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Abstract: Plug-in electric vehicles (PEV) are considered to reduce oil dependency, noise, and local 
air pollution as well as greenhouse gas emissions caused by road transportation. Today, the early 
market penetration phase has started and can be observed in many countries. But how could the 
diffusion and adoption of PEV be modeled to create consistent scenarios? With which PEV driving 
and charging behavior can these scenarios be associated and what load-shifting potentials can be 
derived? This work provides an answer to these questions by describing a hybrid modeling 
approach of a PEV diffusion scenario consisting of a top-down macro-econometric Bass model, 
answering the question as to at what point in time how many PEV will be on the market, and a 
bottom-up micro-econometric binary logistic PEV adoption model answering who is likely to adopt. 
This set of methods is applied to representative mobility data sets available for France and Germany 
in order to simulate driving and charging behaviors of potential French and German PEV adopters. 
In addition, a sampling method is presented, which reduces computational times while intending 
to remain representative of the population of PEV adopters considered. This approach enables the 
consideration of PEV at a detailed level in an agent-based energy system model focusing on 
European day-ahead markets. Results show that PEV diffusion dynamics are slightly higher in 
France than in Germany. Furthermore, average plug-in times, average active charging periods, 
average load-shifting potentials, and average energy charged per PEV differ slightly between France 
and Germany. Computational times can be reduced by our approach, resulting in the ability to 
better integrate PEV diffusion, adoption, and representative charging demand in bottom-up energy 
system models that simulate European wholesale electricity markets. 

Keywords: technology diffusion; PEV (plug-in electric vehicle); Germany; France; smart charging 
 

1. Introduction 

Greenhouse gas (GHG) emissions have a significant impact on the climate, leading to many 
undesirable side effects [1]. In Europe, this realization led to an agreement on long-term targets for 
the reduction of GHG emissions: by 2050, these should be reduced by 80% compared to 1990 levels 
[2]. The share of the transport sector in European GHG emissions was 24% in 2016 [3]. Moreover, 
fossil fuels are finite resources which are predominantly being imported. Against the background of 
a growing share of emissions in the transport sector [4], emission reduction strategies within this 
sector could be particularly effective [5]. Current political efforts to reduce GHG emissions in the 
transport sector are scarce compared to the societal adaptations necessary to achieve significant 
reductions [6]. In the global context, it is assumed that emissions in the transport sector could double 
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due to the rising energy demand in emerging countries [7]. This applies in particular to motorized 
private transport. Cars are responsible for around 12% of the total European Union emissions of 
carbon dioxide [8]. A promising strategy to reduce GHG emissions in the transport sector is the 
electrification of cars [6,8,9], especially with increasing penetration of renewable power production 
[10,11]. In industrialized countries in particular, the number of plug-in electric vehicle (PEV) 
registrations has been rising continuously since 2008 [12] despite barriers specific to PEV, such as 
limitations in range, a lack of charging infrastructure, and high purchase prices [13]. PEV describe 
vehicles that can charge their battery from external energy sources and comprise plug-in hybrid and 
pure battery-electric vehicles. 

For the estimation of potential structural and economic effects of PEV diffusion, for example, on 
charging infrastructure, power supply, or power prices, adequate PEV diffusion models are 
necessary, showing at which point in time how many PEV are being charged at which locations, and 
how much energy they need to be charged. Energy-system models often aggregate PEV-specific loads 
due to the computational effort needed for modelling driving and charging patterns in detail [11,14]. 
According to Richardson (2013) a balance between computational ease and real-world accuracy must 
be found [14]. Therefore, this work answers the following research question: 

How is it possible to combine the modeling of PEV adoption, charging behavior, and load-shifting 
potentials in energy-system analysis for France and Germany? 

In the following, we provide a hybrid PEV diffusion and adoption model, based on reliable 
demographic data, that can be applied in complex and granular simulation environments. Moreover, 
we present a re-sampling method to drastically reduce the computational costs of running the model 
in high-penetration scenarios. Our approach considers PEV on a detailed level in an agent-based 
energy system model simulating developments of and within European day-ahead electricity 
markets [15]. 

After Section 2 describes related work, Section 3 explains the methods and data used. Section 4 
and Section 5 present and discuss the results for the original and re-sampled case. Section 5 concludes 
and gives an outlook for future research. 

2. Related Work 

As our work deals with three subtopics, we structure the following section accordingly. First, 
we show recent research on market penetration studies and user acceptance. Second, we address 
more specifically the combination of bottom-up and top-down approaches in this field. Finally, we 
focus on PEV charging and customer preferences. 

Literature on the diffusion of PEV is a broad research field which has been evolving considerably 
over the last decade. Reviews exist for methods used to model the market penetration of PEV [16,17]. 
The review by Gnann et al. (2018) [18] focuses on international PEV market diffusion models and 
compares corresponding research questions, assumptions, and results to find that there are country-
specific differences in the importance of input factors. Coffman, Bernstein and Wee (2016) [19] 
provide a review on factors affecting PEV adoption. They show that the public charging 
infrastructure is an important factor associated with PEV uptake. In addition, they identify that actual 
purchases are much lower than consumers’ stated preferences derived from studies primarily relying 
on surveys about hypothetical situations. Rezvani, Jansson and Bodin [20] review consumer PEV 
adoption studies presenting a comprehensive overview of the drivers for and barriers against 
consumer adoption of plug-in PEVs. Kühl et al. (2019) [21] analyze German Twitter data and 
literature on customer needs concerning e-mobility. Price-related needs and needs concerning car 
characteristics are overrepresented in literature. On the other hand, charging-related needs are 
particularly overrepresented in the Twitter data set. 

Combining bottom-up and top-down approaches in models for vehicle diffusion and adoption 
has become more popular in recent years [16,22–24]. Not only personal preferences influence 
adoption decisions, but also macro-economic parameters. In particular, better designs of interfaces 
between models and surveys could lead to an improvement of PEV penetration models [17], which 



World Electric Vehicle Journal 2019, 10, 73 3 of 18 

is, for example, addressed by Wolinetz and Axsen (2017) [25]. Disaggregated survey data facilitate 
forecasts of potential future market developments already in early market phases [16] and enable the 
analysis of effects of varying input parameters on market developments [25]. PEV penetration models 
based on aggregated data, on the other hand, are suitable for medium- to long-term forecasts, as long 
as sufficient market development data is available [16]. 

The stream of research on PEV and infrastructure is extensive. Hardman et al. (2018) [26] provide 
a review of consumer preferences of and interactions with charging infrastructure. They show that 
the most important location for PEV charging is at home, followed by work, and then public locations. 
Gnann and Plötz (2015) [27] provide a review of combined models for market diffusion of alternative 
fuel vehicles and their refueling infrastructure. They find that simulation is the most common 
approach for interaction models. Richardson (2013) [14] reviews the current literature on PEVs, the 
electric grid, and renewable energy integration, discusses key methods and assumptions, and 
reviews the economic, environmental, and grid impacts of PEVs. He further shows that PEVs can 
significantly reduce the amount of excess renewable energy produced in an electric system. García-
Villalobos et al. (2014) [28] present a review of different strategies, algorithms, and methods to 
implement smart charging control systems and identify significant projects around the world about 
PEV integration. Habib, Kamran, and Rashid (2015) [29] review vehicle-to-grid (V2G) technology and 
various PEV charging strategies, and analyze their impacts on power distribution networks. Mwasilu 
et al. (2014) [30] review smart metering and communication infrastructures and identify strategies 
for integrating PEVs into the electric grid. Hu et al. (2016) [31] present a review and classification of 
methods for smart PEV charging for fleet operators. 

Focusing on users’ charging preferences in particular, Chen et al. (2019) [32] propose a multi-
objective scheduling method for PEV charging events. Korkas et al. (2018) [33] present an adaptive 
learning-based approach for nearly optimal dynamic charging of PEV fleets respecting user 
preferences. Simulation results demonstrate a robust behavior of the approach respecting stochastic 
arrival and departure times of PEV, different pricing models and solar energy production. Clairand 
et al. (2018) [34] analyze effects of an aggregator’s smart charging approach under consideration of 
users’ preferences. The aggregator allows PEV charging at the lowest cost while complying with 
technical constraints required by distribution system and transmission system operators. In addition, 
PEV users can choose among different products that meet their needs in terms of charging time. Case 
study results show that savings between 5% and 50% compared to the direct charging scenario can 
be realized. 

In conclusion, the majority of research handles one aspect of PEV diffusion, adoption, or 
charging behavior at a time. In the following, we combine established modeling methods in a hybrid 
approach to make possible the comprehensive and integrated simulation of PEV market 
developments while ensuring sufficient granularity of individual mobility needs. In this way, we can 
incorporate behavioral aspects of PEV use within an energy system model that focuses on coupled 
day-ahead wholesale electricity markets in Europe. Modelling PEV charging activities in a bottom-
up way, i.e., on the basis of individual parking and charging events, permits the analysis of emergent 
effects of different charging strategies on aggregated PEV demand profiles and corresponding effects 
on day-ahead market prices and CO2 emissions. In addition, despite the high PEV-specific 
granularity, the approach presented in this study intends to keep simulations feasible in terms of 
calculation costs, while maintaining a good approximation of reality at the same time. 

3. Method: A Hybrid Modelling Approach 

To find adequate answers to the research question, Section 3.1. describes the hybrid PEV 
diffusion approach applied. This includes a model variant intending to reduce computational effort, 
in order to support the integration of PEV in holistic energy system modeling. Section 3.2 describes 
the method deriving the corresponding PEV charging behavior of the PEV adopters and key metrics 
for the consecutive analysis. 
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3.1. Plug-In Electric Vehicle (PEV) Diffusion and Adoption 

This section shows the development and interactions of a granular hybrid model for PEV uptake 
and use in Europe. Section 3.1.1 describes our application of the top-down macro-econometric Bass 
diffusion model, Section 3.1.2 deals with a bottom-up micro-econometric binary logistic PEV 
adoption model, and Section 3.1.3 discusses how these models interact and considers a model variant 
reducing computational effort. 

3.1.1. Bass Diffusion Model 

The Bass diffusion model is used to model PEV diffusion in the market areas under 
consideration [35]. In this model, innovation diffusion depends on the interaction between current 
and potential adopters, called innovators and imitators. These are represented by an innovation 
coefficient (𝑝) and an imitation coefficient (𝑞). 𝑀 is the market potential, and 𝑡 the index for the year 
considered. The model produces diffusion values for every year 𝑡 − 𝑡  since the start year 𝑡  which 
must satisfy 𝑡 − 𝑡 = 0 at model initialization. The number of cumulative adoptions up to time 𝑡, 𝑁(𝑡), is represented by Equation (1): 𝑁(𝑡) = 𝑀 1 − 𝑒 ( )( )1 + 𝑞𝑝 𝑒 ( )( ) (1) 

Taking into account annual PEV stock numbers, assumptions about medium-term 
governmental targets and the premise that there will be a complete substitution of internal 
combustion engine vehicles in the long run (which already reflects the targets of some European 
governments, such as France, not to register petrol and diesel vehicles after 2040 [36]), equation 
parameters for the innovation and imitation coefficients are determined. However, in the long term, 
autonomous driving and car sharing might result in smaller vehicle fleets. Due to the challenges that 
internal combustion engine vehicles impose on society, it can be assumed that in the future, 
environmental standards will be further tightened. PEV are likely to be the first choice for meeting 
these fleet standards in the mid-term, as suggested by growing investments in the expansion of 
charging points and the upcoming portfolios of major vehicle manufacturers, even if alternative 
technology paths could be taken (for example, fuel cell technology). A non-linear regression method 
is used to determine the parameters of the Bass PEV diffusion scenarios for France and Germany 
(Equation (1)). Levenberg-Marquardt’s numerical optimization algorithm [37,38] is used for non-
linear curve fitting using OriginPro 2017G. 

3.1.2. Binary Logistic PEV Adoption Model 

In addition to knowing how many PEV will be registered at a given time (Section 3.1.1), car 
companies and grid operators are interested in receiving an answer to the question as to which 
customers will shift first to PEV. Consequently, private purchase intentions for PEV by German and 
French users of commercial PEV were analyzed within the accompanying research activities of the 
project Cross-border Mobility for Electric Vehicles (CROME) [39]. As the survey was carried out directly 
after the employer had decided to participate in the project, many of the respondents had only little 
experience with PEV. The conducted online survey included a question as to whether the German 
and French PEV users of commercial and public enterprises could imagine buying a PEV privately 
in the next 10 years [40,41]. In addition, the respondents were asked for further information on their 
mobility behavior, the role of the respondents in their companies, their experiences with PEV, 
household income, car-use frequency, nationality, and the number of cars in households in order to 
examine whether the data on future PEV purchase decisions can be explained by these variables. 
Dependencies between PEV adoption intentions and these variables are observable and can be 
described with a binary logistic regression model [41]. 
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3.1.3. Hybrid PEV Diffusion Modeling Approach 

Representative mobility studies are available for France and Germany [42,43]. We assume that 
individuals using cars currently will also be using cars in the future and will eventually become PEV 
users at a certain point in time. PEV adoption probabilities 𝑝   are calculated (Section 3.1.2) 
and assigned to every car-driving individual 𝑎 ∈ 𝐼  within each of the representative mobility 
studies [42,43] as described in [44]. The car-driving individuals have an individual weight 𝑤  
depicting their representativeness of true car-driving individuals, and are sorted by 𝑝   to 
obtain a sorted list of car users 𝐼 = {𝑎 ∈ 𝐼:𝑝  ≥ 𝑝  ≥ ⋯ ≥ 𝑝  } . 𝐴  ⊆ 𝐼 represents the set of PEV-adopting individuals in a country in a certain year �̃�. 

We use two different approaches to determine the set of PEV adopters (𝐴   and 𝐴  ) in a specific year �̃�. The traditional approach uses Method 1 and has already been applied 
by Ensslen et al. 2014 and 2018 [44,45]: 

Pseudocode of Method 1 

1   for all �̃� do 

2      𝒘𝒉𝒊𝒍𝒆 𝑎 ∈ 𝐼 ∧𝑊 ≤  𝑁(�̃�)  3           Set 𝑊 = 𝑊 + 𝑤   4            Add 𝑎  to 𝐴    5      end while 6   end for 
According to the approach described with the pseudocode of Method 1, all car users 𝑎 ∈ 𝐼  

become PEV adopters 𝑎 ∈ 𝐴   if their PEV adoption probability 𝑝   is sufficiently 
high for the year �̃� and if their combined weight 𝑊 does not exceed the total number 𝑁(�̃�) of PEV 
adopters for that year. 

As computing times of our heuristic PEV charging algorithm [45] scale linearly with the number 
of adopters and corresponding charging events, which in turn grow exponentially with the growth 
of initial purchases [35], we use an alternative approach described in the pseudocode of Method 2. 
This limits the number of adopters to 𝑘  as well as their charging events, but still intends to be 
representative of the original PEV-adopting population 𝐴   identified with Method 1. 
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Pseudocode of Method 2 

1    for all �̃� do 

2        Set 𝐼 = {𝐼  | 𝑖 𝑚𝑜𝑑 𝑧 = 0}        with 𝑧 = 𝑛𝑖𝑛𝑡(  )  
3        𝒘𝒉𝒊𝒍𝒆 𝑎 ̂ ∈ 𝐼 ∧ 𝚤̂ ≤ 𝑘   4            Set 𝑄  = 𝑄  + 𝑞 ̂  5            Add 𝑎 ̂ to 𝐴    6        end while 
 7        while 𝑎 ̂ ∈ 𝐴    
8           Set 𝑤 ̂ = 𝑤 ̂ ∙ 𝜂             with 𝜂 =     
9         end while 10   end for 

Method 2 first calculates 𝑧  in order to define a reduced sorted list of PEV drivers 𝐼  for 
every year �̃� (line 2). The reduced adopter set 𝐴   is a limited, sorted selection of every 𝑧  th 
PEV adopter from 𝐼  of size 𝑘  (line 5). The daily charging energy demand 𝑞 ̂  specific to 

adopter 𝑎 ̂ is accumulated to 𝑄  
 (line 4) and set in relation to the total daily charging energy 

demand of the original adopter set 𝑄  
, producing the scaling factor 𝜂  for that year �̃�. 

The scaling factor is applied to the original weight 𝑤 ̂ for each adopter 𝑎 ̂ in the reduced set in order 
to account for the reduced sample size (line 8). Scaling to total energy demand instead of adopter 
weight is essential as the goal of the simulation is to assess the adopters’ impact on an energy system. 

3.2. PEV Charging 

The persons adopting PEV in the representative French and German mobility studies are 
assigned mobility profiles specific to a reference date. We assume that the mobility patterns of car 
use remain constant as long as the range of the PEV is sufficient for the trip lengths. If the pure electric 
range is not sufficient, we assume that the PEV are equipped with small combustion engines, so-
called range extenders. We assume the same car-use behavior on every day of the simulation and a 
1:1 relation between PEV adopters and PEV. As vehicles are parked at home or at the workplace most 
of the time [20], load-shifting potentials are highest at these locations. Therefore, we assume that PEV 
adopters have the possibility to charge their cars at home and at work. Combining driving and 
parking profiles with assumptions on PEV energy consumption, battery capacity, and available 
charging power allows us to determine the energy requirement and the load-shifting potential of 
each charging process [44–46]. 

A charging event 𝑥 (Figure 1) can be described as follows: After arriving at a charging station 
at time 𝑡  with an energy charging level of 𝐶𝐿  (in kWh), the PEV is directly charged up 
to an energy content determined by individual minimum range (MR) requirements 𝐶𝐿 . Starting 
from this point in time (𝑡 ), charging event-specific load-shifting potentials ∆𝑡  provided by PEV 
users can be used by service providers (so-called aggregators) for flexible controlled charging (CC). 
At the point in time of departure 𝑡 , the charging level is at 𝐶𝐿 . 
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Figure 1. Plug-in electric vehicle (PEV) charging event 𝑥 with load-shifting potentials. 

Plug-in times ∆𝑡  specific to charging event x are calculated by subtracting arrival time from 
departure time (Equation (2)). ∆𝑡 = 𝑡 − 𝑡  (2)

Active charging times ∆𝑡  are determined by dividing the energy charged (𝐶𝐿 −𝐶𝐿 ) by the maximum charging power 𝑃  of a charging event (Equation (3)). ∆𝑡 = 𝐶𝐿 − 𝐶𝐿𝑃  (3)

Load-shifting potentials ∆𝑡  are calculated by subtracting active charging times ∆𝑡  from 
plug-in times (Equation (4)). ∆𝑡 = ∆𝑡 − ∆𝑡  (4)

Total energy charged 𝐸  is calculated by adding the energy charged of the single charging 
events (Equation (5)). 𝐸 = (𝐶𝐿 − 𝐶𝐿 )∈  (5)

Total energy directly charged 𝐸  is calculated by adding the energy directly charged of the 
single charging events 𝑥, depending on the availability of load-shifting potentials (Equation (6)). In 
case load-shifting potentials are available (1 ∆ ), the vehicle charges up to the minimum range. 
If there is no potential (1 ∆ ), the vehicle charges directly and as much as possible before 
departure. 𝐸 = 𝑀𝑎𝑥{𝐶𝐿 − 𝐶𝐿 ; 0} ⋅ 1 ∆∈+ (𝐶𝐿 − 𝐶𝐿 ) ⋅ 1 ∆∈  

(6)

Total energy flexibly charged (controlled charging) 𝐸  is calculated by subtracting 𝐸  
from 𝐸  (Equation (7)). 𝐸 = 𝐸 − 𝐸  (7)

4. Results 

Section 4.1 describes the PEV diffusion scenarios developed for the French and German markets 
while Section 4.2 presents the simulation results of PEV charging. Section 4.3 shows the effects of the 
applied re-sampling method (Method 2) on the results compared to the original results. 

4.1. PEV Diffusion and Adoption 

The Bass diffusion models used to project the future PEV stock are estimated based on the data 
presented in Table 1. 
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Table 1. Data and parameters used for diffusion model estimation. 

PEV Stock France Germany 
End 2009 - 

[47] 

3032 

[48] 

End 2010 3368 4404 
End 2011 6167 8670 
End 2012 12,805 13,582 
End 2013 22,217 23,208 
End 2014 33,595 36,175 
End 2015 54,282 48,688 
End 2016 79,856 54,997 

Mid 2017 [1] 101,799 92,731 
Expectation 2030 6,000,000 [49] 6,000,000 [50] 

Total vehicle stock (M) * 32,675,972 [47] 45,803,560 [48] 
* Please consider that new developments in the context of car sharing and autonomous vehicles might 
result in an overall lower future vehicle stock. 

The expectations of six million PEV in 2030 by French public authorities [49] are in line with the 
government targets set in Germany [50]. These expectations are taken into account in the scenario 
calculations resulting in the parameters for the Bass diffusion model shown in Table 2. 

These two PEV diffusion scenarios are rather optimistic. The innovation coefficient (𝑝) of the 
French PEV diffusion scenario is considerably higher than that of the German scenario (cf. Table 2). 
However, imitation coefficients (𝑞) are on a similar level. According to Figure 2, the models’ forecasts 
of PEV stock are well below the original national policy targets in France (2 mn in 2020 and 4.5 mn in 
2025, [51]) and Germany (1 mn [50]). 

Based on historical new registrations for 39 countries, innovation and imitation coefficients of 
Bass diffusion models have been estimated by [52] (France: p = 1 × 10−4 and q = 0.4; Germany: p = 
2.5 × 10−5 and q = 0.5). The innovation coefficients for Germany and France in our results are somewhat 
higher (France: p = 1.44 × 10−4; Germany p = 4.31 × 10−5), but relatively low in comparison to other 
common innovation coefficients averaging p = 0.03 [52,53]. The estimated imitation coefficients are 
slightly below the average of q = 0.38 [52,53] (France: q = 0.31; Germany: q = 0.32), but are comparable 
with other innovations [53]. Differences could be due to the fact that only sales figures of zero-
emission PEV were included in [52], but all types of plug-in PEV are considered in our study. 

Table 2. Bass diffusion model parameter estimates. 

Parameter 
France Germany 

Mean Std. Dev. Mean Std. Dev.  𝑝   4.31 × 10    2.67 × 10   1.44 × 10    1.82 × 10    𝑞  0.32 0.004 0.31 0.0015  𝑡   2008.22 5.82 2010.01 1.05 
R² ~1 ~1 

To answer the question of who adopts PEV in France and Germany, we identify persons 
adopting PEV in representative mobility data sets [42,43]. The mobility studies Mobilität in 
Deutschland (MiD 2008) and the Enquête nationale transports et déplacements (ENTD 2008) contain 
information on mobility behavior as well as on the households surveyed, the individuals living there, 
their distances traveled, and corresponding vehicles used. 

PEV adoption probabilities are assigned to the persons interviewed in the national mobility 
studies using the binary logistic PEV adoption model as described in Section 3.1. The higher the 
probability of PEV adoption, the sooner these persons are assumed to adopt PEV. 

The two different methods (Methods 1 and 2) are subsequently applied in order to obtain the 
original and the reduced PEV adopter samples. Exemplary results are shown in Figure 2. Method 2 
significantly reduces the samples that represent EV adopters, for example, down to 20% of the 
original number for the case of France in 2030. 
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Figure 2. PEV diffusion scenarios for France and Germany. 

4.2. PEV Charging 

For simulation of the charging behavior, we assume that PEV are charged at home and at work. 
Information on the charging behavior and corresponding load-shifting potentials is derived from the 
individuals’ traveled distances, and several averaging assumptions: energy consumption 
(0.2 kWh/km), charging power (3.7 kW), battery size (60 kWh), and minimum range (minimum range 
represents the minimum range requested by customers that will always be recharged instantaneously 
after plugging-in an EV for charging). (100 km [45]). Vehicle parameters are loosely based on the 2019 
version of the Nissan Leaf (Energy consumption: 20.6–18.5 kWh/100 km, battery size: 40 or 62 kWh, 
cf. www.nissan.de/fahrzeuge/neuwagen/leaf/reichweite-aufladen.html), the most popular battery 
electric vehicle model worldwide [54]. Behind the low charging power lies the assumption that most 
vehicle owners charge at home or at work [26] where no dedicated charging points are available due 
to costs and ample time spent plugged-in. With these simple assumptions, we intend to make the 
results as transparent as possible. In addition to that, the corresponding effects of varying these 
parameters are evaluated by conducting sensitivity analyses in Section 5.2. 

Of the 6 mn individuals adopting PEV in France and in Germany, 5.5 mn of the German adopters 
(represented by 4487 data records) and 5.9 of the French adopters (represented by 4942 data records) 
charge their PEV at home or at the workplace on the reference day. The 5.5 mn German adopters 
charging at home or at the workplace charge their PEV in 10.4 mn charging processes and the 5.9 mn 
French PEV adopters during 12.2 mn charging processes. Hence, in the scenario considered (PEV can 
be charged at home and at the workplace), PEV users charge twice per day on average. Plug-in times, 
active charging times, load-shifting potentials, and the energy charged only differ slightly between 
France and Germany (cf. Table 3). If vehicles are not parked at home or at work, they are not charged. 
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Table 3. Charging behavior with two methods over different scenarios. 

 
France Germany 

Original 
Sample 

Reduced 
Sample 

Original 
Sample 

Reduced 
Sample 

PEV adopters charging in sample 4942 967 4487 930 
Represented number of PEV adopters 

charging 5.9 mn 6.0 mn 5.5 mn 5.1 mn 

Charging events of sampled PEV 
adopters 8873 1700 8590 1756 

Represented charging events 11.8 mn 12.2 mn 10.4 mn 9.5 mn 

Plug-in time ∆𝑡   Mean 10.36 h 9.94 h 9.93 h 10.59 h 
Std. Dev. 7.23 h 7.76 h 7.75 h 7.24 h 
Median 9.67 h 11.64 h 11.42 h 9.58 h 

Active charging time ∆𝑡   Mean 1.56 h 1.35 h 1.39 h 1.70 h 
Std. Dev. 2.18 h 2.32 h 2.39 h 2.19 h 
Median 0.82 h 0.77 h 0.79 h 0.82 h 

Load-shifting potential ∆𝑡   Mean 8.80 h 8.59 h 8.53 h 8.88 h 
Std. Dev. 7.12 h 7.59 h 7.58 h 7.16 h 
Median 7.81 h 9.09 h 8.66 h 7.89 h 

Energy charged per charging 
event 

Mean 5.77 kWh 4.99 kWh 5.15 kWh 6.31 kWh 
Std. Dev. 8.07 kWh 8.60 kWh 8.86 kWh 8.12 kWh 
Median 3.04 kWh 2.84 kWh 2.92 kWh 3.04 kWh 

Total energy charged per day 𝐸   60.82 GWh 60.82 GWh 59.96 GWh 59.96 GWh 
Total energy directly charged per day 𝐸   1.65 GWh 2.26 GWh  2.06 GWh 2.92 GWh 

Total energy flexibly charged per day 𝐸   59.16 GWh 58.56 GWh 57.90 GWh 57.04 GWh 

Total energy charged per day represents the energy charged for the pure electric mileage of the 
PEV adopters simulated. That is, an increase in the charging power or the range-specific parameter 
potentially results in an increase in the total energy charged per day. Our sensitivity analyses in 
Section 5.2. show the effects of varying input parameters on total energy charged and total energy 
flexibly charged. 

Figure 3 visualizes the cumulated French and German PEV load profiles: the load profile of 
direct PEV charging and the variations in the profiles of flexible, i.e., controlled charging. A flexible 
charging algorithm [45] is applied to hourly price profiles generated with an agent-based simulation 
model of the countries’ power markets [15,55]. The distributions of the charging profiles in France 
and Germany look quite similar. In both countries, load peaks of 12 GW can be observed, and PEV-
specific loads are shifted into nighttime and noon hours due to lower day-ahead market prices in 
these hours. Evening peaks when charging directly seem to be higher in France. 
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Figure 3. Cumulated daily PEV load of direct and controlled PEV charging in (a) France and (b) 
Germany in 2030. 

4.3. Effects of Re-Sampling Approach 

Detailed modeling of PEV diffusion, adoption, and charging with the presented hybrid model 
and scheduling approach is computationally demanding, especially when simulating exponential 
PEV market penetration beyond 2025. In previous work, high computing times have limited such 
analyses (cf. [45]). Method 2 as presented at the end of Section 3.1.3. aims to reduce simulation times 
while maintaining the quality of the results. 

For the purposes of this study, we consider 1000 PEV adopters in the reduced sample (cf. 
Figure 2). 967 of the sampled French adopters (representing 6.0 mn PEV adopters) and 930 of the 
German sampled adopters (representing 5.1 mn PEV adopters) charge in this case. Slight deviations 
can be observed between the reduced and the original samples concerning all of the parameters 
considered, with the exception of the total energy charged (cf. Table 3). The most unfortunate 
deviation occurs in total weighted PEV adoptions, virtually adding or removing hundreds of 
thousands of PEV adopters from the population. Deviations originate in the re-sampling method 
(Method 2), where only every other PEV adopter is picked (reduced sample), each with their 
individual weight or representativeness. This results in observable differences concerning, for 
example, total energy directly charged per day. However, as we focus on adequately simulating the 
aggregated energy demand of the national PEV fleet, we accept these deviations. As computing time 
of our scheduling algorithm scales linearly with the exponentially growing number of adopter 
records, corresponding reductions of computing times outweigh the drawbacks of approximations 
for secondary variables. In our case, reducing the sample size results in savings in computing time of 
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about 85% for the simulated year 2030. For later years, calculation times remain constant—despite 
exponential growth of adoptions and the resulting number of sampled adopters reaching more than 
20,000 with Method 1. 

While the yearly energy demand of PEV is kept equivalent for the reduced case (cf. Method 2), 
the daily profile of PEV charging is very important to their influence on the energy system. Figure 4 
visualizes the deviations of the hourly cumulated charging demand in 2030 for the two markets in 
the direct charging scenario. Deviations between the reduced and the original samples are visually 
observable, but average out over the day. 

 
Figure 4. Average hourly cumulated PEV load of original and reduced sample directly charging in 
2030. 

5. Discussion 

This discussion section aims to put the results in perspective. Section 5.1 discusses the hybrid 
diffusion model. Section 5.2. discusses sensitivities to PEV charging behavior in response to different 
parameter choices. Section 5.3. discusses limitations to our approach. 

5.1. Hybrid Diffusion and Adoption Model for PEV 

We use a hybrid PEV diffusion model in this study, i.e., we combine a bottom-up and a top-
down approach [16] in order to better capture adopters’ personal preferences as well as shifting 
macro-economic framework conditions [17]. As suggested by [16], the model presented in this study 
takes into account economic and social information (based on the bottom-up binary logistic modeling 
approach) as well as market development information (based on the top-down Bass diffusion model). 
By applying the binary logistic model, our modeling approach identifies early PEV adopters within 
representative mobility data sets, and their corresponding PEV charging behavior is simulated for 
France and Germany [41]. The approach can be directly applied to other markets, given sufficient 
availability of mobility studies and information on PEV diffusion targets. This is of significant use for 
modeling the impact of PEV on complex energy systems, as these systems are usually highly 
interconnected and even co-dependent, both physically and economically. 

The results of our analyses show that PEV diffusion is significantly more dynamic in France than 
in Germany, a finding in line with other studies [52]. Since the Bass diffusion model is anchored in 
historical data and the same political target, the higher dynamics in France are likely the result of a 
stronger incentive situation for low-emitting vehicles in the French tax regime and lower power 
prices [56]. 
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5.2. Sensitivity Analysis for PEV Charging 

The results shown in Section 4.2 are based on the assumptions presented at the beginning of that 
section and define a base case (3.7 kW charging power, 60 kWh battery capacity, 100 km minimum 
range). In the following, we conduct sensitivity analyses in order to analyze the effects of parameter 
variation on total energy charged and total energy flexibly charged. The results presented in Figure 5 
show that electric mileage increases with increasing battery capacities. However, it seems that with 
battery capacities of 60 kWh, a certain saturation level concerning full electric mileage when charging 
with 3.7 kW is reached (Figure 5a). Increasing the charging power further results in a growing share 
of full electric mileage (Figure 5b). In our simulations, sensitivities concerning the effects of charging 
power on electric mileage seem to be slightly higher in Germany than in France. Moreover, battery 
capacity variation affects the total energy flexibly charged during a day. A certain saturation level is 
reached when battery capacities approach 80 kWh (133%). As with total energy charged, total energy 
flexibly charged can be increased by increasing charging power (Figure 5b). Higher minimum range 
thresholds result in reduced total energy flexibly charged, although seemingly to a lesser degree than 
variations in battery capacity (Figure 5a). 

(a) (b) 

Figure 1: Sensitivity analysis concerning total energy charged and total energy flexibly charged, 
depending on (a) varying battery capacity, minimum range, and (b) charging power. Base case: 
charging with (a) 60 kWh battery capacity, 100 km minimum range, and (b) 3.7 kW. 

5.3. Limitations 

Naturally, our model suffers from several limitations: The Bass diffusion model neither 
considers nor anticipates policy changes, which can have significant effects on adoption of PEV. 
However, one could argue that governments might adjust their policies to incentivize a successful 
diffusion towards publicized goals. Looking at our calculation of charging potentials, our approach 
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focuses on the national charging potential. While this is sufficient for policy recommendations and 
trend analyses, implementation is another matter. A singular aggregator might dominate the market 
for flexible loads. Moreover, we assume participation of all PEV in the scheme, which is of course 
rather optimistic. A differentiation between customer groups and respective segmentation of 
fundamental parameters (for example, vehicle model selection) is a field of future research as, for 
example, the available electric range is likely to influence driving and recharging behavior [57–59]. 

Fundamentally, it is still uncertain in how far conventional driving behavior can be 
superimposed on PEV, as implied by using national mobility studies. On the other hand, we model 
adoption based on data from a stated preference survey from persons who have been using first-
generation PEV mostly as company pool vehicles between 2011 and 2013 [39,41]. Mixing these two 
data sets implies methodological challenges and forces assumptions for the input data of several 
variables. However, using this model to attribute PEV adoption probabilities to individuals in 
representative mobility studies seems reasonable as an estimate to identify the sequence of PEV 
adoptions. The noticeable differences observed in the charging profiles when directly charging the 
vehicles indicate potentials for improvements concerning possibilities for charging activities at work, 
which could be addressed in future studies. 

6. Conclusions and Outlook 

For the estimation of potential systemic effects of PEV diffusion, for example, on the power grid, 
adequate PEV diffusion models are necessary, ideally with high topical and temporal granularity. 
The model presented in this study takes into account economic and social information (based on the 
bottom-up binary logistic modeling approach) as well as market development information (based on 
the top-down Bass diffusion model). By applying the binary logistic model to representative mobility 
studies, PEV adoption and a corresponding charging behavior are simulated for France and 
Germany. Results indicate that the reduced sample representing the PEV adopters in 2030 is 
decreased significantly, i.e., to 20% of the original sample while retaining all relevant information. 

As these data sets include mobility behavior, and car use behavior in particular, we derive PEV 
adopter-specific use and charging behavior by assuming that all PEV adopters use their own PEV 
and that mobility behavior remains the same. This means that corresponding trips traveled with 
conventional cars are substituted by trips with PEV. In addition, we assume that PEV users have the 
possibility to plug in at work and at home and that PEV users do use this possibility. We compare 
the charging behavior derived from the PEV adopters’ trip profiles and cumulated PEV-specific load 
profiles of France and Germany. On a disaggregated level, slight differences in the simulated 
charging behavior can be observed, for example, overall more charging events in France. 
Furthermore, on the aggregated level, small differences of cumulated PEV-specific load profiles are 
observable, for example, higher evening load peaks when directly charging PEV in France. 

Our re-sampling approach (Method 2) limits the number of data records representing PEV 
adopters and corresponding charging events and results in drastically reduced computing times. This 
opens up new possibilities of including PEV on a disaggregated level in energy system modeling, for 
example, considering different PEV-specific charging strategies in investment decisions of power 
plant operators and considering PEV-specific effects throughout the whole simulation period in 
coupled wholesale electricity markets across Europe. 

Sensitivity analyses show that PEV users’ preferences concerning minimum ranges influence 
corresponding charging profiles. Total energy flexibly charged increases with decreasing minimum 
range thresholds. In addition, sensitivity analyses reveal the strong influence of preferences 
concerning battery size and charging power on the flexibility that PEV could provide for a more 
stable and affordable power system in times of increasing production uncertainty from renewable 
sources. 

These results show that our model provides a useful tool for considering PEV in power-market 
and energy-system modeling. It could be used to analyze PEV-specific effects on power markets in 
order to inform policy makers on the potential effectiveness of different PEV diffusion and 
integration regulations—a popular lever on the way to a more sustainable transport sector. 
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Future work could focus on applying our advanced method of identifying PEV-specific load 
patterns to energy-system models in order to analyze potential future effects of PEV charging on 
electric-power systems. For improving specifically the adoption model, future analyses could focus 
on modeling PEV charging behavior more realistically, for example, based on observed charging and 
driving behavior of PEV. 

Furthermore, increasing battery capacities of the vehicles coupled with increasing smart-
charging experiences of PEV users might result in increasing acceptance of different smart-charging 
use-cases. The flexibilities identified in this analysis are charging event-specific, i.e., by the time of its 
next departure, the vehicle should be fully charged. Future work could analyze smart-charging 
activities based on higher flexibility potentials provided, for example, by considering the flexibility 
potentials available when shifting between charging events would be possible. 
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