZ)2

λ(xZ, xs) + 12xZxs

3xZ

λ1/2(xZ, xs), (58)

with xZ = m2
Z/m2

h, xs = s/m2
h and λ(x, y) = (1 − x − y)2 − 4xy. The tree level form factor 

�
1,tree
hZZ is given in Eq. (47), and that for the Zf f̄ vertex vf and af is given in Eq. (B.3).

The QED (�Z
QED) and QCD (�Z

QCD) corrections only enter the Zf f̄ vertex correction de-
picted in the diagram (c) in Fig. 1. Their expressions are common to the SM given as [46]
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�Z
QED = Q2

f

3αem

4π
, �Z

QCD = CF

3αs(μ)

4π
. (59)

Although the diagrams (d) and (e) can also receive QED and QCD corrections, they vanish in the 
massless limit for the external fermions.

The weak corrections �Z
weak are given by

�Z
weak = 2

�0

(mh−mZ)2∫
0

ds |MZ
0 |2

{
Re

[
�

1,loop
hZZ

�
1,tree
hZZ

+ λ̄(xZ, xs)

xZ

�
2,loop
hZZ

�
1,tree
hZZ

]
(m2

Z, s,m2
h)

+ vf Qf cW sW

v2
f + a2

f

s − m2
Z

s
Re

[
�̂1

hZγ

�
1,tree
hZZ

+ λ̄(xZ, xs)
�̂2

hZγ

�
1,tree
hZZ

]
(m2

Z, s,m2
h)

+ Re[vf �
V,loop
Zff + af �

A,loop
Zff ](0,0, s)

v2
f + a2

f

− Re �̂ZZ(s)

s − m2
Z

− vf Qf sWcW

v2
f + a2

f

Re �̂Zγ (s)

s

}

+ 1

�0

(mh−mZ)2∫
0

ds

umax∫
umin

duRe
(
T Z

hff + BZ

)

− 2�r − Re�̂′
ZZ(m2

Z), (60)

where

λ̄(x, y) = 1 − x − y

2

λ(x, y)

λ(x, y) + 12xy
. (61)

The similar expression in the SM is found in Ref. [46]. The first and second lines correspond to 
the contribution from the diagram (a) in Fig. 1, where �̂1,2

hZγ are the renormalized form factors for 

the loop induced hZγ vertex. The analytic expressions for �̂1,2
hZγ are presented in Appendix A. 

The third line corresponds to the contribution from the diagrams (b) and (c). The diagram (c) con-
tains the Vf f̄ vertex corrections, so that we need to prepare the calculation of the renormalized 
Vf f̄ vertex denoted as �̂Vff which will be implemented in the H-COUP ver. 2.0 [104]. In the 
massless limit of the external fermions, this correction becomes the same as the SM prediction. 
Details of the calculation of �̂Vff are given in Appendix B. In the fourth line, the T Z

hff and BZ

terms represent the contribution from the hf f̄ vertex corrections and the box diagrams shown 
as the diagrams (d) and (e) in Fig. 1, respectively. Both T Z

hff and BZ depend on the Mandelstam 
variable u in loop functions, which has to be integrated out. The integration range of u is given 
by

umax,min = m2
h

2
[1 + xZ − xs ± λ1/2(xZ, xs)]. (62)

The explicit formulae for T Z
hff and BZ are given in Appendix C. Although the hf f̄ vertex 

corrections can be calculated by using H-COUP ver. 1.0 [39], we present the explicit analytic 
formulae for the contribution from the diagram (d) in Eq. (C.1) in the massless limit of the exter-
nal fermions. In this limit, both contributions from (d) and (e) become the SM predictions times 
the scaling factor κV . We note that we need to add the contribution from the wave function renor-
malization of the external Z boson, i.e., �̂′

ZZ , because in our on-shell scheme, the counterterm 
for the wave function renormalization (normally denoted as δZZ) is not fixed by the condition 
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which requires a vanishing derivative of the renormalized Z boson two-point function, but it is 
determined by the other conditions, see Ref. [47].

3.4. h → WW ∗ → Wf f̄ ′

We compute the partial decay rate of h → WW ∗ → Wf f̄ ′ mode at NLO. Feynman diagrams 
are shown in Fig. 1. The decay rate is expressed as

�(h → Wf f̄ ′) = �0(h → Wf f̄ ′)
[
1 + �W

EW + �W
QCD

]
, (63)

where �0, �W
EW and �W

QCD are the contributions from LO, EW corrections and QCD corrections, 
respectively. The expression for the LO contribution is obtained from Eqs. (57) and (58) by 
replacing Z → W with gW ≡ g/

√
2, and that for the QCD corrections is the same as that given 

in Eq. (59), because the gluon loop corrections only appear in the Wf̄f ′ vertex similar to the 
Zf̄ f vertex in the h → Zf f̄ decay [107].

The EW corrections �W
EW are given in a similar way to Eq. (60) as follows

�W
EW = 1

�0

(mh−mW )2∫
0

ds |MW
0 |2

{
Re

[
2�

1,loop
hWW

�
1,tree
hWW

+ λ̄(xW ,xs)

xW

�
2,loop
hWW

�
1,tree
hWW

]
(m2

W, s,m2
h)

+ 2Re[�V,loop
Wff + �

A,loop
Wff ](0,0, s) − 2Re �̂WW (s)

s − m2
W

}

+ 1

�0

⎡
⎢⎣

(mh−mW )2∫
0

ds

umax∫
umin

du
(
T W

hff + BW

)
+ �(h → Wf f̄ ′γ )

⎤
⎥⎦

− 2�r − Re�̂′
WW(m2

W), (64)

where the expressions for the Wf f̄ ′ vertex corrections �V,loop
Wff and �A,loop

Wff are given in Ap-

pendix B. The hf f̄ vertex corrections T W
hff and the box diagrams BW are given in Appendix C. 

In the third line, �(h → Wf f̄ ′γ ) denotes the contribution from real photon emissions. Differ-
ently from the h → Zf f̄ mode, we cannot separate the QED corrections from the EW one, 
because the virtual photon loop can appear together with the W boson loop in vertex corrections. 
Thus, we cannot obtain a simple expression for the QED correction such as Eq. (59) in this de-
cay mode. However, such IR divergence can be cancelled by adding the real photon emissions 
�(h → Wf f̄ ′γ ). Detailed discussions for the treatment of the IR divergence are given in Ap-
pendix D. Similar to the case of h → Zf f̄ , in the massless limit of the external fermions the 
contributions from the Wf f̄ vertex become the same as those in the SM, while T W

hff and BW are 
given by the SM prediction multiplied by κV .

3.5. h → γ γ , Zγ , gg

In addition to the h → f f̄ and h → V V ∗ → Vf f̄ decays, the Higgs boson can also decay 
into γ γ , Zγ and gg. The LO contributions to the decay rates arise from one-loop diagrams, and 
they can be expressed in terms of the renormalized hVV ′ (VV ′ = γ γ, Zγ, gg) vertices defined 
in Sec. 3.1 as
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Table 3
EW corrections �X

EW (X = b, c, τ, Z, W ) in the SM.

�b
EW �c

EW �τ
EW �Z

EW �W
EW

1.67% 1.78% 4.91% 6.87% 3.14%

�0(h → VV ′) = |�̂1
hVV ′(m2

V ,m2
V ′,m2

h)|2
8πmh

λ1/2

(
m2
V

m2
h

,
m2
V ′

m2
h

)
, (65)

where Eq. (45) is used. The analytic expressions for �̂1,2
hVV ′ are given in Appendix A.

Let us discuss QCD corrections to these loop induced decay rates at NLO. For h → gg, there 
are two sources of the QCD corrections: virtual gluon exchanges in the quark loop diagrams and 
real gluon emissions. In the MS scheme, the QCD corrected decay rate is given as [108]

�(h → gg) = �0(h → gg)

[
1 + αs(μ)

π

(
95

4
− 7

6
Nf + 33 − 2Nf

6
log

μ2

m2
h

)]
, (66)

in the limit of mt → ∞ with Nf being the number of light flavors. Numerically, the magnitude 
of NLO correction is about 70% for Nf = 5 and μ = mh.

For h → γ γ and h → Zγ , quark loop diagrams are modified by QCD corrections. We only 
take into account the NLO QCD correction for the top loop contributions, because those to the 
other quark loops are negligible. In the limit of mt → ∞, the QCD correction is easily imple-
mented in the MS scheme as [108]

�̂1
hVγ (m2

V ,0,m2
h)t → �̂1

hVγ (m2
V ,0,m2

h)t

[
1 − αs(μ)

π

]
, (V = γ, Z), (67)

where �̂1
hVγ

(m2
V , 0, m2

h)t is the top quark loop contribution to the renormalized hγ γ and hZγ

vertices. The typical magnitude of the QCD corrections is a few percent level with respect to the 
LO result.

3.6. New physics effects in loops

We show numerical values of the EW corrections �X
EW including weak boson and scalar 

boson loop effects to the decay rates discussed in the previous subsections. The numerical values 
of our inputs shown in Eq. (40) are fixed to be the default values implemented in the H-COUP
code [39]. In order to extract the new physics effects of the EW corrections to the partial decay 
rates, we introduce

�
X

EW = �X
EW

∣∣
NP − �X

EW

∣∣
SM, (68)

where �X
EW|NP (�X

EW|SM) denotes the prediction of �X
EW in the models with the extended Higgs 

sectors (SM). Our results for �X
EW|SM are summarized in Table 3.

It is important to mention here that the dominant contribution to �
X

EW comes from the first 

term of Eqs. (52), (60) and (64) for �
f

EW, �
Z

EW and �
W

EW, respectively. In the case with κV � 1
and mϕ � mh, additional Higgs boson loop effects of �X

EW are approximately expressed as [31]

�
X

EW � − 1

16π2

1

6

∑
ϕ

cϕ

m2
ϕ

v2

(
1 − M2

m2
ϕ

)2

, (69)
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Fig. 2. New physics effects in the EW corrections �b
EW as a function of a mass of the extra scalar boson in the HSM (left) 

and the IDM (right). We take cα = 1, μS = 0 and λS = 0.1 in the HSM, while set m
H

= m
A

= mH± and λ2 = 0.1 in 
the IDM. The solid (dashed) curves denote the case with the maximal (minimal) value of M2 allowed by the perturbative 
unitarity, vacuum stability bounds and S, T parameters.

where cϕ = 2(1) for additional charged (neutral) scalar loop contributions.5 The above equation 
indicates that scalar loop effects become non-decoupling when mϕ is mostly determined by v, 
or equivalently the case with M2/v2 � 1. In such a non-decoupling case, the right-hand side of 
Eq. (69) is nearly proportional to m2

ϕ . Of course, there must be an upper limit on mϕ from the 
unitarity bound, under which the magnitude of the non-decoupling effect can be typically a few 
percent level, as we will see in the plots below.

Now, we show the plots of �
X

EW in each model with the extended Higgs sectors discussed in 

Sec. 2. Although the quantity �
X

EW cannot directly be measured at collider experiments, study-

ing the prediction of �
X

EW turns out to be important to understand the behavior of the deviation 
in branching ratios from the SM prediction, which will be discussed in the next section. In the 
following discussion, we impose the bounds from the perturbative unitarity, the vacuum stabil-
ity, the conditions to avoid wrong vacua (taking M2 ≥ 0) and the S, T parameters discussed in 
Sec. 2. The flavor constraints discussed in Sec. 2.2 are also important to be taken into account 
particularly in the THDMs, but we do not impose them here in order to study and compare the 
behavior of �

X

EW among the extended Higgs sectors. In the later discussion given in Sec. 4.3, we 
discuss the branching ratios imposing the flavor constraints as well.

In Fig. 2, predictions of �
b

EW are shown in the HSM (left) and the IDM (right), results for 
the other fermions f look almost the same as what are shown in these figures. In the HSM, we 
take cα = 1, μS = 0 and λS = 0.1, where �

b

EW does not directly depend on λS , but it indirectly 
determines the allowed size of �EW via the unitarity and vacuum stability bounds. In the IDM, 
we take mH = mA = mH± and λ2 = 0.1, where �

b

EW does not directly depend on λ2. As we see 

from the plots, the magnitude of �
b

EW becomes larger when the mass of the extra scalar boson 

5 In the THDMs, the charged Higgs boson and top quark loop contribution can also be important for �b
EW. The analytic 

expression for the top quark mass dependence due to charged Higgs boson loops is found in Ref. [31].
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Fig. 3. New physics effects in the EW corrections �b
EW as a function of m�(= mH = mA = mH± ) in the Type-I 

and Type-X THDMs with fixed values of tanβ = 1.5 (red), 3 (blue) and 5 (green). The upper panel shows the case with 
sβ−α = 1 and the lower left (right) panel shows the case with sβ−α = 0.99 and cβ−α < 0 (cβ−α > 0). The solid (dashed) 
curves denote the case with the maximal (minimal) value of M2 allowed by the perturbative unitarity, vacuum stability 
bounds and S, T parameters. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

is taken to be larger up to around 900 GeV and 600 GeV in the HSM and IDM, respectively. 
The maximal deviation is found to be |�b

EW| � 2.5 (5%) in the HSM (IDM), which is given at 
M2 = 0. The larger maximal amount of the deviation in the IDM as compared with the HSM 
is due to more than one additional scalar boson running in the loop in the IDM. In the case of 
larger values of mH , the magnitude of |�b

EW| monotonically decreases, because M2 = 0 cannot 

be taken due to the unitarity constraint. We then can see the decoupling behavior, �
b

EW → 0, at 
the large mass limit in both models, where loop effects of additional Higgs bosons vanish. The 
behavior of �

Z

EW and �
W

EW in the HSM and the IDM is almost the same as that of �
b

EW shown 
in Fig. 2.
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In Fig. 3, the value of �
b

EW is plotted as a function of the common additional Higgs boson 
mass m� defined by m� = mH = mA = mH± in the Type-I THDM with fixed values of tanβ . 
Here, we take sβ−α = 1 (upper panel) and sβ−α = 0.99 (lower panels), where the lower left and 
right panels show the cases of cβ−α < 0 and cβ−α > 0, respectively. We note that the results in 
the Type-X THDM are almost the same as those in the Type-I THDM. From the upper panel, the 
decoupling behavior can clearly be seen in the large mass region as in the HSM and the IDM. 
On the other hand, in the case with sβ−α = 0.99 shown in the lower panels, the decoupling limit 
cannot be taken, so that there appears the upper limit on the mass of the extra Higgs boson from 
the theoretical constraints depending on the value of tanβ and the sign of cβ−α . At m� ∼ 2mt , the 

threshold effects of t t̄ appear, which push �
b

EW into the positive direction. This peak comes from 
the top quark loop contribution to the Z–A mixing diagram which appears in the counterterm of 
the β parameter. More detailed discussions have been given in Ref. [30]. We can also see the dip 
above the t t̄ threshold for tanβ = 1.5. The origin of this dip can be explained in the same way 
as in Fig. 2. Namely, the point, where the dip appears, corresponds to the maximal value of the 
mass of the extra Higgs boson with M2 = 0 allowed by the unitarity bound. Similar to the results 
in the HSM and the IDM seen in Fig. 2, the non-decoupling effect of the extra Higgs boson, 
which can be more significant for smaller M2, pushes down the value of �

b

EW. For larger values 

of tanβ , allowed regions of �
b

EW for a fixed value of m� are significantly shrunk as compared 
to the case with tanβ = 1.5, while the behavior explained above does not change so much.

In Fig. 4, we show similar plots as in Fig. 3, however, for the case of the Type-II THDM. The 
results in the Type-Y THDM are almost the same as those in the Type-II THDM. Again, we can 
see the decoupling behavior for sβ−α = 1, and observe the upper limit on m� for sβ−α = 0.99, 
where the value of the upper limit does not depend on the types of Yukawa interaction. Although 
the behavior of the additional Higgs boson loop contribution, i.e., pushing down the value of 
�

b

EW, can also be seen as in the Type-I case, the effect of the t t̄ threshold appears in the opposite 
direction as compared to the case of the Type-I THDM. This can be understood by the difference 
of the tanβ dependence on the ζf factor, see Table 1. In addition, for larger values of tanβ , the 

magnitude of �
b

EW tends to get larger. For example, for sβ−α = 1, the maximally allowed value 

of |�b

EW| is about 4.5, 5.5 and 7.5% for tanβ = 1.5, 3 and 5, respectively.

Differently from the HSM and IDM, the value of �
f

EW can be drastically changed depending 
not only on the type of Yukawa interaction but also the type of fermion. Thus, in Fig. 5 we show 
the results for �

b

EW, �
c

EW and �
τ

EW in four types of the THDMs. Here, we show the case of 
sβ−α = 1 and tanβ = 1.5 for all the types of the THDMs. It is seen that the direction of the peak 
at around m� = 2mt is determined to be positive (negative) if ζf = cotβ (− tanβ), see Table 1. 
The behavior of �

c

EW and �
τ

EW is also classified by the factor of ζf , e.g. that of �
τ

EW in the 

Type-II THDM is common to the Type-X THDM. Concerning �
b

EW, the behavior is different 
from e.g. �

τ

EW in the Type-II THDM even though these two depend on the same factor of ζf . 

This can be understood by the fact that the top mass dependence enters in �
b

EW when charged 

Higgs bosons run in the loop, while for the other �
f

EW a dependence on fermion masses in loops 
is negligibly small. Detailed discussions have been given in Ref. [30] for the behavior of the 
radiative correction to the Yukawa couplings in the THDMs.

In Fig. 6, we show the value of �
Z

EW in the Type-I THDM with a fixed value of tanβ . The 
results in all the other types of the THDMs are almost the same as those in the Type-I THDM. 
Similar to Fig. 3, we can see the decoupling behavior for sβ−α = 1 (upper panel) at the large 
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Fig. 4. Same as Fig. 3, but for the Type-II and Type-Y THDMs.

mass region, while for sβ−α = 0.99 (lower panels), there appears the upper limit on the additional 
Higgs boson mass m� depending on tanβ . In addition, the position of the dip at m� � 500, 250 
and 150 GeV for sβ−α = 1 with tanβ = 1.5, 3 and 5, respectively, is the same as that shown 
in the upper panel of Fig. 3, because it is determined by the unitarity bound. It is seen that for 
sβ−α = 1, the possible values of �

Z

EW with larger tanβ are included in those with smaller tanβ . 
This is simply because the unitarity bound more strongly constrains the possible non-decoupling 
effect for a larger value of tanβ . The lowest value of �

Z

EW is found to be around −3%, −1%
and −0.5% for tanβ = 1.5, 3 and 5, respectively, and the largest value corresponds to the SM 
prediction, i.e. �

Z

EW � 0. For sβ−α = 0.99, we find that �
Z

EW can be positive. This is because of 
the contribution from the virtual photon propagation shown as the diagram (a) in Fig. 1, which 
is proportional to �̂1,loop

hZγ /�̂
1,tree
hZZ , see Eq. (60). Because the tree level hZZ vertex �̂1,tree

hZZ is now 
suppressed by the κ (= sβ−α) factor, this contribution can be larger than the case with sβ−α = 1.
V
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Fig. 5. New physics effects in the EW corrections �f
EW (f = b, c, τ ) as a function of m�(= mH = mA = mH± )

in the Type-I (upper-left), Type-II (upper-right), Type-X (lower-left) and Type-Y (lower-right) THDM with sβ−α = 1

and tanβ = 1.5. The solid (dashed) curves denote the case with the maximal (minimal) value of M2 allowed by the 
perturbative unitarity, vacuum stability bounds and S, T parameters.

This behavior should be compared with the results for �
W

EW shown in Fig. 7. Because there is 
no virtual-photon-propagation diagram in the h → WW ∗ process, as seen in Fig. 1, the value of 
�

W

EW is negative. For sβ−α = 1, the value of �
W

EW is almost the same as that of �
Z

EW, so that we 

do not show the result of �
W

EW with sβ−α = 1.

4. Numerical results for the Higgs boson decay rates

In this section, we numerically show predictions of the total width and the branching ratios of 
the Higgs boson at NLO in the HSM, the THDMs and the IDM. After we show these quantities, 
we demonstrate if these extended Higgs models can be distinguished by the difference of the 
pattern of deviations in the branching ratios from those of the SM predictions. Similar to the 
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Fig. 6. New physics effects in the EW corrections �Z
EW as a function of m�(= mH = mA = mH± ) in the Type-I THDM 

with fixed values of tanβ = 1.5 (red), 3 (blue) and 5 (green). The upper panel shows the case with sβ−α = 1 and the 
lower left (right) panel shows the case with sβ−α = 0.99 and cβ−α < 0 (cβ−α > 0). The solid (dashed) curves denote 
the case with the maximal (minimal) value of M2 allowed by the perturbative unitarity, vacuum stability bounds and 
S, T parameters.

analysis in Sec. 3.6, we take into account the constraints from the unitarity, the vacuum stability, 
the conditions to avoid wrong vacua and the S, T parameters. Except for Sec. 4.3, we dare not 
to impose the flavor constraints in order to just see the predictions of deviations in total width 
and branching ratios. For the THDMs, we introduce the common mass of the additional Higgs 
bosons m�; i.e., m� = mH = mA = m

H± .

4.1. Total widths

We first discuss the total width of the Higgs boson h. In Fig. 8, we show the deviation in the 
total width from the SM prediction in the HSM. We scan the parameters cα , mH and M2 within 
0.95 < cα < 1, 300 ≤ mH ≤ 5000 GeV and 0 ≤ M2 ≤ m2 , respectively. The dependences on cα
H
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Fig. 7. New physics effects in the EW corrections �W
EW as a function of m�(= mH = mA = mH± ) in the Type-I THDM 

with fixed values of tanβ = 1.5 (red), 3 (blue) and 5 (green). The left (right) panel shows the case with sβ−α = 0.99 and 
cβ−α < 0 (cβ−α > 0). The solid (dashed) curves denote the case with the maximal (minimal) value of M2 allowed by 
the perturbative unitarity, vacuum stability bounds and S, T parameters.

Fig. 8. Deviation in the total width from the SM prediction as a function of cα (left) and m
H

(right) in the HSM with 
μS = 0 and λS = 0.1. The values of cα , mH and M2 are scanned within 0.95 < cα < 1, 300 ≤ mH ≤ 5000 GeV and 
0 ≤ M2 ≤ m2

H
, respectively.

and mH are then displayed in the left and right panels, respectively. At tree level, the deviation in 
the width is determined by s2

α , and it almost corresponds to the upper edge of the distribution in 
the left panel. The loop effects typically reduce the width by at most about 2% level. In the right 
panel, it is seen that the magnitude of allowed deviations becomes smaller for larger mass regions, 
because the large mixing is excluded by the theoretical bounds. We note that the information of 
the width is important to identify the HSM, because the branching ratios of the Higgs boson are 
almost the same as those of the SM due to nearly universal suppression of the partial decay rates 
in the HSM.
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Fig. 9. Deviation in the total width from the SM prediction in four types of the THDMs with sβ−α = 0.99 as a function 
of tanβ . The left and right panels show the case of cβ−α < 0 and cβ−α > 0, respectively. The values of m� and M2 are 
scanned within 300 ≤ m� ≤ 1000 GeV and 0 ≤ M2 ≤ m2

�, respectively.

In Fig. 9, the deviation in the total width is shown as a function of tanβ in four types of the 
THDMs with sβ−α = 0.99 and cβ−α < 0 (> 0) in the left (right) panel. We scan the values of M2

and m�. In the left plot, it is seen that except for the Type-I THDM, the width becomes larger as 
tanβ increases, because some of the partial widths have a tanβ enhancement, e.g., the h → bb̄

(h → τ τ̄ ) mode in the Type-II and Type-Y (Type-II and Type-X) THDMs. In the Type-I THDM 
on the contrary, the total width approaches to the SM prediction, more precisely s2

β−α�SM, at the 
large tanβ region. We note that the curves are truncated at around tanβ = 11 (the same thing 
also happens in the Type-II and Type-Y THDMs), because of the theoretical constraints. In the 
case with cβ−α > 0 (the right panel), the situation is drastically different from the case with 
cβ−α < 0. The total width has the minimal value at tanβ ∼ 7 in the Type-II, Type-X and Type-Y 
THDMs, due to the cancellation between the sβ−α term and the cβ−α term in κf , see Table 2. 
This behavior is remarkably observed in the Type-II and Type-Y THDMs, because the h → bb̄

mode, which is the biggest partial width of h in the SM, follows the behavior explained above. 
We can also see that at tanβ � 14, the deviation in the total width becomes zero, as we have 
κ2
f � 1 for all the types of Yukawa interaction. In the Type-I THDM, the width approaches to the 

SM value at a large value of tanβ as also seen in the case with cβ−α < 0. The typical amount of 
the loop corrections to the total width is a few percent level, which is shown by a width of each 
curve.

In Fig. 10, we show the m� dependence on the deviation in the total width in four types of 
the THDMs. Here, we scan the values of M2 and sβ−α , while we fix tanβ to be 1.5. For cβ−α <

0 (left panels), the deviation is distributed in the positive (negative) direction in the Type-II 
and Type-Y (Type-I and Type-X) THDMs, while for cβ−α > 0 (right panels), the situation is 
opposite. This can be understood by focusing on the deviation in the decay rate of h → bb̄ which 
is expressed by κ2

b − 1 = 2ζbsβ−αcβ−α + c2
β−α(ζ 2

b − 1) at tree level. As we are considering 
sβ−α ∼ 1, the 2ζbsβ−αcβ−α term dominantly determines the behavior. We see that the allowed 
magnitude of the deviation is shrunk at around m� = 700 (450) GeV for cβ−α < 0 (cβ−α > 0), 
because in the region above m� = 700 (450) GeV the unitarity and/or vacuum stability bounds 
constrain sβ−α to be closer to 1. As it is expected from the decoupling theorem, for larger m� the 
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Fig. 10. Deviation in the total width from the SM prediction in the Type-I and Type-II THDMs (upper panels) and in the 
Type-X and Type-Y THDMs (lower panels) with tanβ = 1.5 as a function of m�(= mH = mA = mH± ). The left and 
right panels show the case of cβ−α < 0 and cβ−α > 0, respectively. The values of M2 and sβ−α are scanned with the 
ranges of 0 ≤ M2 ≤ m2

� and 0.95 ≤ sβ−α ≤ 1.

magnitude of the deviation is getting smaller, but it can still be O(10)% level at around m� = 1
TeV.

Finally in Fig. 11, we show the total width in the IDM as a function of the charged scalar 
boson mass m

H± with mA = m
H± . We here take two cases; i.e., (i) mH is fixed to 63 GeV and 

(ii) mH = mH± . The case (i) is motivated by the dark matter physics [96,97,109,110], where 
H can be a dark matter candidate. In this case, the value of M2 is taken such that the HHh

coupling normalized to v becomes around 10−3 to avoid constraints from dark matter direct 
detection experiments. In the IDM, the total width does not change from the SM value at tree 
level, so that any deviation is purely due to loop effects. We can see that in the case (i), the total 
width monotonically decreases and the deviation is larger as mH± is getting larger. The black 
curve is truncated at around mH± = 700 GeV, because of the unitarity constraint. In the case (ii), 
the magnitude of the deviation becomes larger up to mH± � 600 GeV, while it becomes smaller 
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Fig. 11. Deviation in the total width from the SM prediction in the IDM with λ2 = 0.1. The value M2 is scanned within 
0 ≤ M2 ≤ m2

H± under the constraints from the perturbative unitarity and the vacuum stability for the case of m
H

= m
H±

shown by dots. The black curve shows the case for m
H

= 63 GeV.

Fig. 12. Branching ratios as a function of tanβ in the Type-I, Type-II, Type-X and Type-Y THDMs (from left to right) 
with sβ−α = 0.99. We take cβ−α < 0 (cβ−α > 0) for the upper (lower) panels. The values of M2 and m�(= mH =
mA = mH± ) are scanned with the ranges of 0 ≤ M2 ≤ m2

� and 300 ≤ m� ≤ 1000 GeV. The dashed lines show the 
predictions in the SM.

above mH± � 600 GeV. The maximal deviation is given at M2 = 0 for mH± < 600 GeV, while 
the unitarity constrains the minimal value of M2 above mH± � 600 GeV and possible deviations 
become smaller.

4.2. Branching ratios

We move on to the discussion of the branching ratios of the Higgs boson h at NLO. For 
reference, in Table 4 we give our results for the branching ratios in the SM.
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Table 4
The SM predictions of the branching ratios of the Higgs boson h at NLO.

BR(h → bb̄) BR(h → cc̄) BR(h → τ τ̄ ) BR(h → WW∗) BR(h → ZZ∗)

59.5% 2.60% 7.16% 20.3% 2.47%

In the HSM and the IDM, the branching ratios for h are almost the same as those in the SM 
predictions, because the partial decay rates are universally suppressed by the radiative corrections 
and the mixing, where the latter does not happen in the IDM. Thus, in the following discussion, 
we concentrate on the THDMs. In the THDMs, branching ratios can be modified from those in 
the SM by both tree-level mixing effects parameterized by the scaling factor κX and loop effects. 
When sβ−α 
= 1 is taken, branching ratios can significantly be modified from the SM predictions 
due to the tree level mixing effects, and the pattern of deviations strongly depends on the type 
of Yukawa interactions. In this case, we may be able to determine the type from the pattern of 
deviations. On the other hand, loop contributions to deviations in the branching ratios are rela-
tively smaller than the tree level mixing effects, so that it would be relatively difficult to extract 
the loop effects. When sβ−α = 1, however, the pure loop effect can be extracted, because the tree 
level mixing vanishes. Therefore, in the following discussion, we first show the predictions of 
branching ratios in the THDMs with sβ−α 
= 1 to see how the mixing effects modify them. We 
then show those with sβ−α = 1 in order to extract the size of loop effects.

In Fig. 12, we show the branching ratios as a function of tanβ in four types of the THDMs 
with sβ−α = 0.99 and cβ−α < 0 (cβ−α > 0) in the upper (lower) panels. The values of M2 and 
m� are scanned. The typical behavior can be explained by the tree level results, see e.g. Ref. [1]. 
For example, except for the Type-I THDM, some of the branching ratios fall down at tanβ � 7
with cβ−α > 0, because of the fact that some κf factors become zero, e.g. κb in the Type-II and 
Type-Y THDMs, and it makes the value of the total width to be minimal as we saw it in the right 
panel of Fig. 9. Loop effects due to additional Higgs bosons appear as a width of each curve.

In order to see the deviation in the ratio of the branching ratio from the SM prediction, we 
introduce the following quantity for the h → XX mode

�μXX ≡ BR(h → XX)NP

BR(h → XX)SM
− 1. (70)

Using the formulae of the partial decay rates at NLO discussed in Sec. 3, �μXX can be written 
in terms of the EW corrections �

X

EW defined in Eq. (68) in the alignment limit as

�μXX � �
X

EW −
∑
f

BR0(h → f f̄ )�
f

EW −
∑
V

BR0(h → V V ∗)�V

EW, (71)

where BR0 denotes the tree level branching ratio in the SM. We note that the second term of the 
right hand side is dominantly determined by �

b

EW because the branching ratio of h → bb̄ typi-
cally has the largest value among all the decay modes. This expression is helpful to understand 
the behavior of some plots which will be shown below.

In Fig. 13, we show �μff (f = b, c, τ ) as a function of m� in four types of the THDMs 
with sβ−α = 1 and tanβ = 1.5. Here, we fix the value of λv2 = m2

� − M2 to be 0 (solid curves) 
and (200 GeV)2 (dashed curves). We see the decoupling behavior in the large mass region, and 
observe the peak at around m� = 2mt depending on the type of Yukawa interaction and the type 
of fermions, where the direction of the peak is the same as that for the plots of �

f
shown in 
EW
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Fig. 13. Predictions of �μff (f = b, c, τ ) defined in Eq. (70) in the Type-I (upper-left), Type-II (upper-right), Type-X 
(lower-left) and Type-Y (lower-right) THDMs with sβ−α = 1 and tanβ = 1.5 as a function of m�(= mH = mA =
mH± ). The solid and dashed curves show the case with λv2 = 0 and (200 GeV)2, respectively, where λv2 = m2

� − M2.

Fig. 5. Notice that the peak appearing at m� > 2mt in Fig. 5 does not appear in this plot, as we 
here fix the value of λv2.

Fig. 14 shows the case for tanβ = 3, and all the other choices are the same as in Fig. 13. 
We see that some of �μff values with λv2 = (200 GeV)2 are largely different from those with 
λv2 = 0. For example, the dashed curve for �μττ (green) in the Type-X THDM is located lower 
than the corresponding solid curve because �

τ

EW appearing in the first term of Eq. (71) has a 
smaller value in the case with λv2 = (200 GeV)2.

The m� dependence of �μV V (V = W, Z) is shown in the THDMs with sβ−α = 1 and 
tanβ = 1.5 (Fig. 15) and 3 (Fig. 16), where the values of �μWW and �μZZ are almost the 
same of each other in this case. As in Fig. 13, the value of λv2 is fixed to 0 (solid curves) and 
(200 GeV)2 (dashed curves). The left and right panels show the results in the Type-I and Type-II 
THDMs, respectively, while the results in the Type-X (Type-Y) THDM are almost the same as 
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Fig. 14. Same as Fig. 13, but for tanβ = 3.

those in the Type-I (Type-II) THDM. In all the panels, the value of �μVV approaches to zero in 
the large m� region, because of the decoupling property of the additional Higgs bosons. In the 
left (right) panel, a peak appears at around m� = 2mt , because the EW correction to the partial 
width of h → bb̄ mode has a peak in the Type-I and Type-X (Type-II and Type-Y) THDMs, see 
Figs. 3 and 4. We can also see that in the Type-I THDM with tanβ = 1.5 the value of �μV V

with λv2 = (200 GeV)2 is almost the same as that with λv2 = 0, because the change of �
b

EW

due to taking different values of λv2 is accidentally cancelled by that of �
V

EW. For tanβ = 3, 
the value of �μV V with λv2 = (200 GeV)2 is slightly smaller than that with λv2 = 0, because 
the change of �

b

EW becomes smaller than that for tanβ = 1.5, while �
V

EW does not depend on 
tanβ so much. On the other hand, in the Type-II THDM with tanβ = 3 the value of �μV V

with λv2 = (200 GeV)2 is larger than that for λv2 = 0, because of the larger negative shift 
of �

b
.
EW
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Fig. 15. Predictions of �μV V (V = W, Z) defined in Eq. (70) in the Type-I (left) and Type-II (right) THDMs with 
sβ−α = 1 and tanβ = 1.5 as a function of m�(= mH = mA = mH± ). The solid and dashed curves show the case with 
λv2 = 0 and (200 GeV)2, where λv2 = m2

� − M2.

Fig. 16. Same as Fig. 15, but for tanβ = 3.

Table 5
Expected 1σ uncertainty for the measurements of the branching ratios of the Higgs boson h at ILC250 [18].

h → bb̄ h → cc̄ h → τ τ̄ h → WW∗ h → ZZ∗ h → gg h → γ γ h → μμ

0.89% 3.2% 1.4% 1.9% 6.7% 2.7% 13% 27%

4.3. Correlations

In the discussions so far, we have seen the deviation in the total width and those in branching 
ratios in each extended Higgs sector. We now see correlations among the deviations in branching 
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Fig. 17. Correlation between �μττ and �μ
bb

in the Type-I (red), Type-II (blue), Type-X (green), Type-Y (magenta) 
THDMs, the HSM (orange) and the IDM (black). The left (right) panel shows the case with �μWW = 0 ± 2% (0 ± 4%). 
In the THDMs, we scan 1.5 ≤ tanβ ≤ 10, 0 ≤ M2 ≤ m2

� and 300 (600) ≤ m� ≤ 1000 GeV for (darker) colored points. 
In the HSM, we scan 300 ≤ mH ≤ 5000 GeV and 0 ≤ M2 ≤ m2

H
, while in the IDM we fix mH to be 63 GeV and scan 

100 ≤ m
A

(= m
H± ) ≤ 1000 GeV.

Fig. 18. Same as Fig. 17, but for the case with �μWW to be 5 ± 4% (left) and −5 ± 4% (right).

ratios in all the extended Higgs sectors discussed in this paper in order to clarify how we can 
distinguish extended Higgs sectors from the precise measurements of the branching ratios.

The branching ratios of the Higgs boson will be measured as accurately as possible at future 
collider experiments. In particular at the ILC, we can measure the cross section of e+e− → Zh

without depending on the decay of h by using the recoil method [111,112]. This makes the 
measurements of the branching ratios possible without depending on the cross section. At the 
ILC with the collision energy of 250 GeV and the integrated luminosity of 2 ab−1 (ILC250), 
the branching ratios are expected to be measured as shown in Table 5. We thus consider the 
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Fig. 19. Correlation between �μττ and �μcc in the Type-I (red), Type-II (blue), Type-X (green) and Type-Y (magenta) 
THDMs. The upper panel shows the case with �μ

WW
= 0 ± 4%, while the lower left (right) panel shows the case with 

�μ
WW

= 5 ± 4% ( �μ
WW

= −5 ± 4%). The ranges of scanning parameters are the same as those of Fig. 17.

situation where the branching ratios are measured to some extent at ILC250, namely we impose 
the further constraint on the value of �μXX with a given central value and an error in addition 
to the theoretical constraints which are imposed in the discussion above.

In order to take into account the constraints from Bs → Xsγ [90,91], we consider the case 
with larger masses of extra Higgs bosons, i.e., m� ≥ 600 GeV in the THDMs as well as that 
for m� ≥ 300 GeV. As discussed in Sec. 2, the lower bound on m

H± is about 600 GeV in the 
Type-II and Type-Y THDMs.

In Fig. 17, we show the correlation between �μττ and �μbb in the HSM, four types of the 
THDMs and the IDM under the additional constraint from �μWW = 0 ±2% (left) and �μWW =
0 ± 4% (right). The errors of 2% and 4% are taken to consider about 1σ and 2σ level region at 
ILC250, respectively [18]. Parameters of each model are scanned as it is described in the caption. 
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We see that the predictions in the HSM and the IDM are given almost at the origin of this plane, 
because in these models the partial decay rates are almost universally suppressed as we already 
mentioned in Sec. 4.2. On the other hand, the predictions of the THDMs are spread out into 
the different directions depending on the type of Yukawa interactions. In the Type-Y THDM, 
two allowed regions appear in the fourth quadrant if we choose values for m� starting from 
300 GeV (lighter points). This can be explained from Fig. 12 (lower-rightmost panel), where 
we can find the two values of tanβ providing the same value of BR(h → τ τ̄ ) while different 
values of BR(h → bb̄). This, however, vanishes when we take m� ≥ 600 GeV (darker points), 
as such configuration is favored by the flavor experiments, particularly in the Type-II and Type-Y 
THDMs. Remarkably, only in the Type-X THDM, the allowed points are distributed in the wide 
(small) range of �μττ (�μbb). This can also be understood from the third panels of Fig. 12, 
where only the BR(h → τ τ̄ ) mode can significantly be changed depending on tanβ , while all the 
other branching ratios do not change so much. In contrast in the Type-II THDM large variations 
of BR(h → ττ) appear together with large variations of BR(h → bb). Thus, the other decay 
branching ratios, particularly the h → WW ∗, also strongly vary at the same time, and then such 
configurations are constrained by the bound on �μWW . From this figure, we find that if �μττ

is found to be a several percent, we can distinguish the models considered in this paper. In the 
following discussion, we focus on the case with �μWW to be constrained at the 2σ level, i.e., 
allowing 4% uncertainty.

Let us also consider the case where the central value of �μWW is found to be nonzero, and 
�μWW = 0 is excluded at the 2σ level. In Fig. 18, we show such situations with �μWW =
5.0 ± 4.0% (left) and �μWW = −5.0 ± 4.0% (right). In this setup, predictions of �μWW in 
the HSM and the IDM are almost zero, so that these models are excluded, while four types of 
THDMs can explain such a deviation. If the value of �μWW is given to be 5.0 ±4.0% (left), then 
four types of Yukawa interactions are well separated of one another, so that we can determine 
the type by measuring �μττ and �μbb in addition to �μWW . We note that the positive value 
of �μWW essentially comes from the reduction of the other decay rates, especially the h → bb̄

mode, because the partial width of h → WW ∗ reduces by the tree level scaling factor κV ≤ 1
and the one-loop effect as seen from Fig. 7. In fact, in the left panel of Fig. 18, the allowed points 
mainly appear in the regions with �μbb < 0.

For the case with �μWW = −5.0 ± 4.0%, some of the THDMs are overlapped in this plane. 
This is because the negative value of �μWW can be explained by either decreasing the partial 
width of the h → WW ∗ mode or increasing the other partial widths. Therefore, the branching 
ratio of h → bb̄ can be either larger or smaller than the SM prediction, as seen in the right panel. 
This makes discrimination among the four types of Yukawa interactions difficult as compared to 
the case with positive �μWW .

In Fig. 19, we show the correlation between �μττ and �μcc under the constraint on �μWW

with the 4% uncertainty. The central value of �μWW is supposed to be 0 in the upper panel, 
and to be +5% and −5% in the lower left and right panels, respectively. As compared to Fig. 17
(right), the allowed points on the upper panel are widely distributed in the �μττ and �μcc plane, 
because the branching ratio of h → cc̄ typically has a smaller portion of the total width than 
that of h → bb̄. If we only look at the correlation shown in the upper panel, it seems difficult 
to distinguish the models unless �μττ is given to several percent level. However, we would 
like to emphasize that by looking also at the corresponding plot shown in Fig. 17 (right), we 
can distinguish the models. For example, if �μττ and �μcc are measured to be small negative 
and positive respectively, i.e., the second quadrant in this plane, both the Type-II and Type-X 
THDMs can explain such situation, but these two models may not be distinguished from each 
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Fig. 20. Correlations between �μττ and �μ
WW

in the Type-I (red), Type-II (blue), Type-X (green) and Type-Y (ma-
genta) THDMs. The upper panel shows the case with �μbb = 0 ± 2%, while the lower-left (right) panel shows the case 
with �μbb = 2.5 ± 2% (�μbb = −2.5 ± 2%). The values of tanβ , M2 and m�(= mH = mA = mH± ) are scanned 
with the ranges of 1.5 ≤ tanβ ≤ 10, 0 ≤ M2 ≤ m2

� and 300 ≤ m� ≤ 1000 GeV, respectively, under the constraints from 
the perturbative unitarity, the vacuum stability and the S, T parameters.

other. However, by looking at the correlation between �μττ and �μbb with a negative value of 
�μττ , the Type-II and Type-X THDMs have allowed points in the different directions compared 
to each other. Therefore, we can distinguish all the four THDMs by using the combination of 
these correlations even if the central value of �μWW is measured to be close to zero.

Similar to Fig. 18, we show the case for nonzero �μWW at the 2σ level in the lower two 
plots in Fig. 19. We see that for the case with the central value of �μWW to be +5%, four 
types of THDMs are clearly separated from one another, while the case with the central value of 
�μWW to be −5% two models are overlapping at some regions of this plane. However, again 
the correlation between �μττ and �μbb helps for further discrimination of the models.
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Fig. 21. Same as Fig. 20, but for the correlation between �μττ and �μcc .

In the above analyses, we constrained the value of �μWW . We now constrain �μbb instead 
of �μWW . In Fig. 20, we show the correlation between �μττ and �μWW under the constraint 
on �μbb = 0 ± 2% (upper panel), �μbb = 2.5 ± 2% (lower left panel) and �μbb = −2.5 ± 2%
(lower right panel). The error of 2% is taken to consider about the 2σ level region at ILC250. 
For the case with �μbb = 0 ± 2%, if �μττ is measured to be a few percent level, it might be 
difficult to distinguish the models shown in this figure, particularly for the case with m� > 600
GeV shown as darker points. If we consider the case with 300 < m� < 600 GeV, it is seen that 
the points with −10% � �μWW � −5% are also allowed in all the four types of THDMs. When 
we consider the case with �μbb = 2.5 ± 2%, the situation is drastically changed, where most of 
the allowed points are distributed in the region with �μWW < 0, because of the compensation of 
the positive deviation in the branching ratio of the h → bb̄ mode. The opposite situation can be 
seen in the lower right panel showing the case with �μbb = −2.5 ± 2%.



S. Kanemura et al. / Nuclear Physics B 949 (2019) 114791 37
Finally, we show the correlation between �μττ and �μcc in Fig. 21 using the same setup 
as in Fig. 20. The shape of the upper panel looks similar to that seen in the upper panel of 
Fig. 19, while the allowed points in Fig. 21 are distributed in smaller regions than those shown in 
Fig. 19. This is simply because the foreseen uncertainty of the measurements of �μbb is smaller 
as compared to that of �μWW . Interestingly, for both the cases of �μbb = 2.5 ± 2% (left) and 
�μbb = −2.5 ± 2% (right) four types of the THDMs are well separated, and it becomes clearer 
when m� is taken to be greater than 600 GeV.

In this subsection, we have discussed various correlations between the deviations in branching 
ratios from the SM predictions at NLO. First, if we observe a percent level deviation in one 
of the decay modes of h, then the HSM and IDM could be ruled out as the branching ratios 
are almost the same as the SM predictions in these models. Second, the discrimination of four 
types of the THDMs strongly depends on the situation. If we observe a positive deviation in 
the branching ratio for the h → WW ∗ mode, the discrimination is possible by looking at the 
correlation between �μττ and �μbb or �μττ and �μcc. On the contrary, if we measure a 
negative deviation in the branching ratio of the h → WW ∗ mode, then the discrimination of 
four types becomes more complicated as two of four models can overlap with each other in the 
correlation of �μττ and �μbb or �μττ and �μcc. However, using three observables �μττ , 
�μbb and �μcc with the results from the direct searches of additional scalar bosons and from 
flavor experiments, we may be able to separate four types of the THDMs.

5. Conclusions

We have discussed the total width and the branching ratios of the 125 GeV Higgs boson h
at NLO in EW and QCD in the HSM, four types of the THDMs and the IDM. These quantities 
can be measured at collider experiments as precisely as possible under a given machine perfor-
mance. Thus, accurate calculations for the total width and branching ratios are quite important 
to compare them with future precision data, e.g. at the HL-LHC and the ILC. For the one-loop 
computation, we systematically applied the on-shell renormalization scheme for each model, in 
which we adopted the H-COUP program to evaluate numerical values of the renormalized Higgs 
boson vertices. The analytic expressions for the decay rates of h → f f̄ , h → ZZ∗ → Zf f̄ and 
h → WW ∗ → Wf f̄ ′ are presented at NLO, among which the h → WW ∗ → Wf f̄ ′ mode is 
newly computed in this paper. We also provided the decay rates of the loop induced processes; 
i.e., h → γ γ , h → Zγ and h → gg with QCD corrections at NLO.

We have shown that in the HSM and the IDM, all the partial decay rates are almost universally 
suppressed by both the tree level mixing (for the HSM) and the one-loop effect, so that the 
branching ratios remain almost the same values as those in the SM. Thus, if deviations in the 
branching ratio from the SM prediction (denoted as �μXX for the decay h → XX) are found, 
then we may be able to exclude the HSM and IDM. On the contrary, when we observe the 
deviation in the total width but not in the branching ratios, then it could be a smoking gun 
signature to identify these two models. We also have found that if we observe a positive deviation 
in the branching ratio of the h → WW ∗ mode, four types of the THDMs can be well separated 
from one another from the correlation between �μττ and �μbb or �μττ and �μcc. If we 
observe a negative deviation in the branching ratio of the h → WW ∗ mode, some of the THDMs 
can overlap in the �μττ and �μbb plane, but this can be disentangled by further looking at 
another correlation, such as �μττ and �μcc.

While the branching ratios are measured with a percent level at future precision experiments, 
direct searches for additional Higgs bosons are expected to make progress at the LHC Run-III 
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and the HL-LHC. If additional Higgs bosons are discovered, we can give stronger predictions 
of the correlation among the branching ratios by using their masses as inputs. Even if additional 
Higgs bosons are not directly discovered, stronger mass bounds obtained from the direct searches 
provide narrower allowed regions in the correlations. On the other hand, if deviations in the Higgs 
boson couplings, widths and/or branching ratios from the SM predictions are found at future 
precision experiments, we can obtain upper limits on masses of additional Higgs bosons; see 
e.g., Figs. 8, 10 and 11. Therefore, indirect searches for extended Higgs models using deviations 
in the Higgs boson properties play the complementary role to the direct searches as well as flavor 
constraints. Using the synergy between the direct and indirect searches, the parameter space of 
extended Higgs models can be effectively narrow down.

Finally, we would like to mention that the H-COUP version 2.0, where all the NLO compu-
tations for the decay rates presented in this paper are implemented, will be publicly available in 
near future [104].
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Appendix A. Loop induced hγ γ , hZγ , and hgg vertices

In this section, we give analytic expressions of loop induced vertices, i.e., hγ γ , hZγ and hgg

at one-loop level, which are required to calculate not only the decay rates of the loop induced 
processes given in Eq. (65) but also those of h → ZZ∗ → Vf f̄ at NLO given in Eq. (60). Here, 
we present the formulae for the THDMs and the IDM. Those for the HSM are simply obtained 
by removing the charged scalar loop contribution denoted as �̂i

hγ γ /hZγ (p2
1, p

2
2, q

2)S .
The loop induced hγ γ and hZγ vertices can be decomposed into the contribution from 

charged scalar loops, fermion loops and weak boson loops as follows:

�̂i
hγ γ (p2

1,p
2
2, q

2) = �̂i
hγ γ (p2

1,p
2
2, q

2)S +
∑
F

κF �̂i
hγ γ (p2

1,p
2
2, q

2)F

+ κV �̂i
hγ γ (p2

1,p
2
2, q

2)V , (A.1)

�̂i
hZγ (p2
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2
2, q

2) = �̂i
hZγ (p2

1,p
2
2, q

2)S +
∑
F

κF �̂i
hZγ (p2

1,p
2
2, q

2)F

+ κV �̂i
hZγ (p2

1,p
2
2, q

2)V . (A.2)

The analytic expressions for each contribution to the hZγ vertex are given by

�̂1
hZγ (p2

1,p
2
2, q

2)S = − egZ

16π2 (c2
W − s2

W)λhH+H−[4C24(mH±) − B0(q
2;mH±,mH±)],

(A.3)

�̂2
hZγ (p2

1,p
2
2, q

2)S = − 4egZ

16π2 (c2
W − s2

W)λhH+H−q2C1223(mH±), (A.4)
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hZγ (p2

1,p
2
2, q

2)F = − 4egZ m2
F NF

c vF QF [8C24(mF ) − 2B0(q
2;mF ,mF )
16π2 v
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+ (p2
1 + p2

2 − q2)C0(mF )], (A.5)
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where Bi , Ci and Cij are the Passarino-Veltman’s functions [113]. In this paper, we follow the 
convention of these functions given in Ref. [31]. Here, we use the shorthand notation for the 
C functions defined by Ci,ij (m) ≡ Ci,ij (p

2
1, p

2
2, q

2; m, m, m) and C1223 ≡ C12 + C23. The form 
factors for the renormalized hγ γ vertex is obtained from the expressions of the hZγ vertex by 
the replacement of (gZ, c2

W, s2
W, vF ) → (e, 1, −1, QF ). Finally, the hgg vertex is induced only 

from the quark loop. Thus, it is expressed by
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where a and b represent the color index.

Appendix B. Renormalized Vf f̄ vertices

We give analytic formulae of the renormalized Vf f̄ (V = Z, W ) vertices, which appear in 
the decay rates of h → V V ∗ → Vf f̄ at NLO given in Eq. (60) and (64). In the limit of massless 
external fermions, expressions of these vertices are common to those in the SM.

The renormalized Vf f̄ (V = Z, W ) vertices can be decomposed in the massless limit for 
external fermions as

�̂
μ
Vff (p2

1,p
2
2, q

2) = gV γ μ(�̂V
Vff − γ5�̂

A
Vff ), (B.1)

where pμ
1 (p

μ
2 ) is the incoming four-momentum of the fermion (anti-fermion), and qμ is the 

outgoing four-momentum of the gauge boson. The gauge coupling g is gZ and g/
√

2 for Z and 
V
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W , respectively. Similar to Eqs. (46) and (48), we can further decompose these vertices into the 
tree level part and 1-loop part:

�̂i
Vff = �

i,tree
Vff + �

i,loop
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Vff = �
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Vff + δ�i
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The tree level contribution is given by
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2
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The counterterm contribution is determined by imposing the on-shell renormalization condition 
as
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where mf = mf ′ = 0. The 1PI diagram contributions to these vertices are calculated as
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where

FFV F (X,Y,Z) = 2q2[C11 + C23](p2
1,p

2
2, q

2;mX,mY ,mZ)

+ 4C24(p
2
1,p

2
2, q

2;mX,mY ,mZ) − 2, (B.11)

FV FV (X,Y,Z) = q2[C0 + C11 + C23](p2
1,p

2
2, q

2;mX,mY ,mZ)

+ 6C24(p
2
1,p

2
2, q

2;mX,mY ,mZ) − 1. (B.12)

Appendix C. Contributions from hf f̄ vertex corrections and box diagrams

In the calculation of the decay rate of h → V V ∗ → Vf f̄ , there are contributions from hf f̄

vertex corrections denoted as T V
hff and box diagrams denoted as BV in Eqs. (60) and (64). The 

analytic expressions for T V
hff are given as follows:

T Z
hff = κV

256π3m3
h

g6
Zm2

Z

16π2(s − m2
Z)

{
c4
W(vf + af )2[C12(0, u,m2

h,mW ,0,mW)

− (C0 + C11)(tZ,0,m2
h;mW,0,mW)]

+ 4(v4
f + 6v2

f a2
f + a4

f )
[
C12(0, u,m2

h;mZ,0,mZ)

− (C0 + C11)(tZ,0,m2
h,mZ,0,mZ)

]}

×
[
s + (m2

h − s − u)(u − m2
Z)

m2
Z

]
, (C.1)

T W
hff = κV

256π3m3
h

g6m2
W

32π2(s − m2
W)m2

h

{
C12(0, u,m2

h;mW,0,mW)

− (C0 + C11)(tW ,0,m2
h;mW,0,mW)

+ 2

c4
W

[
(vf + af )2C12(0, u,m2

h;mZ,0,mZ)

− (vf ′ + af ′)2(C0 + C11)(tW ,0,m2
h;mZ,0,mZ)

]}

×
[
s + (m2

h − s − u)(u − m2
W)

m2
W

]
, (C.2)

where tV = m2
h + m2

V − s − u.
For the calculation of box diagrams, we define the Passarino-Veltman’s D functions:

i

16π2 [D0,D
μ,Dμν]

× (p2
1,p

2
2,p

2
3, (p1 + p2 + p3)

2, (p1 + p2)
2, (p2 + p3)

2;m1,m2,m3,m4)

=
∫

d4k

(2π)4

[1, kμ, kμkν]
N1N2N3N4

, (C.3)

where N1 = k2 − m2
1, N2 = (k + p1)

2 − m2
2, N3 = (k + p1 + p2)

2 − m2
3, N4 = (k + p1 + p2 +

p3)
2 − m2. We note that in our calculation up to the second rank tensors Dμν appear, and these 
4
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functions are UV finite. The first and second rank tensor functions are decomposed into the 
following scalar coefficients:

Dμ = p
μ
1 D11 + p

μ
2 D12 + p

μ
3 D13, (C.4)

Dμν = p
μ
1 pν

1D21 + p
μ
2 pν

2D22 + p
μ
3 pν

3D23 + (p
μ
1 pν

2 + p
μ
2 pν

1)D24

+ (p
μ
1 pν

3 + p
μ
3 pν

1)D25 + (p
μ
2 pν

3 + p
μ
3 pν

2)D26 + gμνD27. (C.5)

In the following, we shortly express the D functions by D0,i,ij (p
2
1, p

2
2, p

2
3, (p1 + p2 +

p3)
2, (p1 +p2)

2, (p2 +p3)
2; a, b, c, d) ≡ D0,i,ij (p

2
1, p

2
2, p

2
3, (p1 +p2 +p3)

2, (p1 +p2)
2, (p2 +

p3)
2; ma, mb, mc, md).
The contribution from box diagrams BV can be expressed as

BV = κV

256π3m3
h

1

16π2

cV g2
V

(s − m2
V )mV

[
(m2

V − t)(tu − m2
hm

2
V )(�

V,tree
Vff B1

V + �
A,tree
Vff B̄1

V )

+ (m2
V − u)(tu − m2

hm
2
V )(�

V,tree
Vff B2

V + �
A,tree
Vff B̄2

V )

+ 2(tu − m2
hm

2
V + 2sm2

V )(�
V,tree
Vff Bγ

V + �
A,tree
Vff B̄γ

V )
]
, (C.6)

where cV = 1(
√

2) for V = Z(W). Each factor Bi
V and B̄i

V (i = 1, 2, γ ) for V = Z is given as 
follows:

B1
Z = g4mW

[
− 2cWIf (D0 + D11 + D13 + D25)(0,0,m2

Z,m2
h, s, u;W,f ′,W,W)

− cWIf (D13 − D12 + 2D26)(0,0,m2
Z,m2

h, s, t;W,f ′,W,W)

+ s2
W

cW

If (D13 − D12)(0,0,m2
Z,m2

h, s, t;W,f ′,W,W)

+ vf ′ + af ′

cW

D26(0,m2
Z,0,m2

h,u, t;W,f ′, f ′,W)

+ 4

c5
W

(v3
f + 3vf a2

f )D26(0,m2
Z,0,m2

h,u, t;Z,f,f,Z)
]
, (C.7)

B2
Z = g4mW

[
− cWIf (D13 − D12 + 2D26)(0,0,m2

Z,m2
h, s, u;W,f ′,W,W)

− 2cWIf (D0 + D11 + D13 + D25)(0,0,m2
Z,m2

h, s, t;W,f ′,W,W)

+ s2
W

cW

If (D13 − D12)(0,0,m2
Z,m2

h, s, u;W,f ′,W,W)

+ vf ′ + af ′

cW

(D0 + D11 + D12 + D24)(0,m2
Z,0,m2

h,u, t;W,f ′, f ′,W)

+ 4

c5
W

(v3
f + 3vf a2

f )(D0 + D11 + D12 + D24)

× (0,m2
Z,0,m2

h,u, t;Z,f,f,Z)
]
, (C.8)

Bγ

Z = g4mW

{
− If

2
cW [−2C0(s,m

2
Z,m2

h;mW,mW,mW) + (t − s − m2
Z)(D0 + D11)

+ 2(s + t − m2)D12 + (s + t − m2 − m2 )D13 − 4D27]
h h Z
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× (0,0,m2
Z,m2

h, s, u;W,f ′,W,W)

+ If

4

s2
W

cW

[C0(s,m
2
Z,m2

h;mW,mW,mW) + 2(s + t − m2
Z)(D0 + D11)

− 2(s + t − m2
h − m2

Z)D13](0,0,m2
Z,m2

h, s, u;W,f ′,W,W) + (t ↔ u)
}

+ g4mW

{vf ′ + af ′

2cW

[C0(u,0,m2
h;mW,0,mW) + (m2

h − s − t)(D0 + D11) + m2
ZD12

− 2D27](0,m2
Z,0,m2

h,u, t;W,f ′, f ′,W)

+ 2

c5
W

(v3
f + 3vf a2

f )[C0(u,0,m2
h;mZ,0,mZ) + (m2

h − s − t)(D0 + D11) + m2
ZD12

− 2D27](0,m2
Z,0,m2

h,u, t;Z,f,f,Z)
}
, (C.9)

B̄i
Z = Bi

Z

∣∣
vf ↔af

(i = 1,2, γ ), (C.10)

Those for V = W are given by

B1
W = −√

2g4mW

[
2If ′(vf ′ + af ′)(D0 + D11 + D13 + D25)

× (0,0,m2
W,m2

h, s, u;W,f ′,Z,W)

+ 2s2
WIf ′Qf ′(D0 + D11 + D13 + D25)(0,0,m2

W,m2
h, s, u;W,f ′, γ,W)

+ If (vf + af )(D13 − D12 + 2D26)(0,0,m2
W,m2

h, s, t;W,f,Z,W)

+ s2
WIf Qf (D13 − D12 + 2D26)(0,0,m2

W,m2
h, s, t;W,f,γ,W)

+ 2If

vf + af

c2
W

(D0 + D11 + D13 + D25)(0,0,m2
W,m2

h, s, u;Z,f,W,Z)

+ If ′
vf ′ + af ′

c2
W

(D13 − D12 + 2D26)(0,0,m2
W,m2

h, s, t;Z,f ′,W,Z)

+ s2
W

c2
W

If (vf + af )(D13 − D12)(0,0,m2
W ,m2

h, s, t;W,f,Z,W)

− s2
WIf Qf (D13 − D12)(0,0,m2

W,m2
h, s, t;W,f,γ,W)

− (vf + af )(vf ′ + af ′)

c4
W

D26(0,m2
W,0,m2

h,u, t;Z,f ′, f,Z)
]
, (C.11)

B2
W = −√

2g4mW

[
If ′(vf ′ + af ′)(D13 − D12 + 2D26)(0,0,m2

W,m2
h, s, u;W,f ′,Z,W)

+ s2
WIf ′Qf ′(D13 − D12 + 2D26)(0,0,m2

W,m2
h, s, u;W,f ′, γ,W)

+ 2If (vf + af )(D0 + D11 + D13 + D25)

× (0,0,m2
W,m2

h, s, t;W,f,Z,W)

+ 2s2
WIf Qf (D0 + D11 + D13 + D25)(0,0,m2

W,m2
h, s, t;W,f,γ,W)

+ If

vf + af

c2
W

(D13 − D12 + 2D26)(0,0,m2
W,m2

h, s, u;Z,f,W,Z)

+ 2If ′
vf ′ + af ′

c2 (D0 + D11 + D13 + D25)

W
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× (0,0,m2
W,m2

h, s, t;Z,f ′,W,Z)

+ s2
W

c2
W

If ′(vf ′ + af ′)(D13 − D12)(0,0,m2
W,m2

h, s, u;W,f ′,Z,W)

− s2
WIf ′Qf ′(D13 − D12)(0,0,m2

W,m2
h, s, u;W,f ′, γ,W)

− (vf + af )(vf ′ + af ′)

c4
W

(D0 + D11 + D12 + D24)

× (0,m2
W,0,m2

h,u, t;Z,f ′, f,Z)
]
, (C.12)

Bγ

W = −g4mW√
2

{
If ′(vf ′ + af ′)[−2C0(s,m

2
W ,m2

h;mW,mZ,mW)

+ (t − s − m2
W)(D0 + D11)

+ 2(s + t − m2
h)D12 + (s + t − m2

h − m2
W)D13 − 4D27]

× (0,0,m2
W,m2

h, s, u;W,f ′,Z,W)

+ s2
WIf ′Qf ′ [−2C0(s,m

2
W,m2

h;mW,0,mW) + (t − s − m2
W)(D0 + D11)

+ 2(s + t − m2
h)D12 + (s + t − m2

h − m2
W)D13 − 4D27]

× (0,0,m2
W,m2

h, s, u;W,f ′, γ,W)

+ If

vf + af

c2
W

[−2C0(s,m
2
W,m2

h;mW,mZ,mW)

+ (t − s − m2
W)(D0 + D11)

+ 2(s + t − m2
h)D12 + (s + t − m2

h − m2
W)D13 − 4D27]

× (0,0,m2
W,m2

h, s, u;Z,f,W,Z)

+ s2
W

2c2
W

If ′(vf ′ + af ′)[C0(s,m
2
W ,m2

h;mW,mZ,mW)

+ 2(s + t − m2
W)(D0 + D11)

− 2(s + t − m2
h − m2

W)D13](0,0,m2
W,m2

h, s, u;W,f ′,Z,W)

− s2
W

2
If ′Qf ′ [C0(s,m

2
W ,m2

h;mW,0,mW) + 2(s + t − m2
W)(D0 + D11)

− 2(s + t − m2
h − m2

W)D13](0,0,m2
W,m2

h, s, u;W,f ′, γ,W)

+ (t ↔ u, f ↔ f ′)
}

+ g4mW

(vf + af )(vf ′ + af ′)√
2c4

W

[C0(u,0,m2
h;mZ,0,mZ) + (m2

h − s − t)(D0 + D11)

+ m2
WD12 − 2D27](0,m2

W,0,m2
h,u, t;Z,f ′, f,Z), (C.13)

B̄i
W = Bi

W (i = 1,2, γ ). (C.14)

Appendix D. Real photon emissions in h → WW ∗ → Wf f̄ ′

The contribution from the real photon emission in the h → WW ∗ → Wf f̄ ′ process can be 
separately written by the soft-photon and hard-photon emission parts as
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Fig. 22. Numerical check of cancellation of the soft divergence in the decay rate of h → Wf f̄ at NLO. The horizontal 
axis is the photon mass λ as a regulator to avoid the divergence. The blue and orange curves show the contribution from 
the virtual corrections and real photon emissions, respectively.

�(h → Wff ′γ ) = 1

2mh

∫
S

|M|2d�4 + 1

2mh

∫
H

|M|2d�4, (D.1)

where �4 is the four body phase space function. The first integral denoted as 
∫
S

is performed up 
to the cutoff of the photon energy �E, while the second integral is done from �E to the maximal 
value of the photon energy. The �E dependence in the NLO decay rate, of course, disappears 
after summing up the soft and hard photon parts.

The soft-photon part is calculated using the eikonal approximation by which the amplitude 
can be expressed by the product of the Born amplitude and the soft-photon factor. Then, we can 
separately perform the integration with respect to the 3-body phase space and the photon phase 
space. Therefore, the soft-photon part is expressed as

1

2mh

∫
S

|M|2d�4 =
∫

d�0(h → Wf f̄ ′)δsoft
W , (D.2)

where

δsoft
W = −αem

2π
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)
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4E2
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4E2
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3

}

+ Q2
f ′
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log
m2

f ′

s
+ 1

)
log

4�E

λ2 + 1

2

(
log

m2
f ′

4E2
f ′

)2 + log
m2

f ′

4E2
f ′

+ π2

3

}

+
{(

log
m2

W

s
+ 1

)
log

4�E

λ2 + 1

2

(
log

EW − | �pW |
EW + | �pW |

)2 + EW

| �pW | log
m2

W

(EW + | �pW |)2

}

+ 4Qf If

{1

2
log

s2

(m2
W − t)2

log
4�E

λ2 + Li2

(
1 − 2Ef (EW − | �pW |)

t − m2
W

)

+ Li2

(
1 − 2Ef (EW + | �pW |)
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− 4Qf ′If

{1

2
log

s2

(m2
W − u)2

log
4�E

λ2 + Li2

(
1 − 2Ef ′(EW − | �pW |)

u − m2
W

)

+ Li2

(
1 − 2Ef ′(EW + | �pW |)

u − m2
W

)}]
, (D.3)

with t = m2
h + m2

V − s − u, EW = mh(1 − xs + xW )/2 and | �pW | = mhλ
1/2(xs, xW )/2. This 

expression agrees with [114]. Here, we introduced the photon mass λ to regularize the IR di-
vergence and the fermion masses mf to regularize the collinear singularities. We numerically 
evaluate the hard-photon part by using Madgraph5_aMC@NLO [115].

In order to check the cancellation of the IR divergence, we show the partial decay rate at NLO 
in Fig. 22 as a function of the photon mass λ being a regulator to avoid the divergence, where we 
take �E = 1 GeV. We clearly see that the sum of the virtual corrections and the real emissions 
(denoted as “Total”) does not depend on λ.
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