
Combustion and Flame 212 (2020) 107–122 

Contents lists available at ScienceDirect 

Combustion and Flame 

journal homepage: www.elsevier.com/locate/combustflame 

An experimental and modeling study on the reactivity of extremely 

fuel-rich methane/dimethyl ether mixtures 

S. Porras a , ∗, D. Kaczmarek 

b , J. Herzler c , S. Drost a , M. Werler a , T. Kasper b , M. Fikri c , 
R. Schießl a , B. Atakan 

b , C. Schulz 

c , U. Maas a 

a Institute of Technical Thermodynamics, Karlsruhe Institute of Technology, Karlsruhe, Germany 
b IVG, Institute for Combustion and Gas Dynamics – Thermodynamics, University of Duisburg-Essen, Duisburg, Germany 
c IVG, Institute for Combustion and Gas Dynamics – Reactive Fluids, University of Duisburg-Essen, Duisburg, Germany 

a r t i c l e i n f o 

Article history: 

Received 10 April 2019 

Revised 30 September 2019 

Accepted 30 September 2019 

Available online 2 November 2019 

Keywords: 

Fuel-rich reactions 

Rapid compression machine 

Shock tube 

Flow reactor 

Ignition delay time 

Species concentration profiles 

a b s t r a c t 

Chemical reactions in stoichiometric to fuel-rich methane/dimethyl ether/air mixtures (fuel air equiva- 

lence ratio φ = 1–20) were investigated by experiment and simulation with the focus on the conversion 

of methane to chemically more valuable species through partial oxidation. Experimental data from dif- 

ferent facilities were measured and collected to provide a large database for developing and validating 

a reaction mechanism for extended equivalence ratio ranges. Rapid Compression Machine ignition delay 

times and species profiles were collected in the temperature range between 660 and 1052 K at 10 bar and 

equivalence ratios of φ = 1–15. Ignition delay times and product compositions were measured in a shock 

tube at temperatures of 630–1500 K, pressures of 20–30 bar and equivalence ratios of φ = 2 and 10. Ad- 

ditionally, species concentration profiles were measured in a flow reactor at temperatures between 473 

and 973 K, a pressure of 6 bar and equivalence ratios of φ = 2, 10, and 20. The extended equivalence ratio 

range towards extremely fuel-rich mixtures as well as the reaction-enhancing effect of dimethyl ether 

were studied because of their usefulness for the conversion of methane into chemically valuable species 

through partial oxidation at these conditions. Since existing reaction models focus only on equivalence 

ratios in the range of φ = 0.3–2.5, an extended chemical kinetics mechanism was developed that also 

covers extremely fuel-rich conditions of methane/dimethyl ether mixtures. The measured ignition delay 

times and species concentration profiles were compared with the predictions of the new mechanism, 

which is shown to predict well the ignition delay time and species concentration evolution measure- 

ments presented in this work. Sensitivity and reaction pathway analyses were used to identify the key 

reactions governing the ignition and oxidation kinetics at extremely fuel-rich conditions. 

© 2019 The Authors. Published by Elsevier Inc. on behalf of The Combustion Institute. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

 

f  

p  

l  

m  

i  

e  

p  

v

 

p  

l  

a  

o  

n  

a  

m  

d  

o  

t  

h

0

(

. Introduction 

Recently, interest in co-generation and polygeneration processes

or flexible conversion between different forms of energy and cou-

led production of valuable chemical species like syngas, acety-

ene (C 2 H 2 ), and ethylene (C 2 H 4 ) from cheap substances (especially

ethane) has increased [1–4] . The production of such chemicals

s usually most efficient at very high equivalence ratios (typically

xceeding φ = 6), which are not used in conventional combustion

rocesses. There is a lack of studies providing empirical data and

alidated chemical kinetics models for the ultra-rich regime. 
∗ Corresponding author. 
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The reaction kinetics of methane (CH 4 ), a suitable resource for

olygeneration processes, have been extensively investigated in the

ast few decades by several authors. Hughes et al. [5] developed

 comprehensive chemical mechanism to describe the oxidation

f methane. The mechanism also accounts for the oxidation ki-

etics of other species like hydrogen, carbon monoxide, ethane,

nd ethene in flames as well as the autoignition problem in ho-

ogeneous mixtures. Petersen et al. [6] , on the other hand, con-

ucted an analytical study of CH 4 /O 2 mixtures over a large range

f conditions. A reaction mechanism was developed to supplement

he high-pressure shock tube experiments on autoignition delay

imes [6] . Ignition delay times of similar mixtures have been re-

orted by Brett et al. [7] and Gersen et al. [8] using a RCM and

y Shukov et al. [9] , who measured IDTs behind reflected shock
stitute. This is an open access article under the CC BY-NC-ND license. 
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waves at elevated pressures between 3 and 450 bar and high initial

temperatures. Measurements of species profiles describing the ho-

mogeneous partial oxidation of CH 4 have also been performed by

different groups in high pressure flow reactors [10–13] and jet-

stirred reactors [14] , for a large range of reaction conditions cover-

ing pressures from 1 to 100 bar and temperatures between 600 and

1800 K. Most of the studies on methane combustion and oxidation

have been focused on stoichiometric to slightly fuel-rich mixtures

[5 , 6 , 14 , 15] . The thermodynamics and kinetics underlying methane

pyrolysis at high temperatures have also been a point of interest

for many research groups [16 , 17] . Some of them also studied the

possibility of increasing the fuel conversion [18] or the yield of de-

sired products [19 , 20] by investigating methane pyrolysis at tem-

peratures higher than 1300 K. 

Because the reactivity at ultra-rich conditions is generally lower

compared to that of stoichiometric fuel/air mixtures, reaction en-

hancers are often used to initiate the reaction under practically

accessible pressures and temperatures [13] . DME (dimethyl ether,

CH 3 OCH 3 ), having a high cetane number, low sooting tendency,

and good availability, is a suitable ignition enhancer [21–24] . DME

is also used in gas turbines as an additive or alternative to natu-

ral gas [25 , 26] . Several experimental [22–24 , 27–33] and theoretical

[34–36] studies have described the reaction of pure DME under a

wide range of conditions: Curran et al. investigated the pyrolysis

and oxidation of DME experimentally under highly diluted condi-

tions for equivalence ratios between 0.7 and 4.2 [23 , 27] . Zhao et al.

[37] performed a theoretical and experimental analysis of the uni-

molecular decomposition of DME applying a hierarchical method-

ology to develop a high-temperature model describing pyrolysis

and oxidation of DME at φ ≤ 2.5. Dagaut et al. [22 , 28] studied

the oxidation of DME by measuring concentration profiles of reac-

tants, intermediates, and products in a jet-stirred reactor at 10 atm,

0.2 ≤φ ≤ 1 and in a temperature range of 550–1100 K as well as ig-

nition delay times in a shock tube at 120 0–160 0 K, 3.5 atm of pres-

sure and equivalence ratios between φ = 0.5–2. They also proposed

a reaction mechanism. Shock tube measurements have also been

performed to study the self-ignition of DME/air mixtures under

engine relevant conditions [30] as well as its thermal dissociation

[38] and pyrolysis [39] . Zheng et al. [31] determined experimen-

tally the ignition temperature of DME/N 2 mixtures in counterflow

diffusion flames; experiments were carried out varying the DME

concentration from 5.9 to 30% in a pressure range of 1.5–3 atm.

Other experiments including measurements of DME flame speeds

have been published by de Vries et al. [40] and Daly et al. [32] . On

the other hand, Amano and Dryer [41] studied the ignition enhanc-

ing effect of DME in CH 4 /air mixtures by adding small amounts

of DME to the gas mixture. They found that a small amount of

DME had a stimulating effect on autoignition of CH 4 /air mixtures

[41] . Similar conclusions were made by Chen et al. [42] and Tang

et al. [43] , who measured the effect of DME on methane mix-

tures at high temperatures [42] and mole fractions of DME in the

mixture from 1 to 50% [43] . The effect of adding dimethyl ether

to methane with respect to the laminar flame speed was stud-

ied experimentally and numerically by Lowry et al. [44] over a

range of initial pressures from 1 to 10 atm for different fuel blends

ranging from 60% CH 4 /40% DME to 80% CH 4 /20% DME in volume.

The influence of DME in the formation of soot and polycyclic aro-

matic hydrocarbons (PAH) on methane fuel mixtures was also a

topic studied by Yoon et al. [45] . They found, that the formation of

soot and PAH significantly decreases for the mixtures of DME with

methane, ethane and propane, while a higher presence of these

compounds was observed in DME/ethylene mixtures compared to

mixtures of the fuel without additive [45] . 

Detailed and validated chemical kinetics models describing

CH 4 /DME mixtures are readily available for stoichiometric or near-

stoichiometric conditions. It is unclear whether they are also suit-
ble as predictive tools in the ultra-rich regime. Burke et al.

46] developed a reaction mechanism for methane, DME, and their

ixtures which has been validated for mixtures in a wide range

f temperatures and pressures at φ = 0.3–2.5. Hashemi et al. [47] ,

n the other hand, presented a chemical kinetic model to describe

he pyrolysis and oxidation of DME and its mixtures with methane

t high pressures (50–100 bar), intermediate temperatures (450–

00 K) and equivalence ratios of φ = 0.06, 1 and 20 studied in a

aminar flow reactor. Other mechanisms like the DME mechanisms

f Zhao et al. [37] or Fischeret al. [23] were not developed to de-

cribe methane oxidation. 

To provide a reaction mechanism tailored for polygeneration-

elevant conditions, a new detailed kinetics mechanism includ-

ng CH 4 /DME was developed based on existing mechanisms for

ethane pyrolysis [4 8] and oxidation [4 9] , and the DME mecha-

ism of Zhao et al. [37] . Hidaka et al. [48] developed a chemical

inetic model able to predict accurately the pyrolysis and oxidation

f methane at elevated temperatures, which are needed to initiate

he reaction of methane without aditivation at lower presence of

xygen in the initial mixtures. On the other hand, Heghes [49] pre-

ented a C 1 –C 4 elementary reaction mechanism, which accurately

escribes stoichiometric to slightly fuel-rich mixtures ( φ < 2) of

H 4 and air. The combination of these should be able to describe

he oxidation of methane at extremely fuel-rich conditions without

issing any significant reaction pathway. The DME sub-mechanism

f Zhao et al. [37] was included, as DME is used as reaction en-

ancer in this study in order to perform experiments at engine

elevant conditions. 

Experimental results of the oxidation of CH 4 /DME mixtures

ere carried out in a rapid compression machine, a high-pressure

hock tube and in a flow reactor. The three experimental setups

resent different timescales and operational characteristics provid-

ng valuable experimental data in a large range of initial condi-

ions, namely temperature and pressure, that complements each

ther. The information about the reactivity of the mixtures through

gnition delay times and species profiles is of great importance for

echanism validation and a comprehensive study of the kinetics

aking place at low and high temperatures. 

In the following, experimental results of the oxidation of

H 4 /DME mixtures are described. Then, the development of the

ew kinetics model is outlined. Finally, comparisons of experimen-

al data with model predictions based on the new reaction mech-

nism are presented. 

. Experiments 

.1. Rapid compression machine 

Measurements of ignition delay times and species concentra-

ion profiles were carried out in a Rapid Compression Machine

RCM) and in a Rapid Compression-Expansion Machine (RCEM),

espectively. The RCM facility has been described previously by

erler et al. [50] . It consists of a temperature-controlled cylinder-

iston device in which the piston compresses the cylinder load,

efore being locked at top dead center (TDC). A creviced piston

as used which can swallow the boundary layer peeling off the

ylinder wall [50] , providing more homogeneous in-cylinder ther-

al conditions compared to a standard piston. Pre-compression

ressures were measured using a capacitance manometer (MKS

aratron 121A). This, combined with a pressure transducer (Kistler

061 B) attached to the cylinder head, enables the determination

f time-resolved absolute pressure traces. Pre-compression temper-

tures were measured with a type-K thermocouple. The cylinder

ead was equipped with an optical access via a quartz glass fiber.

 photomultiplier (Hamamatsu H10722-210) equipped with a short

ass filter (450 nm) was used for time-resolved chemiluminescence
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Fig. 1. Rapid compression machine setup. 
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Fig. 2. RCEM driving system. (a) Illustration of the RCEM operation (b) Experimen- 

tal pressure traces during ignition and for different τ hold. The initial mixture in the 

reaction chamber (1) is compressed and held in an isochoric state (2) for a con- 

trolled hold time, at which the piston is pulled back, expanding the in-cylinder gas 

(3). The hold time can be varied for obtaining information about the product com- 

position after variable reaction times. 
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etection. During the measurement, a potentiometric position sen-

or (Burster type 7812) recorded the piston position. A mixing ves-

el was connected to the RCM, in which a homogeneous mixture

f the test gas was created and stored. A scheme of the RCM is

hown in Fig. 1 . 

In RCM ignition delay time measurements, the time span be-

ween the moment where the piston reaches TDC and the inflec-

ion point of the pressure trace (point at which the pressure gra-

ient reaches a maximum) due to first-stage ignition as well as

ain (second-stage) ignition were defined as the first and main

gnition delay time, respectively. Values of temperature and pres-

ure immediately after compression were assigned to the mea-

ured IDT. The post-compression pressure p c was measured and

he corresponding temperature T c was calculated from p c and pre-

ompression values p 0 and T 0 using the isentropic-core assumption

51 , 52] . 

To obtain a desired combination of temperature and pressure

t TDC in an RCM experiment, the initial temperature, compres-

ion ratio, and composition of the inert gas in the mixture were

aried. The accumulated uncertainties of the measurement equip-

ent caused maximum uncertainties of ±1.4% and ±0.71% in the

etermination of T c and p c , respectively 

The RCEM is an extension of the RCM, which adds a controlled

xpansion phase to the conventional RCM process [51 , 53 , 54] . The

riving system of the experimental setup is shown in Fig. 2 . Af-

er compression, the gas mixture is held in an isochoric state for a

ontrollable hold time τ hold . After this, the piston is retracted, re-

ulting in a rapid expansion of the trapped gas. The quick decrease

f temperature and pressure during expansion largely freezes the

ngoing chemical reactions, allowing convenient subsequent sam-

ling and ex situ analysis of the expanded gas, without requir-

ng high-speed measurement devices. The species measurement

ystem attached to the facility features a micro gas chromato-

raph (Agilent 490 Micro GC) with three chromatography columns,

amely MS5A, PPU, and a CP-Sil 5CB, with their respective thermal

onductivity detector, allowing the analysis of permanent gases as

ell as many hydrocarbons up to C 10 species. The compression-

xpansion cycle comprised in the RCEM, combined with the ad-

ustable hold time and post-compression probe sampling capabil-

ty, allows monitoring the evolution of species concentrations dur-

ng reaction as a function of hold time. 

Figure 2 highlights the RCEM operation; in particular, Fig. 2 b

epicts some pressure profiles which were taken from subsequent

xperiments with identical initial conditions, but with different

old times. 
In these measurements, uncertainties related to species profiles

re caused mainly by the GC calibration gas and the measurement

quipment, obtaining relative uncertainties of 3.8–9.3% for the inlet

uel and main products (e.g., CO, H 2 ) and between 14.3 and 15.5%

or the C 2 -products [55] . 

.2. Shock tube 

Measurements of ignition delay times and end products were

arried out in a high-pressure shock tube with a constant inner

iameter of 90 mm and lengths of the driver and driven sections

f 6.4 and 6.1 m, respectively. Allowable post-ignition peak pres-

ures are 500 bar and the maximum test time is extended up to

2–15 ms by driver-gas tailoring. Helium was used as the main

river gas component and argon was added to match the acous-

ic impedance of the driver gas with the one of the test gas. The

river gas was mixed in situ by using two high-pressure mass flow

ontrollers. The driver gas composition depends on the test gas

ixture composition and the Mach number was calculated prior

o the experiment. For the calculation, formulas by Oertel [56] and

almer and Knox [57] were used. 

Test gas mixtures were prepared manometrically in a mixing

essel and stirred for one hour to ensure homogeneity. DME was

urified before use by freezing with liquid nitrogen and removing

emaining gases (e.g., N 2 ) by pumping. 

The temperature and pressure behind the reflected shock waves

ere computed from the incident shock velocity using a one-

imensional shock model with an estimated temperature uncer-

ainty of T < 15 K. The shock velocity was measured over two in-

ervals using three piezoelectric pressure transducers at differ-

nt distances from the end flange. Band pass-filtered (413 ± 5 nm)

mission from CH 

∗ chemiluminescence was monitored through a

indow in the sidewall 15 mm from the end flange with Hama-

atsu 1P28 photomultiplier tubes. The pressure was recorded at

he same position using a piezoelectric pressure transducer. Igni-

ion delay times were defined as the interval between the rise in

ressure due to the arrival of the reflected shock wave at the mea-

urement port and the extrapolation of the steepest increase in

H 

∗ emission to its zero level on the time axis ( Fig. 3 ). 

Gas samples were taken with a fast opening valve integrated

n the end wall (Parker Hannifin Pulse Valve Series 9) connected

o a 50 ml vessel. The valve was operated with a Parker Hannifin

ota One driver. The valve was opened 10 ms after the arrival of

he reflected shock wave for 10 ms. The samples were analyzed
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Fig. 3. Temporal variation of pressure (black) and CH 

∗ emission (red) measured in 

the shock tube with a CH 4 /DME/air mixture ( φ = 10) at 28.5 bar and 735 K. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 4. Experimental setup of the plug-flow reactor with TOF-MS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Investigated mixture compositions (mol%). 

No. %CH 4 %DME %O 2 %Ar %N 2 %Ne φ

RCM 1 8.18 0.91 19.09 – 71.82 – 1.0 

2 15.00 1.67 17.50 – 65.83 – 2.0 

3 33.75 3.75 13.13 49.38 – – 6.0 

4 37.06 4.12 12.35 46.47 – – 7.0 

5 45.00 5.00 10.50 39.50 – – 10.0 

6 54.00 6.00 8.40 31.60 – – 15.0 

7 13.54 1.52 5.30 79.55 – – 6.0 

8 13.43 1.49 4.47 80.60 – – 7.0 

9 14.90 1.66 3.48 79.97 – – 10.0 

10 16.85 1.87 2.62 78.65 – – 15.0 

Shock tube 11 15.83 0.83 17.08 – 66.25 – 2.0 

12 12.57 3.14 17.28 – 67.01 – 2.0 

13 44.40 4.94 10.38 – 38.23 2.00 10.0 

RCEM 14 15.00 1.67 17.50 – 65.83 – 2.0 

15 33.75 3.75 13.13 44.44 4.94 – 6.0 

16 45.00 5.00 10.50 35.55 3.95 – 10.0 

Flow reactor 17 4.69 0.25 5.06 90.00 – – 2.0 

18 4.39 0.49 5.12 90.00 – – 2.0 

19 7.89 0.41 1.70 90.00 – – 10.0 

20 7.44 0.83 1.74 90.00 – – 10.0 

21 8.62 0.45 0.93 90.00 – – 20.0 

22 8.14 0.90 0.95 90.00 – – 20.0 
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with gas chromatography and mass spectrometric analysis (GC/MS,

Agilent Technologies GC System 7890 A, MSD 5975C with a J&W

HP-PLOT Q column). Each mixture used in the experiments con-

tained 2% Ne as internal concentration standard and all concentra-

tions were determined relative to the internal standard. Mixtures

of the expected products and the internal standard were prepared

manometrically in a mixing vessel and used for calibration of the

GC/MS system. 

2.3. Flow reactor 

Species concentration profiles were measured in a plug-flow re-

actor displayed in Fig. 4 . 

It consists of a 65 cm quartz tube embedded in a stainless-steel

tube. The stainless-steel tube, which in turn is surrounded by two

copper shells for improving temperature homogeneity, acts as a

pressure shell. The gap between the quartz and the stainless-steel

tube is sealed with teflon tape to prevent reactants from entering

the gap. Heating tapes are wrapped around the copper shells and

used to provide the heat that is necessary to initiate the reaction.

Due to this arrangements, the temperature profile along the reactor

consists of a 45 cm long isothermal zone and very steep tempera-

ture increases and decreases at the inlet and the outlet of the reac-

tor. To ensure that no condensation of product species takes place

at the reactor outlet, the path behind the reactor is also heated by

heating tapes to 393 K. Individual reactant flows are regulated by

mass flow controllers (MKS) and mixed before entering the reactor.

For the analysis of the species at the outlet, the reactor is coupled

with a molecular-beam time-of-flight mass spectrometer (TOF-MS)

via a heated needle valve and three pressure stages. The mass res-
lution of the TOF-MS is m / �m = 20 0 0. After entering the ioniza-

ion chamber of the TOF-MS, the product gas is ionized by electron

onization (17 eV kinetic energy) to avoid excessive fragmentation. 

Species mole fractions in the reacting argon-diluted

H 4 /DME/O 2 mixtures were measured at the exit of the plug-

ow reactor at various temperatures and equivalence ratios. Prior

o the experiments, calibration measurements using self-mixed

inary cold gas mixtures were carried out. The resulting relative

ncertainties in calculated mole fractions of calibrated and de-

ected species are 10%. The uncertainties were evaluated based

n a Gaussian error propagation law taking all relevant sources

f error into account. A detailed description of the experimental

etup can be found in Refs. [58 , 59] . 

.4. Investigated experimental conditions 

All investigated mixtures in this study are listed in Table 1 .

DTs of CH 4 /DME/air mixtures were measured in the RCM at

quivalence ratios of φ = 1, 2, 6, 7, 10, and 15, for T c = 600–1050 K

nd p c = 10 bar using DME as additive with a concentration of

0 mol% in the fuel. The equivalence ratio was defined treating CH 4 

nd DME as fuels and O 2 as oxidizer, i.e., assigning the O-atom

n DME to the fuel, not to the oxidizer. For investigations in the

= 6–15 range, two sets of IDT measurements were conducted for:

i) mixtures with air: 79:21 Ar/O 2 , and (ii) mixtures with high Ar

ilution: 95:5 Ar/O 2 to reach high post-compression temperatures

orresponding to mixtures 3–6 and 7–10 in Table 1 , respectively. 

IDTs were also measured in a shock tube for CH 4 /DME/air mix-

ures at φ = 2 and 10 at 20 bar (mixtures 11–12 in Table 1 ) and

0 bar (mixture 11 and 13) and temperatures between 630 and

500 K (mixtures 11–13). The DME concentration was varied from

 to 20 mol% with respect to the fuel. End products were deter-

ined only for mixture 13 ( φ = 10) at 30 bar. For this case, 2 mol%

eon was added to the mixture as indicated in the section above. 

Product species concentrations after variable reaction times

ere measured in the RCEM for the mixtures 14, 15, and 16

 Table 1 ). These mixtures represent the equivalence ratios φ = 2, 6,

nd 10, respectively; mixture 15 and 16 feature identical amounts

f fuel and oxygen as mixtures 3 and 5 with the difference

hat 10% of argon was replaced by nitrogen. This provided a GC-
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Fig. 5. Schematics of the multi-zone model. 
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etectable inert gas, thus the reaction-induced change of moles in

he mixture could be monitored for further comparison with sim-

lations. No significant chemical conversion could be observed in

ur experiments at φ = 15 so that the data for these conditions are

ot presented here. 

In the plug-flow reactor, species mole fractions as function of

emperature in the isothermal zone were measured for the react-

ng CH 4 /DME/O 2 mixtures at φ = 2, 10, and 20 for 473–973 K and

 bar. A high dilution of argon (90%) in the mixtures was needed

o minimize the temperature increase due to exothermal reactions.

imulations of the system using the shear flow model of ChemKin

ro 19.2 to include heat transfer from the wall to the gas as well

s the heat release due to exothermal reactions show that typi-

ally the temperature increase by reactions is a very localized phe-

omenon and limited to less than 60 K, if the dilution is ≥ 90%.

herefore, the effect on the mole fractions at the outlet of the re-

ctor can be neglected. The amount of DME was varied between

 mol% (mixtures 17, 19, and 21) and 10 mol% (mixtures 18, 20, and

2) related to the fuel for each equivalence ratio. 

. Modeling of experimental data 

.1. Simulation of RCM and RCEM data 

Simulations of IDTs were performed using a homogeneous re-

ctor model based on an adiabatic-core hypothesis for all mixtures

51] . A volume trace describing the compression and expansion of

he core gas was used as an input for the simulations to account

or the compression phase and the heat loss. For each mixture, this

olume trace was derived from the pressure trace of RCM experi-

ents without reaction, as described in Mittal and Sung [51] . For

hese non-reacting measurements, O 2 was replaced by the same

olar amount of N 2 , yielding an inert mixture with similar isen-

ropic exponents and thermal diffusivities as the corresponding re-

cting mixture [60] . 

The adiabatic-core model is suitable for the reproduction of

DTs since it can describe the reactions taking place in the core

f the reaction chamber between compression and ignition, typ-

cally a time span in the range of a few to 100 ms. The reaction

ore represents a small portion of the total reaction volume only.

t can reach temperatures that are significantly higher than in the

est of the reaction chamber. In the course of reaction, this thermal

nhomogeneity causes a compositional inhomogeneity through the

trongly temperature-dependent reaction rates. 

A realistic description of the temporal evolution of the product

pecies requires consideration of the entire reaction volume as well

s the heat transfer from the core to the rest of the reaction cham-

er [60] . A multi-zone model was used to account for this effect.

his model assumes that the reaction chamber consists of multi-

le zones that are arranged in an onion-like fashion. Within every

one, all scalar fields are assumed to be spatially uniform but may

iffer from zone to zone. The zones have the same instantaneous

but temporally variable) pressure and can exchange heat and ex-

ansion work, but not mass. A scheme of the model is shown in

ig. 5 . 
The heat exchanged between adjacent zones or the outermost

one and the wall is calculated from their temporally varying con-

act surface, the temperature difference between adjacent zones,

nd two heat-transfer coefficients. The heat-transfer coefficients

etween the zones are assumed to be equal while a second one

s calculated for the heat flow taking place between the outer-

ost zone and the wall. These values are calibrated by pressure

races measured in non-reactive RCEM experiments. The multi-

one model can then treat transient cylinder volume traces and

herefore also the compression-expansion phases of the RCEM, al-

owing the zones to develop different chemical progress accord-

ng to the thermodynamic conditions in each zone. The measured

verall composition in the RCEM is modeled by the mass-averaged

omposition over all zones. 

The number of zones required for a realistic description of the

eat transfer was determined by comparing experiment and simu-

ation: Pressure profiles of unreactive experiments were compared

o pressure profiles predicted by multi-zone simulations which re-

eived the experimental cylinder volume trace V cyl ( t ) as an input.

imulations using 13 zones were found to be sufficient to match

he experimental data well. A more detailed description of the

ulti-zone model and its respective validation can be found in

efs. [55 , 60] . 

.2. Simulation of shock tube data 

The simulations of the shock tube data are based on the ob-

erved pressure increase of 1%/ms ( φ = 10) or 5%/ms ( φ = 2) for

he first 2.8 ms to account for the facility effect [61] . This pressure

ncrease was determined by measurements with inert gas mixtures

hat exhibit no heat release during the measurement time. After

he first 2.8 ms, when the reflected shock wave passed through

he contact surface, no further pressure increase was typically ob-

erved ( Fig. 3 ). The simulations were performed with a constant-

ressure assumption considering a temperature increase by the gas

ynamic adiabatic and isentropic compression measured in inert

ixtures. For the simulation of the product formation the cool-

ng after the measurement time was also considered based on the

easured pressure profiles and adiabatic and isentropic expansion

61] . 

.3. Simulation of flow reactor data 

The measured flow reactor data was simulated via a plug-flow

odel [62] that assumes invariant gas composition and velocity

n radial direction, reducing the problem to a one-dimensional ap-

roach without the influence of heat transfer. The plug-flow is an

fficient model for flow reactor simulations where the gas temper-

ture and pressure along the reactor can be assumed to remain

onstant during the reactions process. Simulations were performed

sing the geometric specifications of the flow reactor as well as

he gas temperature profiles measured inside of the reactor prior

o the experiments with similar gas flows as inputs. The simula-

ions used the complete temperature profile along the center line

f the axis including the isothermal zone as well as the zones of

emperature rise and decrease at the reactor inlet and outlet; the

esulting mole fractions at the outlet were compared between sim-

lation and experiment. 

. Chemical kinetics model 

Modeling of extremely fuel-rich conditions relevant in polygen-

ration processes requires reaction mechanisms developed espe-

ially for the prediction of the reaction kinetics for these mixture

ompositions. Unfortunately, chemical kinetics models found in the

iterature describing the combustion and oxidation of CH /DME
4 
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mixtures have been developed and validated to predict the kinetics

of mixtures up to φ < 2.5 [27 , 37 , 46] . No dedicated mechanism de-

scribing very high equivalence ratios was found in the literature,

motivating the development of a new chemical kinetics model.

Another motivation for the development of a dedicated reaction

mechanism for polygeneration applications is that the mechanism

can be comparatively small so that it is well suited to further

manipulation, e.g., reduction procedures. Polygeneration conditions

have not been investigated in detail yet and an optimization of re-

action conditions using efficient simulation and optimization pro-

cedures [4] is needed to obtain reasonable product yields in tech-

nical polygeneration reactors, e.g., piston engines [3] . 

The new assembled model is based on existing detailed mecha-

nisms describing stoichiometric to slightly fuel-rich ( φ = 1–2) com-

bustion and pyrolysis of methane as well as the oxidation of

DME/air mixtures. The new model aims at predicting IDTs and

species concentration–time profiles of CH 4 /DME/air mixtures at

φ ≥ 6. 

Sensitivity and reaction flow-rate analyses were carried out for

different tem peratures and mixture compositions in order to iden-

tify the rate-limiting reactions in the range covered by the exper-

imental data. Reaction rate constants of some of these reactions

were modified based on either previous publications by other au-

thors [27 , 46 , 63 , 64] or a chemical kinetic database found in the

literature [65] . Physical soundness of these modifications was a

concern, so all changes were performed only within the docu-

mented experimental uncertainty range. A detailed description of

the mechanism construction is given in the subsections below. 

The resulting polygeneration mechanism (PolyMech) consists of

558 elementary reactions among 83 species. A description of the

key reactions and reaction pathways needed for the prediction of

the regimes studied in this work as well as the mechanism vali-

dation against ignition delay times and species profiles measured

in the experimental setups mentioned above are presented in the

following section. The mechanism with its corresponding thermo-

dynamic data file is attached to this paper as supplement. 

4.1. Sub-mechanism for methane oxidation 

Due to the lack of reaction mechanisms available in the lit-

erature for the description of methane oxidation at very high

equivalence ratios ( φ ≥ 6) and the temperature ranges covered in

this work, a new model was assembled based on existing mech-

anisms developed for combustion and high temperature pyroly-

sis of CH 4 . The reaction model published by Heghes [49 , 66] de-

scribing stoichiometric to slightly fuel-rich mixtures ( φ < 2) was

merged with the pyrolysis mechanism of Hidaka et al. [48] for

this purpose. Both were constructed for predictions of CH 4 /air mix-

tures in a wide temperature range. The combination of these were

carried out primarily by taking the pyrolysis and non-O 2 reac-

tions from Hidaka’s mechanism [48] as well as the oxidation steps

from Heghes [49] avoiding the duplication of reactions. The result-

ing kinetics model was complemented with reactions not included

in the previous mechanisms describing pyrolysis and oxidation of

acetylene [67] , vinylacetylene [68] , propyne and allene [69] , as well

as the ethanol sub-mechanism presented by Marinov [70] . 

Rates of methane reactions were modified to allow the predic-

tion at extremely fuel-rich conditions. Rates for the H-abstraction

from methane by hydroperoxyl (HO 2 ) used in this work were de-

rived by Scott and Walker [71] which proposed a non-Arrhenius

form for the expression of reaction rate constant using a temper-

ature exponent of 2.5, based on calculations applying the method

of Chen and Bozzelli [72] . The expression for the reaction rates was

obtained implementing the experimental values measured by Bald-

win et al. [73] together with an A factor per C 

–H bond identical

to the one measured for the reaction between HO and ethane.
2 
he authors reported an uncertainty of the reaction rate of 1.41

etween 600 and 800 K rising up to 5 at 2000 K. For the H-

bstraction reaction from CH 4 by H atoms, the recommended val-

es presented by Baulch et al. [63] were implemented. These are

hown to be in good agreement with the expression presented

y Cohen [74] and Sutherland et al. [75] . Sutherland et al. de-

ived their rate expression by combining their own measurements

ith the one performed by other authors [63] . The pre-exponential

actor of these reactions were reduced by 30% and 50%, respec-

ively, which is within the uncertainty limits reported by the au-

hors [73 , 75] and are in accordance with the expressions presented

y Metcalfe et al. [76] and Burke et al. [46] . Heghes [49] and

aulch et al. [63] proposed the same reaction rates for the reac-

ion of methane with oxygen, which were estimated based on the

-abstraction reaction from HCHO by O 2 . Calculations of the re-

erse reaction using ab initio molecular orbital theory and varia-

ional RRKM theory performed by Zhu and Lin [77] are consistent

ith the expression presented by Heghes [49] . The combination of

he theoretical values of Zhu and Lin [77] together with thermo-

ynamic data were implemented, giving reaction rate values with

n uncertainty of 3 to 5 over the range of 50 0–20 0 0 K [63] . The

re-exponential factor of the latter reaction was modified by a fac-

or of 1.65, resulting in reaction rates similar to the values pub-

ished by Burke et al. [46] , Hidaka et al. [48] and Reid et al. [78] ,

ho performed simulations of ignition delay times for methane/air

ixtures. 

Methyl radicals (CH 3 ) are mostly produced by H abstrac-

ion from methane. These radicals recombine quickly to pro-

uce ethane (C 2 H 6 ) triggering a sequence of H-abstraction

eactions to stable species such as ethylene (C 2 H 4 ) and acety-

ene (C 2 H 2 ). The rates of the methyl recombination reaction

ere replaced by the values recommended by Baulch et al.

63] based on the experimental data of Gläzer et al. [79] ,

ippler et al. [80] , Slagle et al. [81] and Macpherson et

l. [82] at high temperatures and the measurements of

alter et al. [83] for the low temperature range. While the

xpression for the low-pressure limit presented by Baulch et al. is

n accordance with the values published by Blitz et al. [84] , the

re-exponential factor of the high-pressure limit was lowered by

 factor of 1.5 to meet the recently proposed rates presented by

litz et al. [84] , who performed an analysis of the reaction rates

sing revised cross sections and second order master equation to

etermine their proposed values. Rates of C 2 H 5 dissociation to

 2 H 4 and H were replaced by the coefficients included in Heghes’

eaction mechanism [49] , presenting reaction rates, being a factor

f 2.56 higher for the high-pressure limit and a factor of 0.57

ower for the low-pressure limit compared to the values from

idaka ́s reaction mechanism [48] . The reaction rates presented by

eghes [49] are the same as the ones proposed in the analysis

erformed by Baulch et al. [63] , which are based on a large

ibrary of experimental data regarding the temperature range of

0 0–110 0 K. 

Formaldehyde (CH 2 O) has been identified as an important in-

ermediate in the oxidation and combustion of methane [46 , 48] .

eactions comprising the H abstraction from CH 2 O by several rad-

cals have shown to be very important for the accurate predic-

ions of IDTs and of CO concentration–time profiles. Rates of the

-abstraction reaction from formaldehyde by H radicals were taken

riginally from the mechanism of Heghes [49] . The reaction rate

oefficients presented by Heghes are the result of a least squares

 parameter fit of low and high temperature measurements car-

ied out by other authors [85–87] . The resulting expression has a

eported uncertainty factor of 1.25 at 290 K increasing up to 3.2

ith increasing temperature. Expressions derived by other authors

63 , 88] have shown to be in a good agreement with the rates in-

luded in Heghe’s mechanism [49] at ambient temperatures. Nev-



S. Porras, D. Kaczmarek and J. Herzler et al. / Combustion and Flame 212 (2020) 107–122 113 

e  

t  

fi

r  

a  

i  

u  

fi  

s  

t  

i  

t  

C  

v  

e  

a  

fi  

v  

a  

t  

d  

t

 

o  

m  

a  

b  

i  

O  

u  

u  

o  

s  

s  

i  

r  

d

 

a  

c  

t  

t  

d  

c  

R  

t  

t  

o  

f  

fi  

r  

w  

n  

t  

t  

t  

o  

c  

F  

s  

w  

l  

t  

o  

I  

a  

a  

t  

r  

c  

h  

t  

T  

w  

H  

i  

t  

d  

s  

c  

t  

o  

t  

p  

w  

t

4

 

f  

M  

n  

(  

P  

k  

t  

i  

p  

D  

d  

m  

T  

w  

n  

[

 

a  

t  

D  

r  

w  

p  

t  

r  

o  

C  

w  

t  

o  

[  

s  

a  

t  

T  

a  

d  

a  

d  

C  

o  

C  
rtheless, these have shown some discrepancies with increasing

emperature. The pre-exponential factor of this reaction was modi-

ed within its reported reliability range. At high temperatures, HO 2 

adicals are able to abstract an H atom from formaldehyde, while

t temperatures near 298 K, HO 2 molecules tend to be added form-

ng HOCH 2 OO. Rates for the H-abstraction were taken from the val-

es reported by Eiteneer et al. [89] , who derived the expression

tting a complex mechanism and considering measurements pre-

ented by other studies. The derived values were modified within

heir uncertainties, resulting in similar rates as the ones published

n the mechanism of Burke et al. [46] . The rates for the forma-

ion of methane molecules from the H-abstraction reaction from

H 2 O by methyl radicals were selected from the recommended

alues of Baulch et al. [63] These represent the best fit of sev-

ral rate coefficient measurements [90–92] together with reviews

nd evaluations carried out by Kerr and Parsonage [93] . A modi-

cation of the A factor of this reaction was made, giving similar

alues as the reported ones by Burke et al. [46] . Finally, the re-

ction rates of the reaction of CH 2 O with OH were obtained from

he reported values by Warnatz [94] . These were increased in or-

er to meet the values presented by other authors [95] at low

emperatures. 

Reactions comprising the oxidation and thermal dissociation

f ethanol were substituted by the sub-mechanism of Marinov’s

echanism [70] that was specifically developed to describe the re-

ction of ethanol. Ethanol reacts to form three isomeric radicals

y losing an hydrogen atom, with 1-hydroxyethyl (CH 3 CHOH) be-

ng the primary product [96] . Rates of ethanol reactions with CH 3 ,

H, and HO 2 radicals were modified following the preferred val-

es presented by Baulch et al. [63] . CH 3 CHOH, the main prod-

ct of ethanol decomposition and also formed by isomerization

f CH 3 CH 2 O through an H shift, produces CH 3 CO and CH 2 CHO by

everal H abstractions. The pathway towards CH 3 CO has been con-

idered more important in contrast to the one towards CH 2 CHO

n several studies [84] . Reactions of acetaldehyde with CH 3 and H

adicals forming CH 3 CO were adapted according to the recommen-

ation by Baulch et al. [63] . 

The formation of hydroxyl from H + O 2 and H 2 + O reactions

re extremely important in the hydrogen sub-mechanism (espe-

ially the first one), since these dominate and determine the reac-

ion velocity of hydrocarbon fuel undergoing oxidation at tempera-

ures higher than 10 0 0 K. For temperatures lower than 10 0 0 K (also

epending on the system pressure) the formation of OH-radicals

ompetes with the production of HO 2 from the reaction of H + O 2 .

eaction rates for the formation of hydroxyl radicals presented in

he methane mechanism of Hidaka et al. [48] were reduced by 20%

o meet the newly published values from the hydrogen mechanism

f Kéromnès et al. [64] . They adopted the measured rate constants

rom Hong et al. [97] and Sutherland et al. [ 106 ] respectively. The

rst author combined their H 2 O absorption measurements behind

eflected shock waves with those reported by Masten et al. [ 107 ],

hile the second one combined a flash photolysis shock tube tech-

ique with an atomic resonance absorption spectroscopy to obtain

heir expression for the reaction rates. On the other hand, the reac-

ion rates of H + O 2 to hydroperoxyl radicals, important for the low

emperature oxidation were adopted from the reaction mechanism

f Kéromnès et al. [64] , who combined the low pressure rate limit

onstant from Bates et al. [98] with the high pressure limit from

ernandes et al. [99] to match their RCM and shock tube mea-

urements. The pre-exponential factor of the low-pressure limit

as increased in order to obtain better prediction of the presented

ow temperature RCM experimental data for equivalence ratios be-

ween φ = 6-15. The formation and consumption of hydrogen per-

xide (H 2 O 2 ) also play an important role in the determination of

DTs and species concentration–time profiles. The thermal dissoci-

tion of H 2 O 2 is one of the main production sources of OH radicals
nd a highly sensitive reaction. Dissociation rates of H 2 O 2 were ob-

ained from the theoretical analysis carried out by Troe [100] , who

eviewed experimental data to obtain a pressure dependent rate

onstant expression for this reaction. The rates presented by Troe

ave been implemented by other authors showing good results in

he prediction of ignition delay times at different pressures [64] .

he formation rates of H 2 O 2 by recombination of two HO 2 radicals

ere adopted from the studies carried out by Hippler et al. [101] .

ippler et al. investigated the reaction rates of this reaction exper-

mentally and obtained a rate constant expression by combining

heir high pressure measurements with evaluated low temperature

ata. The rate constants recommended by Hippler et al. [101] were

lightly increased within their experimental uncertainties. The re-

ombination reaction of HO 2 concur in the intermediate tempera-

ure oxidation range with the reaction of HO 2 with H 2 to produce

ne hydrogen peroxide molecule and a hydrogen atom. Rates of

he latter reaction were adopted from Ellingson et al. [102] , who

erformed canonical variational transition state theory calculations

ith multidimensional tunneling for obtaining the proposed reac-

ion rate expression. 

.2. DME sub-mechanism 

As mentioned before, a small amount of DME was added to the

uel mixtures to enable methane conversion at low temperatures.

ethane is relatively inert at low temperatures, which is more pro-

ounced at high equivalence ratios because of the lack of oxygen

and thus heat release) in the mixture. DME was also added to

olyMech as a reaction enhancer. Its sub-mechanism represents a

ey element in the kinetics description of the mixtures covered in

his study. DME reacts easily with O 2 at low temperatures provid-

ng the conditions (formation of radicals and increasing the tem-

erature of the gas mixture) needed for methane to react. Zhao’s

ME sub-mechanism [37] was selected for the description of DME

ecomposition and oxidation. However, several reaction rates were

odified or substituted by the ones presented in other studies.

he DME sub-mechanism from Zhao et al. [37] was complemented

ith other reactions presented in Burke et al. [46] and Curran’s ki-

etics model [27] , which were not included in Zhao’s mechanism

37] . 

DME reacts with several radicals to form CH 3 OCH 2 through the

bstraction of an H atom. Burke et al. [46] found that Zhao’s reac-

ion mechanism did not include the H-abstraction reaction from

ME by CH 3 O 2 radicals, which may be the reason for the high

ates reported by Zhao et al. [37] . Rates for the reaction of DME

ith HO 2 were adopted from the quantum chemical calculations

erformed by Mendes et al., which are the same implemented in

he chemical kinetic model proposed by Burke et al., while the

ate coefficient expression for the reaction of DME with methylper-

xyl radicals was estimated based on the calculations done by

arstensen and Dean [103] . CH 3 OCH 2 , on the other hand, reacts

ith O 2 at temperatures below 800 K [103] . The path leading to

he formation of CH 2 O and CH 3 from CH 3 OCH 2 decomposition is

nly significant at very high temperature, according to Curran et al.

27] . The pre-exponential factor of Zhao’s reaction rates for the dis-

ociation of CH 3 OCH 2 was decreased by a factor of 2, which is in

ccordance with the expression obtained by Li et al. [104] from

heir direct ab initio and density-functional theory dynamics study.

he resulting rates are similar to the presented rates by Burke et

l. for the pressure range of interest in this study. The pressure

ependent rates for the oxidation of CH 3 OCH 2 to CH 3 CH 2 OO were

dopted from the studies of Burke et al. [46] . These are in accor-

ance with the temperature independent expression proposed by

urran et al., at low temperatures, while higher discrepancies were

bserved with increasing temperature. CH 3 OCH 2 OO, a product of

H OCH oxidation, rearranges through a H-shift to CH OCH OOH.
3 2 2 2 
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The subsequent reaction paths of CH 2 OCH 2 OOH show a high de-

pendence on the gas temperature, dissociating at intermediate

temperatures and reacting with O 2 at lower ones [27 , 34] . The rate

coefficients of CH 3 OCH 2 OO isomerization reaction to CH 2 OCH 2 OOH

as well as the dissociation reaction of the latter species into one

OH radical and two CH 2 O molecules and the O 2 addition reac-

tion to CH 2 OCH 2 OOH presented in the mechanisms of Zhao et al.

are the same as the rate expressions presented by Curran et al. in

his analysis with regard to the low temperature chemistry of DME

[27] . Rate expressions of both reactions comprising CH 2 OCH 2 OOH

were found to be too fast compared to the pressure dependence

data from the study by Burke et al. Therefore, reactions compris-

ing the dissociation of CH 2 OCH 2 OOH into CH 2 O and OH as well

as the formation of OOCH 2 OCH 2 OOH were modified by lowering

their pre-exponential factors by a factor of 2.5 and 2, respectively.

The pre-exponential factor of the CH 3 OCH 2 OO H-shift reaction to

CH 2 OCH 2 OOH was also modified within its reported uncertainties. 

5. Results and discussion 

Experimental data of ignition delay times and species pro-

files measured in a rapid compression machine, a high-pressure

shock tube and in a flow reactor for CH 4 /DME/oxidizer mix-

tures are compared in the following sections to simulation results.

Simulations were performed implementing the polygeneration

mechanism (PolyMech) and other reaction mechanisms from the

literature, whose presentation is omitted since the experimental

condition range presented in this work is out of their validation

range. 

5.1. Ignition delay times 

Ignition delay times of CH 4 /DME mixtures measured in a RCM

for equivalence ratios of φ = 6, 7, 10, and 15, p c = 10 bar and at

low and high temperatures (mixtures 3–6 and 7–10 in Table 1 ) are

presented below. Shock-tube IDT data for mixtures at φ = 10 (mix-

ture 13) measured at 630–1500 K and 30 bar are also presented and

compared to the predictions of the PolyMech ( Section 4 ). 

Measurements and simulations carried out for mixtures with

φ = 1–2 are attached to this work as supplementary material,

since these are not essential in the context of polygeneration but

serve as additional validation targets for the mechanism. 

For low-temperature measurements in the RCM, initial temper-

atures were increased to achieve higher temperatures at the end of

compression while avoiding a possible ignition of the mixture dur-

ing this process. Post-compression temperatures of T c = 660–740 K

were obtained from experiments keeping the same initial pres-

sure and mixture composition. Measurements at higher tempera-

tures were not possible without ignition occurring already during

compression, complicating the later data evaluation and calcula-

tion of the corresponding T c . The oxidizer for the fuel mixtures

in this section is a combination of argon and oxygen in air (ratio

79:21 Ar/O 2 ) as mentioned in Section 2.1 . 

Simulations of the experimental IDTs were carried out imple-

menting the adiabatic-core model mentioned in Section 3 . The re-

sults for mixtures 3–6 are displayed in Fig. 6 . This figure shows

IDTs as a function of the temperature reached at the end of com-

pression for mixtures with equivalence ratios of φ = 6, 7, 10, and

15. Two-stage ignition was observed for this set of experiments

due to the presence of DME in the mixtures. In general, the pre-

dictions by PolyMech are in good agreement with the experimen-

tal data. PolyMech slightly under predicts the first-stage ignition

delay times for φ = 7 ( Fig. 6 b) at temperatures above 770 K while

the main ignition is well predicted in the entire temperature range.

A similar behavior can be seen for φ = 6 ( Fig. 6 a) at temperatures

above 700 K. Figure 6 c shows a good agreement of the first stage of
gnition between predictions of PolyMech and the data measured

n the RCM, while the main ignition is slightly under predicted

y the model at temperatures around 715 K. The two-stage igni-

ion behavior observed in the experiments was also reproduced in

he simulations with PolyMech, showing that the developed mech-

nism is able to reproduce the partial oxidation process accurately.

In order to avoid ignition of the mixture during compression

nd to achieve higher post-compression temperatures, ignition de-

ay time measurements in the RCM were carried out with mixtures

aving high contents of argon. The mixtures 7–10 ( Table 1 ) present

he same fuel/oxidizer ratio as the mixtures 3–6 with the differ-

nce that for the first case the argon/oxygen ratio was set to 95:5

r/O 2 instead of the conventional air ratio applied for the low-

emperature measurements. This made it possible to reach post-

ompression temperatures of 870–1052 K. Comparison of simula-

ions applying PolyMech with experimental data measured in the

CM for mixtures at φ = 6, 7, 10, and 15 are presented in Fig. 7 . 

For this case, the simulations were carried out implementing

he multi-zone model instead of the adiabatic-core model since the

eaction core remains adiabatic for a time span shorter than the

easured IDTs, which makes the latter model inappropriate for the

igh temperature IDT computations. 

For the high-temperature set of mixtures, only the main ig-

ition was observed in the experiments while the simulations

redict two-stage ignition. Species concentration profiles of DME

nd CH 4 for the conditions presented in Fig. 7 illustrate the two

uel components igniting separately from each other, correspond-

ng to the first observable ignition to DME and the second one to

ethane. Figure 7 displays the results for the main ignition. It can

e seen that predictions of PolyMech are generally in good agree-

ent with experimental data. PolyMech slightly under predicts

DTs for mixtures at φ = 6 and temperatures below 960 K ( Fig. 7 a)

s well as for mixtures at φ = 7 and temperatures between 960

nd 10 0 0 K ( Fig. 7 b). For higher equivalence ratios ( φ > 10, see

ig. 7 c and d), the simulation results are in accordance with the

easurements. In this set of mixtures, a slight temperature depen-

ence was observed in experiments and simulations, resulting in

lmost flat curves especially for mixtures at φ > 10. 

Ignition delay times for fuel-rich CH 4 /DME mixtures were also

easured in a shock tube but this time at higher initial pressures

han the pressures obtained after compression in the RCM and for

emperatures up to 1500 K. Comparison of experimental data with

he predictions of PolyMech for φ = 10 mixtures and additive con-

entration of 10 mol% are presented in Fig. 8 . 

Figure 8 shows that the temperature dependence of the mea-

urements is very well predicted by PolyMech. However, IDTs are

ver predicted by simulations for the entire temperature range.

imilar deviations as presented in Fig. 8 were also observed for

ixtures 11 and 12 with equivalence ratios of φ = 2 (see supple-

ental material), indicating that the observed trends do not de-

end on the mixture composition. 

Sensitivity analyses were carried out to determine the rate-

imiting reaction steps as well as to identify the key reactions

mportant for the kinetic description at the conditions studied in

his work. Figure 9 shows OH global sensitivities for φ = 6 and

0 at high and low temperatures. Figure 9 a shows that at low

emperatures, the rate-limiting reaction steps are dominated by

ME decomposition and subsequently chain-branching reactions of

ME’s sub-products, explaining the importance of the DME sub-

echanism for the kinetic description and the prediction of the

rst ignition stages observed in Fig. 6 . At low temperatures and an

quivalence ratio of φ = 6 ( Fig. 9 a), the most strongly inhibiting

eaction is the H abstraction from DME by OH while the most pro-

oting reaction is the H abstraction from methane. As the equiva-

ence ratio increases, the sensitivities on DME sub-mechanism re-

ctions are also increased, probably because of the lack of oxygen
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Fig. 6. Low-temperature ignition delay times measured in the RCM (symbols) and simulations based on PolyMech (straight lines) for (a) mixture 3, (b) mixture 4, (c) mixture 

5, and (d) mixture 6. Blue lines represent the first-stage ignition and red lines the main ignition. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 7. High-temperature ignition delay times measured in the RCM (symbols) and simulations based on PolyMech (straight lines) for (a) mixture 7, (b) mixture 8, (c) mixture 

9, and (d) mixture 10. 

i  

p  

t

 

t  

a  

c  

r  

e  

a  

c  

t

a

5

 

C  

(  

a  

a  

2  

e  

a  

a

 

P  
n the mixtures and the lowered temperatures reached in the gas-

hase, causing lower methane conversion at higher equivalence ra-

ios ( φ > 10). 

Figure 9 b displays OH global sensitivity analysis for high initial

emperatures. It is shown that the sensitivity of H-abstraction re-

ctions from CH 4 and DME by H, CH 3 , and HO 2 increased notably

ompared to the results in Fig. 9 a. The recombination of methyl

adicals to C 2 H 6 is the most strongly inhibiting reaction for both

quivalence ratios while the most promoting reactions are the H

bstraction from DME as well as reactions comprising the disso-

iation of H 2 O 2 and formation of CHO from CH 2 O with CH 3 . Fur-

hermore, an increase in the sensitivity of reactions involving H 2 O 2 

nd HO 2 radicals can be seen in Fig. 9 b. 
.2. Temporal variation of product concentrations 

The temporal variation of the product composition of reacting

H 4 /DME mixtures was measured in a RCEM for φ = 2, 6, and 10

mixtures 14–16 in Table 1 ) at 714–738 K and 10 bar. In a flow re-

ctor, species mole fractions were measured at the end of the re-

ctor ( Fig. 4 ) for mixtures at equivalence ratios of φ = 2, 10, and

0 (mixtures 17–22 in Table 1 ), 473–973 K and 6 bar. Shock-tube

xperimental data on species concentration after the ignition were

lso collected for mixtures at φ = 10 (mixture 13) at 730–1310 K

nd 30 bar. 

Comparisons between experimental data and simulations with

olyMech ( Section 4 ) are presented below. Results for mixtures
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Fig. 8. Comparison of ignition delay times measured in a shock tube (symbols) and 

simulations with PolyMech (lines) for CH 4 /DME/air mixture at φ = 10, 30 bar and 

with 10 mol% DME. 

Fig. 9. Low and high temperatures global OH sensitivity analyses for mixtures at 

equivalence ratios of φ = 6 and 10. (a) T c = 700 K (mixtures 3 and 5), (b) 950 K (mix- 

tures 7 and 9). 
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with equivalence ratios of φ = 2 and for mixtures 16 and 18 are at-

tached to this work as supplementary material. Although very high

pressures (above 30 bar) are not in the focus of our study, we com-

pared also results of simulations using PolyMech with experimen-

tal data from the literature at φ = 20 and 100 bar [12] (presented

in the supplementary material). 

The temporal consumption of reactants (CH 4 , DME, O 2 ) and the

evolution of stable intermediates (CH O, C H , C H , C H , CH OH)
2 2 6 2 4 2 2 3 
nd products (CO 2 , CO, H 2 ) during the ignition period were in-

estigated in the RCEM. Simulations were performed applying the

ulti-zone model described in Section 3 . It is important to note

hat some species are not completely frozen by the fast expansion

f the piston but continue to react during this process. For this

eason, simulations were carried out using the experimental vol-

me curve which includes not only the compression but also the

xpansion phase, resulting in a detailed description of the exper-

ments. Species mole fractions at the end of the expansion phase

or each τ hold were taken, as it was done for the experiments in

rder to avoid discrepancies between both of them in respect of

urther reactions of some species. 

Figure 10 shows the remaining fraction of methane, DME, and

xygen plotted against the reaction time. A small initial increase in

ethane (values exceeding 100%) was observed in experiments for

ixtures 15 and 16. A possible reason for this is the formation of

H 4 from DME at the first stages of reaction combined with the

easurement uncertainties. This effect was also observed in sim-

lations but in a smaller proportion, predicting an increase of less

han 0.5% in the remaining fraction of methane. DME rapidly de-

reases at the initial steps of reaction while methane remains con-

tant, explaining the strong dependence of ignition delay times on

he DME sub-mechanism as observed in Fig. 9 . 

In Fig. 10 (left), complete consumption of DME and oxygen is

bserved while 60% of the initial mole fraction of methane still re-

ains in the gas mixture. DME reacts with O 2 enabling methane

onversion through radical formation and increasing the tempera-

ure of the mixture. Simulations at φ = 10 in Fig. 10 (right) show a

lightly lower consumption of CH 4 compared to experimental data

hile oxygen and DME concentration time profiles were predicted

uite well. No change in the remaining amount of methane is ob-

erved after 30 ms in both cases, possibly due to the low gas tem-

eratures insufficient to dissociate methane thermally and the un-

vailability of oxygen. Methane conversion decreases considerably

ith the increase of φ, with only negligible conversion (2% and

ess) at φ > 15. 

Results concerning the formation of major products like CO,

O 2 , and H 2 as well as temporal concentration profiles of sta-

le C 2 species are displayed in Figs. 11 and 12 , respectively.

igure 11 shows the proportion of C atoms to the initial amount

f C atoms in the fuel of CO and CO 2 as well as the mole frac-

ion of H 2 as a function of time. The main product for the mix-

ures at equivalence ratios of φ = 6 (left) and φ = = 10 (right) is

O followed by H 2 . The comparison of simulated and experimental

pecies profiles shows an overall good agreement. PolyMech under

redicts the amount of CO in both cases, with a difference that it is

ore pronounced for mixture 15 ( φ = = 6) at times around 0.015 s.

ole fractions of H 2 are slightly over predicted by simulations for

oth mixtures. Higher discrepancies were found for mixture 16 af-

er 30 ms of reaction. The concentration profiles of CO 2 shown in

ig. 11 are over predicted by PolyMech. CO 2 is produced shortly af-

er CO, reaching quickly constant values. This behavior is observed

oth in the simulations and the experiments. The amount of prod-

cts observed in Fig. 11 decreases with increasing equivalence ra-

io. A possible explanation for this behavior is the strong decrease

f methane conversion between φ = = 6 and φ = = 10 observed in

ig. 10 (the conversion of DME is nearly the same for both equiva-

ence ratios), influencing the amount of C-atoms available for prod-

cts. 

Figure 12 displays the formation of C 2 H 4 and C 2 H 6 in C-atom

roportions as a function of reaction time. The production of C 2 H 4 

s slightly over predicted for mixture 15 ( Fig. 12 left) shortly after

gnition, whereas the deviation rises with increasing time. For mix-

ure 16, the ethylene concentration profile is predicted well. Sim-

lations of ethane are in good agreement with the measurements

t φ = 6 up to 30 ms. At longer reaction times, the yield is slightly
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Fig. 10. Comparison of reactant’s temporal consumption profiles for mixture 15 (left) and 16 (right) measured in an RCEM (symbols) and simulations (lines). 

Fig. 11. Comparison of the CO, CO 2 and H 2 species profiles as a function of reaction time for mixture 15 (left) and 16 (right) measured in a RCEM (symbols) and simulations 

(lines). 

Fig. 12. Comparison of C 2 species formation time profiles for mixture 15 (left) and 16 (right) measured in an RCEM (symbols) and simulations (lines). 
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a Fig. 13. Rate of production analysis on CH 3 for mixtures with equivalence ratios of 
ver predicted by the model. Experimental data of ethane are un-

er predicted by simulations for all reaction times at φ = 10. 

Figure 12 indicates that the amount of products does not

hange as much with varying equivalence ratio, as it was observed

or CO, CO 2 , and H 2 in Fig. 11 . Unsaturated C 2 species are mostly

ormed by a sequential H abstraction from C 2 H 6 to produce C 2 H 2 .

ethyl recombination to ethane is a primary termination reaction

nd is the major sink for CH 3 radicals ( Fig. 13 ), which are formed

ither from CH 4 or DME and can be oxidized to formaldehyde,

ubsequently producing CO, or recombine to ethane. The path fol-

owed by these radicals is strongly influenced by the lack of oxygen

n the mixtures, which is the reason why the second path prevails

ver the first one for mixtures at extremely high equivalence ratios

s can be seen in Fig. 13 . Ethane reacts to C 2 H 4 ; ethylene, on the

ther hand, reacts to more than 90% to form acetylene while the

ther 10% are consumed to produce propene. The subsequent re-

ctions of C 2 H 2 are very complex. When formed, propyne and allyl

ill produce C 3 H 3 at high temperatures, which mostly recombines

nd goes on to form benzene (main soot precursor). 

φ = 6. 
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Fig. 14. Remaining fractions of reactants as a function of temperature for mixtures 20 (left) and 22 (right). 

Fig. 15. Yields of CO, CO 2 and H 2 as a function of temperature for mixtures 20 (left) and 22 (right). 
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The decrease of the reactants and the formation of stable prod-

ucts as a function of temperature was investigated in the plug-

flow reactor. In this case, gas mixture compositions at the end of

the reactor were computed implementing the plug-flow simula-

tion model mentioned in Section 3 and compared to experimental

data. 

Figure 14 shows the remaining fractions of CH 4 , O 2 and DME

as a function of temperature and equivalence ratio. The first con-

sumption of the fuel takes place at temperatures higher than 523 K.

This is shown by the decreasing fuel fraction of DME and CH 4 as

well as by the consumption of O 2 . DME decreases much faster than

CH 4 , which is caused by the higher reactivity of DME, as already

shown in Fig. 10 for the species time profile measurements in the

RCEM. Even at the highest investigated temperature of 973 K and

φ = 10, more than 90% of the CH 4 remains in the mixture, whereas

DME is completely consumed at temperatures above 823 K. With

increasing equivalence ratio, the fraction of remaining CH 4 also in-

creases, reaching values higher than 100% at φ = 20 and T > 823 K

(mixture 22). This effect is caused by methane formation under

these conditions. The trends and absolute values of the remain-

ing fraction of methane and DME are predicted very well by the

model, including the observed NTC region in the 623–773 K range.

The remaining amount of O 2 is also in good agreement with the

model predictions up to 773 K. At higher temperatures, higher O 2 

consumption was observed for the mixtures with 5% DME (see

supplementary materials) in the experiments. These deviations be-

come smaller with increasing temperatures. 

Yields of major products (CO, CO 2 and H 2 ) as well as higher

hydrocarbons (C 2 and C 3 species) as a function of temperature and

equivalence ratio are presented in Figs. 15 and 16 . Figure 15 shows

that CO is the main product in all experiments and that the yields

of CO and CO 2 decrease with increasing φ from nearly 19% and 1%

at φ = 10 to 13% and less than 0.5% at φ = 20 for CO and CO 2 ,

respectively. The reason for this behavior is the lack of oxygen,
ecreasing the reactivity of the mixtures. The lower conversion of

ethane and gas temperatures obtained at higher equivalence ra-

ios are also a consequence of the low oxygen concentration. For

 2 , on the other hand, yields nearly remain constant from φ = 10

5.5%) to 20 (5.1%). This suggests that most H 2 is formed by oxida-

ion of DME, as DME is fully oxidized at temperatures higher than

23 K ( Fig. 14 ). Additionally, the yields rise with increasing DME

mount, whereas this effect is much more pronounced at φ ≥ 10,

ompared to φ = 2 (see supplementary material). 

In general, good agreement between simulations and exper-

ments is found, especially regarding the trends of the product

ields. Only for CO 2 , the model predicts much higher yields in

omparison to the experiments. This observation is similar to that

n case of the RCEM experiments. Also, for H 2 , the model slightly

nder predicts the yields in the 573–773 K range. The experimental

ata at 473–523 K can be neglected as they arise from the fluctu-

ting background in the spectra of the TOF-MS. 

C 2 and C 3 species are formed at temperatures higher than

23 K. The maximum yields of C 2 H 4 were found at φ = 2 (see sup-

lementary material). The yields of C 2 H 6 , C 3 H 6 , and C 3 H 8 show a

ocal maximum at φ = 10 within the investigated parameter range.

xcept for C 2 H 4 at φ ≥ 10, the yields of these hydrocarbons de-

rease with increasing DME amount. Additionally, it can be noticed

hat the unsaturated hydrocarbons C 2 H 4 and C 3 H 6 are formed by

 abstraction from C 2 H 6 and C 3 H 8 at higher temperatures, as the

ields of the alkanes are exceeded by the alkene ones. As the tem-

eratures are relatively low, no formation of C 2 H 2 was observed.

ith respect to the simulations, an overall good agreement of the

xperimental and simulated data is found. For C 2 H 4 and C 3 H 6 , the

odel under predicts the experimental data. 

Species concentrations of several hydrocarbons including ben-

ene, were measured after the ignition in a shock tube. The shock

ube data were simulated for mixture 13 ( φ = 10) at 30 bar and

00 K ( Fig. 17 ). 
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Fig. 16. Yields of C 2 H 4 , C 2 H 6 , C 3 H 6 and C 3 H 8 as a function of temperature for mixtures 20 (left) and 22 (right). 

0 5 10 15 20

0.1

1

10

noitartnecno
C

i
%lo

m/

Time / ms

CH4

N2

O2
H2O

CO
H2

Ne
CO2

C2H4

C2H2

C3H6
C6H6

C2H6

DME

Fig. 17. Simulation of time dependent species profiles for shock tube conditions 
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The results in Fig. 17 show that the main reaction products at

hese conditions are H 2 , CO, H 2 O, CO 2 , C 2 H 4 , C 2 H 2 , C 3 H 6 , C 2 H 6 ,

nd C 6 H 6 . The mole fractions of most species (except H 2 , C 2 H 6 ,

nd C 6 H 6 ) reach nearly constant values about 2 ms after ignition

hile a temperature decrease is observable after the measurement

ime of 12 ms. The gas temperature decrease due to rarefaction

aves is caused by the high heat capacity of the mixture that is

ot sufficient to stop radical reactions so that the benzene concen-

ration steadily increases over time while the ethane concentration

ecreases. These radical reactions are stopped by the strong tem-

erature decrease during sampling in the evacuated 50 ml vessel.

n order to compare simulation results with the experimental data

easured in a shock tube ( Fig. 18 ), an average reaction time of

5 ms was assumed. 

Figure 18 shows the results of the product measurements and

imulations with PolyMech as a function of the initial tempera-

ures. The product yields of the species displayed in Fig. 18 , with

he exception of benzene, show low dependence on the initial tem-

erature. This is predicted well by the simulations. The absolute

oncentrations of C 2 H 2 and CO are in good agreement with the

imulations whereas for benzene much higher concentrations are

redicted due to the lack of reactions in the mechanism describing

he consumption of benzene. Benzene is considered to be a soot

recursor and its further reactions lead to the formation of PAHs

105] . In this case, no further aromatic species or soot were de-

ected during experiments. Although, it was not possible to mea-

ure benzene in the RCM and no benzene was detected in the flow
eactor experiments, a carbon balance of all measured species in

he RCM and the flow reactor does not suggest the presence of

enzene or any other larger hydrocarbon molecule. 

. Conclusions 

In this work, the oxidation of CH 4 /DME mixtures under

xtremely fuel-rich conditions was investigated by measuring

gnition delay times (IDTs) in a rapid compression machine (RCM)

nd in a shock tube as well as quasi-time resolved histories of sta-

le species during the reaction in a rapid compression–expansion

achine (RCEM), a shock tube, and a flow reactor. The measure-

ents cover an extended range of equivalence ratios ( φ = 1–20)

o provide data that are of special interest for partial oxidation and

olygeneration processes. The variation of product concentrations

s a function of reaction time revealed syngas (CO and H 2 ) as a

ain product of the reaction of the studied mixtures; promising

ields of valuable species like C 2 H 4 and C 2 H 2 were also observed. 

Even though the formation of soot and PAHs is reported to be

nhanced at low temperatures, none of these were observed in the

xperiments presented in this study, probably because of the pres-

nce of DME in the fuel mixtures. Small concentrations of ben-

ene (considered as a soot precursor) were detected in shock tube

xperiments, showing a composition increase of the species with

ncreasing temperatures above 10 0 0 K. These high initial tempera-
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tures could not be achieved in the RCM and flow reactor measure-

ments. 

A reaction mechanism (PolyMech) was developed with a spe-

cial focus on the description of the ultra-rich reaction conditions

important for polygeneration processes, since most of the chemi-

cal kinetics models found in the literature are validated only for

the conventional combustion regime ( φ = 0.5–2). The PolyMech is

based on existing mechanisms describing the oxidation and pyroly-

sis of methane as well as the reaction of DME, which was included

in the fuel mixture as auto-ignition and reaction promoter. Sen-

sitivities and reaction pathways analyses were carried out at dif-

ferent conditions in order to identify the rate-limiting reactions at

the conditions covered in this study. It was found that at low tem-

peratures, the sub-mechanism of DME plays an important role on

the kinetics of the mixtures, as it provides radicals and increases

the gas temperature promoting the further reaction of methane.

At low temperatures, a two stage ignition was observed in experi-

ments as well as in simulations. At higher temperatures, only one

main ignition was observed; reaction analyses on these conditions

showed an increase in the sensitivity of reactions including CH 2 O

and hydrogen sub-mechanisms. 

With increasing equivalence ratios, a notoriously decrease of

the methane conversion was observed, while DME and oxygen

were completely consumed in all cases. An influence of the de-

creasing methane conversion was also observed in the formation of

some species like C 2 H 4 and C 2 H 6 , which displayed smaller concen-

trations in the mixtures at higher equivalence ratios. An increase in

the sensitivities of reactions including radicals like H and CH 3 with

rising equivalence ratios was also observed. This was expected due

to the lack of oxygen present in the initial mixtures at these con-

ditions. 

In order to improve the simulation predictions of experimen-

tal data in a wide range of conditions, rates of some limiting re-

actions were modified within their uncertainties as described in

the Section 4 of this study. The identification of these reactions

was carried out by applying sensitivity analyses at different tem-

peratures and mixture compositions. The presented polygeneration

mechanism (PolyMech) is shown to predict the measured igni-

tion delay times and species concentration variations very well.

But, it has to be noticed that further reactions describing the

formation and reaction of benzene should be included in order

to obtain better predictions of C 2 species profiles. Consequently,

the PolyMech is a valuable tool for describing reactions in the

ultra-rich regime, which is relevant for several future combustion

applications. 
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