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Zusammenfassung 

Die Verkehrsüberwachung gewinnt aufgrund des weltweiten Anstiegs der 

Verkehrsteilnehmer immer mehr an Bedeutung. Sicherer und effizierter 

Straßenverkehr erfordert detaillierte Verkehrsinformationen. Häufig sind diese 

lediglich stationär, räumlich stark begrenzt und meist nur auf Hauptverkehrsstraßen 

verfügbar. In dieser Hinsicht ist ein Ausfall des Telekommunikationsnetzes, 

beispielsweise im Falle einer Katastrophe, und der damit einhergehende 

Informationsverlust als kritisch einzustufen. Flugzeuggetragene Radarsysteme mit 

synthetischer Apertur (eng. Synthetic Aperture Radar - SAR) können für dieses 

Szenario eine Lösung darstellen, da sie großflächig hochauflösende Bilder generieren 

können, unabhängig von Tageslicht und Witterungsbedingungen. Sie ermöglichen 

aufgrund dieser Charakteristik die Detektion von Bewegtzielen am Boden (eng. 

ground moving target indication – GMTI). 

Moderne GMTI-Algorithmen und -Systeme, die prinzipiell für die 

Verkehrsüberwachung verwendbar sind, wurden in der Literatur bereits diskutiert. 

Allerdings ist die Robustheit dieser Systeme oft mit hohen Kosten, hoher 

Hardwarekomplexität und hohem Rechenaufwand verbunden. Diese Dissertation stellt 

einen neuartigen GMTI-Prozessor vor, der auf dem Radar-Mehrkanalverfahren post-

Doppler space-time adaptive processing (PD STAP) basiert. Durch die Überlagerung 

einer Straßenkarte mit einem digitalen Höhenmodell ist es mithilfe des PD STAP 

möglich, Falschdetektionen zu erkennen und auszuschließen sowie die detektierten 

Fahrzeuge ihren korrekten Straßenpositionen zu zuordnen. Die präzisen Schätzungen 

von Position, Geschwindigkeit und Bewegungsrichtung der Fahrzeuge können mit 

vergleichsweise geringerer Hardware-Komplexität zu niedrigeren Kosten 

durchgeführt werden. 

Ferner wird im Rahmen dieser Arbeit ein effizienter Datenkalibrierungsalgorithmus 

erläutert, der das Ungleichgewicht zwischen den Empfangskanälen sowie die 

Variation des Dopplerschwerpunkts über Entfernung und Azimut korrigiert und so das 

Messergebnis verbessert. Darüber hinaus werden neue und automatisierte Strategien 
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zur Erhebung von Trainingsdaten vorgestellt, die für die Schätzung der Clutter-

Kovarianzmatrix wegen ihres direkten Einflusses auf die Clutter-Unterdrückung und 

Zieldetektion essentiell für PD STAP sind. 

Der neuartige PD STAP Prozessor verfügt über drei verschiedene Betriebsarten, die 

für militärische und zivile Anwendungen geeignet sind, darunter ein schneller 

Verarbeitungsalgorithmus der das Potential für eine zukünftige Echtzeit-

Verkehrsüberwachung hat. Alle Betriebsarten wurden erfolgreich mit Radar-

Mehrkanaldaten des flugzeuggetragenen F-SAR-Radarsensors des DLR getestet.  

 

 



 

Abstract 

Traffic monitoring is currently a trending topic due to the worldwide increase of road 

users. Safe and efficient roadway operations require detailed traffic information that 

relies on stationary ground infrastructure often available only for the major highways. 

Particularly in case of catastrophes (when mobile internet and phone communication 

are impossible), the actual road systems could fail altogether due to extensive power 

blackouts or ground infrastructure damages, resulting in complete lack of information. 

Synthetic aperture radar (SAR) offers a remarkable solution for this scenario due to its 

unique capability in providing high-resolution images independent of daylight and 

weather conditions, allowing applications in ground moving target indication (GMTI). 

State-of-the-art GMTI algorithms have been proposed in the literature using a priori 

knowledge information, whereas their robustness is often achieved with high costs, 

high hardware complexity and high computational effort. This doctoral thesis presents 

a GMTI processor based on the powerful multi-channel technique post-Doppler space-

time adaptive processing (PD STAP). This GMTI processor blends a road map with a 

digital elevation model in order to recognize and to reject false detections, and to 

assign the detected vehicles to their correct positions on the roads. Accurate position, 

velocity and moving direction estimates of the vehicles are obtained with decreased 

processing hardware complexity and low costs compared to state-of-the-art systems.  

This doctoral thesis also includes an efficient data calibration algorithm that corrects 

the channel imbalances and the Doppler centroid variations over range and azimuth. 

In addition, novel and automatic training data selection strategies are presented for the 

clutter covariance matrix estimation, which is essential for the PD STAP processor, 

since it impacts directly its clutter cancellation and target detection capabilities.  

The novel PD STAP processor has three operational modes designed for military and 

civilian applications, including a fast processing mode that paves the way for real-time 

traffic monitoring. All modes were tested on multi-channel data acquired by DLR’s 

airborne system F-SAR, containing scenarios with controlled vehicles and real-traffic. 
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𝜂 Generic CFAR detection threshold 

𝜂dist 
Empirical threshold based on the distance between the moving 

target and its closest OSM road point 

𝜂hete CFAR detection threshold for heterogeneous clutter 

𝜂homo CFAR detection threshold for homogeneous clutter 

𝜃az Antenna aperture in azimuth 

𝜃az,3dB Antenna 3-dB aperture in azimuth 

𝜃̅COURSE Aircraft’s mean flight course with respect to the true North 

𝜃d Antenna depression angle 
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𝜃HEADING Aircraft’s heading angle with respect to the true North 

𝜃i Incidence angle 

𝜃PITCH,ANT Pitch angle of the antenna array 

𝜃PITCH,IMU Pitch angle of the aircraft obtained from the IMU system 

𝜃rg Antenna aperture in elevation 

𝜃ROLL,ANT Roll angle of the antenna array 

𝜃ROLL,IMU Roll angle of the aircraft obtained from the IMU system 

𝜃YAW,ANT Yaw angle of the antenna array 

𝜃YAW,IMU Yaw angle of the aircraft obtained from the IMU system 

𝜅 Clutter ambiguities 

𝜆 Radar wavelength 

𝜈 
Texture parameter that describes the degree of heterogeneity of 

the scene 

𝜉 
Empirical threshold used by the MTSR module, consisting on 

the number of undesired range bins to be rejected from the 

uncleaned training data 

𝜌1,𝑚 
Magnitude offset of the m-th antenna pattern assuming RX1 as 

reference 

𝜎0 Clutter reflectivity 

𝜎n
2 Power of the additive thermal noise 

𝜎nlanes Standard deviation of the number of road lanes 

𝜎r Standard deviation of the road lane index 

𝜎R Standard deviation of the target’s slant range 

𝜎t Radar cross section of the target 

𝜎u Standard deviation of the directional cosine 

𝜎vr Standard deviation of the target’s line-of-sight velocity 

𝜎wlanes Standard deviation of width of the road lanes 

𝜎x Standard deviation of the target’s azimuth position 

𝜎x,min Minimum expected error of the target’s azimuth position 

𝜎xp,UTM 
Standard deviation of the platform’s position in UTM Easting 

axis 

𝜎xt,UTM  Standard deviation of the target’s position in UTM Easting axis 

𝜎yp,UTM 
Standard deviation of the platform’s position in UTM Northing 

axis 

𝜎yt,UTM 
Standard deviation of the target’s position in UTM Northing 

axis 

𝜎zp Standard deviation of the platform’s altitude above ground 

𝜎zt Standard deviation of the target’s altitude 

𝜎xosm 
Standard deviation of the OSM road point’s position in x-axis 

(local UTM coordinates) 

𝜎yosm 
Standard deviation of the OSM road point’s position in y-axis 

(local UTM coordinates) 

𝜎𝛼p 
Standard deviation of the platform’s moving direction with 

respect to the global UTM Easting axis 
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𝜎𝜅
2 Power of clutter contributions 

𝜎ΨDOA,az,g 
Standard deviation of the target’s DOA angle with respect to the 

azimuth direction and projected on ground 

𝜏 Range time or fast time 

𝜏p Pulse duration 

𝜙 
Generic interferometric phase between two RX antennas or 

channels 

𝜑AS(𝑓a) 
Phase ramp for correcting the antenna AS in Doppler frequency 

domain 

𝜒2 Chi-squared density function 

ΨDOA,array 
DOA angle of the target measured with respect to the antenna 

array axis 

ΨDOA,az 
DOA angle of the target measured with respect to azimuth or 

flight direction 

ΨDOA,az,g Projection ground of ΨDOA,az 

Ψsq Squint angle 

Ψsq,LLA Squint angle for a left-looking antenna 

Ψsq,RLA Squint angle for a right-looking antenna 

Ψtilt Tilt angle 

Subscripts and Superscripts 

{. }𝑎𝑚𝑏 Ambiguities 

{. }𝑎𝑟𝑟𝑎𝑦 Antenna array axis 

{. }𝑏 Baseband signal 

{. }𝑒𝑙 Positioning error ellipse 

{. }𝑔 Ground projection 

{. }𝑚 Index of RX antennas or channels 

{. }𝑚𝑎𝑥 Maximum 

{. }𝑚𝑖𝑛 Minimum 

{. }𝑂𝑆𝑀 OpenStreetMap (OSM) 

{. }𝑝 Platform 

{. }𝑟 Radial or line-of-sight 

{. }𝑟𝑒𝑔 Coregistered 

{. }𝑅𝑋 RX antenna or channel 

{. }𝑠𝑎 Synthetic aperture 

{. }𝑡 Target 

{. }𝑇𝑋 TX antenna or channel 

{. }𝑈𝑇𝑀 Global UTM coordinate system 

 

  



 

1 Introduction 

1.1 Background and Motivation 

Road traffic management is currently a trending topic due to the worldwide increase 

of vehicle density over the last decades [1]–[3]. The challenges are higher in big 

metropolises, where roadway operations are barely able to handle everyday traffic 

volumes. Indeed, current road traffic information generally relies on stationary ground 

infrastructure, such as: traffic cameras, induction loops, pneumatic road tube counters 

or even people counting manually. Much information obtained from such road 

systems are collected, processed and interpreted by traffic management centers that 

adopt measures for the traffic flow’s optimization [4]. Some of the main problems 

regarding the road systems employed nowadays for collecting traffic data are: 

1. They are limited in spatial coverage due to the high costs for installation and 

maintenance. In reality, detailed traffic information is usually available only for 

major roads or highways, therefore the traffic monitoring systems are blind to 

the situations on minor roads; 

2. They depend on the weather conditions. For instance, video systems depend on 

sight conditions for proper operation and pneumatic road tube counters present 

problems especially due to the accumulation of snow [5];  

3. Lastly, they could fail altogether in case of large scale events and catastrophes 

due to ground infrastructure damages or extensive power blackouts, resulting in 

complete lack of information in major and minor roads. 

An efficient and elegant solution to provide accurate traffic data for safe and efficient 

traffic monitoring is to use radars flying at high altitudes, for instance, synthetic 

aperture radar (SAR). 

Generally, SAR is a side-looking imaging radar that is mounted on a moving platform, 

for instance an aircraft or a satellite (referred in the literature as airborne SAR and 

spaceborne SAR, respectively). A SAR system offers unique capability to provide 

high-resolution two-dimensional images (i.e., reflectivity maps commonly displayed 
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in terms of intensity values of each image pixel) independent of daylight, cloud 

coverage and weather conditions (e.g., rain, snow, fog, smog, among others) [6]–[11]. 

Moreover, the diverse scattering properties of materials with frequency allow the 

observation of different features, which is not possible with optical sensors based on 

visible light. Due to such remarkable features, SAR has been widely used in the last 

decades for plentiful applications, ranging from geoscience and climate change 

research, environmental and Earth system monitoring, topography and cartography 

analysis, change detection, security-related applications, ground moving target 

indication (GMTI) up to planetary exploration [12]. The SAR principles and theory 

are presented in Chapter 2.  

Particularly, airborne SAR has been receiving growing attention for traffic monitoring 

of non-cooperative vehicles (i.e., vehicles not sharing their positions via Internet). 

From the economical point of view, it is clear that a traffic monitoring system based 

on airborne radar cannot compete with systems that evaluate continuously the shared 

geographical positions of the cooperative road users (e.g., Google Maps, Waze etc). 

Nevertheless, especially in case of large scale events and catastrophes (when mobile 

internet connection is disturbed or unavailable and the phone communication is 

impossible), an airborne SAR system can provide important information about the 

actual road traffic situation. Although not discussed in this doctoral thesis, an airborne 

SAR system can additionally provide high resolution SAR images, which can be used 

for evaluating the condition of traffic infrastructure (e.g., damages of bridges, 

landslides over roads, among others). Actual information about road traffic and traffic 

infrastructure is highly valuable for relief forces (e.g., fire department, technical 

emergency service, police, etc.), especially for disaster management and evacuation 

planning. 

Nowadays, the German Aerospace Center (DLR) develops approaches for traffic 

management in case of large scale events and catastrophes in the frame of the project 

VABENE
++

 [13]. One of the approaches consists in using the DLR’s F-SAR system 

(described in detail in Appendix A), which has the challenging task to acquire and to 
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process the traffic data onboard the research aircraft Dornier DO228-212, and finally 

to transmit the relevant traffic data to the traffic management center. The general idea 

of this approach is depicted in Figure 1.1. 

 

Figure 1.1.  Traffic monitoring in case of large scale events and catastrophes using an airborne SAR 

system (e.g., F-SAR) in the frame of DLR’s project VABENE
++

. The relevant traffic data are obtained 

after processing the multi-channel radar data using a proper GMTI algorithm (i.e., the one proposed in 

this doctoral thesis). 

Onboard the F-SAR, a ground moving target indication (GMTI) algorithm is applied 

for processing the multi-channel radar data and for estimating relevant parameters of 

the moving vehicles, such as: positions, velocities and moving directions. Examples of 

state-of-the-art GMTI algorithms and systems are presented in Section 1.2. 

The data downlink can be carried out using an optical laser communication link, a 

microwave data link, or (more recently) an existing long term evolution (LTE) 

infrastructure [14]–[16]. Naturally, such options present pros and cons. For instance, 

the communication via an existing LTE network offers the lowest costs for hardware, 

integration, maintenance and operation. However, if the number of LTE base stations 

in the disaster location is not enough, measurement gaps are expected due to loss of 

LTE connection. Alternatively, the communication via laser or microwave data links 

is especially valuable when the mobile internet connection (i.e., the LTE network) is 
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unavailable. The drawback is that they require fast installation of a dedicated mobile 

ground station close to the disaster location, which in reality might be challenging.  

Indeed, the traffic data obtained from an airborne SAR system could supplement the 

information acquired by the road sensors and be used in research for improving traffic 

models or as information source for road traffic statistics [17]. Besides, it is important 

to mention that in some cases (e.g., in rural and primary roads without enough sensor 

installations or in large scale events and catastrophes) an airborne SAR system could 

be the only source of traffic data. 

1.2 State-of-the-Art GMTI Algorithms and Systems 

GMTI algorithms were originally designed for military applications with the aim to 

detect targets moving on the Earth’s surface (land and ocean) and gained popularity 

nowadays also for civilian applications (e.g., road traffic monitoring).  

The number of receiving antennas or channels plays an important role for GMTI. 

Although single-channel GMTI is possible [18]–[21], generally more sophisticated 

and fundamentally more powerful algorithms are based on multi-channel processing 

(i.e., multiple receiving antennas arranged in the flight direction and separated by a 

properly selected azimuth baseline) due to their capability to achieve more significant 

clutter cancellation, which enables the detection of even slowly moving targets [22]. 

The clutter cancellation can be performed by using the well-known displaced phase 

center antenna (DPCA) technique [23], while the target’s line-of-sight velocity and 

position can be estimated by using the along-track interferometry (ATI) technique 

[24]. Both DPCA and ATI techniques were originally designed for two-channel radar 

systems. Nevertheless, at least a three-channel system is necessary for obtaining both 

clutter cancellation and accurate target’s motion and position parameter estimation. 

For instance, the addition of a third receiving antenna allows not only the combination 

of the DPCA and ATI techniques for improved parameter estimation accuracy [25], 

but also the application of the powerful space-time adaptive processing (STAP) 
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techniques [26], [27]. STAP achieves very good clutter cancellation and provides 

accurate target’s line-of-sight velocity and position estimation by successive adaption 

of the steering vector, whereas at the expense of a higher computational power 

compared to DPCA and ATI.  

Numerous GMTI algorithms are available in the literature for road traffic monitoring 

using airborne SAR (and also using spaceborne SAR [28]–[33] or even aerial optical 

images [4], [34], whereas such systems are not in the scope of this doctoral thesis). 

For instance, an interesting three-channel GMTI algorithm is presented in [35], where 

the post-Doppler STAP (PD STAP) is combined with a scanning operation mode (i.e., 

a wide area is monitored by a narrow azimuth antenna beam width that is steered from 

one azimuth angle to another in a cyclic way after a certain time span). Thus, the same 

vehicle can be detected several times from different aspect angles. Although this 

algorithm achieves very good detection performance, it is pointed out that: 1) an 

efficient scanning operation requires an expensive and heavy phased-array antenna, 

which is generally not available for all state-of-the-art airborne SAR systems; and 2) 

no prior knowledge is used for estimating the parameters of the detected vehicles and 

for assigning them to their correct roads (e.g., the use of a road database). 

A fast dual-channel GMTI algorithm based on a priori knowledge was presented more 

recently in [36], where the roads obtained from the OpenStreetMap (OSM) [37] 

database  are mapped into the radar range-compressed (RC) data array so that only the 

intersections of the moving target signals are evaluated. The positions of the cars are 

obtained directly from the intersection between the moving target signals and the 

OSM road axes. Nevertheless, it is pointed out that false detections may be obtained 

due to signals coming from adjacent roads. In order to recognize and to discard these 

false detections, PD STAP is suggested in [38] for estimating the direction-of-arrival 

(DOA) angles of the detections. Although the PD STAP theoretical performance is 

presented in [38], the algorithm itself was not implemented and evaluated in detail. 

The idea of using an a priori known road database is very recent. Even so, it has been 

combined mainly with displacement-based GMTI algorithms, where computational 
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time consuming SAR processing is performed. As a result, the moving vehicles appear 

displaced from the roads [28]–[30], [39] and their reassignments are very challenging, 

especially in dense traffic scenarios with several adjacent roads. This doctoral thesis 

follows up the framework presented in [36], [38], where the highlights are: 1) the 

promising combination of an a priori known road database with the powerful PD 

STAP; and 2) the ability to reduce potential false detections significantly. 

Finally, Table 1.1 shows an overview of some civilian state-of-the-art airborne SAR 

systems designed for research and environmental monitoring purposes [40]. The 

systems with GMTI capability are the ones principally suitable for traffic monitoring. 

For instance, this doctoral thesis presents results obtained from real multi-channel 

radar data acquired with the DLR’s F-SAR system [41] (described in detail in 

Appendix A). A comprehensive overview of state-of-the-art spaceborne SAR systems 

and their main features is presented in [12]. 

TABLE 1.1 

STATE-OF-THE-ART AIRBORNE SAR SYSTEMS 

Sensor 
Frequency 

Band 

Fully 

Polarimetric 

Single-Pass 

InSAR 

GMTI 

Capability 
Institution Country 

AIRSAR [42] P,L,C P,L,C C No NASA/JPL USA 

UAVSAR [43] L L - No NASA/JPL USA 

AeS-1/2 [44] X,P P X No Intermap USA 

CV-580 [45] C,X C,X - Yes DRDC Canada 

F-SAR [41] X,C,S,L,P X,C,S,L,P X,S Yes DLR Germany 

SmartSAR [46] X - - Yes Cassidian Germany 

PAMIR [47] X - X Yes FHR Germany 

AER-II [48] X X X Yes FHR Germany 

EMISAR [49] L,C L,C C No TUD Denmark 

Carabas-II [50] VHF VHF - No FOI Sweden 

RAMSES [51] 
W,Ka,Ku, 

X,C,S,L,P 

Ku,X,C, 

S,L,P 
Ku,X Yes ONERA France 

SETHI [52] X,L,P X,L,P X Yes ONERA France 

Pi-SAR [53] X,L X,L X No JAXA Japan 

Pi-SAR 2 [54] X X X Yes JAXA Japan 
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1.3 Main Objectives 

This doctoral thesis presents a novel a priori knowledge-based algorithm for traffic 

monitoring that combines a road database with the powerful multi-channel technique 

PD STAP. The proposed algorithm blends two freely available databases: 1) a road 

network obtained from the celebrated OSM [37]; and 2) a digital elevation model 

(DEM) obtained from the Shuttle Radar Topography Mission (SRTM) [55], [56]. The 

DEM is necessary since the OSM does not provide geographical height information. 

Both OSM and SRTM provide the input parameters for two positioning error models 

that are essential for recognizing and rejecting the false detections, as well as for 

assigning the detected cars to their correct roads (cf. Chapter 5).  

The PD STAP is chosen due to its sensitivity to both low and high line-of-sight 

velocities, its true clutter suppression and its accurate target position estimation 

capabilities. In addition, the PD STAP is a reduced-rank method which offers 

computational burden mitigation and improved statistical convergence (cf. Chapter 3).  

By incorporating an a priori known road network into the processing chain and by 

ignoring vehicles moving off-road (which may be of interest for military applications 

but not for civilian traffic monitoring), decreased processing hardware complexity and 

low costs compared to the military state-of-the-art GMTI systems can be achieved. 

Therefore, the proposed PD STAP processor is a promising solution for detecting 

effectively the cars and for estimating their positions, velocities and moving directions 

with high accuracy. 

The proposed PD STAP processor is evaluated using real four-channel aperture 

switching (AS) radar data acquired by the DLR’s F-SAR system. The radar data takes 

are described in detail in Appendix A and include scenarios with controlled cars as 

well a real traffic on a major highway in Germany. 
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1.4 Scope and Major Contributions 

The major concern of this doctoral thesis is to provide a complete and comprehensive 

description (e.g., mathematical framework, performance analysis, experimental results 

and limitations) of the proposed a priori knowledge-based PD STAP algorithm for 

traffic monitoring using the DLR’s F-SAR system.  

The novelties and major contributions of this work are: 

1. An extensive review and overview about the main PD STAP features, such as: 

clutter cancellation, position and velocity estimation of the moving target, 

clutter models (for homogeneous and heterogeneous terrain) for estimating the 

constant false alarm rate (CFAR) threshold, performance model for theoretical 

estimations, eigenvalues obtained from the clutter covariance matrix (CCM) 

and the impacts of a squinted array in the radar data acquisition (cf. Chapter 3); 

2. A novel PD STAP algorithm implemented in Interactive Data Language (IDL) 

[57] with three operational modes (cf. Chapter 4): 

a. Conventional PD STAP (i.e., without a priori knowledge information): 

detects also vehicles moving off-road, being suitable especially for areas 

where road information is unavailable; 

b. PD STAP with a priori knowledge information: assigns the moving vehicles 

to their correct roads and discards off-road vehicles (i.e., detections that lie 

far from roads), being suitable for non-real time traffic monitoring; 

c. Fast PD STAP with a priori knowledge information: faster processing 

version of (b), being promising for real time traffic monitoring. In this case, 

only the relevant data around the roads are processed. 

3. A novel error module for recognizing and discarding false detections, and for 

assigning the cars to their correct roads. This module blends two positioning 

error models: 1) an existing one for the moving targets [35]; and 2) a novel one 

for the OSM road points [58] (cf. Chapter 5); 

4. A novel data calibration algorithm that is able to: 1) handle the antenna AS; 2) 

correct the channel imbalances; and 3) consider the 2-D Doppler centroid 
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change over slant range and azimuth time by using the incidence angle and the 

Euler angles of the aircraft (yaw, pitch and roll) - obtained from the inertial 

measurement unit (IMU) (cf. Chapter 6); 

5. Novel and automatic training data selection strategies for the CCM estimation 

that can be combined with a module for moving target signal rejection (cf. 

Chapter 7). 

A part of the experimental results presented in this doctoral thesis was published in 

peer-reviewed journal papers [59]–[62], in conference papers [58], [63]–[66] and in 

internal technical reports [67], [68]. 

1.5 Outline 

Overall, this doctoral thesis is organized in eight chapters. Additional information is 

provided in two appendixes at the end of the thesis.  

The structure of this doctoral thesis is delineated as follows. This first chapter 

introduces the need for road traffic monitoring using airborne SAR, especially in case 

of large scale events and catastrophes. In this sense, the benefits and limitations of 

renowned state-of-the-art GMTI algorithms are presented, giving support to describe 

the main objectives and contributions of this work. Chapter 2 reviews the principles 

and theory of airborne SAR with emphasis on GMTI in order to establish the 

necessary background. This chapter closes by introducing the benefits of the STAP 

technique for moving target’s detection and parameters estimation. Chapter 3 gives an 

overview about the main features of the PD STAP technique, including the 

mathematical framework, performance analysis, experimental results and limitations. 

Chapter 4 presents the processing chain of the proposed a priori knowledge-based PD 

STAP processor, pointing out the main tasks carried out for each block. Chapter 5 

describes the novel positioning error models that are combined in order to recognize 

and to reject false detections that lie far from the roads. Chapter 6 presents the 

workflow of the data calibration algorithm that is crucial for the GMTI operation and 

for the corresponding parameter extraction of the moving targets. Chapter 7 examines 
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novel and automatic training data selection strategies for CCM estimation along with a 

module for moving target signal rejection. This topic is of great importance because 

the quality of the training data impacts directly on the PD STAP performance. In 

addition, Chapter 7 presents and discusses experimental GMTI results obtained by 

applying the proposed PD STAP processor on four data takes considering scenarios 

with controlled cars and real traffic in a major highway of Germany. Chapter 8 

concludes the doctoral thesis and provides an outlook on future radar-based traffic 

monitoring research. Appendix A addresses important information about the DLR’s 

system F-SAR, the flight campaigns conducted for the GMTI experiments and the 

SAR data takes processed by the proposed PD STAP processor. Finally, Appendix B 

presents a log of roads in Germany that is used for estimating empirically important 

parameters for the novel positioning error models presented in Chapter 5. 

 

 



 

2 SAR Principles 

2.1 Chapter Overview 

This chapter presents basic SAR principles for the application of STAP techniques. In 

this sense, the common SAR terminology is introduced together with an acquisition 

geometry for airborne SAR systems in stripmap mode. The signal model for stationary 

point-like targets is derived based on the classic frequency modulated pulse waveform 

known as range chirp, which is compressed along the range dimension for improving 

the resolution and the signal-to-noise ratio (SNR). After pulse compression, the radar 

data become range-compressed and are ready for STAP. This chapter concludes by 

pointing out important features of conventional SAR processing methods regarding 

SAR image formation and the effects of moving targets on SAR imagery. 

2.2 Brief History of SAR 

The first Radio Detection and Ranging (RADAR) system was developed by Christian 

Hülsmeyer (1881-1957) in 1904 for ship collision prevention, called Telemobiloscope 

[69]. In the 1930s, the radar research was intensified worldwide (e.g., Germany, Italy, 

the United States, the United Kingdom and the Soviet Union) for military applications 

motivated by the World War II [70].  

In the 1950s, the principle of SAR was invented and firstly demonstrated by Carl 

Wiley (1918-1985) at Goodyear Aerospace Ltd [71]. Nevertheless, at that time the 

data recording and imaging were accomplished using optical lenses due to the lack of 

digital signal processors. The SAR technique was further developed in the 1960s [11], 

once more pursuing military applications.  

Currently, SAR is in a “golden age” with several applications in vast remote sensing 

areas, for instance: geology, cartography, oceanography, nautical shipping, hydrology, 

glaciology, agriculture and forestry, environmental monitoring, GMTI, emergency 

management, among others [12]. 



  

12 Chapter 2: SAR Principles  

  

2.3 SAR Terminology and Acquisition Geometry 

SAR is an active sensor that uses one or more antennas for transmitting and receiving 

electromagnetic radiation. The transmitted radio frequency (RF) pulses strike an 

illuminated area on the ground containing not only the targets of interest but also 

several undesired objects that are known as clutter. All illuminated objects backscatter 

the transmitted RF pulses and a very small fraction of the backscattered signals is 

coherently received by the SAR system, amplified, down converted, digitized and 

stored in the mass memory [72]. 

 

Figure 2.1.  Illustration of an airborne SAR acquisition geometry in stripmap operation mode. 

The SAR terminology can be introduced by means of Figure 2.1. In this figure, an 

airborne SAR system flies at constant altitude ℎ and with constant velocity 𝑣p along a 
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straight trajectory, so that a strip of a certain width is imaged on the ground. This 

operation mode is known as stripmap and the strip width imaged on the ground is 

denominated swath
1
. The direction of flight is known as azimuth or along-track. The 

direction of propagation is known as slant range or line-of-sight, and its projection on 

the ground is known as ground range. The minimum and the maximum slant ranges 

are known as near range and far range, respectively. The antenna is mounted on the 

aircraft’s fuselage in order to achieve a side looking geometry (e.g., left-looking with 

respect to the azimuth direction, as depicted in Figure 2.1), where the antenna beam is 

pointed perpendicular to the azimuth direction (or pointed to a certain squint angle – 

cf. Section 3.3.4). The antenna is tilted from the horizontal plane downwards by a 

certain depression angle 𝜃d, which is complementary to the incidence angle 𝜃i for a 

Cartesian acquisition geometry (e.g., airborne SAR acquisition). Here the flat earth 

assumption is used. The distance between the SAR platform 𝒑 = [𝑥p,  𝑦p,  𝑧p]
𝑇
 and the 

stationary point target 𝒙t = [𝑥t,  𝑦t,  𝑧t]
𝑇  (where the symbol [∙]𝑇  terms the transpose 

operator) is known as target’s slant range 𝑅(𝑡), which varies over azimuth time 𝑡. The 

SAR transmits pulses according to a certain pulse repetition frequency (PRF), which 

also determines the sampling frequency in the azimuth direction. 

The antenna 3-dB (half power) beamwidth in elevation 𝜃rg  defines the maximum 

swath width, while the 3 dB beamwidth in azimuth 𝜃az defines the synthetic aperture 

𝐿sa, which is range dependent and can be expressed by [7] 

𝐿sa = 2 ∙ 𝑅0 ∙ tan (
𝜃az

2
) , (2.1) 

where 𝑅0 is the slant range to the swath center. The synthetic aperture time is given by 

                                              

1Traditional SAR operation modes can be applied in order to increase the swath width (scanSAR) or to improve 

the azimuth resolution (spotlight) comparing to the stripmap mode. In addition, modern imaging modes are also 

available in the literature for improving certain performance parameters (although at the expense of others), for 

instance: TOPSAR [149], circular SAR (in both stripmap and spotlight modes) [87], [150], holographic SAR 

[151], staggered SAR [152], among others. Such operation modes are generally carried out by controlling the 

antenna’s radiation pattern, which is possible for instance by using a planar antenna [12]. 
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𝑇sa =
𝐿sa

𝑣p
 . (2.2) 

Real scenarios may contain several targets with overlapping backscattering. Without 

pulse compression, two targets can be generally separated in the slant range direction 

if their echoes are not simultaneously received. Assuming that the SAR transmits a 

rectangular pulse with duration 𝜏p, the minimum slant range distance between two 

neighboring targets before pulse compression can be expressed by [7] 

𝛿r,raw =
c

2
∙ 𝜏p , (2.3) 

where c is the speed of light in vacuum. This expression shows that the slant range 

resolution is directly dependent upon the pulse duration, suggesting that very narrow 

pulses should be transmitted for ensuring a good slant range resolution. However, very 

narrow pulses require high transmitting power for receiving the echoes with a proper 

SNR. The trade-off between the pulse duration and the achieved slant range resolution 

can be solved by using matched filters (e.g., pulse compression), which improve the 

slant range resolution and increase the point-target SNR significantly (cf. Section 2.5).  

In the azimuth dimension, the backscattered echoes from targets overlap within the 

azimuth footprint. For real aperture radars (RAR) with a narrow azimuth beamwidth 

𝜃az, the azimuth resolution can be expressed by the approximation [7] 

𝛿az,raw = 𝐿sa ≈ 𝜃az ∙ 𝑅0 ≈ (
𝜆

𝐿a
) ∙ 𝑅0 , (2.4) 

where 𝜆 is the wavelength and 𝐿a is the effective length of the antenna in azimuth. 

This expression shows that: 1) the azimuth resolution coarses as the targets are further 

apart from the sensor since 𝑅0 increases; and 2) a long antenna yields a better azimuth 

resolution for a given operational frequency. However, instead of using a very long 

antenna, all echoes received within the illumination interval of a certain target can be 
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coherently combined by applying signal processing techniques, so that a very large 

antenna aperture is synthesized in the direction of flight. This is the basic idea of SAR. 

For SAR systems, the achievable azimuth resolution can be expressed as a function of 

the coherent processing interval (CPI) time 𝑇CPI according to the approximation [73] 

𝛿az ≈
𝜆∙𝑅0

2∙𝑣p∙𝑇CPI
 , (2.5) 

which assumes that the SAR platform velocity 𝑣p is much higher than the maximum 

expected velocity of the target in azimuth. Indeed, if the complete synthetic aperture 

time 𝑇sa is considered (so that 𝑇CPI = 𝑇sa), then the best achievable azimuth resolution 

can be obtained by the approximation [6] 

𝛿az ≈
𝐿az

2
 . (2.6) 

This expression is very important because it allows pointing out the main differences 

between RAR and SAR systems, for instance: 

1. The SAR azimuth resolution is directly proportional to the effective length of 

the azimuth antenna. Consequently, the smaller the antenna length the better is 

the azimuth resolution, since the illumination time (and therefore the coherent 

integration time) is increased; 

2. The SAR azimuth resolution is independent of range, which explains why even 

spaceborne SAR systems are able to achieve high azimuth resolution.  

2.4 Signal Model for Stationary Point-Like Targets 

SAR systems commonly transmit a long linear frequency modulated (LFM) pulse 

waveform known as range chirp [9] (although other pulse waveforms are possible). 

The signal model described in this section uses the framework presented in [22].  
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The SAR transmitted signal in the range direction can be expressed as 

𝑠TX(𝜏) = 𝑠TX,b(𝜏) ∙ exp (j ∙
2∙𝜋

𝜆
∙ c ∙ 𝜏) , (2.7) 

where j denotes the imaginary unit, 𝜏 is known as fast time and represents the range 

direction, and 𝑠TX,b(𝜏) is the pulse waveform in baseband, which in the case of a LFM 

range chirp can be expressed as 

𝑠TX,b(𝜏) = rect (
𝜏

𝜏p
) ∙ exp(±j ∙ 𝜋 ∙ 𝑘r ∙ 𝜏

2) , (2.8) 

where 𝑘r = 𝐵r/𝜏p  denotes the chirp slope and rect[∙] denotes the unity rectangular 

function. 

The signal received from a point-like target can be considered as a delayed and 

attenuated version of the transmitted signal 𝑠TX(𝜏), being expressed as 

𝑠RX(𝜏) = 𝐴𝑠 ∙ 𝑠TX [𝜏 −
2∙𝑅(𝜏)

c
] , (2.9) 

where 𝐴𝑠 is a coefficient that includes the free-space attenuation, the backscattering 

coefficient and the weighting of the two-way antenna pattern.  

Finally, the received signal 𝑠RX(𝜏) can be expressed in baseband in a two-dimensional 

form as 

𝑠RX,b(𝜏, 𝑡) = 𝐴𝑠 ∙ 𝑠TX [𝜏 −
2∙𝑅(𝜏)

c
] ∙ exp [−j

2∙𝜋

𝜆
∙ 2 ∙ 𝑅(𝑡)] , (2.10) 

where 𝑡 is known as slow time and represents the azimuth direction.  

Equation (2.10) describes the collected SAR data before any processing, which is 

called raw data. Note that for each pulse in azimuth time 𝑡, an echo of duration 𝜏 is 

received in fast time. Since the electromagnetic waves are propagated in the speed of 

light (i.e., much faster than the aircraft’s velocity), the aircraft can be considered static 
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during the transmission of a pulse and the reception of the scattered signal (known in 

the literature as the “stop-and-go approximation”). The collected SAR data are stored 

into a two-dimensional complex raw data matrix (with dimensions azimuth and range, 

respectively) in the mass memory of the radar system.  

2.5 Pulse Compression 

The pulse compression is carried out with respect to the transmitted signal in baseband 

(for instance, based on the LFM range chirp) 

𝑠TX,b(𝜏) = 𝑠chirp(𝜏) = rect (
𝜏

𝜏p
) ∙ exp(j ∙ 𝜋 ∙ 𝑘r ∙ 𝜏

2) . (2.11) 

The instantaneous frequency of the range chirp can be expressed as [7] 

𝑓chirp(𝜏) =
1

2∙𝜋
∙
d(arg[𝑠chirp(𝜏)])

dt
= 𝑘r ∙ 𝜏 , (2.12) 

which is defined within [−𝜏p/2, 𝜏p/2] and varies linearly along fast time 𝜏 with either 

a positive or a negative angular coefficient depending on the sign of the chirp slope 𝑘r 

(known as up chirp and down chirp, respectively). By using the principle of stationary 

phase (which is an approximation of the Fourier Integral that considers only the region 

where the phase varies slowly) and apart from a complex constant, the range chirp 

spectrum can be shown to be also a chirp [7]: 

𝑆chirp(𝑓) = rect (
𝑓

𝐵r
) ∙ exp (−j ∙ 𝜋 ∙

𝑓2

𝑘r
) . (2.13) 

It is shown in [7] that the pulse compression can be achieved by multiplying the chirp 

spectrum from (2.13) with a matched filter 𝑆chirp
∗ (𝑓) (where [∙]∗ denotes the complex 

conjugation).  
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After pulse compression, the best achievable slant range resolution is given by [7] 

𝛿r = 𝛼wn ∙
c

2∙𝐵r
 , (2.14) 

 

where 𝛼wn  accounts for losses due to windowing applied during processing (e.g., 

𝛼wn ≅ 0.89 for a rectangular window) [74]. This expression shows that the larger the 

chirp bandwidth 𝐵r, the better is the slant range resolution. 

2.6 SAR Image Formation 

SAR processing requires high computational time for processing the raw data in order 

to obtain the desired information from the backscattered energy. Classical algorithms 

for SAR processing are based on the well-known “stationary world matched filtering” 

(SWMF). A prominent example in this case is the range-Doppler algorithm (RDA) 

[75], which basically includes three major steps (as depicted in Figure 2.2): 

1. Range compression: a pulse compression is carried out along the range 

direction, (cf. Figure 2.2b); 

2. Range cell migration correction (RCMC): the curvature of the range history is 

corrected (cf. Figure 2.2c); 

3. Azimuth compression: a pulse compression is carried out along the azimuth 

direction (cf. Figure 2.2d). 
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Figure 2.2.  Major steps of the RDA for a single stationary point-like target: (a) SAR raw data, (b) 

data after range compression, (c) data after RCMC and (d) data after azimuth compression [22]. 

Other SAR processing approaches are possible, for instance, using algorithms based 

on spectral analysis or in the wavelength domain. An extensive review and overview 

about state-of-the-art SAR processing methodologies can be found in [7], [76]. 

2.7 Moving Target Effects on SAR Imagery 

SAR is designed for processing stationary targets. Therefore, when moving targets are 

processed as static ground they might appear displaced and defocused due to their 

motion in both range and azimuth directions. Comprehensive tutorials are available in 

the literature explaining the effects of moving target’s velocity and acceleration on 

SAR imagery [22], [77], [78]. For instance, a noticeable effect is caused by the 

target’s velocity in range, which causes a proportional spatial displacement from its 

real position (especially along the azimuth direction). To demonstrate this effect, an 
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interesting spaceborne SAR image acquired with the German TerraSAR-X satellite 

[79]–[81] is shown in Figure 2.3, where a train moves through the Tehachapi Loop, in 

California, USA. In this case, both range and azimuth velocities of the train change 

gradually as it moves through the spiral loop. As a result, the train is detected several 

times with different displacements from its actual positions (i.e., on the rail track), 

appearing as an ellipse (shown in blue). Note that the train is only detected on the rail 

track when it presents zero range velocity (i.e., only azimuth velocity). In contrast, the 

same train is detected with a maximum azimuth displacement (in the order of 400 m) 

when it presents maximum range velocity (i.e., zero azimuth velocity). 

Indeed, GMTI algorithms based on SAR processing need to estimate the positions and 

the velocities of the moving targets for correcting their displacement and defocusing 

in the final SAR focused image. The example shown in Figure 2.3 gives a sense about 

how far a moving target can be detected from its actual position due to its velocity. 

Thus, one can visualize how challenging is the reassignment of moving vehicles 

especially in dense traffic scenarios with a number of adjacent roads. 

STAP techniques are applied directly on range compressed data. In this sense, no 

time-consuming SAR imaging is necessary (e.g., RCMC and azimuth compression) 

and the aforementioned effects of moving targets on SAR imagery are not an issue. 

This is an important difference between SAR processing and STAP. The main STAP 

features and limitations are presented and discussed in detail in Chapter 3.  
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Figure 2.3.  Spaceborne SAR image acquired with the TerraSAR-X satellite showing the Tehachapi 

Loop, in California, USA. A moving train is detected several times with different displacements from 

its actual positions (especially in azimuth), so that the detections form an ellipse (shown in blue). The 

azimuth displacements are proportional to the velocity of the train in the range direction. 

2.8 Chapter Summary 

This chapter presents basic SAR concepts, including a signal model for stationary 

point-like targets that employs the widely used transmitted pulse waveform known as 

“range chirp”, which allows the pulse compression for enhancing the resolution and 

the SNR significantly. Conventional SAR processing algorithms (e.g., the RDA) 

basically perform: range compression, RCMC and azimuth compression. Since SAR 

is designed for processing stationary targets, when moving targets are processed as 

static ground they might appear displaced and defocused due to their velocities. The 

PD STAP operates directly on RC data (i.e., after range pulse compression) in range-

Doppler domain. Therefore, no time-consuming SAR imaging is necessary and it is 

Tehachapi Loop, California, USA
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not affected by the effects caused by moving targets on SAR imagery. A detailed 

overview about the main PD STAP features is presented in the next chapter.  

 



 

3 Space-Time Adaptive Processing (STAP) 

3.1 Chapter Overview 

This chapter presents an overview about the main features of the PD STAP technique, 

which is able to perform clutter suppression, moving target’s detection and parameters 

estimation (e.g., position, velocity and moving direction). The moving target detection 

is carried out according to a CFAR threshold that is estimated from a clutter model. In 

this chapter, two clutter models are presented and discussed: one for homogeneous 

clutter and one for heterogeneous clutter. A performance model for PD STAP is also 

presented comprising the theoretical predictions of the detection performance, the 

achievable position and the velocity estimation accuracy. Finally, some of the main 

limitations of the PD STAP technique are addressed. 

3.2 The Need for STAP 

STAP is a class of linear adaptive filtering techniques that operates on space-time 

observations for enhancing the moving target detection [82]. The STAP definition can 

be explained by the need for space-time processing and the need for adaptability. 

The need for space-time processing arises from the inherent two-dimensional nature 

of the ground clutter, as illustrated in Figure 3.1. This figure shows the distribution of 

the power spectral density (PSD) of the ground clutter in the angle-Doppler plan, 

where the normalized angle denotes the spatial dimension and the normalized Doppler 

denotes the temporal dimension. The ground clutter angle-Doppler region of support 

is described in the literature as a “ridge”, which behaves as a line for airborne SAR, 

opening up into an ellipse for varying degrees of the aircraft’s yaw [83]. Figure 3.1 

also shows that the space-time filter is able to place a null in the angle-Doppler beam 

pattern where the ground clutter may compete. Hence, since the space-time filter has a 

narrow ground clutter notch, the depicted target falls into the pass band [84]. 

The need for adaptability arises from the numerous real-world effects that still need to 

be taken into account, for instance: channel mismatches, clutter heterogeneity, clutter 
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nonstationarity, among others. Such effects strictly limit the performance of the space-

time processing and give rise to the need for adaptability - therefore space-time 

adaptive processing, or simply “STAP” [85].  

 

Figure 3.1.  The principle of the space-time clutter filtering (modified after [22]). 

3.3 Post-Doppler STAP 

A number of STAP techniques are possible [26], [85], [86]. This doctoral thesis sheds 

light on the PD STAP, which is a reduced dimension algorithm that requires less 

sample support and less processing effort than the classical joint-domain STAP. 

Besides, similarly to other state-of-the-art STAP techniques, the PD STAP is able to 

perform clutter suppression as well as the moving target’s detection and parameters 

estimation (e.g., line-of-sight velocity, Doppler frequency and DOA angle) [82].  

The main steps of the PD STAP core are summarized in Figure 3.2 and are presented 

in detail in the following sections.  
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Figure 3.2.  Main steps of the PD STAP core. 

3.3.1 Data Segmentation 

The PD STAP operates on the radar data cube shown in Figure 3.3a, which is very 

convenient for visualizing subsequent space-time processing [82]. Each radar data 

cube corresponds to one CPI containing 𝑁a,CPI azimuth (temporal) samples or pulses, 

𝐾 range samples and 𝑀 receiving antennas or channels, so that 𝑁a,CPI ∙ 𝐾 ∙ 𝑀 complex 

baseband samples are obtained in total. The radar data cube is processed in data pages 

also known as “snapshots”, where one data page is obtained for each range gate 𝑘.  

Before applying the PD STAP, the data page is transformed to Doppler domain by 

carrying out a fast Fourier transform (FFT) over azimuth, as shown in Figure 3.3b. 

The PD STAP technique processes one CPI at a time in range-Doppler domain (i.e., a 

coherent summation is carried out), exploring the concept that the azimuth phase can 

be considered linear for sufficient small CPIs (e.g., 128 azimuth samples for the F-

SAR system with typical acquisition parameters). Due to the small CPI, the PD STAP 

technique can be applied not only to stripmap data but also to circular SAR data [87]. 

This process is denominated Data Segmentation (cf. Figure 3.2) and is depicted in 

Figure 3.4. In this figure, the multi-channel radar data are segmented in the azimuth 

or slow time domain, so that 𝑁 CPIs are obtained to be processed by the PD STAP 

core. 

Step 1 
• Data Segmentation (cf. Section 3.3.1) 

Step 2 

• Clutter Cancellation and Moving Target Pre-
Detection (cf. Section 3.3.2) 

Step 3 
• Beamforming (cf. Section 3.3.2) 

Step 4 

• Moving Target Parameter Estimation (cf. 
Section 3.3.3) 
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Figure 3.3.  (a) Radar data cube corresponding to one CPI and (b) the data page (on the left side in 

red) in Doppler domain. The data vector 𝒁(𝑓a) is processed by PD STAP. 

 

Figure 3.4.  Data segmentation carried out in the azimuth or slow time domain.   

The measured data page (or snapshot) corresponding to the k-th range gate can be 

expressed in time domain by [82] 

𝒛 = (

𝑧1,1 𝑧1,2 ⋯ 𝑧1,𝑁a,CPI
𝑧2,1 𝑧2,2 ⋯ 𝑧2,𝑁a,CPI
⋮ ⋮ ⋯ ⋮
𝑧𝑀,1 𝑧𝑀,2 ⋯ 𝑧𝑀,𝑁a,CPI

) , 𝒛 ∈ ℂ𝑀×𝑁a,CPI , (3.1) 

The data page is generally composed of  

𝒛 = 𝒔 + 𝒄 + 𝒏 , (3.2) 

where 𝒔 denotes the multi-channel moving target signal, 𝒄 denotes the ground clutter 

or interferences, and 𝒏 denotes the uncorrelated background white noise caused by the 
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radar receiver circuitry. Indeed, the desired moving target signal power is generally a 

very small fraction of the overall interference power [88].  

3.3.2 Signal Model and Test Statistics 

The multi-channel signal model can be expressed by [89] 

𝒔(𝑡) = 𝑎s𝑒
−j
4𝜋

𝜆
𝑅(𝑡)𝐷tx (𝑢array(𝑡))

[
 
 
 
 
 𝐷rx,1 (𝑢array(𝑡)) 𝑒

j
2𝜋

𝜆
𝑢array(𝑡)𝑥1

𝐷rx,2 (𝑢array(𝑡)) 𝑒
𝑗
2𝜋

𝜆
𝑢array(𝑡)𝑥2

⋮

𝐷rx,M (𝑢array(𝑡)) 𝑒
𝑗
2𝜋

𝜆
𝑢array(𝑡)𝑥𝑀

]
 
 
 
 
 

  

𝒔(𝑡) = 𝑎s𝑒
−𝑗
4𝜋

𝜆
𝑅(𝑡)𝒅(𝑢array(𝑡)) ∈ ℂ

𝑀×1 , 

(3.3) 

where 𝑎s denotes a complex value that accounts for the reflectivity of the scatterer, 

𝐷tx (𝑢array(𝑡)) and 𝐷rx,m (𝑢array(𝑡)) are the complex transmitting (TX) and receiving 

(RX) antenna characteristics of the m-th channel, 𝑥𝑚 is the position of the antenna 

center in the azimuth direction with respect to the antenna array origin (cf. Figure 

3.5),  𝒅 (𝑢array(𝑡)) is the beamforming or DOA vector, 𝑢array = cos(ΨDOA,array) is 

the directional cosine and ΨDOA,array denotes the DOA angle of the target measured 

with respect to the antenna array axis.  

 

Figure 3.5.  Acquisition geometry with a multi-channel antenna and zero squint angle. 
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Figure 3.5 shows an acquisition geometry using a multi-channel antenna, where the 

antenna array center origin is freely chosen at the center of the array, so that ∑ 𝑥𝑚 =𝑚

0. In this figure, the antenna array and the azimuth (or flight direction) axes coincide 

because the squint angle is zero. The DOA angle of the target measured with respect 

to the azimuth or flight direction is denoted by ΨDOA,az. 

The moving target detection is carried out based on the well-known Adaptive Matched 

Filter (AMF) test [90]: 

𝑇̅(𝑟k, 𝑓a) =  
|𝒅𝐻(𝑢array,𝑓a)𝑹̂W

−1(𝑓a)𝒛(𝑟k,𝑓a)|
2

𝒅𝐻(𝑢array,𝑓a)𝑹̂W
−1(𝑓a)𝒅(𝑢array,𝑓a)

≶ 𝜂 , (3.4) 

where 𝑹̂W denotes the CCM, [∙]𝐻 denotes the Hermitian operator (complex conjugate 

transposition) and 𝜂  denotes the desired CFAR threshold, whose computation is 

presented in Section 3.4 for homogeneous and heterogeneous ground clutter. The 

normalization in Equation (3.4) is necessary for providing the desired CFAR behavior 

[90]. 

The CCM can be estimated empirically from the data by applying the Sample Matrix 

Inverse (SMI) method [91], which is the basis for most modern STAP algorithms 

(notice that other CCM estimation strategies are also possible [92]): 

𝑹̂W(𝑓a) =
1

𝐾
∑ 𝒛(𝑟k, 𝑓a)𝒛

𝐻(𝑟k, 𝑓a),
𝐾
𝑘=1  𝑹̂W(𝑓a) ∈ ℂ

𝑀×𝑀 , (3.5) 

where 𝐾 denotes the total number of range bins used for averaging. 

For the CCM estimation, it is crucial that the multi-channel vectors 𝒛 are free of 

strong discrete scatterers and moving target signals. This condition needs to be 

ensured by a proper training data selection algorithm (cf. Chapter 7), otherwise the 

clutter suppression performance degrades and the target signals are attenuated or 

cancelled. This effect is known in the literature as target “self-whitening”. 
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3.3.3 Clutter Cancellation and Moving Target Pre-Detection 

For moving target pre-detection (cf. Figure 3.2), it is normally enough to compute the 

test statistics 𝑇̅ for the broadside direction of the antenna array 𝑢0 = 𝑢array = 0 (i.e., 

assuming zero Doppler centroid) [93] 

𝑇̅(𝑟k, 𝑓a) =  
|𝒅𝐻(𝑢0,𝑓a)𝑹̂W

−1(𝑓a)𝒛(𝑟k,𝑓a)|
2

𝒅𝐻(𝑢0,𝑓a)𝑹̂W
−1(𝑓a)𝒅(𝑢0,𝑓a)

≶ 𝜂 . (3.6) 

The pre-detection saves processing time since not all possible 𝑢 need to be applied for 

matched filtering. The drawback in this case is that very weak target signals may not 

be detected. Equation (3.6) is very important and allows pointing out that [13]: 

1. The sum of the RX channels before clutter cancellation is given by 

𝑧BCC(𝑟k, 𝑓a) =  |𝒅
𝐻(𝑢0, 𝑓a)𝒛(𝑟k, 𝑓a)|

2 . (3.7) 

2. The clutter cancellation is carried out by multiplying each Doppler frequency 

bin 𝑓a of the signal vector 𝒛(𝑟k, 𝑓a) with the inverse of the CCM, i.e.,  𝑹̂W
−1(𝑓𝑎). 

The target matched filtering (e.g., for the broadside direction of the antenna 

array) is done by multiplying the intermediate result from Equation (3.7) with 

the Hermitian of the DOA vector 𝒅𝐻(𝑢0, 𝑓a) (i.e., the expected moving target 

signal). The sum of the RX channels after clutter suppression is then given by 

𝑧ACC(𝑟k, 𝑓a) =  |𝒅
𝐻(𝑢0, 𝑓a)𝑹̂𝑊

−1(𝑓a)𝒛(𝑟k, 𝑓a)|
2
 . (3.8) 

Figure 3.6 shows the sum of the RX channels before and after clutter cancellation by 

applying Equation (3.7) and Equation (3.8), respectively. In this example, one CPI 

containing 2048 x 128 range-Doppler samples is processed from data take 4 (cf. 

Appendix A) including homogeneous ground clutter and the beamforming vector 𝒅 is 

steered to 𝑢0. Besides, the measured data are centered at zero Doppler by taking into 

account the variation of the Doppler centroid over slant range (cf. Chapter 6), which is 

known in the literature as “J-Hook” [94]. This Doppler centroid correction is very 

important since the CCM is estimated for each Doppler frequency bin by performing 

an averaging over range, as it can be seen in Equation (3.5). 
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After the pre-detection process, the beamforming operation (cf. Figure 3.2) is applied 

in order to estimate the directional cosine (or the DOA angle) of the moving target 

with respect to the antenna array axis 𝑢array = cos(ΨDOA,array), according to [95] 

𝑢̂array = argmax𝑢array {
|𝒅𝐻(𝑢array,𝑓a)𝑹̂W

−1(𝑓a)𝒛(𝑟k,𝑓a)|
2

𝒅𝐻(𝑢array,𝑓a)𝑹̂W
−1(𝑓a)𝒅(𝑢array,𝑓a)

} , (3.9) 

where the maximum is obtained by selecting the DOA yielding the maximum value of 

this function from a discrete set of possible DOAs. Also, notice that the beamformer 𝒅 

includes the estimated amplitudes of the antenna patterns in the direction of the 

moving target and the phase differences between them, as expressed in Equation (3.3).  

 

Figure 3.6.  Sum of the RX channels for one CPI containing 2048 x 128 range-Doppler samples: (a) 

before (𝑧BCC) and (b) after clutter cancellation (𝑧ACC) for 𝑢0. Note the different dB scale of both 

images. The data are centered at zero Doppler centroid. 

a b

[dB]
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After the beamforming operation, the DOA angle and the Doppler frequency of the 

moving target are known. Thus, it is possible to estimate the line-of-sight velocity and 

the position of the moving target, as described in the next section. This is the last step 

of the PD STAP core known as Moving Target Parameter Estimation (cf. Figure 3.2).  

3.3.4 Moving Target Parameter Estimation 

The radar data are commonly processed either at the center of the synthetic aperture 

(i.e., at the Doppler centroid) or at the Doppler frequency null (i.e., at zero Doppler). 

The proposed PD STAP processor employs the second approach. In this case, it has to 

be mentioned that the DLR’s F-SAR system is equipped with a low-cost flat antenna 

array that does not allow an electronic or gimbal-based beam steering to zero Doppler 

(cf. Appendix A). Thus, the aircraft’s motion causes the array axis to incline with 

respect to the velocity vector, resulting in a squint angle (or in a Doppler centroid) that 

needs to be considered especially for estimating the position of the moving target.  

 
Figure 3.7.  Simplified acquisition geometry with a tilted array. 
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This scenario is illustrated in Figure 3.7, where the antenna array is tilted by a certain 

tilt angle Ψtilt measured in the 𝑥𝑦-plane (i.e., the pitch angle is omitted in this case for 

simplification). In this figure, the angles in the slant range direction are shown in blue 

and can be related as 

ΨDOA,az = Ψtilt +ΨDOA,array , (3.10) 

Ψtilt = −Ψsq , (3.11) 

where ΨDOA,az is the DOA angle of the target with respect to the azimuth axis and Ψsq 

is the squint angle with respect to the broadside direction of the array 𝑢0. Note that the 

array and the azimuth axes would coincide only if the squint (or the tilt) angle is zero. 

As formerly mentioned, the PD STAP processor estimates 𝑢array = cos(ΨDOA,array) 

according to Equation (3.9) and obtains ΨDOA,az according to Equation (3.10). The 

relationship between ΨDOA,az  and its projection on ground can be readily obtained 

from the acquisition geometry shown in Figure 3.7 as 

ΨDOA,az,g = cos
−1 [

𝑅

𝑅g
cos(ΨDOA,az)] , (3.12) 

where 𝑅g = √𝑅
2 − ℎ2 is the projection on ground of the moving target’s slant range 

and ℎ = 𝑧p − 𝑧t is the flight altitude of the platform above the ground. An accurate 

DEM is needed for obtaining the height of the scene 𝑧t, which is especially important 

in case of a strong topography [96]. Equation (3.12) is important since ΨDOA,az can be 

used for estimating the moving target’s position, as described in the following section.  

3.3.4.1 Moving Target Position 

The coordinates of the moving target in azimuth and in ground range can be expressed 

respectively as 

𝑥t = 𝑥p + Δ𝑥 = 𝑥p + Rg ⋅ cos(ΨDOA,az,g) , 
(3.13) 

𝑦t = 𝑦p + R0,g = 𝑦p + Rg ⋅ sin(ΨDOA,az,g) , (3.14) 



 

Post-Doppler STAP 33 

 

where Δ𝑥 is the azimuth distance between the radar and the moving target, and 𝑅0,g is 

the projection on ground of 𝑅0 (cf. Figure 3.7). The altitude of the moving target 𝑧t 

can be obtained for instance from a DEM. 

The position of the moving target can also be obtained in the Universal Transverse 

Mercator (UTM) [97] Cartesian coordinate system: 𝒙t,UTM = [𝑥t,UTM,  𝑦t,UTM,  𝑧t,UTM]
𝑇
. 

Figure 3.8 shows the top view acquisition geometry from where the coordinates of the 

moving target in UTM Easting and Northing can be readily computed respectively as  

𝑥t,UTM = 𝑥p,UTM + ΔxUTM = 𝑥p,UTM + Rg ⋅ cos(𝛼p+ΨDOA,az,g) , (3.15) 

𝑦t,UTM = 𝑦p,UTM + ΔyUTM = 𝑦p,UTM + Rg ⋅ sin(𝛼p + +ΨDOA,az,g) , (3.16) 

where ΔxUTM and ΔyUTM are the distances between the radar and the moving target in 

the UTM Easting and Northing axes, respectively, 𝛼p is the platform heading angle 

with respect to the UTM Easting axis and 𝒑UTM = [𝑥p,UTM,  𝑦p,UTM,  𝑧p,UTM]
T
 are the 

UTM coordinates of the platform. It is assumed 𝑧t,UTM = 𝑧t without loss of generality. 

 

Figure 3.8.  Simplified acquisition geometry used for obtaining the position of the moving target in 

the UTM Cartesian coordinate system. 
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3.3.4.2 Moving Target Velocity and Moving Direction 

Assuming that the platform velocity 𝑣p is only along the x-axis, the squint (or the tilt) 

angle measured in the 𝑥𝑦-plane (cf. Figure 3.7) can be related to the Doppler centroid 

according to 

𝑓DC =
2∙𝑣p

𝜆
∙ sinΨsq = −

2∙𝑣p

𝜆
∙ sin Ψtilt . (3.17) 

In reality, the squint angle (and therefore the Doppler centroid) changes not only over 

slant range, but also over time due to the motion of the aircraft caused by external 

influences (e.g., cross-winds). This variation needs to be corrected by the PD STAP 

processor in the data calibration step (cf. Section 6.6), so that the data processing can 

be carried out at zero Doppler. 

The line-of-sight velocity of the target 𝑣r is estimated according to [82] 

𝑣r = 𝑢array ∙ 𝑣p −
𝜆

2
∙ (𝑓a − 𝑓DC) . (3.18) 

The proposed PD STAP processor does not need to estimate the azimuth velocity of 

the target. Indeed, the OSM provides the geographical positions of the road points 

from where it is possible to compute the corresponding road point angles 𝛼r  with 

respect to the UTM Easting axis, as shown in Figure 3.9 (tangent on road). Therefore, 

the road point angle with respect to the azimuth direction 𝛼r,az = 𝛼r − 𝛼p allows the 

computation of the absolute velocity of the target on the road by using only the line-

of-sight velocity and the incidence angle θi = cos
−1(ℎ/𝑅) of the target [36], [63] 

𝑣road = |
𝑣r

sin(𝜃i)∙sin(𝛼r,az)
| = |𝑣abs| . (3.19) 

Finally, the moving direction of the target is given by [36], [63]  

𝛼t = {
              𝛼r , sgn(𝑣abs) = +1

𝛼r − 180°, sgn(𝑣abs) = −1
 , (3.20) 

where sgn[∙] denotes the sign function. 
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Figure 3.9.  Simplified acquisition geometry illustrating the road point angle 𝛼r provided by the OSM 

database, which is measured in the counterclockwise direction. This angle is necessary for estimating 

the absolute velocity of the target on the road. 

3.4 Clutter Model 

An appropriate and accurate clutter model needs to be fit to the test statistics 𝑇̅ in 

order to estimate a reliable CFAR detection threshold. Normally, this fit is done for 

the broadside direction of the antenna array 𝑢0. For estimating the CFAR threshold, it 

is important that the test statistics 𝑇̅ use training data free of moving target signals and 

strong discrete scatterers, which may be present due to imperfect clutter cancellation. 

Strategies for selecting proper training data for the CCM estimation are presented and 

discussed in Chapter 7.  

Two clutter models are discussed in this section: one for homogeneous terrain and one 

for heterogeneous terrain. In both cases, the framework introduced in [98] and further 

investigated in [31], [93] is used. The advantage of the heterogeneous model is that it 

covers different types of heterogeneity, including completely homogeneous ground 

clutter. Therefore, it is very flexible for ground moving target indication over land 

with changing clutter characteristics.  
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3.4.1 Homogeneous Terrain 

In this model, the probability density function (PDF) of the test statistics 𝑇̅ can be 

expressed by [31], [93], [98] 

𝑓𝑇̅(𝑡̅) =
𝑡̅𝑛−1∙𝑒−𝑡̅

Γ(𝑛)
 , (3.21) 

where Γ[∙] denotes the gamma function and 𝑛 = 𝐸{𝑇̅} the effective number of looks.  

The test statistics can be normalized by its expectation (i.e., 𝑇 = 𝑇̅/𝐸{𝑇̅} = 𝑇̅/𝑛), 

yielding the PDF [31], [93], [98] 

𝑓𝑇(𝑡) =
𝑛𝑛

Γ(𝑛)
∙ 𝑡𝑛−1 ∙ 𝑒−𝑛∙𝑡 , (3.22) 

which follows a Chi-squared (𝜒2) density function.  

The cumulative distribution function (CDF) of the normalized test statistics 𝑇 can be 

expressed by 

𝐹𝑇(𝑡) = ∫ 𝑓𝑇(𝑥)d𝑥
𝑡

0
= ∫

𝑛𝑛

Γ(𝑛)
∙ 𝑥𝑛−1 ∙ 𝑒−𝑛∙𝑥d𝑥

𝑡

0
  

𝐹𝑇(𝑡) =
𝑛𝑛

Γ(𝑛)
∫ 𝑥𝑛−1 ∙ 𝑒−𝑛∙𝑥d𝑥
𝑡

0
 . 

(3.23) 

The integral on the right-hand side of Equation (3.23) can be solved by using the 

result 3.381-1 in [99], yielding the CDF 

𝐹𝑇(𝑡) =
𝑛𝑛

Γ(𝑛)
∙ [𝑛−𝑛 ∙ 𝛾(𝑛, 𝑛 ∙ 𝑡)]  

𝐹𝑇(𝑡) =
𝛾(𝑛,𝑛∙𝑡)

Γ(𝑛)
 , 

(3.24) 

where 𝛾[∙] denotes the incomplete gamma function.  
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Finally, the desired CFAR threshold 𝜂homo for homogeneous terrain can be estimated 

according to 

𝜂homo =
𝑡0

2∙𝑛
 , (3.25) 

where 𝑡0 denotes the abscissa value of the CDF given in Equation (3.24) at ordinate 

(1 − 𝑃fa), and 𝑃fa denotes the desired probability of false alarm. 

Figure 3.10 shows the PDF and the CDF obtained for different effective number of 

looks 𝑛 by using Equation (3.22) and Equation (3.24), respectively. Note that the PDF 

shown in Figure 3.10a tends to be exponentially distributed for 𝑛 = 1  (i.e., no 

multilooking is considered). 

 

Figure 3.10.  (a) PDF and (b) CDF of the homogeneous model for different effective number of 

looks. 

3.4.2 Heterogeneous Terrain 

In reality, the homogeneous clutter model presents limitations when the background 

reflectivity of the scene changes. For instance, a single scene may contain grassy and 

urban areas, together with cropping fields and regions of forests. Thus, it is important 

to introduce a texture parameter in the clutter model in order to describe the degree of 

heterogeneity of the terrain. 
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In the heterogeneous clutter model presented in [31], [93], [98], the effective number 

of looks 𝑛 and a texture parameter 𝜈 need to be estimated from the training data. This 

texture parameter describes the degree of heterogeneity of the underlying terrain, i.e., 

the larger the texture parameter 𝜈, the more homogeneous is the clutter (therefore, low 

values indicate strong heterogeneity).  

The PDF of the adopted heterogeneous model follows a scaled F-distribution with 2𝑛, 

2𝜈 degrees of freedom (DoF) that is given by [31], [93], [98] 

𝑓𝑋(𝑥) =
Γ(𝑛+𝜈)

Γ(𝑛)∙Γ(𝜈)
∙ (

𝑛

𝜈−1
)
𝑛

∙
𝑥𝑛−1

(1+
𝑛

𝜐−1
∙𝑥)

𝑛+𝜐 . (3.26) 

The texture parameter 𝜐 can be estimated according to 

𝜐 =
2∙𝑛∙𝑚2−(𝑛+1)

𝑛∙𝑚2−(𝑛+1)
 , (3.27) 

where 𝑚2 = ∑ |𝑥𝑖|
2

𝑖  is the estimated quadratic mean over all available samples.  

It is pointed out that for 𝜐 > 20, the F-distributed heterogeneous model expressed in 

Equation (3.26) converges to the 𝜒2 -distributed homogeneous model expressed in 

Equation (3.22).  

The CDF can be expressed by 

𝐹𝑋(𝑥) = ∫ 𝑓𝑋(𝑦)d𝑦
𝑥

0
= ∫

Γ(𝑛+𝜈)

Γ(𝑛)∙Γ(𝜈)
∙ (

𝑛

𝜈−1
)
𝑛

∙
𝑦𝑛−1

(1+
𝑛

𝜐−1
∙𝑦)

𝑛+𝜐 dy
𝑥

0
 . (3.28) 

The integral on the right-hand side of Equation (3.28) can be solved by using the 

result 3.194-1 in [99], yielding the CDF [31], [93], [98] 

𝐹𝑋(𝑥) =
Γ(𝑛+𝜈)

𝑛∙Γ(𝑛)∙Γ(𝜈)
∙ (

𝑥

𝜈−1
)
𝑛

∙ 𝐹1 (𝑛 + 𝜐, 𝑛; 𝑛 + 1;−
𝑥

𝜐−1
)2  , (3.29) 

where 𝐹1[∙]2  denotes the Gaussian hypergeometric function.  



 

Clutter Model 39 

 

Finally, the desired CFAR threshold 𝜂hete for heterogeneous terrain can be estimated 

according to 

𝜂hete =
𝑥0∙(𝜈−1)

υ
 , (3.30) 

where 𝑥0 denotes the abscissa value of the CDF given in Equation (3.29) at ordinate 

(1 − 𝑃fa). 

Figure 3.11 shows the data histogram of one CPI (2048 x 128 range-Doppler 

samples) processed from data take 4 (cf. Appendix A) along with the PDFs of the 

homogeneous and heterogeneous clutter models, computed by using (3.22) and (3.26), 

respectively. As it can be seen in this example, the heterogeneous model fits better to 

the measured data due to the use of a texture parameter [93], [31]. Besides, the 

estimated parameters are 𝑛 = 1.00  (i.e., no multilooking was considered) and 

𝜐 = 3.08, which suggests a moderately heterogeneous terrain. 

In reality, the texture parameter 𝜐 changes over slant range and azimuth time. Some of 

the main real-world effects on the DLR’s F-SAR data acquisition are shown in 

Chapter 7, including the clutter statistics change according to the texture parameter 𝜐. 

 

Figure 3.11.  Data histogram of one CPI (2048 x 128 range-Doppler samples) along with the PDFs of 

the clutter models for homogeneous and heterogeneous terrains. The PDF of the heterogeneous model 

fits very well to the measured data, showing that this clutter model is indeed appropriate and accurate. 

Data (Histogram)
Homogeneous Model
Heterogeneous Model

𝑛 = 1.00
𝜐 = 3.08
𝑃fa = 10-6

𝑇̅ (Maximum Likelihood Quotient)



  

40 Chapter 3: Space-Time Adaptive Processing (STAP)  

 

3.5 Performance Model 

This section presents theoretical performance predictions of the PD STAP processor, 

such as: detection performance, achievable position and velocity estimation accuracy. 

This performance model is based on the framework presented in [89]. Part of the 

results presented in this section was already published in [59]. 

The performance investigations are carried out according to the parameters shown in 

Table 3.1 [38], which is based on the DLR’s F-SAR system (cf. Appendix A). In this 

table, it is assumed that the radar cross section (RCS) of the target is 𝜎t = −5 dBm
2. 

It is shown in [100] that the 𝜎t of a common passenger car depends strongly on the 

incidence angle 𝜃i and on the asphalt’s condition. For instance, the RCS of a Golf V 

vehicle can vary from -10 dBm
2
 to 25 dBm

2 
under wet asphalt (≈ 0.5 mm of water). 

TABLE 3.1 

F-SAR’S SYSTEM PARAMETERS USED FOR THE PERFORMANCE INVESTIGATIONS [38] 

Parameter Symbol Value 

Effective PRF (in AS mode) PRF 2500 Hz 

Platform velocity 𝑣p 90 m/s 

Incidence angle 𝜃i 45° 

Range sampling frequency 𝑓r 100 MHz 

Number of Channels 𝑀 4 

Transmit antenna length 𝐿a 0.3 m 

Effective along-track baseline 𝑑a 0.1 m 

Peak transmit power 𝑃t 63.2 dBm (= 2089 W) 

TX antenna gain (measured) 𝐺TX 19.80 dBi 

RX antenna gain (measured) 𝐺RX 16.00 dBi 

Radar wavelength 𝜆 0.03122 m 

TX pulse duration 𝜏p 5 μs 

RCS 𝜎t -5 dBm
2
 

Clutter reflectivity 𝜎0 -10 dB 

Slant range of the target 𝑅 3111 m 

RX system noise temperature 𝑇0 293 K 

System noise figure 𝐹 5.66 dB 

Losses (assumed for AS configuration) 𝐿 2.5 dB 

Boltzmann constant 𝑘B 1.38064852×10
-23

 J/K 

Number of azimuth samples per CPI 𝑛a,CPI 128 
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3.5.1 SNR and CNR 

The SNR and the clutter-to-noise ratio (CNR) are important input parameters of the 

performance model and can be estimated according to the radar equation [6]. In this 

sense, the single-channel SNR can be expressed by the approximation 

𝑆𝑁𝑅 ≅
𝑃t∙𝐺TX∙𝐺RX∙𝜆

2∙𝜏p∙𝜎t

(4𝜋)3∙𝑅4∙𝑘B∙𝑇0∙ ∙𝐿
∙ 𝑛a,CPI , (3.31) 

where 𝑃t denotes the peak transmit power, 𝐺TX and 𝐺RX denote the gains of the TX 

and the single RX antenna, respectively, 𝑘B  denotes the Boltzmann constant, 𝑇0 

denotes the noise reference temperature, 𝐹 denotes the system noise figure, 𝐿 denotes 

the losses and 𝑛a,CPI denotes the number of azimuth temporal samples or pulses used 

for coherent integration (cf. Section 3.7). 

The single-channel CNR can be expressed by the approximation 

𝐶𝑁𝑅 ≅
𝑃t∙𝐺TX∙𝐺RX∙𝜆

2∙𝜏p∙𝜎0∙𝐴res

(4𝜋)3∙𝑅4∙𝑘B∙𝑇0∙ ∙𝐿
∙ 𝑛a,CPI , (3.32) 

where 𝜎0  denotes the normalized clutter reflectivity and 𝐴res  denotes the ground 

resolution cell size, which can be expressed by the approximation [38] 

𝐴res ≅
𝑐0

2∙𝐵r∙sin𝜃i⏟      
ground range
resolution

∙
𝜆∙𝑅∙𝑃𝑅 

2∙𝑣p∙𝑛a,CPI⏟        
azimuth
resolution

 . 
(3.33) 

By applying the parameters from Table 3.1 in Equation (3.31) and in Equation (3.32), 

it is obtained 𝑆𝑁𝑅 = 25.02 dB and 𝐶𝑁𝑅 = 33.51 dB. 
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3.5.2 Detection Performance 

The theoretical covariance matrix under the assumption of homogeneous (Gaussian) 

clutter can be expressed by [89] 

𝑹W(𝑢array, 𝑓a) = 𝜎n
2 ∙ 𝐈M + ∑ 𝜎𝜅

2 ∙ 𝒅(𝑢𝜅 , 𝑓a) ∙ 𝒅(𝑢𝜅 , 𝑓a)
H

𝜅  , (3.34) 

where 𝜎n
2  denotes the additive thermal noise power assumed statistically white, 𝐈M 

denotes the identity matrix with dimensions 𝑀 ×𝑀 and 𝜎𝜅
2 denotes the clutter power 

contributions coming from the directions 

𝑢𝜅 =
𝜆∙𝑓a

2∙𝑣p
+
𝜆∙𝑃𝑅 ∙𝜅

2∙𝑣p
 , (3.35) 

where 𝜅 is an integer number. The sum over 𝜅 comprises the clutter ambiguities that 

may cause severe impacts in case of a low PRF [101].  

The signal-to-clutter plus noise ratio (SCNR) of the optimum filter can be expressed 

by [89] 

𝑆𝐶𝑁𝑅(𝑢array, 𝑓a) = |𝑎s|
2 ∙ 𝒅(𝑢array, 𝑓a) ∙ 𝑹W

−1(𝑢array, 𝑓a) ∙ 𝒅(𝑢array, 𝑓a)
H

 . (3.36) 

The SCNR is directly related to the detection performance. Therefore, if the SCNR is 

known, the probability of detection 𝑃d can be computed for a desired probability of 

false alarm rate 𝑃fa. In this case, assuming homogeneous Gaussian clutter and non-

fluctuating target RCS (Swerling case 0), the probability of detection as a function of 

the SCNR can be expressed by [102], [82] 

𝑃d(𝑢array, 𝑓a) = ∫ 𝑥 ∙ exp [−
(𝑥2+𝛼(𝑢array,𝑓a)

2
)

2
] ∙ 𝐼0[𝛼(𝑢array, 𝑓a) ∙ 𝑥] d𝑥

∞

𝛽T
  

= 1 − ∫ 𝑥 ∙ exp [−
(𝑥2+𝛼(𝑢array,𝑓a)

2
)

2
] ∙ 𝐼0[𝛼(𝑢array, 𝑓a) ∙ 𝑥] d𝑥

𝛽T

0
 , 

(3.37) 
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where 𝐼0[∙] denotes the modified zero-order Bessel function of the first kind with 

𝛼(𝑢array, 𝑓a)
2
= 2 ∙ 𝑆𝐶𝑁𝑅(𝑢array, 𝑓a) . (3.38) 

Finally, the normalized detection threshold can be estimated by 

𝛽T = √−2 ∙ ln 𝑃fa . (3.39) 

Analytical descriptions for computing the probability of detection for different clutter 

PDF’s and Swerling cases are available in [103]. 

3.5.3 Position and Velocity Estimation Accuracy 

The standard deviation of the azimuth position can be obtained from the Cramér-Rao 

bound (CRB), which is computed by using the Fisher information matrix [89] 

𝜎x(𝑢array, 𝑣r0) = 𝜎u(𝑢array, 𝑣r0) ∙ 𝑅 = √
1

|𝑎s|
2
∙

𝒅H𝑹W
−1𝒅

𝒅H𝑹W
−1𝒅𝒅u

H𝑹W
−1𝒅u−|𝒅u

H𝑹W
−1𝒅|

2 ∙ 𝑅 , (3.40) 

where 𝒅u is the first derivative of the beamforming vector 𝒅 with respect to 𝑢 and 𝜎u 

is the standard deviation of the directional cosine obtained from the CRB, which is 

important for the target’s positioning error model (cf. Section 5.2).  

In the clutter free case (where only noise remains), the minimum azimuth positioning 

error obtained from the CRB can be expressed by  [101] 

𝜎x,min(𝑢array, 𝑣r0) = √
1

8𝜋2∙𝑆𝑁𝑅∙∑ 𝑥𝑚
2

𝑚
∙ 𝑅 ∙ 𝜆 , (3.41) 

where the single-channel SNR after coherent integration is considered. 

Finally, the standard deviation of the line-of-sight velocity can be expressed by 

𝜎vr(𝑢array, 𝑣r0) = |−
𝑣p

𝑅
| ∙ 𝜎x(𝑢array, 𝑣r0) . (3.42) 
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3.5.4 Simulation Results 

The results shown in this section were obtained using the parameters from Table 3.1. 

Figure 3.12a shows the expected output SCNR of the optimum PD STAP processor, 

considering four RX channels, zero squint angle and 𝜎n
2 = 0 dB. Figure 3.12b shows 

a cut over the platform’s broadside direction (ΨDOA,az = ΨDOA,array = 90°), where the 

notches obtained around ±39 m/s indicate the blind line-of-sight velocities (cf. Section 

3.6.2). Targets moving at such velocities are suppressed like clutter and thus generally 

cannot be detected. A higher PRF would be required for avoiding such blind 

velocities, whereas 𝑃𝑅𝐹 = 2500 Hz is currently the maximum in the four-channel AS 

mode of the F-SAR. In the dual-channel mode, 𝑃𝑅𝐹 = 5000 Hz is possible [38]. 

 

Figure 3.12.  (a) SCNR and (b) a cut over the broadside direction of the antenna array (ΨDOA,array =

90°) showing the blind velocities obtained in slant range (cf. Section 3.6.2). 
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b
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Figure 3.13a shows the probability of detection 𝑃d over SCNR, considering four RX 

channels and 𝑃fa = 10
−6. Figure 3.13b shows a cut over the platform’s broadside 

direction, where the minimum detectable velocity (MDV) is in the order of 0.28 m/s 

for achieving a probability of detection of 𝑃d = 0.9. It is shown in [38] that the MDV 

obtained for the dual-channel F-SAR configuration is in the order of 0.7 m/s, which 

would be sufficient for detecting slow moving cars. 

 

Figure 3.13.  (a) Probability of detection over SCNR considering four RX channels and 𝑃fa = 10
−6; 

(b) cut over the broadside direction showing the minimum detectable velocity obtained in the order of 

0.28 m/s for 𝑃d = 0.9. 

a

b
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Figure 3.14a shows the standard deviation of the azimuth position 𝜎x , considering 

four RX channels. Figure 3.14b shows a cut over the platform’s broadside direction, 

where the minimum azimuth positioning error is 𝜎x,min = 1.37 m and the maximum 

azimuth positioning error is in the order of 15 m. In this case, it is shown in [38] that a 

dramatic performance improvement is obtained if more than two RX channels are 

used. For instance, it is shown in [38] that the maximum azimuth positioning error 

obtained for the dual-channel F-SAR configuration is in the order of 145 m (i.e., a 

factor of approximately 9.5 worse compared to the four-channel case). 

 

Figure 3.14.  (a) Standard deviation of the azimuth position considering four RX channels; (b) cut 

over the broadside direction showing the minimum azimuth positioning error obtained in the order of 

1.37 m. 
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Figure 3.15a shows the standard deviation of the line-of-sight velocity 𝜎vr , 

considering four RX channels. Indeed, it can be noticed that the obtained result is a 

scaled version of the standard deviation of the azimuth position 𝜎x . Figure 3.15b 

shows a cut over the platform’s broadside direction, where the maximum line-of-sight 

velocity error is in the order of 0.45 m/s (or 1.62 km/h). 

 

Figure 3.15.  (a) Standard deviation of the line-of-sight velocity considering four RX channels; (b) 

cut over the broadside direction showing the maximum error obtained of 0.45 m/s (≅ 1.62 km/h). 

The performance model provides the expected errors in an optimal case, whereas 

additional error sources still need to be taken into account (e.g., the antenna’s pointing 

direction, the road axes uncertainties, the DEM’s accuracy, among others). Such error 

sources are included in the positioning error models that are presented in Chapter 5. 

[m/s]

a

b
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3.6 Main Limitations 

3.6.1 DOA Angle Ambiguities 

Figure 3.16 shows the acquisition geometry of a tilted array with three RX channels, 

where the reference channel RX2 is located at the origin of the antenna array and the 

physical separation between two adjacent RX antenna centers are given by 

𝑏a = 2 ∙ 𝑑a , (3.43) 

where 𝑑a denotes the effective along-track baseline.  

 

Figure 3.16.  Simplified top-view geometry of a tilted array with three RX channels. For instance, the 

range difference Δ𝑅2,3 (i.e., between RX2 and RX3) is highlighted in red. 

In this example, the range difference between RX2 and RX3 is given by 

ΔR2,3 = 𝑏a ∙ cosΨDOA,array , (3.44) 

with respective interferometric phase 

𝜙2,3 = −
2∙𝜋

𝜆
∙ ΔR2,3 . (3.45) 

𝑥 (azimuth)

𝑦

+
Δ𝑅2,3

.

𝑅
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Therefore, 

𝜙2,3 = −
2∙𝜋

𝜆
∙ 𝑏a ∙ cosΨDOA,array = −

2∙𝜋

𝜆
∙ 𝑏a ∙ 𝑢array . (3.46) 

The directional cosine ambiguities are obtained at every 2𝜋  change in the 

interferometric phase (i.e., 𝜙2,3 = 2𝜋 ∙ 𝑖, 𝑖 ∈ ℤ), so that 

𝑢array,amb = −
𝜆

𝑏a
∙ 𝑖 , 𝑖 ∈ ℤ . (3.47) 

Thus, the DOA angle ambiguities can be expressed by  

ΨDOA,array,amb = cos
−1(𝑢array,amb) = cos

−1 (−
𝜆

𝑏a
∙ 𝑖), 𝑖 ∈ ℤ . (3.48) 

These DOA angle ambiguities can be verified on the simulated data results shown in 

Figure 3.17. In this case, the parameters from Table 3.1 are used and it is considered 

a moving target with line-of-sight velocity 𝑣r = 10 m/s, 𝜎t = 10 dBm
2, 𝑏a = 0.2 m, 

zero squint angle and homogeneous ground clutter.  

Figure 3.17a shows the output of the test statistics 𝑇̅ obtained according to Equation 

(3.6), where it can be noticed how the signal power of the moving target (located at 

the broadside direction ΨDOA,array = 90°) changes according to a wide DOA angle 

span. In this case, the estimated CFAR detection threshold is 𝜂hete = 8.39 and the 

target’s Doppler frequency is 

𝑓a = −
2

𝜆
∙ 𝑣r = −

2

0.03125
∙ 10.00 = −640.00 Hz . (3.49) 

Figure 3.17b shows a cut at the moving target’s Doppler frequency, from where the 

first DOA angle ambiguities can be observed 

ΨDOA,array,amb
𝑖=1 = cos−1 (−

0.03125

0.2
) ≅ 99° , (3.50) 

ΨDOA,array,amb
𝑖=−1 = cos−1 (

0.03125

0.2
) ≅ 81° . (3.51) 
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Figure 3.17.  DOA angle ambiguities obtained from simulated data: (a) test statistics 𝑇̅ (color bar 

limited to the estimated CFAR threshold 𝜂hete = 8.39) and (b) a cut at the moving target’s Doppler 

frequency (𝑓a = −640 Hz), where the red lines show the peaks of the DOA ambiguities. 

An effective approach to deal with the DOA angle ambiguities consists in limiting the 

beamforming operation given in Equation (3.9) to the DOA angles defined within the 

3 dB beamwidth in azimuth 𝜃az,3dB = 5.25°, as shown in Figure 3.17a (yellow lines).  

3.6.2 Blind Velocities 

The PD STAP is affected by a comb of blind line-of-sight velocities that are given by 

[104] 

𝑣r,blind =
𝜆∙𝑃𝑅 

2
∙ 𝑖 , 𝑖 ∈ ℕ . (3.52) 

𝜃az,3dB

a

b

[dB]
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Targets moving at such blind velocities are suppressed like clutter and therefore they 

may not be detected. As it can be seen in Equation (3.52), such blind velocities can be 

changed by adjusting either the PRF or the radar wavelength 𝜆. As an example, the 

blind velocities observed in Figure 3.12b (using the parameters from Table 3.1) are 

𝑣𝑟,blind
𝑖=1 =

(0.03125)∙(2500)

2
≅ 39 m/s , (3.53) 

𝑣𝑟,blind
𝑖=−1 = −

(0.03125)∙(2500)

2
≅ −39 m/s . (3.54) 

3.7 Coherent Processing Interval Length 

This section sheds light on the number of temporal azimuth samples that can be used 

for the CPIs processed by the PD STAP processor (without the need for performing 

RCMC). The mathematical derivations contained in this section are based on the 

framework presented in [36]. Figure 3.18 shows the slant range history 𝑅(𝑡) as well 

as the Doppler frequency history 𝑓a(𝑡) for the particular case of a stationary point-like 

target (i.e., zero Doppler centroid).  

 
Figure 3.18.  (a) Range and (b) Doppler frequency history of a stationary point-like target. 
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In Figure 3.18a, it is depicted in blue the maximum number of azimuth temporal 

samples where the target signal remains within one pixel spacing in slant range Δ𝑟. 

The maximum number of azimuth samples corresponds to the maximum CPI length. 

The pixel spacing in slant range Δ𝑟 is given by 

∆𝑟 =  
𝑐

2∙𝑓r
 , (3.55) 

where 𝑓r denotes the range sampling frequency. The maximum number of utilizable 

azimuth samples that contain information about the target is given by 

𝑛a,CPI,max = 2 ∙ 𝑃𝑅𝐹 ∙ |Δ𝑡| , (3.56) 

where Δ𝑡  is the time interval where the range migration is contained in one pixel 

spacing in range ∆𝑟. For the particular case of a stationary point-like target (i.e., zero 

Doppler centroid), Δ𝑡 can be approximated as [36] 

∆𝑡 ≅  √
𝑅0∙𝑐

𝑣p
2∙𝑓r

 . (3.57) 

By using the F-SAR parameters from Table 3.1 and 𝑅0 = 3111 m, it is obtained 

𝑛a,CPI,max ≅ 5366 samples. In this particular case, several azimuth samples contain 

information about the stationary point-like target since the RCM is less pronounced. 

However, in reality the target’s range history 𝑅(𝑡) is velocity dependent and therefore 

𝑛a,CPI,max varies according to the target’s velocity and heading angle [36]. 

The CPI containing the desired  number of azimuth samples 𝑛a,CPI ≤ 𝑛a,CPI,max  can be 

expressed as [35] 

𝑇CPI = 
𝑛a,CPI

𝑃𝑅 
=

1

Δ𝑓a
 , (3.58) 
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where Δ𝑓a = 𝑃𝑅𝐹/𝑛a,CPI is the Doppler frequency resolution, which needs to be fine 

enough for ensuring accurate estimation of the moving target parameters. The impact 

of the Doppler frequency resolution on the accuracy of the moving target’s line-of-

sight velocity 𝑣r is presented in Section 3.8. 

In Figure 3.18b, the linear approximation of the Doppler frequency history can be 

expressed as [7] 

𝑓a(𝑡) ≅  (−
2∙𝑣p

2

𝜆∙𝑅0
) ∙ 𝑡 = 𝑘a ∙ 𝑡 . (3.59) 

It is pointed out that the Doppler frequency history varies linearly along the azimuth 

time 𝑡 with either a positive or a negative angular coefficient depending on the sign of 

the Doppler slope 𝑘a.  

Finally, the Doppler frequency spread (or Doppler bandwidth) can be expressed as a 

function of 𝑇CPI according to the approximation 

𝛿𝑓a ≅ |𝑘a| ∙ 𝑇CPI = |𝑘a| ∙
𝑛a,CPI

𝑃𝑅 
 ,  (3.60) 

where 𝛿𝑓a ≤ Δ𝑓a. It is pointed out that this approximation only leads to small errors if 

|𝑘a| ≫ 0 [36], which is generally true. 

It is assumed in this doctoral thesis that 𝑛a,CPI = 128 samples. Therefore, by using the 

parameters shown in Table 3.1., it is obtained 

Δ𝑓a =
𝑃𝑅 

𝑛a,CPI
=

2500

128
≅ 19.53 Hz ,  (3.61) 

δ𝑓a = |𝑘a| ∙
𝑛a,CPI

𝑃𝑅 
= |−

2∙𝑣p
2

𝜆∙𝑅0
| ∙
𝑛a,CPI

𝑃𝑅 
= |−

2∙902

0.03122∙3111
| ∙

128

2500
≅ 8.53 Hz ,  (3.62) 

which satisfy the condition 𝛿𝑓a ≤ Δ𝑓a. 
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3.8 Position and Velocity Errors 

The coordinates of the moving target in azimuth can be expressed as (cf. Figure 3.5) 

𝑥t = 𝑥p + 𝑅 ⋅ cos(ΨDOA,az) = 𝑥p + 𝑅 ⋅ cos(ΨDOA,array) 

𝑥t = 𝑥p + 𝑅 ⋅ 𝑢array, 

(3.63) 

where zero squint angle is considered for simplicity (i.e., ΨDOA,array = ΨDOA,az). 

The maximum error of the target’s position in azimuth due to the directional cosine 

resolution Δ𝑢array can be obtained according to the error propagation model 

Δ𝑥t = |
𝜕xt

𝜕uarray
| ∙ Δ𝑢array , (3.64) 

which results in 

Δ𝑥t = 𝑅 ∙ Δ𝑢array . (3.65) 

By assuming that Δ𝑢array = 0.001 and 𝑅 = 3111 m, it is obtained 

Δ𝑥t = 3.11 m . (3.66) 

Therefore, it can be seen that the choice of the directional cosine resolution Δ𝑢array 

(applied in the beamforming operation expressed in Equation (3.9)) plays an important 

role in the accuracy of the target’s position in azimuth. 

The line-of-sight velocity 𝑣r  of the target can be estimated according to Equation 

(3.18), which is repeated below for convenience [82] 

𝑣r = 𝑢array ∙ 𝑣p −
𝜆

2
∙ (𝑓a − 𝑓DC) . (3.67) 
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The maximum error of the target’s line-of-sight velocity Δ𝑣r  due to the Doppler 

frequency resolution Δ𝑓a and the directional cosine resolution Δ𝑢array can be obtained 

according to the error propagation model 

Δ𝑣r = |
𝜕vr

𝜕uarray
| ∙ Δ𝑢array + |

𝜕vr

𝜕fa
| ∙ Δ𝑓a , (3.68) 

which results in 

Δ𝑣r = |𝑣𝑝| ∙ Δ𝑢array + |
𝜆

2
| ∙ Δ𝑓a . (3.69) 

By assuming that Δ𝑢array = 0.001, Δ𝑓a = 19.53 Hz (obtained from Equation (3.61)), 

𝑣p = 90 m/s and 𝜆 = 0.03122 m, it is obtained 

Δ𝑣r = (90 ∙ 0.001) + ([
0.03122

2
] ∙ 19.53) ≅ 0.39 m/s ≅ 1.40 km/h. (3.70) 

The absolute velocity of the target on the road 𝑣road  can be obtained by applying 

Equation (3.67) into Equation (3.19) [36], [63] 

𝑣road = |
𝑣r

sin(𝜃i)∙sin(𝛼r,az)
| = |

2∙𝑢array∙𝑣p−𝜆∙(𝑓a−𝑓DC) 

2∙sin(𝜃i)∙sin(𝛼r,az)
| . (3.71) 

The maximum error of the target’s absolute velocity on the road Δ𝑣road due to the 

Doppler frequency resolution Δ𝑓a and the directional cosine resolution Δ𝑢array can be 

obtained according to the error propagation model 

Δ𝑣road = |
𝜕vroad

𝜕fa
| ∙ Δ𝑓a + |

𝜕vroad

𝜕uarray
| ∙ Δ𝑢array , (3.72) 

which results in 

Δ𝑣road = |
−𝜆

2∙sin(𝜃i)∙sin(𝛼r,az)
| ∙ Δ𝑓a + |

𝑣p

sin(𝜃i)∙sin(𝛼r,az)
| ∙ Δ𝑢array  . (3.73) 
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Figure 3.19 shows the simulation results obtained from Equation (3.73) for near range 

and far range (i.e., 𝜃𝑖 = 20° and 𝜃𝑖 = 63°, respectively, cf. Table A.2 in Appendix A). 

In this simulation, the same parameters from Equation (3.70) were assumed and the 

vehicle heading spam was 𝛼r,az = [0°, 180°]. As it can be seen, the velocity resolution 

Δ𝑣road  degrades as the vehicle tends to move parallel (𝛼r,az → 0°) or anti-parallel 

(𝛼r,az → 180°) with respect to the azimuth or flight direction. Indeed, vehicles moving 

at such directions can even hardly be detected since their line-of-sight velocities are 

normally lower than the MDV and therefore they are suppressed like the clutter. 

In addition, it can be seen from Figure 3.19 that in far range (𝜃𝑖 = 63°) the achievable 

velocity resolution for a vehicle heading from 9° to 171° is better than 10 km/h. 

Notice that the velocity resolution degrades for steeper incidence angles. In the near 

range (𝜃𝑖 = 20°), the achievable velocity resolution is better than 10 km/h only in the 

vehicle heading range from 24° to 155°. Thus, if the velocity resolution of 10 km/h is 

sufficient for fulfilling the requirements of the traffic monitoring application, the 

results shown in this section are very promising. 

 

Figure 3.19.  Maximum error of the target’s absolute velocity on the road Δ𝑣road  for different 

heading angles 𝛼r,az, considering the near range (in blue) and far range (in red) of the F-SAR data 

acquisition (cf. Appendix A). The Doppler frequency resolution Δ𝑓a = 19.53 Hz was obtained by 

considering 𝑃𝑅𝐹 = 2500 Hz and 𝑛a,CPI = 128 samples. 
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3.9 Chapter Summary 

The PD STAP technique processes one CPI at a time in range-Doppler domain. The 

ground clutter cancellation is performed by using a CCM that is estimated from 

measured training data (ideally) free of strong discrete scatterers and moving target 

signals. The moving target detection is carried out based on a CFAR threshold that is 

estimated according to a heterogeneous ground clutter model. The PD STAP basically 

estimates the moving target’s line-of-sight velocity, Doppler frequency and DOA 

angle, which are all related in Equation (3.18). The moving target’s position can be 

obtained from the DOA angle. The moving target’s absolute velocity on the road and 

moving direction can be obtained by combining the PD STAP with an a priori known 

road database (e.g., the OSM) so that the angles of the roads of interest are known. 

The performance model allows obtaining important theoretical predictions of the PD 

STAP processor, such as blind velocities, MDV, azimuth positioning error, among 

others. The PD STAP technique is affected by DOA and Doppler ambiguities 

depending on the system parameters (e.g., PRF, radar wavelength and the along-track 

baselines). 
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4 PD STAP Processor with Different Modes 

4.1 Chapter Overview 

This chapter presents three operational modes that are possible with the novel PD 

STAP processor. The basic ideas of all operational modes are depicted in Figure 4.1. 

The first operational mode (cf. Figure 4.1a) comprises the conventional PD STAP 

processor without a priori knowledge information, where the targets are detected but 

not relocated to the roads of interest. The second operational mode (cf. Figure 4.1b) 

uses a priori knowledge information for assigning the moving vehicles to their correct 

positions on the roads and for discarding the detections that lie far from the roads, 

considered as false detections. The third operational mode (cf. Figure 4.1c) is a faster 

processing version of the second mode, where only the relevant data around the roads 

are selected to be processed by the PD STAP core. In this case, a reduced number of 

detections can be expected since only a part of the available SAR data is processed. 

One possible solution for increasing the number of detections consists in processing 

the selected data using multiple DOA angles (cf. Section 4.4), whereas at the expense 

of an increased computational time. All operational modes are presented in terms of 

structure and main applications. 

 

Figure 4.1.  Basic ideas of all operational modes of the novel PD STAP processor. 
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4.2 Mode 1: Conventional PD STAP 

The first operational mode comprises the conventional PD STAP (i.e., without a priori 

knowledge information), which is able to detect and to estimate the positions and line-

of-sight velocities of the moving targets. The simplified flowchart of this processor is 

shown in Figure 4.2. It is pointed out that this structure is the basis of the operational 

modes 2 and 3 (cf. Section 4.3 and Section 4.4). 

The PD STAP works directly on multi-channel RC data (i.e., after pulse compression). 

The first step consists in obtaining the navigation data of the aircraft from the IMU 

system (e.g., position, velocity, heading and attitude angles: yaw, pitch and roll) as 

well as the radar system parameters, which are required in the whole processing chain. 

The Data Calibration block corrects not only the offsets due to residual ATI phases 

and magnitudes of the RX channels, but also the Doppler centroid over slant range 

and time by using the attitude angles of the antenna array. The calibration algorithm is 

essential for detecting the moving targets and for estimating their positions and 

velocities accurately. It is presented in detail in Chapter 6. 

 

Figure 4.2.  Simplified flowchart of the first operational mode of the PD STAP processor. 
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The Training Data Selection and CCM Estimation block collects training data free of 

moving targets and strong discrete signals for the CCM estimation. The quality of the 

training data impacts directly on the PD STAP performance since the CCM is used for 

clutter cancellation, so that this operation is of great importance. Some strategies for 

training data selection and update are presented and discussed in detail in Chapter 7. 

The PD STAP Core is the hearth of the processing chain and has to accomplish three 

main tasks: 1) the clutter cancellation using the previously estimated CCM (i.e., 𝑹̂W); 

2) the moving target detection using the previously estimated clutter statistics 𝑇̅ and 

CFAR threshold 𝜂hete (cf. Section 3.4); and 3) the estimation of the moving target’s 

position and line-of-sight velocity. The mathematical framework for carrying out 

these main tasks is presented in detail in Chapter 3. 

The Performance Model block provides the GMTI performance of the optimum PD 

STAP processor, including theoretical predictions of the detection performance, blind 

velocities, MDV, azimuth positioning error, among others. Some of the performance 

results were already presented in [59] based on the framework presented in [89]. The 

performance model is presented in detail in Section 3.5. 

In the Coordinate Transformation block, the positions of the moving targets are 

obtained in both spherical and UTM Cartesian coordinate systems with respect to the 

World Geodetic System 1984 (WGS84) reference ellipsoid (i.e., latitude, longitude 

and elevation). 

In the Formatting block, Keyhole Markup Language (KML) files [105] are generated 

containing several parameters of the moving targets that can be visualized in Google 

Earth [106], [107], such as: spherical and UTM coordinates, velocities, heading 

directions, SCNRs, Doppler frequencies, among others. Finally, the traffic data are 

stored in the mass memory and can be distributed to a traffic management center via 

data link [16]. 

The conventional PD STAP processor is especially suitable for military applications 

and for areas where road information is unavailable because it detects also vehicles 
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moving off-road (note that such off-road vehicles are discarded as false detections in 

the operational modes 2 and 3). It is pointed out that the current implementation has 

no real-time capability because the complete radar data need to be processed by the 

PD STAP processor. 

Theoretically, it has limited performance for detecting vehicles moving on roads that 

are parallel or nearly parallel to the flight direction. Indeed, the line-of-sight velocities 

of such vehicles are generally lower than the MDV (cf. Section 3.5) and therefore they 

are suppressed like the stationary ground clutter. This limitation exists for all 

operational modes described in this chapter, as well as for MTI algorithms with clutter 

suppression based on STAP or DPCA. 

4.3 Mode 2: A Priori Knowledge-Based PD STAP 

There are different approaches for combining the PD STAP with a priori knowledge 

information [63]. In the operational mode presented in this section, a priori knowledge 

information is used in a post-detection step for assigning the moving vehicles to their 

correct roads as well as for discarding the detections that lie far from the roads of 

interest, which are considered in this case as false detections [59]. 

The simplified flowchart of this processor is shown in Figure 4.3. The novelty lies in 

the addition of a Post-Detection module (in red) that combines two freely available 

databases: the road map from the OSM [37] and the DEM from the SRTM [55], [56]. 

The DEM is necessary because the OSM does not provide geographical height 

information. DEMs with better accuracy can also be employed in the future, such as 

the DEM obtained from the German TanDEM-X mission [108], [109]. 

The Roads Selection and Interpolation block selects the roads of interest contained in 

the SAR data and performs an interpolation in order to fill possible gaps between the 

OSM road points [36]. For instance, the proposed processor sets the interpolation 

distance to the pixel spacing in the slant range direction so that one road point is 

obtained for each pixel in slant range. 
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Figure 4.3.  Simplified flowchart of the second operational mode of the PD STAP processor, where 

the Post-Detection module (in red) fuses the road map from the OSM with the DEM from the SRTM. 

A decision has to be made for each PD STAP detection in order to verify whether the 

detection is actually a vehicle moving with high probability on the road or not (cf. 

Section 5.4.5). This decision is carried out by the Error Models and Decision block, 

which combines two positioning error models: one for the moving targets and one for 

the OSM road points. If the detection is true, then the target is assigned to its closest 

OSM road point and its absolute velocity on the road and moving direction are 

estimated (cf. Section 3.3.4.2). If the detection lies far from the roads of interest (e.g., 

vehicles moving off-road), then it is discarded as a false detection. The positioning 

error models and the decision step are presented in detail in Chapter 5. 

The a priori knowledge-based PD STAP processor is especially suitable for civilian 

traffic monitoring, where it is strictly assumed that the vehicles move on known roads. 

However, it is still challenging to achieve real-time capability with this mode since the 

complete radar data need to be processed by the PD STAP core (similarly to mode 1).  

Finally, note that the detections obtained from vehicles moving off-road are assumed 

as false detections and therefore they are discarded in the Post-Detection module. 
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4.4 Mode 3: Fast A Priori Knowledge-Based PD STAP 

An alternative way for combining PD STAP with a priori knowledge information is to 

use the road database for mapping the roads of interest into the multi-channel RC data 

array, so that only the relevant azimuth samples around the road points are selected for 

processing [61]. The main goal is to reduce the amount of SAR data to be processed 

by the computationally expensive PD STAP core. Thus, the processing time can be 

decreased considerably, which paves the way for real-time traffic monitoring. 

This approach was originally presented for a fast dual-channel DPCA-based processor 

with real-time traffic monitoring capability [36], where the data selected along the 

roads were processed using only one aspect angle or DOA angle. This section 

introduces a follow-up version of the processor presented in [36], where the data 

selected along the roads can be optionally processed using multiple DOA angles. The 

objective of this operation is to increase the number of detections since the RCS of the 

moving target depends strongly on the aspect angle [100]. 

 

Figure 4.4.  Principle of the fast a priori knowledge-based PD STAP processor: (a) acquisition 

geometry with an airborne SAR illuminating a target moving on the road at different azimuth times 𝑡𝑖, 

where each time generally corresponds to a different DOA angle ΨDOA,𝑖 ; and (b) the road points 

mapped into the RC data array for the multiple DOA angles (for visualization purpose). 
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The principle of the fast a priori knowledge-based PD STAP processor is depicted in 

Figure 4.4a, where an airborne SAR illuminates a vehicle moving on a road of 

interest using multiple DOA angles (ΨDOA,1, …, ΨDOA,𝑛) defined within the antenna 

beam in azimuth (in blue). As the aircraft flies, notice that the moving target presents 

different DOA angles for different instants of time 𝑡. Figure 4.4b shows the road 

points mapped into the RC data array for the multiple DOA angles, where the relevant 

data selected along the road of interest are depicted by the yellow pixels for each 

DOA angle. In addition, notice that each DOA angle allows obtaining a different 

portion of the moving target signal (in red) at different instants of time. 

The simplified flowchart of this processor is shown in Figure 4.5. The main novelty 

lies in the addition of the Data Selection for Processing block (in green), which uses 

the OSM database for selecting only the relevant SAR data around the roads of 

interest to be processed by the PD STAP core. Each CPI contains the data selected 

around one road of interest. Notice that since this operation is carried out at the 

beginning of the processing chain, this processor can recognize if no roads are 

contained in the SAR data so that no further data processing needs to be carried out. 

 

Figure 4.5.  Simplified flowchart of the fast a priori knowledge-based traffic processor. The Data 

Selection for Processing block (in green) collects only the relevant data around the roads of interest. 
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Some of the main features of the fast PD STAP processor are: 

1. It is suitable for civilian traffic monitoring, where it is strictly assumed that the 

vehicles move on known roads; 

2. It processes only the relevant azimuth samples selected along the roads instead 

of the complete SAR data. Thus, the processing time can be considerably 

decreased, which paves the way for real-time traffic monitoring applications;  

3. It is not suitable for areas without road information since the detections 

obtained from vehicles moving off-road are discarded in the Post-Detection 

module, similarly to operational mode 2; 

4. Theoretically, it has limited performance for vehicles moving on roads that are 

parallel or nearly parallel to the flight direction, as pointed out in Section 4.2. 

Modern algorithms could be applied for estimating azimuth velocities in such 

conditions [78] [110], whereas it is out of the scope of this doctoral thesis. 

4.5 Chapter Summary 

This chapter regards the operational modes of the proposed PD STAP processor. The 

first mode comprises the conventional PD STAP processor that is able to detect also 

vehicles moving off-road. Therefore, it is suitable especially for military applications 

and for areas where road information is unavailable. The second mode uses a priori 

knowledge information (i.e., a road map from the OSM and a DEM from the SRTM) 

for assigning the true vehicles to their correct road axes and for rejecting detections 

that lie far from roads, which includes vehicles moving off-road. Thus, it is suitable 

especially for non-real-time traffic monitoring since the complete SAR data need to be 

processed by the PD STAP core. The third mode is a faster processing version of the 

second mode, where the PD STAP core is applied only on the relevant data selected 

around the OSM road axes. This approach reduces the amount of processed data and 

speeds up the overall processing time significantly, which paves the way for real-time 

traffic monitoring. Experimental GMTI results obtained with all operational modes 

are presented in Chapter 7, where four data takes are considered including controlled 

vehicles as well as several vehicles of opportunity in a real traffic scenario. 



 

5 Positioning Error Models and Decision  

5.1 Chapter Overview 

This chapter presents two positioning error models: one for the targets (i.e., PD STAP 

detections) and one for the OSM road points. These models are combined in order to 

recognize and to reject false detections that lie far from the roads of interest. Basically, 

one positioning error ellipse is obtained for each model, as depicted in Figure 5.1. If 

both ellipses overlap, then the target is considered true and is assigned to its closest 

OSM road point. Otherwise, the target is discarded as a false detection. The complete 

procedure for decision is presented step by step. 

 

Figure 5.1.  Simplified top-view geometry to illustrate the positioning error ellipses obtained for the 

target (circle) as well as for its closest OSM road point (triangle). In this example an overlap exists 

between both ellipses, so that the target is considered true and is relocated onto the road of interest. 
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The positioning error models contain several error sources that need to be assumed 

reasonably. For instance, this chapter evaluates the target’s positioning error caused 

by each individual error source, so that the major contributions can be verified. Lastly, 

experimental results stress the importance and the robustness of the positioning error 

models. A part of the results presented in this chapter was already published in [58]. 

5.2 Positioning Error Model for Targets 

The positioning error model for the targets (i.e., PD STAP detections) is described in 

this section based on the framework presented in [35]. However, instead of computing 

maximum errors (as carried out in [35]), in this doctoral thesis the error sources are 

considered as random variables and thus the standard deviation of the target’s position 

can be estimated by considering the laws of error propagation, expressed generally as 

𝜎y = √∑ (
𝜕y

𝜕xn
)
2

⋅ 𝜎xn
2N

n=1  , 𝑦 = 𝑓(𝑥1, … , 𝑥N) , (5.1) 

where 𝜎 is the standard deviation and (𝑥1, … , 𝑥N) are independent random variables. 

The coordinates of a moving target in UTM Easting and Northing (cf. Section 3.3.4.1) 

can be expressed respectively by 

𝑥t,UTM = 𝑥p,UTM + √𝑅
2 − (𝑧p − 𝑧t)

2
⋅ cos(𝛼p +ΨDOA,az,g) , (5.2) 

𝑦t,UTM = 𝑦p,UTM + √𝑅
2 − (𝑧p − 𝑧t)

2
⋅ sin(𝛼p +ΨDOA,az,g) , (5.3) 

where it is assumed that 𝑧p = 𝑧p,UTM and 𝑧t = 𝑧t,UTM (cf. Chapter 3). Comparing with 

the framework presented in [35], notice that Equation (5.2) and Equation (5.3) do not 

consider the so called “wind correction angle” nor the synchronization shift that exists 

between the GPS or differential GPS (DGPS) data take and the radar data take. 
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The standard deviation of the target’s coordinates can be calculated by applying the 

error propagation model (adapted from [35]): 

𝜎xt,UTM = [(
𝜕xt,UTM

𝜕xp,UTM
)

2

⋅ 𝜎xp,UTM
2 +(

𝜕xt,UTM

𝜕αp
)
2

⋅ 𝜎αp
2 +(

𝜕xt,UTM

𝜕zt
)
2

⋅ 𝜎zt
2   

+(
𝜕xt,UTM

𝜕zp
)
2

⋅ 𝜎zp
2 + (

𝜕xt,UTM

𝜕R
)
2

⋅ 𝜎R
2 + (

𝜕xt,UTM

𝜕ΨDOA,az,g
)

2

⋅ 𝜎ΨDOA,az,g
2 ]

1/2

 , 

(5.4) 

𝜎yt,UTM = [(
𝜕yt,UTM

𝜕yp,UTM
)

2

⋅ 𝜎yp,UTM
2 +(

𝜕yt,UTM

𝜕αp
)
2

⋅ 𝜎αp
2 +(

𝜕yt,UTM

𝜕zt
)
2

⋅ 𝜎zt
2   

+(
𝜕yt,UTM

𝜕zp
)
2

⋅ 𝜎zp
2 + (

𝜕yt,UTM

𝜕R
)
2

⋅ 𝜎R
2 + (

𝜕yt,UTM

𝜕ΨDOA,az,g
)

2

⋅ 𝜎ΨDOA,az,g
2 ]

1/2

 . 

(5.5) 

By assuming independent random variables, the calculation of the derivatives in 

Equation (5.4) and Equation (5.5) results in 

𝜎xt,UTM = [𝜎xp,UTM
2 + sin2(𝛼p +ΨDOA,az,g) [𝑅

2 − (𝑧p − 𝑧t)
2
] (𝜎𝛼p

2 + 𝜎ΨDOA,az,g
2 )  

+
cos2(𝛼p+ΨDOA,az,g)

𝑅2−(𝑧p−𝑧t)
2 ⋅ [𝑅2𝜎R

2 + (𝑧p − 𝑧t)
2
∙ (𝜎zp

2 + 𝜎zt
2 )]]

1/2

 , 

(5.6) 

𝜎yt,UTM = [𝜎yp,UTM
2 + cos2(𝛼p +ΨDOA,az,g) [𝑅

2 − (𝑧p − 𝑧t)
2
] (𝜎𝛼p

2 + 𝜎ΨDOA,az,g
2 )  

+
sin2(𝛼p+ΨDOA,az,g)

𝑅2−(𝑧p−𝑧t)
2 ⋅ [𝑅2𝜎R

2 + (𝑧p − 𝑧t)
2
∙ (𝜎zp

2 + 𝜎zt
2 )]]

1/2

 . 

(5.7) 

As it can be seen, the standard deviations given in Equation (5.6) and Equation (5.7) 

contain several error sources (i.e., 𝜎xp,UTM
2 , 𝜎yp,UTM

2 , 𝜎αp
2 , 𝜎zt

2 , 𝜎zp
2 , 𝜎R

2  and 𝜎ΨDOA,az,g
2 ) 

that need to be assumed reasonably. In this sense, Table 5.1 shows the assumptions 

made for the target’s positioning error model, where it is pointed out that: 
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1. The standard deviation of the platform’s coordinates (i.e., 𝜎xp, 𝜎yp and 𝜎zp) are 

assumed based on the accuracy of the F-SAR’s navigation unit; 

2. The standard deviation of the DEM (i.e., 𝜎zt) is assumed based on the SRTM’s 

absolute vertical accuracy in the worst case scenario [55],[56]; 

3. The standard deviation of the target’s slant range (i.e., 𝜎R) is assumed based on 

the slant range resolution (cf. Appendix A); 

4. The standard deviation of the flight course (i.e., 𝜎𝛼p) is assumed by taking into 

account that a first order motion compensation [76] is carried out; 

5. The standard deviation of the target’s DOA angle 𝜎ΨDOA,az,g  (cf. Figure 5.1) 

can be obtained by applying the error propagation model on the target’s 

directional cosine 𝑢az = cos(ΨDOA,az), i.e., 

𝜎u,az
2 = (

𝜕u,az

𝜕ΨDOA,az
)
2

∙ 𝜎ΨDOA,az
2  , (5.8) 

which results in 

𝜎ΨDOA,az =
𝜎u,az

|sin(ΨDOA,az)|
 . (5.9) 

In the X-band configuration of the DLR’s F-SAR system (cf. Appendix A), the 

beamforming operation practically limits the DOA angles defined within the 3 

dB beamwidth in azimuth 𝜃az,3dB = 5.25° (cf. Section 3.6.1). Hence, one can 

assume that |sin(ΨDOA,az)| → 1, which yields the approximation 

𝜎ΨDOA,az ≈ 𝜎u,az . (5.10) 

Finally, by assuming that 𝜎ΨDOA,az ≈ 𝜎ΨDOA,az,g  and 𝜎u,az ≈ 𝜎u , it is obtained 

the approximation (cf. Equation (3.40)) 

𝜎ΨDOA,az,g ≈ 𝜎u = √
1

|𝑎s|
2
∙

𝒅H𝑹W
−1𝒅

𝒅H𝑹W
−1𝒅𝒅u

H𝑹W
−1𝒅u−|𝒅u

H𝑹W
−1𝒅|

2 . (5.11) 
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TABLE 5.1 

ASSUMPTIONS FOR THE TARGET’S POSITIONING ERROR MODEL 

Parameter Symbol Value 

Standard deviation of the platform’s  𝜎xp,UTM  0.29 m 

coordinates (GPS/DGPS) 𝜎yp,UTM  0.29 m 

 𝜎zp,UTM = 𝜎zp 0.29 m 

Standard deviation of the DEM (e.g., SRTM) 𝜎zt 9.00 m 

Standard deviation of the target’s slant range 𝜎R 1.20 m 

Standard deviation of the flight course 𝜎αp 0.03° 

 

5.3 Positioning Error Model for Road Points 

The positioning error model for the OSM road points is introduced in Figure 5.3, 

where the top view geometry of a generic road is depicted in local UTM coordinates. 

 

Figure 5.2.  Simplified top view geometry illustrating a generic OSM road with a certain number of 

road lanes (𝑛lanes) in local UTM coordinates. A positioning error Δ𝑦osm is observed along the y-axis 

due to the distance between the OSM road axis and the road lane where the vehicle moves. 
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It is pointed out that only one road axis is obtained from the OSM database, generally 

at the center of the road (cf. the red dotted line at the road lane index 𝑞 = 0). Besides, 

[𝑥osm
′ , 𝑦osm

′ , 𝑧osm
′ ] 𝑇 are the coordinates of the road points, [𝑥osm, 𝑦osm, 𝑧osm]

𝑇 are the 

coordinates of the vehicle (green triangle) moving on a particular lane (e.g., 𝑞 = −2), 

𝑛lanes is the number of road lanes and 𝑤lanes is the width of the road lanes in meters. 

In reality, the road lane where the vehicle moves is not known a priori by the proposed 

PD STAP processor. Thus, a positioning error along the y-axis exists and is given by: 

Δ𝑦osm = 𝑞 ∙ 𝑤lanes . (5.12) 

By assuming that: 1) the interpolation distance between the adjacent OSM road points 

is sufficiently small and 2) the vehicle moves at the center of its lane, it is obtained 

𝑥osm ≅ 𝑥osm
′  , (5.13) 

𝑦osm = 𝑦osm
′ + Δ𝑦osm = 𝑦osm

′ + 𝑞 ∙ 𝑤lanes . (5.14) 

The standard deviations of the OSM road point’s coordinates can be calculated by 

applying the error propagation model: 

𝜎xosm = √(
𝛿xosm

𝛿
xosm
′
)

2

∙ 𝜎
xosm
′
2  , (5.15) 

𝜎yosm = √(
𝛿yosm

𝛿
yosm
′
)

2

∙ 𝜎
yosm
′
2 + (

𝛿yosm

𝛿q
)
2

∙ 𝜎q
2 + (

𝛿yosm

𝛿wlanes
)
2

∙ 𝜎wlanes
2  . (5.16) 

By assuming independent random variables, the calculation of the derivatives in 

Equation (5.15) and Equation (5.16) results in 

𝜎xosm = 𝜎xosm′  , (5.17) 

𝜎yosm = √𝜎𝑦osm′
2 + 𝑤̅lanes

2 ∙ 𝜎q
2 + 𝑞2 ∙ 𝜎wlanes

2  . (5.18) 
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Indeed, the standard deviations given in Equation (5.17) and Equation (5.18) contain 

error sources (i.e., 𝜎xosm′
2 , 𝜎yosm′

2 , 𝜎q
2 and 𝜎wlanes

2 ) that need to be assumed reasonably. 

Table 5.2 shows the assumptions made for the OSM road point’s positioning error 

model, where it is pointed out that: 

1. The number and the width of the road lanes are generally not available in the 

OSM database. Therefore, the parameters 𝑛̅lanes , 𝑤̅lanes , 𝜎nlanes  and 𝜎wlanes 

were estimated empirically considering 16 roads from different types (urban 

and rural), which were selected from all states of Germany. The log of roads 

and the estimates of the aforementioned parameters are shown in Appendix B; 

2. The standard deviation of the road lane index 𝜎q is assumed to be the same as 

the standard deviation of the number of road lanes (i.e., 𝜎q = 𝜎nlanes), since the 

road lane index 𝑞 (and therefore its standard deviation 𝜎q) are not known a 

priori by the proposed PD STAP processor. In this sense, it is also assumed that 

𝑞 =
𝑛̅lanes−1

2
 , (5.19) 

which takes into account the worst case scenario where the vehicles move on 

the most distant lanes with respect to the center of the road (i.e., where the 

OSM road axis is located). 

3. The standard deviation of the OSM road point’s coordinates (i.e., 𝜎x′osm and 

𝜎y′osm) are assumed based on the accuracy of an ordinary GPS receiver. 

By applying the parameters from Table 5.2 in Equation (5.17) and in Equation 

(5.18), the standard deviations of the OSM road point’s positioning error ellipse 

are obtained: 

𝜎xosm = 𝜎xosm′ = 3.0 m , (5.20) 
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𝜎yosm = √𝜎𝑦osm′
2 + 𝑤̅lanes

2 ∙ 𝜎q
2 + 𝑞2 ∙ 𝜎wlanes

2   

𝜎yosm = √(3.0)
2 + (3.2)2 ∙ (0.9)2 + (

2.5−1

2
)
2

∙ (0.5)2 ≅ 4.2 m . 

(5.21) 

Equation (5.21) is mostly affected by the mean width of the road lanes 𝑤̅lanes = 3.2 m. 

This estimation is realistic and agrees with the standard guidelines for the construction 

of city roads and highways in Germany [111], [112] (cf. Appendix B). 

TABLE 5.2 

ASSUMPTIONS FOR THE OSM ROAD POINT’S POSITIONING ERROR MODEL 

Parameter Symbol Value 

Standard deviation of the number of road lanes 𝜎nlanes = 𝜎q 0.9 

Standard deviation of the width of the road lanes 𝜎wlanes  0.5 

Mean number of road lanes 𝑛̅lanes 2.5 

Mean width of the road lanes 𝑤̅lanes 3.2 m 

Standard deviation of the OSM road  𝜎x′osm 3.0 m  

point’s coordinates 𝜎y′osm 3.0 m 

 

5.4 Decision 

This section introduces the mathematical background necessary for obtaining the 

positioning error ellipses as well as for checking their intersection (overlapping test). 

In addition, the complete procedure for decision is described step by step. 

5.4.1 General Form of an Ellipse 

An ellipse can be expressed in its general form as: 

[
(𝑋el+𝑋0)∙cos𝛽+(𝑌el+𝑌0)∙sin𝛽

𝑎2
]
2

+ [
(𝑋el+𝑋0)∙sin𝛽−(𝑌el+𝑌0)∙cos𝛽

𝑏2
]
2

= 1 , (5.22) 

where (𝑋el, 𝑌el) are the coordinates of the ellipse (in green) centered at (𝑋0, 𝑌0), 𝛽 is 

the rotation angle and (𝑎, 𝑏) are the semi-axes, as depicted in Figure 5.5.  
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Figure 5.3.  General form of an ellipse rotated by 𝛽 and centered at (𝑋0, 𝑌0). 

The coordinates of the ellipse (𝑋el, 𝑌el) can also be expressed in the general parametric 

form as 

𝑋el = 𝑋0 + 𝑎 ∙ cos 𝑔 ∙ cos 𝛽 − 𝑏 ∙ sin 𝑔 ∙ sin 𝛽 , (5.23) 

𝑌el = 𝑌0 + 𝑎 ∙ cos 𝑔 ∙ sin 𝛽 + 𝑏 ∙ sin 𝑔 ∙ cos 𝛽 , (5.24) 

where 𝑔 ranges from (0,2𝜋) and defines the number of points of the ellipse. 

Finally, the area of the ellipse can be expressed by: 

𝐴el = 𝜋 ∙ 𝑎 ∙ 𝑏 . (5.25) 

5.4.2 Target’s Positioning Error Ellipse 

The positioning error ellipse of the target can be expressed by 

[
(𝑋t,el+𝑥t,UTM)

(𝜁∙𝜎xt,UTM)
2 ]

2

+ [
(𝑌t,el+𝑦t,UTM)

(𝜁∙𝜎yt,UTM)
2 ]

2

= 1 , (5.26) 

where (𝑥t,UTM, 𝑦t,UTM) are the coordinates of the detected target located at the origin 

of the ellipse and (𝑋t,el, 𝑌t,el)  are the coordinates of its positioning error ellipse 

𝑏

𝑎

𝑥

𝑦

+
𝛽

𝑋0, 𝑌0

𝑋el, 𝑌el
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(depicted in red in Figure 5.4). The parameter 𝜁 is known in the literature as “z-score” 

and defines the confidence level for a Normal distribution. Typical values for the 

confidence level are: 68.2% (𝜁 = 1), 95.4% (𝜁 = 2) and 99.7% (𝜁 = 3) [113], [114].  

The parametric form of the target’s positioning error ellipse can be expressed by 

𝑋t,el = 𝑥t,UTM + (𝜁 ∙ 𝜎xt) ∙ cos 𝑔 , (5.27) 

𝑌t,el = 𝑦t,UTM + (𝜁 ∙ 𝜎yt) ∙ sin 𝑔 . (5.28) 

The area of the target’s positioning error ellipse can be expressed by: 

𝐴t,el = 𝜋 ∙ (𝜁 ∙ 𝜎xt,UTM) ∙ (𝜁 ∙ 𝜎yt,UTM) . (5.29) 

 

Figure 5.4.  Simplified top view geometry illustrating the target’s positioning error ellipse, where the 

semi-axes are parallel to the UTM coordinate system.  

Figure 5.4 shows the target’s positioning error ellipse, where the semi-axes are given 

by Equation (5.6) and Equation (5.7). It is pointed out that 𝜁 = 2 is assumed for the 
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proposed PD STAP processor. Indeed, notice that the confidence level influences 

directly on the sizes of the positioning error ellipses and therefore on the number of 

detections obtained in the final image. 

5.4.3 Road Point’s Positioning Error Ellipse 

The positioning error ellipse of the OSM road point can be expressed by  

[
(𝑋osm,el+𝑥osm)∙cos𝛼r+(𝑌osm,el+𝑦osm)∙sin𝛼r

(𝜁∙𝜎xosm)
2 ]

2

+

[
(𝑋osm,el+𝑥osm)∙sin𝛼r−(𝑌osm,el+𝑦osm)∙cos𝛼r

(𝜁∙𝜎yosm)
2 ]

2

= 1 , 

(5.30) 

where (𝑥osm, 𝑦osm) are the coordinates of the road point located at the origin of the 

ellipse and (𝑋osm,el, 𝑌osm,el) are the coordinates of its positioning ellipse (depicted in 

blue in Figure 5.5). Notice that the ellipse is rotated by the road angle 𝛼r measured 

with respect to the UTM Easting axis. 

The parametric form of the road point’s positioning error ellipse can be expressed by: 

𝑋osm,el = 𝑥osm + (𝜁 ∙ 𝜎xosm) ∙ cos 𝑔 ∙ cos 𝛼𝑟 − (𝜁 ∙ 𝜎yosm) ∙ sin 𝑔 ∙ sin 𝛼𝑟 , (5.31) 

𝑌osm,el = 𝑦osm + (𝜁 ∙ 𝜎xosm) ∙ cos 𝑔 ∙ sin 𝛼𝑟 + (𝜁 ∙ 𝜎yosm) ∙ sin 𝑔 ∙ cos 𝛼𝑟 . (5.32) 

The area of the road point’s positioning error ellipse can be expressed by: 

𝐴osm,el = 𝜋 ∙ (𝜁 ∙ 𝜎xosm) ∙ (𝜁 ∙ 𝜎yosm) . (5.33) 

The OSM road point’s positioning error ellipse is depicted in Figure 5.5, where the 

semi-axes are given by the standard deviations computed with Equation (5.17) and 

Equation (5.18) as well as by the “z-score” parameter 𝜁. Notice that the error ellipse is 

obtained in local UTM coordinates [𝑥osm, 𝑦osm, 𝑧osm]
𝑇 and is rotated according to the 

road point angle 𝛼r measured with respect to the UTM Easting axis and obtained from 



  

78 Chapter 5: Positioning Error Models and Decision  

 

the OSM database. The positioning error along the y-axis is larger than in x-axis since 

the road may contain several lanes (the number of road lanes is not known a priori and 

for this reason a mean number of road lanes 𝑛̅lanes = 2.53 is assumed, cf. Table 5.2). 

 

Figure 5.5.  Simplified top view geometry illustrating the OSM road point’s positioning error ellipse. 

5.4.4 Intersection of Positioning Error Ellipses 

All possible cases regarding the intersection of the positioning error ellipses are shown 

in Figure 5.6. As it can be seen, the target is considered true if at least a single point 

of one ellipse intersects or lies inside the other ellipse. Naturally, the target is also true 

if both ellipses are equal or if one ellipse is completely inside the other. The target is 

considered false only if the ellipses are completely separated. 

The proposed PD STAP processor does not require the coordinates of the intersection 

points and therefore it is not necessary to test all the cases shown in Figure 5.6. A fast 

intersection test is carried out according to one of the following three cases, depending 

on the areas of the positioning error ellipse obtained from Equation (5.29) and from 

Equation (5.33). 
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Figure 5.6.  All possible cases regarding the positioning error ellipses of the target (in red) and the 

OSM road point (in blue). The intersection points are shown in black. Notice that the axes of the 

target’s positioning error ellipse are parallel to the UTM coordinates system (cf. Section 5.5.2). 
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Case 1: 𝐴t,el > 𝐴osm,el. 

The coordinates (𝑋osm,el, 𝑌osm,el)of the OSM road point’s positioning error ellipse 

(i.e., the smaller ellipse) are applied into the target’s positioning error ellipse (i.e., the 

larger ellipse) obtained from Equation (5.26) and the following inequality is tested: 

[
(𝑋osm,el+𝑥t,UTM)

(𝜁∙𝜎xt,UTM)
2 ]

2

+ [
(𝑌osm,el+𝑦t,UM)

(𝜁∙𝜎yt,UTM)
2 ]

2

≤ 1. (5.34) 

An overlap between both ellipses exists if this inequality holds for at least one point. 

Naturally, this inequality also holds if the smaller ellipse is located completely inside 

the larger ellipse since the larger ellipse is considered as a boundary for the inequality 

test. For this reason the areas of both ellipses need to be calculated beforehand. 

Case 2: 𝐴t,el < 𝐴osm,el. 

The coordinates (𝑋𝑡,el, 𝑌𝑡,el) of the target’s positioning error ellipse (i.e., the smaller 

ellipse) are applied into the OSM road point’s positioning error ellipse (i.e., the larger 

ellipse) obtained from Equation (5.30) and the following inequality is tested: 

[
(𝑋t,el+𝑥osm)∙cos𝛼r+(𝑌t,el+𝑦osm)∙sin𝛼r

(𝜁∙𝜎xosm)
2 ]

2

+

[
(𝑋t,el+𝑥osm)∙sin𝛼r−(𝑌t,el+𝑦osm)∙cos𝛼r

(𝜁∙𝜎yosm)
2 ]

2

≤ 1 . 

(5.35) 

Similarly to the first case, an overlap between both ellipses exists if this inequality 

holds for at least one point. This inequality also holds if the smaller ellipse is located 

completely inside the larger ellipse. 
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Case 3: 𝐴t,el = 𝐴osm,el. 

If both ellipses have exactly the same area, they can completely overlap (as depicted 

in Figure 5.6), but one ellipse would never be completely inside the other. Therefore, 

in this particular case it is possible to proceed according to Case 1 or Case 2. 

5.4.5 Procedure for Decision 

The decision stage requires at least the following main steps: 

1. Obtain one detection from the PD STAP processor; 

2. Obtain the closest road of interest that matches the heading direction of the target 

(cf. Figure 5.7a). This road matching is possible since the OSM database provides 

information about the traffic direction, as well as if the roads are one- or two-way. 

The PD STAP processor assumes that the vehicles do not move in the wrong way; 

3. Obtain the road points of the road of interest. An interpolation is carried out for 

shortening the distance between adjacent road points (cf. Figure 5.7b). As 

previously pointed out in Section 4.3, the proposed PD STAP processor sets the 

interpolation distance to the pixel spacing in the slant range direction so that 

one road point can be obtained for each pixel in slant range; 

4. Obtain the closest road point with respect to the target’s position (cf. Figure 5.7c). 

For instance, in [59] the distance Δ𝑑 is compared to an empirical threshold 𝜂dist 

(e.g., 𝜂dist = 20 m) in order to decide whether the detections are true or not. This 

approach is based simply on the distance Δ𝑑 and neglects the several error sources 

pointed out in Sections 5.2 and 5.3; 

5. Compute the positioning error ellipses for the target and for the closest road point 

by using Equation (5.26) and Equation (5.30), respectively (cf. Figure 5.7d); 

6. Test if an overlap exists between the positioning error ellipses by using Equation 

(5.34) or Equation (5.35), depending on the areas of the ellipses. If both ellipses 

overlap, then the target is considered true and is assigned to its closest road point 

position (cf. Figure 5.7e). Otherwise, the target is discarded as a false detection; 

7. Repeat from Step 1 for the next detected target.  
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Figure 5.7.  Simplified procedure for illustrating the decision step: (a) the target and the closest road 

that matches the target’s heading direction are obtained; (b) the interpolated road points are obtained; 

(c) the closest road point with respect to the target’s position is obtained; (d) the positioning error 

ellipses are obtained and an overlapping test is carried out; (e) if the ellipses overlap, then the target is 

assigned to the road (the triangle points to the target’s heading direction). 
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5.5 Target’s Positioning Error Contributions 

This section evaluates the main contributions to the target’s positioning errors given in 

Equation (5.6) and Equation (5.7). The simulation results were obtained according to 

the assumptions from Table 5.1 as well as the following parameters: 𝛼p = 300°, 

 𝑧p = 2838 m, 𝑧t = 626 m, ΨDOA,az,g = 90° and  𝑅 = 2942 m (cf. also Figure 5.1). 

5.5.1 Impact of Error Sources 

The target’s positioning errors due to each error source from Table 5.1 are expressed 

below: 

 Target’s positioning error due to 𝜎ΨDOA,az,g: 

𝜎xt,UTM (𝜎ΨDOA,az,g) = √sin
2(𝛼p +ΨDOA,az,g) ∙ [𝑅2 − (𝑧p − 𝑧t)

2
] ∙ 𝜎ΨDOA,az,g

2  , (5.36) 

𝜎yt,UTM (𝜎ΨDOA,az,g) = √cos
2(𝛼p +ΨDOA,az,g) ∙ [𝑅2 − (𝑧p − 𝑧t)

2
] ∙ 𝜎ΨDOA,az,g

2  . (5.37) 

 Target’s positioning error due to 𝜎𝑧t: 

𝜎xt,UTM(𝜎zt,UTM) = √
cos2(𝛼p+ΨDOA,az,g)

𝑅2−(𝑧p−𝑧t)
2 ⋅ [(𝑧p − 𝑧t)

2
∙ 𝜎zt,UTM

2 ] , (5.38) 

𝜎yt,UTM(𝜎zt,UTM) = √
sin2(𝛼p+ΨDOA,az,g)

𝑅2−(𝑧p−𝑧t)
2 ⋅ [(𝑧p − 𝑧t)

2
∙ 𝜎zt

2 ] . (5.39) 

 Target’s positioning error due to 𝜎R: 

𝜎xt,UTM(𝜎R ) = √
cos2(𝛼p+ΨDOA,az,g)

𝑅2−(𝑧p−𝑧t)
2 ⋅ 𝑅2 ∙ 𝜎R

2 , (5.40) 

𝜎yt,UTM(𝜎R ) = √
sin2(𝛼p+ΨDOA,az,g)

𝑅2−(𝑧p−𝑧t)
2 ⋅ 𝑅2 ∙ 𝜎R

2 . (5.41) 
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 Target’s positioning error due to 𝜎𝛼p: 

𝜎xt,UTM (𝜎𝛼p) = √sin
2(𝛼p +ΨDOA,az,g) ∙ [𝑅2 − (𝑧p − 𝑧t)

2
] ∙ 𝜎𝛼p

2  , (5.42) 

𝜎yt,UTM (𝜎𝛼p) = √cos
2(𝛼p +ΨDOA,az,g) ∙ [𝑅2 − (𝑧p − 𝑧t)

2
] ∙ 𝜎𝛼p

2  . (5.43) 

 Target’s positioning error due to 𝜎𝑥p,UTM: 

𝜎xt,UTM (𝜎xp,UTM) = √𝜎xp,UTM
2 = 𝜎xp,UTM , (5.44) 

𝜎yt,UTM (𝜎xp,UTM) = 0 . (5.45) 

 Target’s positioning error due to 𝜎𝑦p,UTM: 

𝜎xt,UTM (𝜎yp,UTM) = 0 , (5.46) 

𝜎yt,UTM (𝜎yp,UTM) = √𝜎yp,UTM
2 = 𝜎yp,UTM . (5.47) 

 Target’s positioning error due to 𝜎𝑧p: 

𝜎xt,UTM (𝜎zp) = √
cos2(𝛼p+ΨDOA,az,g)

𝑅2−(𝑧p−𝑧t)
2 ⋅ [(𝑧p − 𝑧t)

2
∙ 𝜎zp

2 ] , (5.48) 

𝜎yt,UTM (𝜎zp) = √
sin2(𝛼p+ΨDOA,az,g)

𝑅2−(𝑧p−𝑧t)
2 ⋅ [(𝑧p − 𝑧t)

2
∙ 𝜎zp

2 ] . (5.49) 

The target’s positioning errors obtained due to each aforementioned error source are 

shown in Figure 5.8. In particular, Figure 5.8a shows that a major positioning error is 

caused due to 𝜎ΨDOA,az,g , which depends on the target’s line-of-sight velocity and 

SCNR [59], [88]. Exemplarily, for 𝜎ΨDOA,az,g = 0.65° it is obtained  𝜎𝑥t,UTM ≅ 11 m 

and 𝜎𝑦t,UTM ≅ 19 m. 
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Figure 5.8.  Target’s positioning errors due to the standard deviation of: (a) the target’s DOA angle, 

(b) the target’s height (i.e., DEM’s accuracy), (c) the target’s slant range, (d) the platform’s heading 

angle, (e) the platform’s position in y-axis, (f) the platform’s position in x-axis and (g) the platform’s 

altitude. The black points show the positioning errors obtained with the assumptions from Table 5.1. 
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Another major positioning error is caused due to 𝜎𝑧t (i.e., the accuracy of the DEM), 

as shown in Figure 5.8b. For instance, a DEM’s accuracy of 𝜎𝑧t = 9 m results in 

𝜎𝑥t,UTM ≅ 9  m and 𝜎𝑦t,UTM ≅ 5  m. Notice that the target’s positioning error would 

increase considerably if a DEM is not considered and the scene is not flat. Thus, a 

DEM needs to be incorporated in the PD STAP processing chain. 

A minor positioning error is caused due to 𝜎R (cf. Figure 5.8c). For example, 𝜎R =

1.2  m is set based on the slant range resolution (𝛿r = 1.2  m), which results in 

𝜎𝑥t,UTM ≅ 1.6  m and 𝜎𝑦t,UTM ≅ 0.9  m. The least impact on the target’s positioning 

error is caused by 𝜎𝛼p, 𝜎𝑥p,UTM, 𝜎𝑦p,UTM and 𝜎𝑧p (cf. Figure 5.8d to Figure 5.8g). It is 

assumed in such cases that: 1) a first order motion compensation [76] is carried out 

and 2) the platform’s position is accurately known (e.g., measured by DGPS). 

5.5.2 Impact of Platform’s Heading Angle 

This section aims to clarify that the target’s positioning errors (𝜎𝑥t,UTM and 𝜎𝑦t,UTM) are 

obtained in UTM coordinates (i.e., Easting and Northing) and in this case the heading 

angle of the platform 𝛼p plays an important role. Figure 5.9a shows how the target’s 

position errors change according to 𝛼p considering a DEM’s accuracy of 𝜎𝑧t = 9 m 

(cf. Table 5.1). In this case, the maximum and the minimum positioning errors were 

𝜎𝑥t,UTM,max = 𝜎𝑦t,UTM,max = 22.04 m and 𝜎𝑥t,UTM,min = 𝜎𝑦t,UTM,min = 10.42 m. 

 

Figure 5.9.  Target’s positioning errors obtained as a function of the platform’s heading angle 𝛼p 

assuming a DEM’s accuracy of: (a) 𝜎𝑧t = 9 m and (b) 𝜎𝑧t = 0 m.  
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The minimum positioning error can be significantly improved by considering a DEM 

with better accuracy. For instance, Figure 5.9b shows the ideal case where the height 

of the scene is exactly known so that the DEM’s accuracy is 𝜎𝑧t = 0 m. In this ideal 

case, the minimum positioning error is reduced to 𝜎𝑥t,UTM,min = 𝜎𝑦t,UTM,min = 1.87 m. 

Therefore, as pointed out previously in Section 5.5.1, the proposed PD STAP 

processor requires an accurate DEM incorporated into the processing chain. 

The physical interpretation of Figure 5.9 is depicted in Figure 5.10, where an aircraft 

flies with three specific heading angles and a target is always detected at the broadside 

direction of the antenna array (i.e., ΨDOA,az,g = 90°). The first case is shown in Figure 

5.10a, where the aircraft flies parallel to the UTM Easting axis (i.e., 𝛼p = 0°) and the 

target’s positioning error ellipse is obtained with semi-axes 𝜎yt,UTM,min and 𝜎xt,UTM,max. 

In other words, in this case the target’s positioning error along the y-axis reaches its 

minimum and in x-axis it reaches its maximum (cf. also Figure 5.9). Notice that in 

this particular case 𝜎yt,UTM,min corresponds to the target’s positioning error along range 

and 𝜎xt,UTM,max corresponds to the target’s positioning error along azimuth. 

The second case is shown in Figure 5.10b, where the aircraft flies parallel to the 

UTM Northing axis (i.e., 𝛼p = 90° ) and the target’s positioning error ellipse is 

obtained with semi-axes 𝜎yt,UTM,max and 𝜎xt,UTM,min. In this case the target’s positioning 

error along the y-axis reaches its maximum and in x-axis it reaches its minimum (cf. 

also Figure 5.9). Notice that in this particular case 𝜎xt,UTM,min  corresponds to the 

target’s positioning error along range and 𝜎yt,UTM,max  corresponds to the target’s 

positioning error along azimuth. 

The third case is shown in Figure 5.10c, where the aircraft’s heading angle is 

𝛼p = 45° and the target’s positioning errors 𝜎𝑦t,UTM  and 𝜎𝑥t,UTM  are equal (cf. also 

Figure 5.9). In this particular case, a positioning error “circle” is obtained and the 

target’s positioning errors along range and azimuth (green ellipse) are projections of 

𝜎𝑥t,UTM and 𝜎𝑦t,UTM. 
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Figure 5.10.  Top-view geometry illustrating the target’s positioning error ellipses (in red) in UTM 

coordinates obtained for three platform’s heading angles (assuming 𝜁 = 1): (a) 𝛼p = 0°, (b) 𝛼p = 90° 

and (c) 𝛼p = 45°. Notice that the red ellipses are strongly influenced by the platform’s heading angle, 

which affects the length of the ellipse’s semi-axes. 
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5.6 Experimental Results 

The positioning error models were tested according to data take 3 (cf. Appendix A), 

where a convoy of five cars moved with controlled speed on the airport’s runway. The 

radar parameters are given in Appendix A. The data take 3 contains 1024 x 32768 

range-azimuth samples and the probability of false alarm rate was set to 𝑃fa = 10
−7. 

The GMTI results are shown in Figure 5.11a, where the PD STAP detections are 

shown before (circles) and after (triangles) the relocation to the runway (i.e., using the 

operational modes 1 and 2, cf. Chapter 4). The triangles point to the moving direction 

of the cars and the colors indicate their absolute velocity on the airport’s runway. The 

center of the runway was considered as the OSM road axis (in white). 

In Figure 5.11a, the information table shows examples of important parameters that 

were estimated for one particular target that was relocated onto the airport’s runway. 

The platform’s heading angle was 𝛼p = 182.47° (i.e., the aircraft flew nearly parallel 

to the UTM Easting axis toward West) and the semi-axes of the target’s positioning 

error ellipse were 𝜎xt,UTM = 23.58 m and 𝜎yt,UTM = 10.71 m. Notice that such target’s 

positioning errors are comparable to the results shown in Figure 5.9a for 𝛼p = 180°. 

Figure 5.11b shows in detail a part of the runway where the conventional passenger 

cars 1 to 5 moved in a convoy. The red ellipses show the positioning error of the 

targets (i.e., PD STAP detections) and the blue ellipses show the positioning error of 

their closest road points in the road axis, where 𝜁 = 1 was assumed (cf. Section 5.4.2 

and Section 5.4.3). It can be seen that the cars were detected several times in five 

groups of detections (also known as “clusters”). It can be noticed that the positioning 

error ellipse of the detection obtained at the center of each cluster contains most of the 

adjacent detections, which indicates that the parameter 𝜁 = 1 was indeed properly 

chosen for data take 3 (cf. Appendix A).  
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Figure 5.11.  (a) Google Earth images overlaid with radar detections obtained from data take 3 (cf. 

Appendix A) before and after the relocation to the runway; (b) detections from cars 1 to 5, where the 

positioning error ellipses are shown for the targets (red) and for their closest OSM road points (blue); 

(c) detections obtained from cars 1, 2 and 4 at the center of their clusters and their respective GPS 

positions (white pins). Notice that the semi-axes of the target’s positioning error ellipses (red) are 

parallel to the UTM coordinate system. 
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The cars 1, 2 and 4 were equipped with conventional handheld GPS receivers in order 

to retrieve reliable geographical reference positions and velocities. Figure 5.11c 

shows the GPS positions (white pins) of these cars and the radar detections obtained at 

the center of their clusters. It is pointed out that the GPS positions were obtained at the 

same time UTC (Coordinated Universal Time) as their respective radar detections. As 

it can be noticed, the GPS positions of the cars were contained in the positioning error 

ellipses of their detections (cf. red ellipses in Figure 5.11c), which reinforces that the 

parameter 𝜁 = 1 was properly chosen for this experiment. 

Table 5.3 shows the target’s velocity and geographical position estimation accuracies, 

where 𝑣road,GPS denotes the velocity of the car obtained from the GPS receiver and 

𝑣road  denotes the absolute velocity of the car on the road computed according to 

Equation 3.19. It can be seen in Table 5.3 that the PD STAP processor detected the 

cars 1, 2 and 4 with an absolute positioning error better than 17 m. It can also be seen 

in this table that the absolute velocity estimation error |Δ𝑣road| was better than 10 

km/h, which is sufficient for many traffic monitoring applications. 

TABLE 5.3 

TARGET’S VELOCITY AND GEOGRAPHICAL POSITION ESTIMATION ACCURACIES (DATA TAKE 3) 
 𝑣road,GPS 

[km/h] 

𝑣road 
[km/h] 

|Δ𝑣road| 
[km/h] 

Absolute Positioning  

Error [m] 

 

Car 1: 94.9 104.1 9.2 10.5  

Car 2: 106.3 104.9 1.4 13.1  

Car 4: 91.5 82.7 8.8 16.9  

 

Figure 5.12 shows the histogram of absolute velocities on the road of cars 1 to 5 after 

rejecting all false detections. As it can be seen, cars 1, 2 and 5 moved with an average 

velocity of around 100 km/h, which agrees very well with the experiment description 

[115]. Cars 3 and 4 moved with average velocities of around 120 km/h and 80 km/h, 

respectively. 

The parameters applied in the positioning error models are given in Table 5.1 and in 

Table 5.2. However, the number and the width of the road lanes were known a priori 
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in this experiment (𝑤lanes = 15 m, 𝑛lanes = 2, 𝜎wlanes = 0, 𝜎nlanes = 0 and 𝜎n = 1). 

Indeed, data takes 1 to 3 (cf. Appendix A) are unusual cases because the lane’s width 

of the airport’s runway is much larger than the average lane’s width of regular roads 

(𝑤̅lanes = 3.2 m, cf. Appendix B). 

Finally, it is pointed out that the false detections obtained far from the runway were 

not assigned to the road axis and therefore they were discarded in the final image. 

 

Figure 5.12.  Histogram of absolute velocities on the road of cars 1 to 5 considering the data take 3 

(cf. Appendix A). 

5.7 Chapter Summary 

This chapter regards the positioning error models for the targets (PD STAP detections) 

and for the OSM road points (cf. the empirical assumptions presented in Appendix B). 

These models are combined in order to recognize and to discard false detections that 

lie far from the roads of interest. The decision whether a target is true or not is carried 

out based on an overlapping test between the positioning error ellipses obtained for 

each model. If the ellipses overlap, the target is considered true and is assigned to its 

closest road of interest. Otherwise, it is discarded as a false detection. The positioning 

error models contain several error sources. For instance, this chapter evaluates the 

contributions of each individual error source to the target’s positioning error. It is 
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shown in this evaluation that the most prominent positioning errors are obtained due 

to the standard deviations of 1) the target’s DOA angle (which depends on the target’s 

SCNR and line-of-sight velocity) and 2) the height of the terrain (which can be 

significantly reduced by incorporating a DEM into the PD STAP processing chain). It 

is also shown that the target’s positioning errors are obtained in UTM coordinates 

(i.e., Easting and Northing) and therefore they are strongly influenced by the heading 

angle of the platform. 
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6 Data Calibration 

6.1 Chapter Overview 

Data calibration is essential for detecting the moving targets and for estimating their 

positions and velocities accurately. This chapter presents the data calibration algorithm 

of the proposed PD STAP processor that corrects not only the residual ATI phase and 

the magnitude offsets of the RX channels, but also the Doppler centroid variation over 

slant range and time. The main steps of the calibration algorithm are presented in 

terms of mathematical framework and experimental results obtained from real data 

acquired with DLR’s system F-SAR. The effects caused by the lack of data calibration 

are also shown and discussed based on GMTI results. A part of the content presented 

in this chapter was already published in [60]. 

6.2 Introduction 

In reality, it is not possible to build absolutely identical antennas and RX channels 

with the same electrical characteristics and time delays. Thus, the transfer functions 

and the antenna gain patterns of the RX channels differ from each other and need to be 

characterized or equalized [116]. 

For instance, the different TX and RX antenna characteristics (𝐷tx and 𝐷rx,𝑚) can be 

measured or estimated, and incorporated directly into the DOA vector 𝒅 expressed in 

Equation (3.3). Generally, external calibration is required for compensating different 

time delays between the RX channels (e.g., the use of reference targets or special 

calibration loops in the radar hardware design). Then, remaining ATI phase offsets 

can be estimated from the SAR data. Moreover, the precise knowledge of the along-

track baselines among the multiple RX channels is important for estimating the DOA 

angles accurately, which affects the position and the velocity estimation of the targets. 

An elegant and robust method for digital channel balancing (DCB) was introduced in 

[48] and discussed in detail in [116]. In this method, the RX channels are balanced 

with respect to a reference RX channel by performing an iterative approach in the 2-D 
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frequency domain, so that residual ATI phase and magnitude offsets are compensated. 

In addition, it is shown in [116] how the along-track baselines between individual RX 

channels can be estimated accurately in the range-Doppler domain. 

More recently, an interesting review about data calibration techniques was presented 

in [117], where simple algorithms (e.g., based on 1-D and 2-D coregistrations) and 

more sophisticated algorithms (e.g., the DCB) were evaluated in detail for ATI, DPCA 

and STAP. As expected, the DCB was able to achieve better performance especially 

in terms of clutter cancellation, although at the expense of a high computational effort. 

This chapter presents a fast and efficient data calibration algorithm that removes the 

channel imbalances on residual ATI phases and evens out the differences in channel 

magnitudes. Besides, the algorithm corrects the Doppler centroid over slant range and 

time according to the attitude angles of the antenna array. 

6.3 Structure of the Algorithm 

The simplified flowchart containing the main steps of the data calibration algorithm is 

shown in Figure 6.1. As it can be seen, after obtaining the aircraft’s navigation data 

(e.g., position, velocity, heading and attitude angles) and the radar parameters, the first 

step is to compensate the time delay introduced by the antenna aperture switching 

(AS), as described in Section 6.4.  

In the Parameters Estimation block, homogeneous data are collected in order to 

estimate the azimuth antenna patterns, the along-track baselines, the magnitude offsets 

and the attitude angle offsets (yaw, pitch and roll, cf. Section 6.6.3). It is pointed out 

that these parameters can optionally be estimated only once and stored in the memory 

for speeding up the processing time. 

In the Doppler Centroid Correction block, all range bins of the measured data are 

shifted to Doppler zero by taking into account the range dependent Doppler centroid 

(known in the literature as “J-Hook” [94]) as well as the Doppler centroid variation 

over time caused by the aircraft’s motion (cf. Section 6.6). Indeed, notice in Equation 
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(3.5) that the CCM 𝑹̂W is estimated for each Doppler frequency bin 𝑓a by performing 

an averaging along slant range. Therefore, the Doppler centroid correction is essential 

for removing the “J-Hook” that impacts directly on the CCM estimation. 

In the ATI Phase Correction block, residual ATI phase offsets are estimated based on 

the phase differences or interferograms obtained between pairs of RX channels (for 

instance, assuming the channel RX1 as reference). After the phase offset correction, 

the phase distributions of the interferograms are centered at zero (cf. Figure 6.9). The 

benefits of the data calibration algorithm are shown and discussed in Section 6.8. 

Finally, the differences in the RX channel magnitudes are corrected in the Magnitude 

Correction block by applying the estimated magnitude offsets (cf. Section 6.5.2). 

 

Figure 6.1.  Simplified flowchart of the data calibration algorithm. The Parameters Estimation block 

can optionally be carried out only once for speeding up the overall processing time.  

6.4 Antenna Aperture Switching Correction 

The antenna aperture switching (AS) can improve the GMTI performance of radar 

systems by creating additional phase centers and longer ATI baselines, whereas this 

operation introduces a time delay that needs to be corrected [93]. This correction can 

be carried out in Doppler frequency domain by applying the following phase ramp to 

the radar data 

𝜑AS(𝑓a) = exp{−2 ∙ 𝜋 ∙ 𝑓a ∙ Δ𝑡AS} , (6.1) 
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where Δ𝑡AS = 1/(2 ∙ 𝑃𝑅𝐹) denotes the time lag due to the antenna AS that contributes 

to the effective along-track baseline. 

6.5 Parameters Estimation 

The data calibration algorithm requires the estimation of important parameters that are 

described in this section. It is pointed out that the estimation of the attitude angle 

offsets (yaw, pitch and roll) is presented in Section 6.6.3. 

6.5.1 Antenna Patterns 

The two-way diagram of the azimuth antenna pattern can be estimated from the SAR 

data by averaging all available range bins 𝐾 for each Doppler frequency bin 𝑓a [35] 

𝐴(𝑓a, 𝑚) = √
1

𝐾
∑ |𝒛(𝑟k, 𝑓a, 𝑚)|

2𝐾
𝑘=1   , 𝑚 = 1,… ,𝑀, (6.2) 

where 𝑚 denotes the index of the RX antenna or channel. 

6.5.2 Magnitude Offsets 

The magnitude (or gain) offsets can be obtained from the azimuth antenna pattern 

peaks according to: 

𝜌1,m =
max(𝐷t𝐷r,1)

max(𝐷t𝐷r,m)
 , 𝑚 = 2,… ,𝑀, (6.3) 

where the channel RX1 is assumed as reference. 

Thus, the magnitude offset correction (with respect to RX1) can be carried out in time 

domain according to: 

𝒛mag,corr(𝑟k, 𝑓a, 𝑚) = 𝒛(𝑟k, 𝑓a, 𝑚) ∙ 𝜌1,𝑚 , 𝑚 = 2,… ,𝑀, (6.4) 

where 𝒛mag,corr denotes the measured data after the magnitude correction. 
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Exemplarily, Figure 6.2 shows the azimuth antenna patterns in Doppler frequency 

domain estimated according to Equation (6.2) before and after the correction of the 

magnitude imbalances. In this example, an homogeneous data patch containing 2048 x 

16384 range-azimuth samples was obtained from data take 4 (cf. Appendix A) and the 

following magnitude offsets were estimated according to Equation (6.3): 𝜌1,2 = 1.08, 

𝜌1,3 = 1.01 and 𝜌1,4 = 1.05. Notice that the azimuth antenna patterns are centered at 

the Doppler centroid 𝑓DC = −90.18 Hz. The correction of the magnitude imbalances 

is essential for PD STAP since the magnitude of the azimuth antenna patterns (𝐷tx and 

𝐷rx,𝑚) are contained in the DOA vector 𝒅, as it can be seen in Equation (3.3). 

 

Figure 6.2.  Azimuth antenna patterns estimated from an homogeneous data patch from data take 4: 

(a) before and (b) after the correction of the magnitude imbalances among the RX channels (𝜌1,2 =

1.08, 𝜌1,3 = 1.01 and 𝜌1,4 = 1.05).  

6.5.3 Along-Track Baselines 

The F-SAR X-band configuration contains four RX antennas aligned in the azimuth or 

flight direction (cf. Appendix A). The effective along-track baselines among the RX 

channels assuming channel RX1 as reference are: |𝑑a1,2| = 0.1 m, |𝑑a1,3| = 0.2 m and 

|𝑑a1,4| = 0.3 m, as depicted in Figure 6.3. Notice that due to the bi-static operation, 

the effective along-track baselines are generally half as large as the physical antenna 

center separation. These effective baselines can be estimated from the measured data 

by using the slopes of the ATI phases along the Doppler frequency [116].  
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Exemplarily, Figure 6.4 shows the effective along-track baselines estimated from data 

take 4 containing 2048 x 16384 range-azimuth samples. The means and standard 

deviations of 𝑑a1,2 , 𝑑a1,3  and 𝑑a1,4  were respectively: [-0.098, 0.001] m, [-0.199, 

0.001] m and [-0.296, 0.002] m. In this example, a moving window containing 2048 x 

1024 range-azimuth samples was applied with a moving window step size of 3.6 m in 

azimuth and all available range bins 𝐾  were used. Since the obtained standard 

deviations were in the order of just a few millimeters, the effective along-track 

baselines can optionally be estimated only once and stored in the memory in order to 

speed up the processing time. An accurate estimation of the effective along-track 

baselines is essential for the PD STAP operation since it affects the DOA vector 𝒅, as 

it can be seen in Equation (3.3). 

 

Figure 6.3.  Effective along-track baselines among the receive channels assuming RX1 as reference. 

 

 

Figure 6.4.  Effective along-track baselines 𝑑a1,𝑖 estimated from the complete data take 4. 
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6.6 Doppler Centroid 

This section presents the mathematical framework for estimating the Doppler centroid 

according to the attitude angles of the antenna array and the main steps for estimating 

the attitude angle offsets. The theory presented in this section is verified based on 

experimental results obtained from measured data acquired by DLR’s system F-SAR. 

6.6.1 Aircraft’s Motion 

In reality, the aircraft is not able to follow a straight flight path due to atmospheric 

turbulences and therefore its attitude angles (yaw, pitch and roll) change over time. 

The aircraft’s motion plays an important role especially if the platform is equipped 

with a flat antenna array which does not allow zero-Doppler beam steering, as in the 

case of F-SAR. For instance, nominal pitch angles are often in the order of 1° or 2°, 

reaching up to 7° depending on the type of the aircraft and on the airspeed [118]. This 

section presents the impact of the aircraft’s motion on the squint angle (and thus on 

the Doppler centroid), which affects the target’s velocity and position estimations. 

The axes of the aircraft’s attitude angles are depicted in Figure 6.5. As it can be seen, 

the pitch angle is positive when the aircraft’s nose points upwards and negative when 

it points downwards. The yaw angle is positive when the aircraft’s nose points 

towards to the right and negative when it points towards to the left (with respect to the 

flight direction). The roll angle is positive when the right wing of the aircraft rolls 

downwards and negative when it rolls upwards.  

 
Figure 6.5.  Axes of the aircraft’s attitude angles: yaw, pitch and roll (for visualization purpose). 
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It is pointed out that the F-SAR’s IMU provides the aircraft’s pitch, roll and heading 

angles with respect to the true North. The aircraft’s heading is used for obtaining the 

yaw angle according to (cf. Figure 6.6): 

𝜃YAW,IMU(𝑡) = 𝜃HEADING,IMU(𝑡) − 𝜃̅COURSE  , (6.5) 

where 𝜃̅COURSE denotes the aicraft’s mean flight course with respect to the true North. 

This parameter is obtained through the aircraft’s GPS coordinates and can be updated 

for each CPI (for instance).  

 

Figure 6.6.  Top view geometry showing the aircraft’s yaw, heading direction and flight course. 

The sign relationship between the yaw angle and the Doppler centroid is depicted in 

Figure 6.7. Notice that for a left-looking antenna (LLA), a positive yaw angle causes 

a positive Doppler centroid because the antenna is steered forwards with respect to the 

flight course 𝜃̅COURSE.  

On the other hand, for a right-looking antenna (RLA) a positive yaw angle causes a 

negative Doppler centroid and a negative yaw angle causes a positive Doppler 

centroid. Therefore, the PD STAP processor needs to know a priori if the antenna is 

left or right-looking. 
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Figure 6.7.  Signs of the yaw angle and Doppler centroid for a left and right-looking antenna. 

6.6.2 Squint Angle and Doppler Centroid Estimation 

This section presents the contributions of the antenna array’s attitude angles to the 

Doppler centroid. The squint angle and the Doppler centroid are generally related as  

𝑓DC =
2∙𝑣p

𝜆
sin(Ψsq) . (6.6) 

The squint angle varies over slant range 𝑟k due to the incidence angle change and over 

time 𝑡 due to the variation of the antenna array’s attitude angles. This squint variation 

can be expressed for a left-looking antenna (LLA) and for a right-looking antenna 

(RLA) respectively as (cf. Figure 6.7) [119] 

Ψsq,LLA(𝑟k, 𝑡) ≈ sin
−1 [cos (𝜃i(𝑟k) + 𝜃ROLL,ANT(𝑡)) ∙ tan (𝜃PITCH,ANT(𝑡)) 

+sin (𝜃i(𝑟k) + 𝜃ROLL,ANT(𝑡)) ∙ tan (𝜃YAW,ANT(𝑡))], 

(6.7) 

Ψsq,RLA(𝑟k, 𝑡) ≈ sin
−1 [cos (𝜃i(𝑟k) + 𝜃ROLL,ANT(𝑡)) ∙ tan (𝜃PITCH,ANT(𝑡)) 

−sin (𝜃i(𝑟k) + 𝜃ROLL,ANT(𝑡)) ∙ tan (𝜃YAW,ANT(𝑡))], 

(6.8) 
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where 𝜃YAW,ANT , 𝜃PITCH,ANT  and 𝜃ROLL,ANT denote the yaw, pitch and roll angles of 

the antenna array, respectively. These attitude angles can be expressed respectively as 

𝜃YAW,ANT(𝑡) = 𝜃YAW,IMU(𝑡) + Δ𝜃YAW , (6.9) 

𝜃PITCH,ANT(𝑡) = 𝜃PITCH,IMU(𝑡) + Δ𝜃PITCH , (6.10) 

𝜃ROLL,ANT(𝑡) = 𝜃ROLL,IMU(𝑡) + Δ𝜃ROLL , (6.11) 

where 𝜃YAW,IMU, 𝜃PITCH,IMU and 𝜃ROLL,IMU denote the yaw, pitch and roll angles of the 

aircraft obtained from the IMU system. The terms Δ𝜃YAW, Δ𝜃PITCH and Δ𝜃ROLL denote 

the attitude angle offsets, which need to be estimated (e.g., by using the approach 

presented in Section 6.6.3) in case they are not known a priori. In reality, such offsets 

may arise due to an imperfect alignment of the antenna patches or elements, as well as 

due to the antenna pod’s mounting on the aircraft’s fuselage (i.e., non-parallel with 

respect to the aircraft’s longitudinal axis). 

The Doppler centroid variation over slant range 𝑟k and over time 𝑡 can be expressed 

for a LLA and for RLA respectively as (cf. Figure 6.7) 

𝑓DC,ATT,LLA(𝑟k, 𝑡) ≈
2 ∙ 𝑣p

𝜆
[cos (𝜃i(𝑟k) + 𝜃ROLL,ANT(𝑡)) ∙ tan (𝜃PITCH,ANT(𝑡)) 

+sin (𝜃i(𝑟k) + 𝜃ROLL,ANT(𝑡)) ∙ tan (𝜃YAW,ANT(𝑡))] , 

(6.12) 

𝑓DC,ATT,RLA(𝑟k, 𝑡) ≈
2 ∙ 𝑣p

𝜆
[cos (𝜃i(𝑟k) + 𝜃ROLL,ANT(𝑡)) ∙ tan (𝜃PITCH,ANT(𝑡)) 

−sin (𝜃i(𝑟k) + 𝜃ROLL,ANT(𝑡)) ∙ tan (𝜃YAW,ANT(𝑡))] . 

(6.13) 

The squint angle causes a range dependent Doppler centroid shift. Especially for large 

squint angles, this range dependency can be clearly recognized in the range-Doppler 

domain as a J-shaped structure known as “J-Hook” [94] (cf. Figure 6.8e). 
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In reality, also the platform’s velocity 𝑣p may change slightly over time 𝑡. Therefore, 

the platform’s velocity estimation needs to be updated regularly during the successive 

CPIs in case no computationally time consuming first-order motion compensation 

[76] is carried out beforehand. 

6.6.3 Attitude Angle Offsets 

The results presented in this section were obtained from data take 4 (cf. Appendix A), 

where the measured data were acquired using a left-looking antenna (LLA). The SAR 

image containing 2048 x 262144 range-azimuth samples is shown in Figure 6.8a.  

The estimation of the attitude angle offsets requires two main steps: 

1. The reference Doppler centroid of the scene 𝑓DC,REF(𝑟k, 𝑡) is estimated from the 

reference channel RX1 (e.g., by using the energy balancing method proposed in 

[120]). The result is shown in Figure 6.8b, where it was applied a moving 

window containing 512 x 2048 range-azimuth samples with step sizes of 1.2 m 

and 3.6 m in slant range and azimuth, respectively; 

2. The attitude angle offsets are obtained by the multidimensional minimization 

(e.g., using the well-known downhill simplex [121] or Powell’s methods [122]) 

argminΔ𝜃YAW,Δ𝜃PITCH,Δ𝜃ROLL{max (‖𝑓DC,REF(𝑟k, 𝑡) − 𝑓DC,ATT(𝑟k, 𝑡)‖)} , (6.14) 

where 𝑓DC,ATT(𝑟k, 𝑡) can be obtained from Equation (6.12) or Equation (6.13). 

In this experiment, it was obtained from Equation (6.14): Δ𝜃YAW = 0.86°, Δ𝜃PITCH =

0.54° and Δ𝜃ROLL = −0.95°, which are plausible results in reality. Figure 6.8c shows 

the Doppler centroid of the scene computed by using Equation (6.12) and applying the 

previously estimated attitude angle offsets.  

It is pointed out that similar attitude angle offsets were obtained for data take 1. Thus, 

the aforementioned procedure can optionally be estimated only once during the flight 

campaign if the antenna pod remains untouched, which saves processing time. 
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Figure 6.8.  (a) SAR image (data take 4); (b) Doppler centroid estimated from the radar data (RX 1); 

(c) Doppler centroid estimated by using the antenna array’s attitude angles; (d) Doppler centroid 

profiles over azimuth time 𝑡 and (e) over slant range 𝑟k, where the “J-Hook” shape can be noticed. 
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The Doppler centroid estimated from the radar data (cf. Figure 6.8b) and the Doppler 

centroid obtained from Equation (6.12) (cf. Figure 6.8c) are visually comparable. The 

visual differences between both images can be explained by three main factors:  

1. The measured data contained moving vehicles that were not removed before 

estimating 𝑓DC,REF(𝑟k, 𝑡). Hence, in Figure 6.8b a bias was expected especially 

along the road axes due to the Doppler shift caused by these moving vehicles; 

2. A bias was also expected in Figure 6.8b in the region of the lake due to its low 

reflectivity. Note that the highest Doppler values were obtained in this region; 

3. A possible misalignment of the antenna phase center (located at the array axis) 

with respect to the aircraft’s longitudinal axis obtained from the IMU system. 

The average azimuth profiles of the Doppler centroid shown in Figure 6.8b and 

Figure 6.8c can be obtained respectively by 

𝑓D̅C,REF,AZ(𝑡) =
1

𝐾
∑ 𝑓DC,REF(𝑟k, 𝑡)
𝐾−1
𝑘=0  , (6.15) 

𝑓D̅C,ATT,AZ(𝑡) =
1

𝐾
∑ 𝑓DC,ATT(𝑟k, 𝑡)
𝐾−1
𝑘=0  , (6.16) 

and the average slant range profiles can be obtained respectively by 

𝑓D̅C,REF,SR(𝑟k) =
1

𝑁a
∑ 𝑓DC,REF(𝑟k, 𝑡)
𝑁a−1
𝑡=0   , (6.17) 

𝑓D̅C,ATT,SR(𝑟k) =
1

𝑁a
∑ 𝑓DC,ATT(𝑟k, 𝑡)
𝑁a−1
𝑡=0   . (6.18) 

The results obtained from Equation (6.15) and Equation (6.16) are shown in Figure 

6.8d. Notice that the average azimuth profiles matched mainly in the regions of crop 

fields, where the clutter was more homogeneous. In contrast, mismatches are noticed 

mainly in the central part of the data take 4, where a highway with several moving 

vehicles was located along the slant range direction.  
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The results obtained from Equation (6.17) and Equation (6.18) are shown in Figure 

6.8e, where it can be clearly noticed the J-Hook shape of the Doppler frequency along 

slant range. As it can be seen, the average slant range profiles of the Doppler centroids 

matched very well. 

6.7 ATI Phase Correction 

The ATI signal can be generally computed by multiplying the signal 𝑠1(𝑡) received by 

the first antenna in the azimuth or flight direction (e.g., antenna “1” in Figure 3.5) 

with the complex conjugate and co-registered signal 𝑠𝑖,reg
∗ (𝑡) of a second antenna 

(e.g., antenna “2” up to antenna “M” in Figure 3.5) [22] 

𝑠ATI(𝑡) = 𝑠1(𝑡) ∙ 𝑠𝑚,reg
∗ (𝑡) , 𝑚 = 2,⋯ ,𝑀 , 

𝑠ATI(𝑡) = 𝐴1(𝑡) ∙ 𝐴𝑚,reg
∗ (𝑡)exp{j[𝜑1(𝑡) − 𝜑𝑚,reg(𝑡)]} , 

(6.19) 

where 𝐴1(𝑡) and 𝐴𝑚,reg(𝑡) are the complex coefficients, 𝜑1(𝑡) and 𝜑𝑚,reg(𝑡) are the 

phases.  

If the RCS of the target does not change between the observations in the individual 

RX channels, then it can be assumed that 𝐴1 = 𝐴𝑚,reg. In this case, the ATI phase 

difference or interferogram can be expressed as 

Δ𝜑1,𝑚(𝑡) = arg{𝑠ATI(𝑡)} = 𝜑1(𝑡) − 𝜑𝑚,reg(𝑡), 𝑚 = 2,⋯ ,𝑀 . (6.20) 

Thus, the correction of the residual ATI phase offsets (with respect to RX1) can be 

carried out in azimuth time domain according to 

𝒛ATI,corr(𝑟k, 𝑡, 𝑚) = 𝒛(𝑟k, 𝑡, 𝑚) ∙ exp{jΔ𝜑̅̅ ̅̅ 1,𝑚} , 𝑚 = 2,… ,𝑀, (6.21) 

where 𝒛ATI,corr denotes the measured data after the residual ATI phase correction and 

Δ𝜑̅̅ ̅̅ 1,𝑚 denotes the averages of the interferograms obtained with respect to RX1. 
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Exemplarily, Figure 6.9 shows the interferograms obtained among the RX channels 

(assuming channel RX1 as reference) before and after the correction of the residual 

ATI phase offsets. In this case, a data patch obtained from data take 4 (cf. Appendix 

A) was processed containing 1024 x 16384 range-azimuth samples and the following 

residual ATI phase offsets were estimated: Δ𝜑̅̅ ̅̅ 1,2 = −66.52°, Δ𝜑̅̅ ̅̅ 1,3 = 155.62° and 

Δ𝜑̅̅ ̅̅ 1,4 = −72.21°. Indeed, after the correction of the residual ATI phase offsets the 

interferograms were centered at zero (i.e., at the green region of the color bar). 

 

 

Figure 6.9.  Interferograms obtained among the four RX channels for data take 1 (Δ𝜑̅̅ ̅̅ 1,2 = −66.52°, 

Δ𝜑̅̅ ̅̅ 1,3 = 155.62° and Δ𝜑̅̅ ̅̅ 1,4 = −72.21°). 
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6.8 GMTI Results from Data Take 1 

In this section, the conventional PD STAP processor (i.e., operational mode 1, cf. 

Chapter 4) was applied on data take 1 (cf. Appendix A) containing 1024 x 16384 

range-azimuth samples and the probability of false alarm rate was set to 𝑃fa = 10
−6. 

Figure 6.10 shows the GMTI results obtained with and without the data calibration 

algorithm presented in this chapter, where the colors of the PD STAP detections 

(circles) are related to their estimated ground range velocities. Figure 6.10a shows the 

clean GMTI results obtained with calibrated data, where all cars were detected several 

times and only a few false detections were obtained. In contrast, Figure 6.10b shows 

the GMTI results obtained with uncalibrated data, where the residual ATI phase and 

the magnitude offsets as well as the Doppler centroid were not corrected, resulting in 

systematic phase errors that extended along range and azimuth. Consequently, the cars 

could not be detected and several false detections as well as wrong position estimates 

were obtained. 

Figure 6.11 shows the histograms of the interferograms obtained from channels RX1 

and RX2 with and without calibrating the data (i.e., for the scenarios shown in Figure 

6.10a and Figure 6.10b, respectively). Notice that the interferometric phase obtained 

without data calibration appears shifted and slightly skewed, which are typical effects 

of uncalibrated data [116]. In this case, it was expected that the calculation and the 

application of the CFAR detection thresholds based on the clutter models described in 

Section 3.4.2 would fail, which explains the several false detections shown in Figure 

6.10b.  

To conclude, the lack of data calibration affects not only the position and the velocity 

estimates of the moving targets, but it also prevents the estimation of accurate CFAR 

detection thresholds. Therefore, data calibration is indeed essential for a proper PD 

STAP operation. 
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Figure 6.10.  Google Earth images overlaid with radar detections (circles) obtained from data take 1: 

(a) with and (b) without applying the data calibration algorithm presented in this chapter. Notice that 

without data calibration, the performance of PD STAP is not acceptable. The conventional PD STAP 

processor (i.e., operational mode 1, cf. Section 4.2) was used and algorithm 4 (cf. Section 7.4.4) was 

applied for selecting the training data for the CCM estimation. 

 

Figure 6.11.  Histograms of the interferograms obtained between channels RX1 and RX2 when using 

calibrated (in red) and uncalibrated data (in blue) (cf. scenarios shown in Figure 6.10). 
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6.9 Chapter Summary 

This chapter regards the data calibration algorithm applied on the proposed PD STAP 

processor for correcting the RX channel imbalances and imperfections. The algorithm 

corrects not only the residual interferometric phase and the magnitude offsets of the 

RX channels, but also the Doppler centroid by taking into account the “J-Hook” over 

slant range and the aircraft’s motion over time. Important parameters (e.g., azimuth 

antenna patterns, effective along-track baselines, magnitude and attitude angle offsets) 

can be optionally estimated from the radar data only once and stored in the memory in 

order to speed up the processing time. This data calibration algorithm is efficient and 

works very well for different data takes containing different number of roads and 

moving vehicles, as shown in the experimental results in Chapter 7. 

  



 

7 Training Data Selection Strategies and Experimental Results  

7.1 Chapter Overview 

PD STAP is a powerful method for detecting ground moving targets, as well as for 

estimating their geographical positions and line-of-sight velocities. Essential steps for 

practical applications of PD STAP are: 1) the appropriate and automatic selection of 

the training data and 2) the periodic update of these training data in order to take into 

account the clutter statistics change over space and time. Improper training data and 

contamination by moving target signals may result in: a decreased clutter suppression 

performance, an incorrect CFAR threshold and a target cancellation by self-whitening. 

In this chapter, two conventional and two novel methods for training data selection are 

presented and compared using measured data acquired with DLR’s system F-SAR. In 

addition, a module for rejecting potential moving target signals and strong scatterers 

from the training data is proposed and discussed. All methods are evaluated for the 

conventional and the a priori knowledge-based traffic processors (i.e., operational 

modes 1 and 2, cf. Chapter 4). A part of the content presented in this chapter was 

already published in [64] and accepted for a journal publication in [60]. 

7.2 Introduction 

The clutter suppression in STAP algorithms is carried out by applying the inverse of 

the CCM, which generally has to be estimated from appropriate training data since the 

clutter spectral properties are rarely known a priori. The selected training data for 

CCM estimation impact not only on the achievable clutter suppression performance 

but also on the statistics of the clutter suppressed data, which is employed for fitting a 

clutter model and for deriving a CFAR detection threshold that achieves CFAR. In 

this sense, a training data contamination with strong discrete scatterers and interfering 

moving targets signals may lead to an improper CFAR threshold setting and may 

cause the “self-whitening” of the target. Therefore, the training data selection plays an 

important role for an effective application of STAP algorithms [26], [82], [85], [123]. 
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An interesting literature review about training data selection methods is presented in 

[72]. However, several of the discussed algorithms are time-consuming (e.g., designed 

for joint-domain STAP, which demands higher sample support and processing time) 

or may require a massively complex series of decisions to be made in real-time, which 

is especially the case of knowledge-aided (KA) algorithms.  

For instance, the KA parametric covariance estimation (KAPE) approach presented in 

[124] blends both a priori knowledge information and measured observations in order 

to mitigate the impact of heterogeneous clutter on space-time detection. Rather than 

estimating the whole CCM, the KAPE approach estimates the parameters of a CCM 

model for each individual range bin of interest. Although this approach is robust for 

STAP applications, it demands an extraordinary computational effort for carrying out 

the CCM reconstruction. Besides, it is pointed out that: 1) the accuracy of the modeled 

CCM determines the detection performance potential of KAPE, and 2) the knowledge 

of the array manifold is critical for the KAPE’s clutter suppression capability. An 

advance of this framework is presented in [125] and denominated as “Enhanced 

KAPE” (E-KAPE). This new approach improves the KAPE’s susceptibility to array 

errors by applying a new iterative calibration technique. Moreover, the computational 

burden of KAPE is also improved by circumventing the need for direct inversion of 

the data matrices for each range bin. 

More recently, a KA algorithm showed that the Generalized Inner Product (GIP) test 

can be applied in the space-Doppler domain in order to remove non-homogeneous 

training data from the CCM estimation [126]. This method requires a terrain database 

for obtaining the statistical properties of the clutter for each region of interest (ROI).  

Especially when real-time processing is desired, the use of KA algorithms (e.g., those 

presented in [124]–[126]) would further increase the complexity of STAP algorithms, 

which are already very demanding in terms of processing time. 

This chapter presents an evaluation of four training data selection algorithms that can 

be combined with a module that rejects potential strong scatterers and moving target 
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signals. These algorithms are applied on two traffic processors: the conventional PD 

STAP and a particular PD STAP that uses a priori knowledge information [59] (cf. 

Chapter 4, operational modes 1 and 2). The main objective is to improve the clutter 

suppression capability and therefore to increase the number of true detections. 

7.3 Real-World Effects 

Training data selection and STAP are more challenging when the aircraft is equipped 

with a low-cost flat antenna array which does not allow electronic or gimbal-based 

zero-Doppler beam steering. In this case, the time-varying acquisition geometry has to 

be considered during processing in order to obtain accurate detection, position and 

velocity estimates. 

This section shows some examples of real-world effects obtained on data take 4 (cf. 

Appendix A). The radar and the geometry parameters are given in [127], [128] as well 

as in Appendix A. The SAR image (area on ground ≅ 9.4 x 1.8 km
2
) is shown in 

Figure 7.1a. As it can be seen, this vast area contains forests, crop fields, villages and 

a lake, and therefore it is especially useful for evaluating the clutter statistics change.  

As pointed out in Chapter 6, in reality the aircraft is not able to follow exactly a 

straight flight path due to atmospheric turbulences. Figure 7.1b shows the aircraft’s 

attitude angles (yaw, pitch and roll) obtained from the IMU system of the F-SAR 

during the data acquisition. As it can be seen, the F-SAR collected the SAR data with 

a positive pitch of around 1.9°, which is typical for F-SAR. Note that the yaw and roll 

angles changed drastically mainly due to cross-winds. In particular, the yaw variation 

plays an important role on the Doppler centroid (cf. Section 6.6). 

Figure 7.1c shows the Doppler centroid variation over slant range and azimuth (or 

slow time). The Doppler centroid was estimated from the measured data according to 

the energy balancing method proposed in [120]. In this example, a moving window 

containing 512 x 2048 range-azimuth samples with step size of 1.2 m and 3.6 m in 

slant range and azimuth, respectively, was applied. The result shown in this figure is 

discussed in detail in Section 6.6.3. 
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Figure 7.1.  Examples of real-world effects on F-SAR data acquisition (data take 4): (a) SAR image, 

(b) attitude angles, (c) Doppler centroid estimated from the data, (d) texture and (e) CFAR threshold. 
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Figure 7.1d shows the clutter statistics change in terms of the texture parameter 𝜈, 

estimated according to Equation (3.27). It can be seen that low texture values were 

obtained in regions of forests and villages (i.e., heterogeneous clutter patches). In 

contrast, high texture values were obtained in regions of crop fields as well as over the 

lake (i.e., homogeneous clutter patches). 

Figure 7.1e shows the CFAR detection threshold 𝜂hete  obtained for Pfa = 10
−6 , 

estimated according to Equation (3.30). It can be seen from Figure 7.1d and Figure 

7.1e that regions with low texture values lead to high CFAR thresholds, while regions 

with high texture values lead to low CFAR thresholds, as verified in [31], [93], [98]. 

The results shown in Figure 7.1d and Figure 7.1e were obtained by applying a 

moving window containing 501 x 128 range-azimuth samples with a moving window 

step size of 1.2 m and 3.6 m in slant range and azimuth, respectively. 

Figure 7.1c, Figure 7.1d and Figure 7.1e show that indeed the Doppler centroid and 

the clutter statistics change over slant range and azimuth. Consequently, additionally 

to the Doppler centroid correction, the training data must be updated periodically over 

slant range and azimuth. This is especially important for achieving a high performance 

with any STAP algorithm. 

7.4 Algorithms for Training Data Selection and Update 

This section presents four training data selection algorithms for the CCM estimation. 

The algorithms 1 and 2 are examples of conventional methods employed for STAP, 

while the algorithms 3 and 4 are novel methods [60], [64]. The last topic of this 

section presents a module for moving target signal rejection (MTSR) that can be 

applied independently to the four algorithms. 

7.4.1 Algorithm 1 (Conventional) 

In this algorithm, the CCM is estimated once per CPI using all available samples of 

the CPI as training data, as depicted in Figure 7.2.  



  

118 Chapter 7: Training Data Selection Strategies and Experimental Results  

 

In this case, the main steps for processing one CPI are listed below: 

1. Obtain the CPI by partitioning the multi-channel data in time domain, in the 

azimuth direction (e.g., 𝑛a,CPI = 128 azimuth samples). Use all the available 

range bins 𝐾; 

2. Obtain the training data by using the full content of the CPI. Next, transform 

the training data to range-Doppler domain via an azimuth FFT; 

3. Estimate the CCM according to Equation (3.5), using 𝐾 = 𝐾1; 

4. Apply the PD STAP processor on the CPI and estimate the CFAR detection 

threshold  𝜂hete (cf. Section 3.4.2); 

5. Detect the moving targets using the CFAR detection threshold 𝜂hete. Finally, 

estimate their parameters (cf. Section 3.3.3); 

6. Obtain the next CPI and go back to Step 1.  

 

Figure 7.2.  Principle of algorithm 1 (conventional). The training data (in red) are obtained by using 

all the available samples of the CPI. The CCM is estimated once per CPI. 

7.4.2 Algorithm 2 (Conventional) 

The principle of this algorithm is depicted in Figure 7.3. This algorithm applies a 

moving window along slant range for each CPI, so that the training data (in red) are 

updated for each cell under test (CUT). In this sense, for each CUT, 𝐾gz range bins are 

used as guard zones and 𝐾2 range bins are selected as training data (e.g., 𝐾gz = 2  and 

𝐾2 = 128 range bins). 
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Figure 7.3.  Principle of algorithm 2 (conventional). The training data (in red) are updated for each 

CUT as the moving window slides over slant range. The CCM is estimated 𝐾 times for each CPI. 

In this case, the main steps for processing one CUT are listed below: 

1. Obtain the CUT by selecting one range bin of the CPI; 

2. Obtain the training data by selecting 𝐾2 range bins around the CUT and the 

guard zones. Next, transform the training data to range-Doppler domain via an 

azimuth FFT; 

3. Estimate the CCM according to Equation (3.5), using 𝐾 = 𝐾2; 

4. Apply the PD STAP processor on the training data for estimating the CFAR 

detection threshold  𝜂hete; 

5. Apply the PD STAP processor on the CUT and detect the moving targets using 

the CFAR detection threshold 𝜂hete . Finally, estimate the parameters of the 

moving targets; 

6. Obtain the next CPI and go back to Step 1.  

This algorithm takes into account the clutter change of the scene since the CCM (and 

therefore the CFAR threshold) is updated adaptively for each CUT as the window 

moves over slant range. It is pointed out that this algorithm requires a much higher 

computational effort than algorithm 1, where the CCM is estimated only once per CPI. 

Furthermore, a trade-off is observed regarding the chosen number of range bins 𝐾2 of 

the training data. Note that for large 𝐾2  the algorithm loses robustness against the 

clutter change, while for small 𝐾2 the training data may be not enough for estimating 
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reliable CFAR detection thresholds. Special attention has to be given if the MTSR 

module is applied on this algorithm, since it decreases even further the number of 

range bins of the training data. 

An alternative to overcome this issue is presented by the proposed algorithms 3 and 4, 

where several CPIs are used as training data within the moving window. 

7.4.3 Algorithm 3 (Novel) 

The principle of this algorithm is shown in Figure 7.4. This algorithm applies a 

moving window in the azimuth direction, where the length 𝐿 = 2𝑇 + 𝐷 of the window 

determines the number of CPIs used as training data (red box in Figure 7.4). The CPIs 

marked as 𝐷 are those processed by the PD STAP and all 𝐿 CPIs are used as training 

data. Besides, note that all the available range bins 𝑛r are used by this algorithm. 

The training data array is built by: 1) “stacking” the 𝐿 CPIs in time domain, and 2) 

transforming the data array to range-Doppler domain via an azimuth FFT (cf. detail on 

the right side of Figure 7.4). The objective of this algorithm is to increase the number 

of range bins of the training data by a factor of 𝐿  (i.e., the training data contain 

𝐾 ∙ 𝐿 × 𝑓a,CPI range-Doppler samples).  

 

Figure 7.4.  Principle of algorithm 3 (novel). The training data (red box) are composed by 𝐿 CPIs and 

are updated as the window slides over azimuth. The CPIs 𝐷 are processed by the PD STAP. 
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The main steps of this algorithm are listed below: 

1. Select the data patch with 𝐿 CPIs by partitioning the multi-channel data in time 

domain, in the azimuth direction; 

2. Build the training data array by stacking the 𝐿 CPIs; 

3. Estimate the CCM according to Equation (3.5), using 𝐾 = 𝐾3 = 𝐾 ∙ 𝐿; 

4. Apply the PD STAP processor on the training data and estimate the CFAR 

detection threshold  𝜂hete; 

5. Apply the PD STAP processor on the CPIs 𝐷 and detect the moving targets 

using the CFAR detection threshold  𝜂hete. Finally, estimate the parameters of 

the moving targets; 

6. Obtain the next 𝐷 CPIs and go back to Step 1. 

The use of the MTSR module (cf. Section 7.4.5) is very promising in this case, since 

the “clean” training data still contain enough samples for estimating reliable CFAR 

detection thresholds. However, this algorithm does not take into account the clutter 

change over range since all the available range bins 𝐾  are used. Algorithm 4 is 

presented in the next section as an alternative solution to this issue. 

7.4.4 Algorithm 4 (Novel) 

The principle of this algorithm is shown in Figure 7.5. As it can be seen, the data 

patches are processed as the moving window slides over slant range and azimuth. It is 

assumed that the data patches are partitioned without overlap in slant range. 

This algorithm works similarly to algorithm 3, whereas it presents the flexibility to 

change the number of range bins 𝑛r
′  of the moving window for taking into account the 

clutter change over slant range. In this sense, the training data (red box in Figure 7.5) 

contain 𝐿 = 2𝑇 + 𝐷 truncated CPIs, where only 𝑛r
′ < 𝐾 range bins are used. 

Similarly to algorithm 3, the training data array is built by stacking the 𝐿 CPIs in time 

domain and then transforming the data array to range-Doppler domain via an azimuth 

FFT (cf. detail on the right side of Figure 7.5). The CCM is estimated according to 
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Equation (3.5), considering 𝐾 = 𝐾4 = 𝑛r
′ ∙ 𝐿. The use of the MTSR module is also 

promising in this algorithm. 

It is important to mention that the length of the moving window (i.e., the choice of the 

parameters 𝐷, 𝑇 and 𝑛r
′ ) plays a big role for the CCM estimation. The impact caused 

by different moving window lengths are shown and discussed in Section 7.5.2 based 

on measured data. The comparison among all algorithms is presented in Section 7.5.5. 

 

Figure 7.5.  Principle of algorithm 4 (novel). The training data (in red) are updated as the window 

slides over slant range and azimuth. The truncated CPIs 𝐷 are processed by the PD STAP. 

7.4.5 Module for Moving Target Signal Rejection (MTSR) 

The Moving Target Signal Rejection (MTSR) is an optional module that can be 

applied on all previously described algorithms. The objective is to remove undesired 

range bins of the training data that contain moving target signals and strong scatterers, 

which would negatively influence on the CCM estimation as well as on the CFAR 

threshold computation. The principle of the MTSR module is similar to the GIP test 

presented in [126], including a comparable increase of the processing time. However, 

in this case the threshold is not based on the amplitude, but rather on the number of 

azimuth lines (or range bins) to be rejected. 

012… …N…n…

DT T𝑛r
′

ra
n
g
e

azimuth (CPI)
…

CPI 0

CPI 1

CPI n

𝐾
4
=
𝑛
r′
∙𝐿

𝑓a,CPI

𝐾

𝐿 = 2𝑇 + 𝐷
CPIs stacking 



 

Algorithms for Training Data Selection and Update 123 

 

Figure 7.6 shows on the left side a simplified workflow of the proposed MTSR 

module, where four main steps are carried out: 

 Step 1: the PD STAP processor is applied on the original uncleaned training 

data in order to obtain the range bins of the moving targets. These range bins 

are stored in the memory and are rejected from the training data only in Step 4; 

 Step 2: the magnitudes of all samples contained in the uncleaned training data 

are sorted (e.g., in descending order); 

 Step 3: the number of undesired range bins to be rejected from the uncleaned 

training data is manually set by the empirical threshold 𝜉, which needs to be 

high enough in order to reject at least the range bins of the moving targets; 

 Step 4: at first, the undesired range bins of the moving targets (obtained from 

Step 1) are rejected from the training data. Then, the range bins of the strongest 

scatterers (sorted in Step 2) are rejected from the training data until the 

threshold 𝜉 is reached. 

 

Figure 7.6.  Workflow of the proposed MTSR module (left) and an application example based on 

measured data containing strong scatterers and moving target signals (right). In this example, the sum 

of the RX channels in range-Doppler domain shows: (a) the uncleaned training data and (b) the 

cleaner training data obtained after applying the MTSR module. In this case, 𝜉 = 205 undesired range 

bins were rejected. The cleaner training data are used for the CCM estimation. 
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Exemplarily, Figure 7.6a shows an application example where the uncleaned training 

data (2048 x 128 range-Doppler samples) contained moving target signals and strong 

scatterers (e.g., corner reflectors – CRs). In this example, the empirical threshold was 

set to 𝜉 = 205 undesired range bins (i.e., ≈10% of the total number of available range 

bins). After applying the MTSR module, the cleaner training data were obtained with 

1843 azimuth lines, as shown in Figure 7.6b. In this figure, notice that the moving 

target signals and most of the strong scatterers were rejected (including the CRs). The 

cleaner training data are used for the CCM estimation.  

The experimental results presented in Section 7.5 show that the empirical threshold 𝜉 

worked very well for different data sets with different number of moving targets. An 

analysis of the impacts of the MTSR module on the clutter model using real multi-

channel data is presented in Section 7.5.3. 

7.5 Experimental Results 

In this section, the training data selection algorithms are firstly compared using data 

takes 1 to 3 (cf. Appendix A), which contained five controlled cars with different 

positions and velocities. The moving window parameters are evaluated for algorithms 

3 and 4, as well as the impact of the MTSR module on the estimated texture parameter 

and on the CFAR threshold. GMTI results for data take 1 show the main differences 

among the training data selection algorithms and quantitative comparisons are carried 

out based on the number of true and false detections, as well as on the estimated 

probability of false alarm rate. GMTI results are also presented for data take 4 in order 

to test algorithm 4 (with MTSR) in a real traffic scenario. Finally, experimental results 

obtained with the fast PD STAP processor (cf. Section 4.4) are shown and discussed. 

7.5.1 Experimental Setup 

A detailed experiment description of the flight campaign and the radar parameters are 

presented in [36], [115], and in Appendix A. The data takes were processed using 

CPIs containing 1024 x 128 range-azimuth samples and the beamformers were 



 

Experimental Results 125 

 

applied using DOA angle steps of 0.05° defined within the 3 dB antenna beamwidth in 

azimuth. The probability of false alarm rate was set to 𝑃fa = 10
−6. 

7.5.2 Moving Window Parameters 

The choice of the moving window parameters (𝐷, 𝑇 and 𝑛r
′ ) for algorithms 3 and 4 

plays an important role since it defines not only the amount of training data used for 

the CCM estimation, but also how often the training data are updated. In the following 

experiments, the data take 1 was processed by algorithms 3 and 4 (with MTSR), 

where different moving window lengths were applied. The PD STAP processor with 

road map information was used in the following experiments for counting the number 

of detections relocated to the airport’s runway.  

Experiment 1: Parameters 𝑫 and 𝑻 

In this experiment, the data take 1 was repeatedly processed by algorithm 3 (with 

MTSR) using different moving window lengths (i.e., varying the parameters 𝐷 and 𝑇). 

All available range bins 𝐾 were considered. Figure 7.7a shows the number of true 

detections of cars 1 to 4 (i.e., True#1-4) as a function of the parameters 𝐷 and 𝑇. These 

detections could be counted as true since the velocities and the positions of the cars 

were known. The detections of car 5 were not counted since it moved off-road and 

thus its detections were discarded after applying the road map information.  

Figure 7.7b shows the number of false detections relocated to the runway as a 

function of the parameters 𝐷 and 𝑇. In this case, the numbers of false detections were 

obtained by subtracting the number of true detections (True#1-4) from the number of 

total detections. Figure 7.7 shows that both the number of true and false detections 

increases proportionally with the length of the moving window. For instance, a good 

compromise can be achieved when 𝐷 = 15 and 𝑇 = 12, where 450 true detections 

and only 2 false detections were obtained. Therefore, these parameters were chosen 

for the moving window applied on algorithms 3 to 4, so that 𝐿 = 2𝑇 + 𝐷 = 39 CPIs, 

which corresponds to approximately two seconds of data acquisition. 
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Figure 7.7.  Number of detections relocated to the runway as function of parameters 𝐷 and 𝑇: (a) true 

detections (True#1-4); (b) false detections (Relocated - True#1-4). All available range bins 𝐾 were used. 

Experiment 2: Number of Range Bins 

In this experiment, the data take 1 was repeatedly processed by algorithm 4 (with 

MTSR) assuming 𝐷 = 15 and  𝑇 = 12, and varying the number of range bins 𝑛r
′  of 

the moving window. Once more, only the detections from cars 1 to 4 were counted as 

true (True#1-4). 

Figure 7.8a shows that the number of detections (all, relocated and true) obtained 

from each moving window. As it can be seen, the levels increased as the number of 

range bins 𝑛𝑟
′  increased, reaching the peak at 𝑛𝑟

′ = 512. In other words, up to this 

point (𝑛r
′ ≤ 512) the CCM estimation benefited from the increase of training data. 

Beyond this point (𝑛r
′ > 512 ), algorithm 4 lost its robustness against the clutter 

change over range. As a result, the number of detections (all, relocated and true) 

started decreasing. Note that the numbers of range bins 𝑛r
′  were applied as a power of 

two, since the window moved without overlap over range. 

The same trend is observed in the percentages of detections shown in Figure 7.8b, 

calculated using the values from Figure 7.8a. Moreover, the results obtained with data 

takes 2 and 3 followed the same trend as for data take 1, whose results are shown in 

Figure 7.7 and Figure 7.8.  

The chosen parameter for algorithm 4 was 𝑛𝑟
′ = 512, which is used for obtaining the 

results presented in the next sections. 
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The results obtained from experiments 1 and 2 pointed out the impact of the moving 

window parameters on the SAR data. In reality, the most suitable moving window 

parameters depend on the scene and on the aircraft’s motion. The parameters chosen 

for data take 1 (i.e., 𝐷 = 15,  𝑇 = 12 and 𝑛r
′ = 512) are also applied for processing 

the other data takes considered in this doctoral thesis (cf. Appendix A). 

 

Figure 7.8.  (a) Number and (b) percentage of detections as function of the number of range bins 𝑛𝑟
′  

of the moving window. It was assumed the parameters 𝐷 = 15 and 𝑇 = 12, so that 𝐿 = 2𝑇 + 𝐷 = 39 

CPIs (≅ 2 s of data acquisition). 

7.5.3 Impact of MTSR on Clutter Model 

In this section, the conventional algorithm 1 was used to process the data take 1. As 

described in Section 7.4.1, this algorithm estimates the CCM (and therefore the 

texture parameter and the CFAR detection threshold) once per CPI. In other words, by 

using this algorithm, it is possible to verify the variation of the texture and the CFAR 

threshold over time (1 CPI ≈ 0.05 s of data). In this experiment, 𝜉 = 205 undesired 

range bins were rejected from the training data when the MTSR module was applied. 

Figure 7.9a shows the texture variation over time with and without applying the 

MTSR module. As expected, high texture values (i.e., more homogeneous) were 

obtained after applying the MTSR module since strong scatterers and moving target 

signals were removed from the training data. In addition, the texture variation over 

time was smoother when the MTSR module was applied.  
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Figure 7.9.  Impact of the MTSR module on the heterogeneous clutter model: (a) texture parameter 𝜈 

and (b) CFAR detection threshold 𝜂hete. In this case, algorithm 1 was used to process the data take 1. 

Figure 7.9b shows the CFAR threshold variation over time with and without applying 

the MTSR module. As pointed out in Section 3.4.2, it is possible to note that the lower 

the texture (i.e., the more heterogeneous), the higher the CFAR threshold. In this 

sense, the decrease of the CFAR threshold after applying the MTSR module was 

expected since the texture values were higher. Besides, the CFAR threshold variation 

was much smoother after applying the MTSR module.  

For data take 1, it is pointed out that the runway with cars 1 to 4 was located in the 

center of the image (i.e., around 3.3 s of data). Therefore, around this time instant, it is 

possible to notice in Figure 7.9 that the texture values reached its minimum (i.e., most 

heterogeneous point) and the CFAR thresholds reached its maximum.  

The MTSR module has the benefit to make the texture and the CFAR threshold less 

sensitive to moving target signals and strong unsuppressed scatterers. However, the 

MTSR module increases the processing time since the PD STAP core needs to be 

applied on the training data for detecting the range bins that contain moving target 

signals. 

7.5.4 GMTI Results for Data Take 1 

The PD STAP detections obtained by algorithms 1 to 4 are shown in Figure 7.10. In 

this figure, the colors of the detections are related to their absolute ground range 

velocities. In Figure 7.10e, a detail is shown for algorithm 4 in order to demonstrate 
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Without MTSR
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the relocation of the targets to the road axis of the OSM, carried out by the PD STAP 

processor with road map information [59]. In this case, the radar detections are shown 

before (circles) and after (triangles) relocation using the OSM database, where the 

center of the runway (white line) was considered as road axis. The triangles point to 

the moving direction of the cars and the thin yellow lines connect the PD STAP 

detections to their closest road points on the OSM road axis.  

It can be seen from Figure 7.10 that: 

 Algorithm 1 could not detect car 3. Indeed, in this case all available samples of 

the CPI were used as training data (i.e., including moving target signals and 

strong scatterers), which lead to the self-whitening of car 3; 

 Algorithm 2 was able to detect all the cars several times, whereas it presented 

by far the highest number of false detections. Indeed, this algorithm used the 

most reduced amount of training data for the CCM estimation (128 range bins). 

In addition, moving target signals and strong scatterers contained in the training 

data worsened the performance of this algorithm; 

 Algorithm 3 was able to detect all the cars, presenting a very clean overall 

result. This result is explained by the large amount of training data used for 

CCM estimation (𝐿 = 39 CPIs and 𝑛r = 1024 range bins). Thus, even without 

applying the MTSR module, reliable CFAR thresholds could be estimated for 

discarding most of the false detections; 

 Algorithm 4 had a very similar result as algorithm 3, whereas in this case more 

detections were obtained from the slow cars 1 and 3. In this case, the amount of 

training data used for the CCM estimation was still large enough (𝐿 = 39 CPIs 

and 𝑛r
′ = 512 range bins) for estimating reliable CFAR thresholds. Moreover, 

the moving window took into account the clutter change over range. 
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Figure 7.10.  Google Earth images overlaid with PD STAP detections. Algorithms 1 to 4 (without 

MTSR) were applied for selecting the training data for the CCM estimation. The detail (orange box) 

shows the relocation of the detections (circles) to their closest OSM road points (triangles) [59], [58] 

using the algorithm 4 (without MTSR). The center of the runway (white line) was the OSM road axis. 
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Figure 7.11.  Eigenvalues obtained from the training data selected by algorithms 1 to 4 (without 

MTSR) for the CCM estimation. 

Figure 7.11 shows the eigenvalues (normalized to the noise power) obtained from the 

training data selected by the four algorithms for the CCM estimation. In this case, the 

processed data patch contained part of the runway where the cars 1 to 4 moved, so that 

the impact of the moving target signals can be verified in the eigenvalue distributions. 

For algorithms 1 and 2, the eigenvalue distributions exhibited spikes due to the 

influence of strong scatterers and moving target signals. The highly contaminated 

eigenvalue distributions obtained for algorithm 2 explain why this algorithm presented 

the highest number of false detections (cf. Figure 7.10b). In contrast, the eigenvalue 

distributions obtained by algorithms 3 and 4 were very smooth due to the large 

amount of training data used by these algorithms. 

The eigenvalue distributions can also be useful for verifying the clutter suppression 

capability of the PD STAP processor, which in this case is given by the highest 
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difference between the first and the second eigenvalues (≈ 15 dB). The clutter 

suppression capability could be further improved, for instance, by using more 

sophisticated digital channel calibration techniques [116]. However, this is out of the 

scope for this doctoral thesis. The fourth eigenvalue is in the noise power level. 

The benefits of the MTSR module can be verified through the ground range velocities 

histograms of the PD STAP detections, shown in Figure 7.12. This figure also allows 

to compare the amount of false (blue bars) and true detections (red bars) obtained for 

all algorithms. Once more, the true detections (i.e., True#1-5) could be counted since 

the positions and the velocities of all cars were known a priori. 

It can be seen from Figure 7.12 that: 

 Algorithm 1 benefited from the MTSR especially because car 3 was detected 

(i.e., its self-whitening was solved after selecting the training data with the 

MTSR module). Nevertheless, note that in this case the number of true and 

false detections increased; 

 Algorithm 2 did not benefit from the MTSR since its amount of training data 

was further decreased. As a result, car 1 was barely detected and car 3 was not 

detected anymore. In this case, note that the MTSR module decreased both the 

number of true and false detections; 

 Algorithms 3 and 4 benefited from the MTSR and presented the best results. 

The MTSR module increased the number of true detections (especially from 

the slower cars 1 and 3), whereas the number of false detections also increased. 

In general, all algorithms presented accurate velocities estimates of all cars. The 

estimated positions were also accurate considering that the cars 1 to 4 moved on the 

edges of the runway (cf. Appendix A).  

This section showed that the MTSR module increased the number of true and false 

detections for algorithms 1, 3 and 4. In contrast, the number of true and false 

detections for algorithm 2 decreased. A quantitative comparison among all algorithms 

is presented in Section 7.5.5, highlighting the pros and cons of the MTSR module. 



 

 

Figure 7.12.  Ground range velocity histograms of the detections obtained by algorithms 1 to 4: all (blue bars) and true (red bars) detections. The detections 

obtained from cars 1 to 5 are numbered in the histograms. In this experiment, the data take 1 was processed. 
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7.5.5 Quantitative Comparisons for Data Takes 1 to 3 

Quantitative comparisons among the training data selection algorithms are shown in 

Table 7.1, Table 7.2 and Table 7.3, which summarize for data takes 1 to 3:  

 The number of all detections obtained by the PD STAP processor; 

 The number of relocated detections to the runway. This number was counted 

by using the PD STAP processor with a priori knowledge information (i.e., 

operational mode 2, cf. Chapter 4). Notice that for data takes 1 and 2 only the 

cars 1 to 4 were relocated to the runway since car 5 moved off-road; 

 The number of true detections. This number was counted since the positions of 

the cars were known a priori for the data takes 1, 2 and 3; 

 The estimated probability of false alarm 𝑃̂fa, which is shown with respect to the 

desired probability of false alarm of the CFAR detector (i.e., 𝑃̂fa = 10
−6); 

 The percentage of true detections relocated to the runway. This quantity is very 

helpful for comparing all training data selection algorithms, with and without 

applying the MTSR module. 

The probability of false alarm 𝑃̂fa was estimated according to: 

𝑃̂fa =
All−True#1−5

𝑁a∙𝐾
 , (7.1) 

where the numbers of processed range and azimuth samples (𝐾 and 𝑁a, respectively) 

of the data takes 1 to 3 are (cf. Appendix A): 

 Data take 1: 𝐾 = 1024, 𝑁a = 16384; 

 Data take 2: 𝐾 = 1024, 𝑁a = 32768; 

 Data take 3: 𝐾 = 1024, 𝑁a = 32768. 
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TABLE 7.1 

NUMBER OF DETECTIONS FROM DATA TAKE 1 (RUNWAY AT 90°) 

Algorithm All Relocated 
True 

(#1-4) 

True 

(#1-5) 
𝑃̂fa 

[x10
-6

] 

True#1-4/ 

Relocated [%] 

1 134 53 51 77 3.40 96.23 

2 2470 1195 1073 1208 75.22 89.79 

3 223 181 180 203 1.19 99.45 

4 188 151 149 171 1.01 98.68 

1 (MTSR) 880 539 522 593 17.11 96.85 

2 (MTSR) 1439 834 760 800 38.09 91.13 

3 (MTSR) 573 450 448 487 5.13 99.55 

4 (MTSR) 625 507 502 537 5.25 99.01 

 

TABLE 7.2 

NUMBER OF DETECTIONS FROM DATA TAKE 2 (RUNWAY AT 45°) 

Algorithm All Relocated 
True 

(#1-4) 

True 

(#1-5) 
𝑃̂fa 

[x10
-6

] 

True#1-4/ 

Relocated [%] 

1 457 100 86 101 10.61 86.00 

2 6897 1819 1574 2150 141.47 86.53 

3 396 188 182 269 3.78 96.81 

4 388 106 105 150 7.09 99.06 

1 (MTSR) 3052 932 806 1423 48.55 86.48 

2 (MTSR) 3905 1153 1006 1434 73.64 87.25 

3 (MTSR) 1102 589 586 900 6.02 99.49 

4 (MTSR) 957 498 497 690 7.96 99.80 

 

TABLE 7.3 

NUMBER OF DETECTIONS FROM DATA TAKE 3 (RUNWAY AT 30°) 

Algorithm All Relocated 
True 

(#1-5) 
𝑃̂fa 

[x10
-6

] 

True#1-5/ 

Relocated [%] 

1 478 350 243 7.00 69.43 

2 3328 1985 1606 51.32 80.91 

3 302 224 193 3.25 86.16 

4 223 135 115 3.22 85.19 

1 (MTSR) 1869 1270 972 26.73 76.54 

2 (MTSR) 1752 1076 884 25.87 82.16 

3 (MTSR) 431 342 312 3.54 91.23 

4 (MTSR) 282 187 169 3.37 90.38 
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From Table 7.1, Table 7.2 and Table 7.3, it can be seen that: 

 The MTSR module increased the 𝑃̂fa of algorithms 1, 3 and 4 for all data takes. 

In other words, it means that the number of false detections increased more 

than the number of true detections. However, it was shown in Section 7.5.4 that 

the MTSR module applied on algorithm 1 avoided the self-whitening of car 3. 

Thus, since the 𝑃̂fa obtained for algorithms 3 and 4 after applying the MTSR 

were tolerable, the MTSR is recommended for algorithms 1, 3 and 4; 

 The MTSR module decreased the 𝑃̂fa of algorithm 2 on all data takes by nearly 

the half, which at a first glance looks as an improvement. However, several true 

detections were lost after applying the MTSR module (e.g., car 3 was not 

detected) and this algorithm presented the worst 𝑃̂fa. Thus, the MTSR module 

is not recommended for algorithm 2;  

 The last column shows the percentage of true detections that remained in the 

final image after applying a priori knowledge information. In this case, the 

MTSR module applied on algorithms 3 and 4 presented the best results for all 

data takes. In the worst case scenario (for data take 3), 90% of the detections 

were true by using algorithm 4 with MTSR. These values show the great 

potential of the PD STAP processor with a priori knowledge information [59], 

[58]. 

The amount of training data is of great importance for the CCM estimation. In this 

sense, it was expected that the proposed algorithms 3 and 4 presented the best 𝑃̂fa and 

the best percentages of true detections for all data takes.  

Additionally, it is pointed out that a threshold was applied in order to reject detections 

with SCNRs lower than 10 dB, as described in [63]. 
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7.5.6 GMTI Results for Data Take 4 

The PD STAP processor with a priori knowledge information (i.e., operational mode 

2, cf. Chapter 4) was applied on a data patch obtained from data take 4 (2048 x 16384 

range-azimuth samples, where part of the highway A7 was contained with several 

vehicles of opportunity. Algorithm 4 (with MTSR) was applied for selecting the 

training data for the CCM estimation and the moving window parameters were: 

𝐷 = 15,  𝑇 = 12 and 𝑛r
′ = 512  (as discussed in Section 7.5.2). The probability of 

false alarm rate was set to 𝑃fa = 10
−6. 

Figure 7.13 shows the GMTI results, where the moving cars are depicted as colored 

triangles pointing to their heading directions and the highway A7 is shown in white. 

The colors are related to the absolute velocities of the cars on the road 𝑣road , 

estimated according to Equation (3.19). The information box in Figure 7.13 shows 

some examples of parameters that are obtained for each car on the highway. 

For instance, it is possible to verify the traffic situation in both directions of the 

highway A7 according to the ground range velocity histograms of the PD STAP 

detections, as shown in Figure 7.14a. This figure shows the histograms of the total 

(blue bars) and the relocated (red bars) detections on the highway. As it can be seen, 

the traffic towards Ulm (i.e., positive ground range velocities) was more intense than 

the traffic towards Memmingen (i.e., negative ground range velocities). 

It is also possible to verify the histograms of the SCNR of the PD STAP detections, as 

shown in Figure 7.14b. This figure shows the histograms of the total (blue bars) and 

the relocated (red bars) detections on the highway A7. In both cases, the mean SCNR 

of the cars was about 27 dB. Once more, it is pointed out that a threshold was applied 

in order to reject detections with SCNRs lower than 10 dB [63]. 

No ground truth data were available in this experiment and thus it was not possible to 

compute the percentage of true detections, the probability of false alarm and the errors 

of the estimated velocities and positions. Nevertheless, the estimated velocities 

obtained on the highway A7 were reasonable. 
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Finally, it can be seen from Figure 7.10 and Figure 7.13 that the PD STAP processor 

was able to detect each single car several times, revealing the potential of this 

processor for traffic monitoring applications. It has to be pointed out that no clustering 

or tracking algorithms were applied in this experiment for refining the GMTI results. 

 

Figure 7.13.  Real traffic on the highway A7. The OSM road axis is shown in white and the cars 

(triangles) are color coded according to their absolute velocities on the road. The cars were detected 

and their parameters were automatically estimated using the PD STAP processor with a priori 

knowledge information [59], [58]. Algorithm 4 (with MTSR) was used for training data selection. 

 

Figure 7.14.  Histograms obtained from real traffic in highway A7: (a) ground range velocities and 

(b) SCNRs of all (blue bars) and relocated detections on the highway (red bars). 
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7.5.7 GMTI Results Using the Fast PD STAP Processor 

This section presents the first experimental results obtained with the fast PD STAP 

processor (i.e., operational mode 3, cf. Section 4.4) according to data takes 1 and 4. 

Algorithm 4 (with MTSR) was applied for selecting the training data for the CCM 

estimation and the moving window parameters were: 𝐷 = 15,  𝑇 = 12 and 𝑛r
′ = 512 

(as discussed in Section 7.5.2). The probability of false alarm rate was set to 𝑃fa =

10−6. The content of this section was submitted for a journal publication [61]. 

7.5.7.1 Controlled Vehicles 

The fast PD STAP processor was firstly tested according to data take 1 (cf. Appendix 

A), which contains 1024 x 16384 range-azimuth samples and five cars with controlled 

movement and speed. 

The optical image of the scene is shown in Figure 7.15, where the considered cars 

(numbered from 1 to 5) and the corner reflector (CR) are indicated. It is pointed out 

that the cars 1 to 4 moved on the edges of the airport’s runway, while car 5 moved off-

road in circles. Moreover, the runway contained 945 road points from where 128 

azimuth samples were selected for each road point. Thus, only a single CPI containing 

945 x 128 samples needed to be processed by the PD STAP core (i.e., 0.72% of the 

total available data). The selected data for processing are depicted in the yellow box in 

Figure 7.15a. 

Figure 7.15b shows the data selected along the airport’s runway in Doppler domain 

before clutter cancellation, where the clutter bandwidth can be seen centered at zero-

Doppler. Figure 7.15c shows the same data after clutter cancellation, where it can be 

seen that the region outside of the clutter bandwidth could not be suppressed due to 

the noise. Figure 7.15d shows the binary map of the detected targets, where the 

signals from all cars as well as from the CR can be clearly recognized. Although the 

CR is a stationary target, its SCNR exceeds the CFAR detection threshold for different 

Doppler frequencies. This response is expected and it visibly differs from the response 

of a moving target signal. 
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Figure 7.15.  Results obtained from data take 1 (cf. Appendix A): (a) optical image of the runway; (b) 

road-Doppler image before clutter cancellation; (c) road-Doppler image after clutter cancellation; (d) 

binary detection map (controlled cars numbered from 1 to 5); and (e) final GMTI results. 

Figure 7.15e shows the final GMTI results, where the false detections were discarded 

and the true detections from cars 1 to 4 were relocated to the OSM road axis (white 

line located at the center of the runway). In this figure, the triangles point to the 

moving directions of the cars and the colors indicate their absolute velocities on the 

runway, estimated according to Equation (3.19). It has to be mentioned that car 5 was 

discarded as a false detection in the Error Models and Decision block since it moved 

off-road.  

The estimated velocities and positions from cars 1 to 4 agreed very well with the 

measurements shown in [127], [128] with a standard deviation smaller than 5 km/h. 

Therefore, the fast PD STAP processor was able to detect both slow and fast vehicles. 

The data selected along the runway (yellow box in Figure 7.15a) were processed 

using only one DOA angle steered at the broadside direction of the antenna array, 

which was sufficient for detecting all moving vehicles. Optionally, the selected data 

could be processed using multiple DOA angles in order to increase the number of 

moving target detections, as verified in Section 8.4.2. 
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As a comparison, the PD STAP processor with a priori knowledge information (i.e., 

operational mode 2, cf. Section 4.3) [59] was applied on the same data take, where all 

the available SAR data were processed. This processor was also able to detect the cars 

1 to 5, whereas the processing time was nearly 37 times longer than the fast PD STAP 

processor presented in this chapter. Indeed, this processing time factor is data 

dependent and therefore further work is needed considering other data takes with 

different number of roads and moving vehicles. This evaluation is foreseen for the 

next experiments with the novel DLR’s DBFSAR system [129], which had its maiden 

flight in November 2016 and is not yet fully operational with respect to the MTI 

imaging mode. Anyhow, this result acknowledges the great potential of the proposed 

processor towards real-time traffic monitoring. 

7.5.7.2 Real Traffic 

The fast PD STAP processor was also applied on a patch obtained from data take 4 

(cf. Appendix A), which contains 1024 x 16384 range-azimuth samples where a part  

of the highway A7 is located with several vehicles of opportunity.  

Figure 7.16 shows the final GMTI results obtained by processing the data take 4 

using only one DOA angle (steered to the broadside direction of the antenna array 

axis, i.e., ΨDOA,array = 90°) and using five DOA angles defined within the 3 dB 

antenna beamwidth in azimuth 𝜃az,3dB = 5.25° (cf. Section 3.6.1)., i.e., ΨDOA,array =

 (87.37°, 88.95°, 90.00°, 91.05°, 92.62°) . In Figure 7.16, the moving vehicles are 

depicted as colored triangles pointing to their moving directions and the OSM road 

axes are shown in white. The colors indicate the absolute velocities of the vehicles on 

the roads estimated according to Equation (3.19) and the information box shows 

examples of parameters that can be displayed for each vehicle. 
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Figure 7.16.  Real traffic on the highway A7 towards Ulm and Memmingen. The vehicles were 

detected and their parameters were automatically estimated using the fast PD STAP processor 

considering one and five DOA angles. 

It is clearly visible that much less detections were obtained by processing the data take 

4 using only one DOA angle and some vehicles could not even be detected in this 

case. Although much more detections can be obtained using multiple DOA angles, 

this operation can impact on the real-time capability of the system since more 

computational time is required. 

It can also be seen that the fast PD STAP processor was able to detect some moving 

vehicles several times, which reveals the potential of this processor for civilian traffic 

monitoring applications. It is pointed out that no clustering or tracking algorithms 

were applied in this experiment for refining the GMTI results. 
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Unfortunately, no ground truth data were available in this experiment and thus it is not 

possible to determine the probability of false alarm as well as the errors of the 

estimated velocities and positions. Even so, the estimated velocities of the vehicles on 

the highway A7 were reasonable. 

To conclude, the GMTI results shown in Figure 7.16 demonstrate how an airborne 

SAR system could be helpful for evaluating the traffic situation in an area of interest 

(e.g., on the highway A7 towards Ulm and Memmingen). As mentioned in Chapter 1, 

in reality such traffic data could supplement the information acquired by the road 

sensors and be used in research for improving traffic models or as information source 

for road traffic statistics [17]. Besides, in some cases (e.g., in rural and primary roads 

without enough sensor installations or in large scale events and catastrophes) an 

airborne SAR system could be the only source of traffic data. 

7.6 Chapter Summary 

This chapter compares four training data selection algorithms for CCM estimation: 

two conventional that are used as reference (algorithms 1 and 2), and two novel 

(algorithms 3 and 4). Besides, a module for moving target signals rejection (MTSR) is 

presented for removing undesired range bins of the training data that contain strong 

scatterers and moving target signals. The four algorithms are firstly applied on the PD 

STAP processors without and with a priori knowledge information (operational modes 

1 and 2, cf. Chapter 4), in both cases using measured data acquired by the DLR’s 

system F-SAR. In the experiments with controlled vehicles (i.e., data takes 1 to 3, cf. 

Appendix A), it is shown that the two novel algorithms (3 and 4) outperform the 

conventional ones (1 and 2) by presenting lower probabilities of false alarm rates as 

well as higher percentages of true detections. For the novel algorithms, the MTSR 

module increases the number of true detections (avoiding the self-whitening of the 

moving targets) and keeps a tolerable probability of false alarm rate. Even in the worst 

case scenario, 90% of the detections that remained in the final image were true. 

Algorithm 4 (with MTSR) is recommended for traffic monitoring not only because it 
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is able to collect enough samples for estimating reliable CFAR detection thresholds, 

but also because it takes into account the clutter change over slant range. 

The experimental results obtained by combining algorithm 4 (with MTSR) with the 

fast PD STAP processor (operational mode 3, cf. Chapter 4) show that this processor 

can detect both slow and fast targets with very good accuracy, and can discard most of 

the false detections that lie far from the roads. For data take 1 (cf. Appendix A), the 

fast PD STAP processor detected all cars and was 37 times faster than the PD STAP 

processor with a priori knowledge information (operational mode 2, cf. Chapter 4) that 

processed all the available SAR data. For data take 4 (cf. Appendix A), the fast PD 

STAP processor detected some vehicles moving on the highway A7 several times with 

reasonable velocity estimates and much more detections were obtained by processing 

the selected data using multiple DOA angles, revealing the potential of this processor 

for traffic monitoring applications using the DLR’s system F-SAR. 

 

  



 

8 Conclusion 

This chapter concludes the doctoral thesis with an overview of the achieved results as 

well as an outlook on further research. 

8.1 Discussion and Summary of Results 

STAP techniques have been employed by robust state-of-the-art GMTI processors due 

to their very good clutter cancellation as well as their accurate target’s line-of-sight 

and position estimation capabilities. A step forward is presented in this doctoral thesis, 

where the powerful PD STAP technique is fused with two freely available databases: 

a road map obtained from the OSM and a DEM obtained from the SRTM. This novel 

combination is shown to be very promising for traffic monitoring. The main features 

of the PD STAP technique are presented in Chapter 3, including the clutter models 

used for the estimation of CFAR detection thresholds, the performance model as well 

as the limitations regarding DOA angle ambiguities and line-of-sight blind velocities. 

The proposed PD STAP processor has three operational modes (cf. Chapter 4). The 

first mode comprises the conventional PD STAP processor without a priori knowledge 

information, which is able to detect also vehicles moving off-road. This mode can be 

helpful for areas where the road information is unavailable. The second mode uses a 

priori knowledge information for assigning the true vehicles to their correct positions 

on the roads as well as for rejecting detections that lie far from roads, which includes 

vehicles moving off-road. This mode is especially suitable for non-real-time traffic 

monitoring since all available SAR data need to be processed. The third mode is a 

faster processing version of the second mode, where the a priori known OSM database 

is employed for selecting only the relevant data along the roads to be processed by the 

computationally expensive PD STAP core. As a result, the amount of processed data 

(and therefore the overall processing time) can be decreased significantly, paving the 

way for real-time traffic monitoring applications. 

For the PD STAP with a priori knowledge information (operational modes 2 and 3), a 

decision needs to be made for each detected target in order to verify whether it is a 
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vehicle moving with high probability on the road or not. This decision is carried out 

based on a robust algorithm that combines two positioning error models: one for the 

moving targets and one for the OSM road points (cf. Chapter 5). This novel algorithm 

takes into account several error sources that are essential for obtaining reliable results. 

Another topic of utmost importance is data calibration, which is essential for detecting 

the moving targets and for estimating their positions and velocities accurately. In this 

sense, an efficient data calibration algorithm is presented and discussed in Chapter 6. 

The algorithm corrects not only the residual ATI phase and the magnitude offsets of 

the RX channels, but also the Doppler centroid variation over slant range (i.e., by 

removing the “J-Hook” effect) and time by using the antenna array’s attitude angles: 

yaw, pitch and roll. Experimental GMTI results show that the lack of data calibration 

affects not only the position and the velocity estimates of the moving targets, but it 

also prevents the estimation of accurate CFAR detection thresholds. Without data 

calibration, several false detections are obtained due to systematic phase errors that 

extend along range and azimuth. The novel data calibration algorithm is faster than 

state-of-the-art ones (for instance, the digital channel balancing [48], [116]) and works 

very well for data takes containing different number of roads and moving vehicles. 

The clutter cancellation capability achieved with PD STAP depends strongly on the 

quality of the training data selected for the clutter covariance matrix estimation. In this 

sense, it is highly important to select training data free of moving targets and strong 

discrete signals. Novel training data selection strategies are presented and compared in 

Chapter 7, including a robust module for moving target signals rejection that removes 

undesired range bins of the training data containing strong scatterers and moving 

target signals. GMTI results and quantitative comparisons lead to the recommendation 

of Algorithm 4 (cf. Section 7.4.4) for traffic monitoring not only because it is able to 

collect enough training data for estimating reliable CFAR detection thresholds, but 

also because it is robust against the clutter change over slant range.  

Chapter 7 also presents experimental results obtained according to four data takes that 

include scenarios with controlled vehicles as well as real traffic. The results show that 
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the proposed PD STAP processor can detect both slow and fast targets (moving from 

7 km/h up to 110 km/h in the particular experiments) with velocity accuracy better 

than 10 km/h. Moreover, the use of a priori knowledge information indeed allows 

discarding most of the false detections that lie far from the roads. In the real traffic 

scenario, it is shown that some moving vehicles can be detected several times with 

reasonable velocity estimates. It has to be mentioned that no clustering or tracking 

algorithms are applied for refining the GMTI results. Finally, it is shown that the fast 

PD STAP processor (operational mode 3) can be 37 times faster than the PD STAP 

processor with a priori knowledge information (operational mode 2). This processing 

time reduction by a factor is data dependent and shows the potential of the fast PD 

STAP towards real-time traffic monitoring.  

In light of the presented results, this doctoral thesis is considered to be successful in its 

objectives, having introduced, evaluated and tested a novel PD STAP processor with a 

priori knowledge information that is suitable for many traffic monitoring applications 

using the DLR’s airborne system F-SAR. 

8.2 Outlook of Future Work 

The following major topics are suggested for ongoing research: 

1. The experimental results show that the novel PD STAP processor is able to 

detect the same moving target several times under different DOA angles 

defined within the 3 dB antenna beamwidth in azimuth, which increases the 

target’s probability of detection. Nevertheless, vehicles that move close to each 

other and with similar velocities are hardly distinguished or separated, which is 

very often the case in major highways (cf. Figure 7.16, mainly at the bottom). 

Clustering and tracking algorithms are recommended in this case for further 

improving the results (e.g., [130], [131]); 

2. The novel PD STAP processor can be combined with tracking information and 

inverse SAR (ISAR) imaging techniques in order to refocus moving vehicles 

with very high resolution [132]; 
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3. It is pointed out in Section 6.7 that the ATI phase offsets are estimated from the 

measured data through the interferograms obtained among the RX channels, 

where processing time is demanded for coregistering the multi-channel data. 

An alternative for speeding up the calibration algorithm consists in two main 

steps: 1) estimate the ATI phase offsets only once from the interferograms (i.e., 

using co-registration) and 2) correct the ATI phase offset variations using the 

aircraft’s attitude angles (yaw, pitch and roll) obtained from the IMU system 

and the attitude angle offsets (Δ𝜃YAW, Δ𝜃PITCH and Δ𝜃ROLL) caused mainly by 

the antenna lever arms; 

4. The overall processing time can be significantly reduced by means of topology 

optimization. For instance, the code of the novel PD STAP processor can be 

adapted for a particular processor (e.g., a graphic processing unit) and the 

computationally expensive functions that are independent from each other and 

are constantly repeated can be structured for parallel processing; 

5. For the fast PD STAP processor (operational mode 3), further work is suggested 

in order to explore additional strategies for training data selection. For instance, 

the OSM database could be used for selecting the training data along the roads 

and the MTSR module could be applied in order to remove undesired range 

bins containing moving targets and strong discrete signals (cf. Section 7.4.5); 

6. The PD STAP processor can be tested with circular SAR data [87], where the 

illumination time of the moving targets is much longer than the stripmap SAR 

data takes evaluated in this doctoral thesis. To the author’s knowledge, this is a 

hot topic that has not been much explored in the literature so far; 

7. Traffic monitoring using multi-channel spaceborne SAR systems is a hot topic 

[28]–[30] that is motivated especially by the possibility of large coverage in a 

global scale. Yet, some major challenges and drawbacks need to be addressed. 

From the geometry point of view, the long distance between the satellite and 

the scene causes the SNR of moving targets to be very low, especially for 

passenger cars with an RCS of only a few square meters [133]. In addition, 

spaceborne SAR systems are generally not suitable for real time traffic and 
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infrastructure monitoring since their revisit times can be in the order of a few 

days [110]. From the architecture point of view, spaceborne SAR systems 

typically have a limited number of RX channels due to high costs, and robust 

GMTI algorithms require at least three RX channels for performing clutter 

cancellation and target parameter estimation accurately. Examples of state-of-

the-art GMTI techniques for spaceborne SAR systems are known as Imaging 

STAP (ISTAP) and Extended DPCA (EDPCA) [32], [134]–[136]. In this sense, 

the a priori knowledge information framework presented in Chapter 4 can be 

combined with ISTAP or EDPCA in order to process only the relevant SAR 

data in the region of roads, thus decreasing the processing time significantly. In 

addition, the true vehicles can be assigned to their correct positions on the 

roads and the false detections can be recognized and rejected; 

8. The interest in bi-static STAP has been growing largely in order to improve the 

moving target detection and the image capabilities (e.g., ISAR-like images of 

the moving targets can be obtained for their recognition and classification). A 

major challenge of bi-static STAP consists in strong clutter non-stationarity 

introduced by the geometry, which degrades the quality of the training data and 

thus the STAP performance is reduced considerably due to covariance matrix 

estimation error. Robust algorithms have been proposed for improving the bi-

static STAP performance [137]–[140] and can be combined with the a priori 

knowledge information framework presented in Chapter 4 for obtaining a novel 

and enhanced version of the PD STAP processor proposed in this thesis.  

In a further step, it is also interesting to investigate a multi-static spaceborne 

scenario, where one or several geostationary satellites are used as transmitters 

and a fleet of smaller satellites (e.g., flying in low or medium Earth orbits) are 

used as receivers. For instance, the geostationary satellites could be already 

existing television or communication satellites and not necessarily dedicated 

radar satellites. 
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Appendix A: F-SAR System 

A.1 Overview 

The DLR’s F-SAR (Flugzeug-SAR) is a state-of-the-art airborne SAR system that has 

replaced the well-known E-SAR (Experimental-SAR) [141], [142] in order to 

accomplish the increasing demands of the remote sensing community, especially for 

acquiring data simultaneously at different frequencies and polarizations, as well as for 

very high range resolution. The F-SAR improved the quality of the already existing 

products and delivered totally new product types, supporting the development of 

innovative approaches in environmental research and the design of future Earth 

observation satellite missions. In addition, the simultaneous data acquisition in several 

frequency bands reduced the operation time and costs.  

The SAR sensor is installed and operated onboard the DLR’s aircraft Dornier DO228-

212, a small STOL (short take-off and landing) aircraft that had its maiden test flight 

in November 2006. The main design feature of this system is the fully polarimetric 

operation in up to five frequency bands (X, C, S, L and P) with the possibility to 

acquire the data simultaneously in different bands and polarizations. The F-SAR was 

built using commercial off-the-shelf components and subsystems, whereas design-

critical parts (e.g., its antennas) were developed and built by DLR [40]. 

The antenna mount is located on the right side of the aircraft and holds seven right-

looking planar array antennas (three X-band, one C-band, two S-band and one L-

band), as shown in Figure A.1. It can be seen in this figure that the F-SAR has across-

track interferometers in X-band (pair of antennas X1,X2) and in S-band (pair of 

antennas S1,S2), as well as an along-track interferometer in X-band (pair of antennas 

X2,X3). The P-band antenna is mounted under the nose of the aircraft due to its size. 

Moreover, it is pointed out that the data cannot be acquired simultaneously in S- and 

C- bands because the subsystem is shared. The primary technical specifications of the 

F-SAR system are summarized in Table A.1 [40], [128]. 
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Figure A.1.  F-SAR system onboard the DLR’s aircraft Dornier DO228-212 (modified after [143]). 

The SAR sensor can acquire the data simultaneously in X-, S- (or C-), L- and P-bands. The positions 

of the right-looking dual polarized antennas in the aircraft’s fuselage are shown in the detail (modified 

after [144]). 

TABLE A.1 

F-SAR TECHNICAL SPECIFICATIONS [40], [128]. 

Band X C S L P 

Carrier frequency [MHz] 9600 5300 3250 1325 350/450 

Max. PRF [Hz] 5000 5000 5000 10000 10000 

Polarization all bands are fully polarimetric 

Max. bandwidth [MHz] 760 400 300 150 100/50 

Transmitted power [kW] 2.50 2.20 2.20 0.90 0.90 

Max. number of receive channels 4 2 2 2 2 

Max slant-range resolution [m] 0.2 0.4 0.5 1.0 1.5 

Azimuth resolution [m] 0.2 0.3 0.35 0.4 1.5 

Max. data rates [MB/s] 247 (per channel) 

Swath width [km] 1 to 5 (depending on the flight altitude) 

Sampling [bits] 8 bit real, 1000 Msamples/s 
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A.2 GMTI Configuration 

The ability to perform fully polarimetric single-pass interferometry in X-band using 

both across and along-track antenna configurations makes the F-SAR a powerful tool 

for GMTI applications. Figure A.2 shows the X-band along-track antenna setup. As it 

can be seen, the front-end of the system has two units with down-converters and 

analog-to-digital converters (ADC), so that two antennas can receive simultaneously. 

The number of receive channels can be extended to four by applying the antenna AS 

technique [93], whereas the effective PRF is reduced to the half of the system’s one 

(i.e., from 5000 Hz to 2500 Hz per RX channel) [127]. It has also to be mentioned that 

the F-SAR system has a flat antenna array that does not allow electronic or gimbal-

based zero-Doppler beam steering. Therefore, the motion of the aircraft plays an 

important role during the data processing in order to obtain accurate detection, 

position and velocity estimates. This problem is solved by using the data calibration 

technique presented in Chapter 6. 

With the F-SAR onboard, the aircraft is able to fly at a maximum altitude of 6100 m 

above sea level with an average ground speed of 90 m/s during data acquisition. The 

endurance of the aircraft ranges from 2.5 to 5 h depending on its configuration [145]. 

The F-SAR usually covers off-nadir angles from 25° to 60° with the possibility to 

adapt the range according to the application (covering from 60° to 85° for long stand-

off imaging or from 0° to 25° for sounding or steep incidence experiments) [144]. 

 
Figure A.2.  X-band along-track antenna setup considering the AS technique (modified after [115]). 
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A.3 Flight Campaigns 

The F-SAR system has an experimental GMTI mode, where four RX channels and X-

band are employed for evaluating different GMTI algorithms with respect to their 

capabilities for traffic monitoring [36], [78].  

The first GMTI experiments using the F-SAR system were conducted in February 

2007 over the Memmingen area, in Germany. Figure A.3 shows the radar’s electronic 

units and the antenna pod that was mounted at the bottom of the F-SAR’s fuselage 

together with a camera, so that optical images were obtained simultaneously with the 

radar data [115]. As a result from this flight campaign, several multi-channel radar 

data takes were obtained from scenarios with ground controlled vehicles as well as 

from real traffic in major highways.  

This section presents four data takes that were used in the scope of this doctoral thesis. 

The system and the geometry parameters are summarized in Table A.2, and a detailed 

report including all GMTI experiments of this flight campaign is presented in [115].  

TABLE A.2 

MAIN SYSTEM AND GEOMETRY PARAMETERS FOR GMTI EXPERIMENTS 

Parameter Symbol Value 

Speed of light c 2.9979x10
8
 m/s 

Platform velocity 𝑣p 90 m/s 

Number of receive channels (in AS mode) 𝑀 4 

Effective PRF (in AS mode) PRF 2500 Hz 

Range sampling frequency 𝑓r 125 MHz 

Azimuth resolution 𝛿az 0.036 m 

Slant-range resolution 𝛿r 1.198 m 

Effective along-track baseline 𝑑a 0.1 m 

Incidence angle 𝜃i 25° to 63° 

Radar Wavelength 𝜆 0.03125 m 

TX antenna length 𝐿a 0.3 m 

Flight altitude above ground ℎ 2200 m 



 

A.3 Flight Campaigns 155 

 

 

Figure A.3.  F-SAR instruments (X-, C-, S-band systems and the antenna pod) before the installation 

onboard the Dornier DO228-212 aircraft for the first GMTI experiments in February 2007 [146]. 

Figure A.4 shows the optical Google Earth image where the regions of the data takes 

are depicted in yellow. The region of data takes 1 to 3 includes the Memmingen’s 

airport, where GMTI experiments considering vehicles with controlled speed were 

carried out on the airport’s runway, which is approximately 3 km long. The region of 

data take 4 includes a part of the highway A7, where GMTI experiments for real 

traffic were carried out considering several vehicles of opportunity.  

Figure A.5 shows the experimental setup of data takes 1 to 3. The optical image of the 

Allgäu airport’s runway is shown on the left, where five controlled common passenger 

cars were moving. On the right, the positions and the velocities of the cars are shown 

for each data take, where the angle of the runway with respect to the flight path was 

also different. Note that car 5 moved off-road (in circles) in data takes 1 and 2. It is 

pointed out that the cars 1, 2 and 4 were equipped with radar reflectors in order to 

enhance their RCS and car 4 had a DGPS receiver for retrieving reliable geographical 

reference positions and velocities. The data takes 1 to 3 are especially important for 

evaluating the estimation accuracy of the target’s position and velocity, since the 

positions and the velocities of the vehicles were known a priori. 

antenna pod



 

 
Figure A.4.  Optical Google Earth image showing the regions where the data takes were acquired by the DLR’s F-SAR system.  
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Figure A.5.  Flight campaign over the Allgäu airport in Memmingen in February 2007: optical image 

of the airport’s runway (left); desired positions and velocities of the controlled cars for data takes 1 to 

3 (right). Notice that the angle of the runway with respect to the flight path changes for each data take. 
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Figure A.6 shows the radar image from data take 4 obtained in the vicinity of 

Memmingen. As it can be seen, this data take contains areas of forests, crop fields, 

villages and a lake, being especially useful for evaluating the heterogeneous clutter 

model used by the CFAR detector presented in Chapter 3. The data patch containing 

the highway A7 is processed separately in many experiments of this doctoral thesis, 

since it is especially helpful for evaluating the PD STAP in a real-traffic scenario.  

Finally, Table A.3 shows the numbers of the processed range and azimuth samples of 

all data takes, including the approximated dimensions of the illuminated scenes. 

 
Figure A.6.  Radar image from data take 4. The data patch containing the highway A7 is useful for 

evaluating the PD STAP in a real-traffic scenario. 

TABLE A.3 

NUMBER OF SAMPLES AND ILLUMINATED SCENE DIMENSIONS OF DATA TAKES 1 TO 4 

Data Take 1 2 3 4 4 (patch) 

Azimuth samples (𝑁a) 16384 32768 32768 262144 16384 

Range Samples (𝐾) 1024 1024 1024 2048 2048 

Size in azimuth (m) 596 1192 1153 9361 584 

Size in slant range (m) 1226 1226 1226 2454 2454 

Size in ground range (m) 1917 1923 1921 3485 3485 
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Appendix B: Log of Roads in Germany 

The construction of roads generally takes into account that each lane is wide enough 

to accommodate standard sized vehicles plus a margin of error. In reality, the choices 

regarding the number of lanes as well as the lane widths depend on many factors (e.g., 

vehicles type and speed, traffic volume, slope of the roads, curves, etc). Furthermore, 

both the number and the width of road lanes may change throughout the extension of 

the same road (for instance, urban road lanes can be narrowed for encouraging drivers 

to reduce speed or to allocate cycle lanes). Therefore, a robust positioning error model 

for the roads is needed taking into account proper assumptions for all error sources.  

The positioning error model of the OSM road points is presented in Chapter 5, where 

it is pointed out the need for estimating important road features, for instance:  

 The mean number of lanes (𝑛̅lanes) and its standard deviation (𝜎nlanes); 

 The mean lanes width (𝑤̅lanes) and its standard deviation (𝜎wlanes).  

These parameters were estimated empirically considering 16 roads from different 

types (urban and rural) and selected from all states of Germany. The road log is 

presented in Table B.1, where it is shown the number of lanes (𝑛lanes) and the lanes 

width (𝑤lanes ) obtained for each indexed road 𝑖 . These quantities were measured 

manually at a freely chosen point of each road by using Google Maps [147]. The state 

codes are referred in table according to [148]. 

The mean values are obtained according to: 

𝑛̅lanes =
1

𝑁
∑ 𝑛lanes

𝑖𝑁
𝑖=1 ≅ 2.5, (B.1) 

𝑤̅lanes =
1

𝑁
∑ 𝑤lanes

𝑖𝑁
𝑖=1 ≅ 3.2 m, (B.2) 

where 𝑁 = 16 denotes the total number of roads contained in the log. 
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The standard deviations are obtained according to: 

𝜎nlanes = √𝜎nlanes
2 = √

1

𝑁
∑ (𝑛lanes

𝑖 − 𝑛̅lanes)
2𝑁

𝑖=1 ≅ 0.9, (B.3) 

𝜎wlanes = √𝜎wlanes
2 = √

1

𝑁
∑ (𝑤lanes

𝑖 − 𝑤̅lanes)
2𝑁

𝑖=1 ≅ 0.5 m. (B.4) 

The results obtained from Equations (B.1) to (B.4) are applied in the positioning error 

model of the OSM road points presented in Chapter 5. 

TABLE B.1 

LOG OF ROADS IN GERMANY 

Index 𝑖 Road Name City State Code 𝑛lanes 𝑤lanes [m] 

1 Römerstraße Heidelberg BW 3 2.9 

2 Fürther Straße Nuremberg BY 2 3.2 

3 Holzmarktstraße Berlin BE 3 3.3 

4 Bahnhofstraße Cottbus BB 2 3.1 

5 Hämmweg Bremerhaven HB 2 3.1 

6 Willy-Brandt-Straße Hamburg HH 3 3.0 

7 Am Römerhof Frankfurt HE 3 3.2 

8 Hamburger Straße Braunschweig NI 2 3.1 

9 Liebnitzstraße Güstrow MV 4 3.5 

10 Altstraße Aachen NW 2 2.9 

11 Königstraße Kaiserslautern RP 2 3.2 

12 Johannesstraße Neunkirchen SL 2 3.3 

13 Theaterstraße Chemnitz SN 3 3.3 

14 Sachsenring Magdeburg ST 2 3.1 

15 Friedrich-Ebert-Straße Flensburg SH 3 3.1 

16 Käthe-Kollwitz-Straße Erfurt TH 2 3.6 
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