Machine Learning for Process
Automation of Agricultural Machines in
Field Applications

Karam Daaboul!, Simon Becker!, Kevin Daif3!, Karl Kurzer!,

Marcus Geimer! and J. Marius Zollner!2 !

Abstract

Modern machines for agricultural field applications, such as tractors with dif-
ferent implements, offer a vast variety of static as well as dynamic configuration
parameters that must be managed by the operator during field operation. To
operate these machines efficiently and achieve the desired results, experience
is required. In order to facilitate the operation of these complex machines for
less experienced users, the capabilities of machine learning are being researched
to control the machine and hence increase its level of automation, easing the
cognitive load for the operator. The use of model-free reinforcement learning
(RL) enables us to find the optimal parameter configuration for a given machine
state, with respect to a operator defined performance metric. The use of RL
enables us to be learn directly from measurement data without requiring a de-
tailed model of this complex system. An initialization of the system is learned
from behavior that has previously been recorded (Imitation Learning), based on
this initialization the system improves itself by exploring untried actions in the
real world. The evaluation is conducted on a real tractor during field operation.

1. Introduction

Tractors are used to handle all kind of agricultural tasks. In combination
with implements a high number of tasks from transportation to soil tillage can
be accomplished. Every implement offers different settings and parameters
that need to be adjusted according to environmental conditions and agricul-
tural needs. Together with the capabilities and limitations of the tractor most
agricultural tasks can result in complex systems.

This complexity makes it difficult for drivers to operate the machine opti-
mally and makes it hard for engineers to model the tasks and thereby to control
them. Since modern agricultural machines are equipped with a variety of differ-
ent sensors, a data driven approach for the optimal control problem can be used
avoiding the model complexity, leading to more accurate and faster decision
making.

Machine learning (ML) is the study of computer algorithms that allow com-
puter programs to automatically improve through experience[l]. In the last
years ML is being applied to more and more fields including, for example,
medicine, finance, robotics and agriculture [2]. In contrast to supervised learn-
ing, primarily used for classification and regression tasks, and unsupervised
learning, used for tasks such as clustering and anomaly detection, reinforce-
ment learning has emerged as the go to method to solve sequential decision
making problems e.g. optimal control. In the past years RL algorithms reached
major breakthroughs in the area of game playing [3, 4] and robotic control[5, 6].

Our main contribution is a machine learning framework that leverages model
free RL to optimize for agricultural tasks. The evalautin of our framework shows
its ability to optimize either the efficiency or the performance (reduction of fuel
consumption, or reduction of time) of the ploughing task. To our knowledge,
this is the first work apply an RL method to the task of optimal control for
tasks such as ploughing.

2. Related Work

Previous approaches focused on modelling the complex dynamics of the trac-
tor. The simulation based project Organic Computing in Off-highway machine
[7] used a simulation model to analyze the machine state and Organic Comput-
ing to derive actions that define the new machine state.

A concept for the optimization of the rotary harrow is presented in [8]. The
concept is based on recognizing the quality of the work results with a stereo
camera. A point cloud is generated and the roughness profile is determined on
the basis of this cloud. The process is controlled on the basis of this roughness
profile. The controller adjusts driving and power takeoff (PTO) speed.
Reinforcement learning (RL) has successfully trained computer programs to play
games at a higher level than the world’s best human players [9]. Applications of
RL in high-dimensional control problems, like robotics and driverless cars, are
the subject of current research [6, 10]. In

3. Approach

In this section we describe the sytem that we try to optimize and define the
problem in reinforcement learning terms and present the technical solutions we
adopted.

8.1. System to be Optimized

Ploughing serves as an exemplary task. On the one hand, this process is
characterized by the fact that it demands a lot of experience from the driver
in order to find suitable process parameters. On the other hand, ploughing re-
quires a high tractive effort, which results in a large fuel saving potential.

A Fendt 516 Vario tractor with continuous variable transmission and a Lemken
Juwel 8 541 furrows plough with 1.60 m to 2.70 m variable working width are

Figure 1: Machine combination used

used for the research. The tractor is solely equipped with series production sen-
sors. No modifications were made to the plough. The computer on which the
control system runs is located on the tractor. Communication between tractor
and computer is illustrated in figure 2. The computer communicates with the
tractor via a CAN interface. Machine parameters can be read and written via
the CAN interface.

The machine combination as described above has two kinds of parameters.
There are parameters that have to be retrieved only once for the specific tractor
implement combination, e.g. the front furrow width, the pulling point and the
height of stabilizer wheel. These parameters are usually adjusted once before
the work starts. So dynamically changing these parameters is not of interest.
The other group of parameters are parameters that have to be adjusted contin-
uously during field operation. For the process considered here these parameters
are the tractor velocity over ground as well as rear linkage height. The tractor
velocity’s on the one hand directly corresponds to its working speed, on the
other hand it influences the tractor’s slippage between tires and ground, and
hence efficiency. The parameter rear linkage height is prespecified by the plants,
need but it can be adjusted locally at a certain level in situations where this is
necessary. These situations occur in regions of the field with rapidly changing
conditions, e. g. because they are very wet. Here the tractor could get stuck if
the rear linkage height would not be adjusted. Thus, these parameters have to
be adjusted continuously during work as conditions change. These conditions
depend on machine parameters and on environment parameters like weather
and soil quality. Especially the soil quality can change many times even on
small fields. Here an automatic control system can react with a much higher
frequency than a human, managing all the different conditions and parameters.

,.
|
|
|
|
|
|
|
L

Tractor with :
implement |
|

=

(setpoints)

CAN Messages
l (process data)
T CAN Messages

Figure 2: Machine setup

3.2. Problem Formulation

The problem of finding the optimal parameters for the tractor is formulated
as a Markov Decision Problem (MDP) [11]. For this specific problem the MDP
is modeled with:

e S is the state space of the tractor.

A is the action space of the tractor.

p:SxA— P(S)is a transition function, which for every pair (s,a) €
S x A assigns a probability distribution p(s;y1|s¢, ar) representing the
probability of entering a state s;41 from state s; using action a;.

e R:S5xSxA — Ris areward function, which describes the reward
R(st41, 8¢, at) associated with entering state s;41 from state s; using action
Q.

v € [0,1] is a discount rate parameter that controls the effect of future
rewards on the current state.

3.2.1. Reinforcement Learning

The goal of reinforcement learning is to discover an optimal policy 7*(s)
that maps states to actions so as to maximize the expected reward R. Q-
learning is an off-policy model-free reinforcement learning algorithm that can
find 7*(s) by approximating the Action-Value Function Q7 (s,a). Q™ (s,a) gives
the expected return if you start in state s, take an action a, and then forever

after act according to policy w. The optimal policy can directly obtained if we
have Q*,
7*(s) = argmax Q* (s, a) (1)
a
In the deep Q network algorithm (DQN) a neural network was used to approx-
imate Q7 (s,a) [12].

3.2.2. State Space

The key for defining the state space is the definition of the observations
O, that the algorithm receives at each time step. The state space consists of
parameters read from the tractor’s CAN and machine characteristics (such as
the working width of the plough). The following parameters are used:

e engine speed n (min~!): engine ECU

e engine torque T (Nm): engine ECU

e gear ratio ¢: tractor ECU

e fuel consumption per time C' (Lha): engine ECU

e rear linkage forces F' (N): load cells via tractor ECU
e velocity v: (kmh~1): radar sensor via tractor ECU

e wheel velocity v,, (kmh~1!): calculated with engine speed and gear ratio
via tractor ECU

e slip ratio s: calculated using velocity and desired velocity

5= tow =l (2)
UV = N

where 7 is the wheel correction
e working width of plough w (m): implement specific
e rear linkage height h: tractor ECU

Since the measurements had different frequencies, we implemented synchroniza-
tion to synchronize them.

3.2.8. Action Space

The set of actions which can be used to control the tractor are: the wheel
velocity, the rear linkage height and the engine speed. We chose the wheel
velocity to control the system, because for tractors with continuous variable
transmission the wheel velocity is the parameter that the driver has to adjust
while driving. Using one of three discrete actions, decelerate, no change in
velocity and accelerate the system can find the ideal velocity for a given state.
The action is applied for a constant time step At. Since the acceleration of

Decelerate No change in velocity Accelerate
Av=—0.2kmh™! Av=0kmh™! Av=04kmh™T

Table 1: Action space used by the DQN to control the tractor

a tractor with implement is a harder action than the deceleration, we chose
different values for the actions deceleration and acceleration, see table 1.

For safety reasons the system was only allowed to change its velocity in a
range V predefined by an expert (hard constraint).

8.2.4. Reward Function

The reward function rewards the agent for its actions. So it defines the op-
timization goal for the system. Therefore the definition of a reward function is
a critical task. We trained our agent for two different reward functions ”effi-
cient” and ”performant”. The first one was to drive efficiently with the goal to
minimize fuel consumption per area

c

v-w

3)

Reﬂicient(5t+1, St, at) = —w -
and the second one was to optimize the time to complete the task
Rpcrformant(st+1, St, at) =Wy VW (4)

where wy and ws are the reward weights.
To improve the robustness of the system, we also used a soft constraint to train
the policy to change the velocity in a range V predefined by an expert.

Rsafety(8t+175t7at) =-2 if s ¢V (5)

3.2.5. Network

To approximate the Action-Value Function Q™ (s,a) we used a feedforward
neural network. The input layer of our model consists of ten units, which is
equal to the dimension of the state space, it also has three hidden layers, with
128, 128 and 64 units, and an output layer with three units, which corresponds
to the size of the action space.

3.2.6. Training

Starting training directly from an initial policy that knows nothing about
the task and the environment will damage the tractor because the policy has to
explore many undesirable actions. Therfore we first trained the policy offline to
imitate a human driver. In offline training the system can only learn from the
actions that are in the recorded data and can not explore new actions.
The next step was the online training of the policy on the task. So the policy
controlled the machine and received immediate rewards as feedback for the
actions taken. To optimize the policy, we gave it the ability to explore the
parameter space by testing new actions that had not been used in similar states

before.
We trained the policy online several times and evaluated the resulting policy
between training sessions. If the collected rewards from the new policy were
better or as good as the collected rewards from the old policy, then we saved
the new policy, if not, we discarded it and continued training with the old policy
again.

4. Experiments

Experiments were conducted both for training, evaluation, as well as testing.
As it is important to eliminate undesired and unrecorded distractions as far as
possible, mechanical adjustments of the plough are only done once before start-
ing the tests. The upper link is hooked into the long hole in order to prevent
tensions between plough and tractor when driving on crooked ground. As usual
in ploughing the tractor steers itself in the plough furrow.
As a non-deterministic algorithm under development controls a potentially dan-
gerous machine the following safety precautions were enforced:

e The agent is only allowed to adjust the machine parameters in a predefined
range.

e There is always a driver on board that is able to control the machine if
necessary.

e The agent is only able to write parameters on the machine after it was
given dedicated write access. Write access has to be given over both a
hardware and a software button. Write access can always be withdrawn
over a hardware button.

o If all software safety features fail, the machine can always be stopped using
its mechanical brake and clutch.

4.1. Framework

The necessary software is implemented using the ROS framework [13]. One
ROS program converts CAN to ROS messages. The sub programs of the agent
are also implemented in ROS and communicate with each other using ROS
messages. This modular implementation makes testing different algorithms easy.
We borrowed from OpenAi Gym [14] to define our agent, see figure 2. We used
Tensorflow [15] to implement our network and OpenAi Baselines [16] to applay
the Q-learning algorithm.

4.2. Scenarios

The system is only active during ploughing itself. This means the system
starts controlling the tractor when the plough is lowered and stops controlling
the tractor when the plough is raised. The system is inactive while the machine
is turning between the rows.

5. Evaluation

In this chapter the function of the algorithm is evaluated by conducting a
test run. Models with the two different reward functions "efficient” and ”per-
formant” are evaluated. Additionally a row driven by a human is used for
comparison.

For initialization the agents were trained offline using approximately 2 hectare
of ploughing. Then each agent was trained online using four rows of 100m length
on the test field. Figure 3 shows the velocity over distance for three rows from
the evaluation field. The ”Reference” row was driven conventionally, the two
other rows were driven by the system.

It is noticeable that both agents start at the same speed and behave very simi-
larly in the first thirty meters, although they were trained with different reward
functions. This is because the system takes time to set the appropriate speed.
After this adjustment phase, however, the agent optimized for high speed reaches
a higher speed than the human driver. This can also be seen in table 2, where
the right column shows the average speed in the range after the first thirty me-
ters. A similar behavior can be seen in figure 4 for the fuel consumption per area.

Since the tractor has started its work without speed and the guideline could
only accelerate it with a maximum acceleration of 0.4 at each timestep, the
tractor needs about thirty meters to reach the omptimal machine setting.

3107

< Reference

L Efficient

n (Il Performant

g °| M%

(0]

5 Fgmufﬂ‘ﬂ MWLWW% 'hﬂuﬂﬂnﬁ o o)

= 4l o T W i

£ qrf

> R

5 1y LH,“ru

o

2 4 ‘ ‘ ‘ ‘ ‘

0 20 40 60 80 100
distance in meter
Figure 3: Velocity over distance
Complete Distance | Begin after 30 meters
Reference 7.03 6.77
Efficient 6.11 6.29

Performant 6.72 7.12

Table 2: Mean velocity in kilometers per hour

Reference
“W

Efficient

|
sor Performant R W\%FNWM bl

i tho
AR,

40 60 80 100
distance in meter

Fuel in liters per hektar

Figure 4: Fuel consumption over distance

Complete Distance | Begin after 30 meters
Reference 27.69 28.60
Efficient 24.68 25.29
Performant 24.34 27.10

Table 3: Mean fuel consumption per area in liters per hektar

6. Conclusions

We introduced a new framework based on a model-free RL algorithm that is
suitable for learning a policy to optimize a task of a tractor with an implement,
either by minimizing time or by minimizing fuel consumption per area. As can
be seen in the evaluation section, the policy is able to achieve the goals defined
in the reward function. Our framework trained first offline to imitate a human
driver, then online to further optimize itself. Hard and soft constraints are
used to increase the safety of the system during training and testing. The next
step would be to apply policies with continuous action spaces to avoid the time
required to achieve the optimal machine setting and to use other methods from
the safe reinforcement learning research area to improve the safety of the system
during the training.

7. Acknowledgements

We wish to thank the Association for the Promotion of Teaching an Research
of Mobile Machines (MOBIMA e.V.) for funding the project Trainable control
systems for mobile machines within which the research leading to this contribu-
tion was conducted. Furthermore we wish to thank AGCO/Fendt for providing
us the test machine and Lemken for supporting us with the test plough. For
precise navigation we wish to thank geo-concept and the Landesamt fuer Geoin-
formation und Landentwicklung Baden-Wuerttemberg.

[1]

[10]

[11]

T. Mitchell, Machine Learning, ser. McGraw-Hill International Editions.
McGraw-Hill, 1997. [Online]. Available: https://books.google.de/books?
id=EoYBngEACAAJ

K. Liakos, P. Busato, D. Moshou, S. Pearson, and D. D. Bochtis, “Machine
learning in agriculture: A review,” in Sensors, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with Deep Reinforcement
Learning,” dec 2013. [Online]. Available: http://arxiv.org/abs/1312.5602

D. Ha and J. Schmidhuber, “World models,” CoRR, vol. abs/1803.10122,
2018. [Online]. Available: http://arxiv.org/abs/1803.10122

OpenAl, M. Andrychowicz, B. Baker, M. Chociej, R. Joézefowicz,
B. McGrew, J. W. Pachocki, J. Pachocki, A. Petron, M. Plappert,
G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng,
and W. Zaremba, “Learning dexterous in-hand manipulation,” CoRR,
vol. abs/1808.00177, 2018. [Online]. Available: http://arxiv.org/abs/1808.
00177

S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-eye
coordination for robotic grasping with deep learning and large-scale
data collection,” CoRR, vol. abs/1603.02199, 2016. [Online]. Available:
http://arxiv.org/abs/1603.02199

T. Kautzmann, M. Geimer, M. Wiinsche, and S. Mostaghim, “Holistic
Optimization of Tractor Management Organic Computing in Off-highway
Machines,” 2010.

P. R. Nurscher, J. Karner, J. Huber, G. Moitzi, H. Wagentristl, M. Hofinger,
and H. Prankl, “A system for online control of a rotary harrow using soil
roughness detection based on stereo vision,” 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,” Nature,
vol. 518, mno. 7540, pp. 529-533, feb 2015. [Online]. Available:
http://www.nature.com/doifinder/10.1038 /nature14236

A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D. Lam,
A. Bewley, and A. Shah, “Learning to drive in a day,” in Proceedings of the
International Conference on Robotics and Automation (ICRA), 2019.

R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

https://books.google.de/books?id=EoYBngEACAAJ
https://books.google.de/books?id=EoYBngEACAAJ
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1603.02199
http://www.nature.com/doifinder/10.1038/nature14236

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,

D. Wierstra, and M. A. Riedmiller, “Playing atari with deep
reinforcement learning,” CoRR, vol. abs/1312.5602, 2013. [Online].
Available: http://arxiv.org/abs/1312.5602

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, software available from
tensorflow.org. [Online]. Available: https://www.tensorflow.org/

P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “Openai baselines,” https:
//github.com/openai/baselines, 2017.

http://arxiv.org/abs/1312.5602
https://www.tensorflow.org/
https://github.com/openai/baselines
https://github.com/openai/baselines

	Introduction
	Related Work
	Approach
	System to be Optimized
	Problem Formulation
	Reinforcement Learning
	State Space
	Action Space
	Reward Function
	Network
	Training

	Experiments
	Framework
	Scenarios

	Evaluation
	Conclusions
	Acknowledgements

