KIT | KIT-Bibliothek | Impressum | Datenschutz

Reconfigurable Module of Multi-mode AES Cryptographic Algorithms for AP SoCs

Silitonga, Arthur; Jiang, Zhou; Khan, Nadir; Becker, Jürgen

Abstract (englisch):
In the implementation of the Advanced Encryption Standard (AES), as one instance of symmetrically cryptographic (crypto) algorithms, there are existing various block cipher modes used to offer higher confidentiality compared to the Electronic Codebook (ECB). In this article, we implement the AES with three different key lengths and different block cipher modes using High-Level Synthesis (HLS). The modes are Cipher Block Chaining (CBC), Cipher Feedback Mode (CFB), Output Feedback Mode (OFB), Counter (CTR), and Ciphertext Stealing (XTS) as extensions of the Electronic Codebook (ECB). All Programmable System-on-Chip (AP SoC) consisting of a hard multi-core processor and an FPGA is the target platform, and we leverage the capabilities of static and dynamic partial reconfigurations of FPGA. It is shown that the combination of a pipeline, array partitioning, and unrolled loop can lead to an increase in the data rate up to seven times. The approach comes at a trade-off of increased resource demand, which we carefully balance to achieve optimal results. Based on further evaluation, there are significant differences in throughput of the optimized CTR implementation between static and partial reconfigurations, and between the usage of Processor Configuration Access Port (PCAP) and Internal Configuration Access Port (ICAP). ... mehr

Zugehörige Institution(en) am KIT Institut für Technik der Informationsverarbeitung (ITIV)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2019
Sprache Englisch
Identifikator ISBN: 978-1-7281-2769-9
KITopen-ID: 1000099714
Erschienen in 2019 IEEE Nordic Circuits and Systems Conference (NorCAS), Helsinki, FIN, October 29-30, 2019
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Projektinformation SiLiSys (BMWi, ZF4011807BZ6)
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page