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Abstract— The pairing of actuators and controlled variables
for process control is non-trivial due to couplings among process
quantities and further disturbing effects. Here, we consider the
product gas stage in a biomass pyrolysis process. Based on a
dynamic model of the latter, several analyses, namely Relative
Gain Array (RGA), Dynamic Relative Gain Array (DRGA) and
Singular Value Analysis (SVA) are performed to solve the
pairing problem. In particular, we emphasize the practical
benefit from DRGA’s results by showing that challenges, like
non-measurable disturbances or time delays, can be mitigated
by simple changes in an implemented control concept.

I. INTRODUCTION

Most chemical processes are multivariable in nature.
Hence, they are usually described by MIMO (multiple in-
put multiple output) systems. To control such processes, a
decentralised concept is often applied, i.e. the considered
MIMO plant is controlled using a set of separately working
single loop controls, which is also called multiloop control
[1], [2]. This concept has proved its worth due to its
simplicity and has been extended for several applications
[3], [4]. However, the performance essentially depends on
a suitable pairing of controlled and manipulated variables
[5]. Often the pairing is realized intuitively [6], but more
straight forward methods are known. By introducing RGA,
Bristol [7] developed a concept to quantify and evaluate
the static interaction between two SISO control loops. Its
extension to an arbitrary finite number of SISO control loops
as well as to the dynamic case is described in [8], [6],
[9], [1] and is often referred to as DRGA. Another concept
to investigate multivariable control problems is SVA [10],
[1], [11], which is based on singular value decomposition
(SVD). Some other papers present further developments
w.r.t the RGA method, either by expanding its application
area to robustness analysis [12], model uncertainty [13] or
by creating RGA based methods and therefore introduce
new interaction measures (IMs), like the Average Relative
Gain Matrix (ARGM) [14], the Hankel Interaction Index
(HII) [15], the Effective Relative Gain Array (ERGA) [16]
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or the state-Dynamic Relative Gain Array (s-DRGA) [17].
Another earlier field of research regarding RGA has derived
approximate analytical expressions [18], [19] or numerical
approaches [20] for Bristol’s (static) RGA by considering
dual composition control control. Additionally, there exist
numerous other publications dealing with the application
of RGA [21], [22], [23] and SVA [24] in the context of
multivariable control.
However, a huge part of them presents rather academic
examples without testing the results of the analysis in a
validated simulation model of a real plant. Furthermore,
DRGA is rarely considered in practical applications [25], [6].
As DRGA provides suitable pairings for different frequency
domains of the plant model, it remains unanswered in the
literature, which effects influence the operation frequency
domains of a real plant. To fill this gap, we firstly give an
overview, how different frequency domains can be excited
in process plants. Secondly, we show for our application
that the time delays of the actuators essentially influence
the operation frequency domain. Therefore, we give an idea,
how to identify a relation between plant disturbances and
excited frequency domains.
This paper is organized as follows. In Sec. II, we present
a dynamic model of the product gas stage in a biomass
pyrolysis process. After introducing control nomenclature for
the physical variables, the model is classified as nonlinear
differential algebraic equation (DAE) system with constant
input delay in semi-explicit form. Via linearization about two
characteristic operation points (OPs) neglecting input delays,
quantisation and saturation effects, a transfer function matrix
for each operation point is obtained, s. Sec. III-A. In Sec. III-
B, III-C and III-D, the plant is analyzed by applying RGA,
DRGA and SVA, where corresponding results are further
discussed. Finally in Sec. IV, the recommendations to modify
the control concept are tested and verified in simulations.

II. MODELING

In this section, we shortly describe the considered process
and give an overview of relevant model equations.

A. Description of the Product Gas Stage

The Karlsruhe Institute of Technology (KIT) tests the
production of synthetic fuel from renewable raw materials
in the pilot plant bioliq R©, which consists of four partial
plants. The partial plant bioliq I, which is modelled in the
next section, is used to produce an organic condensate of
high energy density from dried, finely chopped biomass,
e.g. straw. This charge material is introduced into a reactor,



where the pyrolysis reaction takes place. The intermediate
products consist of different gases and vapour, while all solid
parts like coke and sand are separated. Subsequently, all
gases and vapour pass a cooler and two condensers, which
separate the liquid phase from the vapour, such that the
combustible product gas is obtained. While the condensate
acts as charge material of the downstream process step, the
product gas is burnt together with atmospheric oxygen in an
excess gas burner and is then dissipated to the ambience.
In order to transport the gases and vapour from the reactor
to the excess gas burner, a blower provides the desired
pressure ratios. When conveying a sufficiently high flow rate,
a safe operation of the blower is ensured. This is realized by
branching off a part of the product gas in front of the burner
and feeding it back to the condensers.

B. Dynamic Model of the Product Gas Stage
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Fig. 1: Flow sheet of the product gas stage in the considered
biomass pyrolysis process

The physical model of the product gas stage in the
considered biomass pyrolysis process is described by the
flow sheet in Fig. 1. In the following, the model equations are
given and shortly explained (s. [26], [27], [28], [29] for more
details). The nomenclature for physical variables, parameters
and constants is shown in TABLE I.

1) Pyrolysis reaction: Since a detailed model of the com-
plex pyrolysis reaction is impractical from a control
engineering perspective, it is simplified as PT1 element

d
dt

ṁPyr =
1

TPyr
(kPyrṁin− ṁPyr). (1)

2) Flow Balance: By balancing the product gas volume
flows, the relation

V̇PG,1−V̇PG,2−V̇PG,3 = 0 (2)

is obtained.
3) Gas mixture: Assume that the product gas is a perfect

mixture (Law of Adamat) of pyrolysis and nitrogen gas.
The density of the product gas is then given by

ρPG =
ρN2V̇N2,res + ṁPyr

V̇N2,res +
ṁPyr
ρPyr

. (3)

4) Plant pressure: If isothermal state changes and slow
pressure changes are assumed, the plant pressure can

be modelled as integrator over incoming and outgoing
mass flows [27], i.e.

d
dt

p1 =
1

Tp1

(
ṁPyr +ρN2V̇N2,res−ρPGV̇PG,2

)
. (4)

5) Plant flow resistance: In order to describe the behaviour
of the plant flow resistance, the simple approach ∆p =
cV̇ 2 is applied and therefore, it follows that

p1− p2 = cPlṁ2
Pyr. (5)

6) Blower and valves: While the blower is represented by
its static characteristic curve, the valves have equal-
percentage characteristics. Since the blower and valve
V1 are serially connected, the pressure difference over
these two elements yields

p3− p2 =

(
kgg2−

(
cV 1 +

exp(−2as,V 1α̃1)

a2
1,V 1

))
V̇ 2

PG,1

+ kgg1NnÑV̇PG,1 + kgg0(NnÑ)2.
(6)

By connecting valve V2 to the ambience, its normal-
ized after-pressure is zero, and can be described by

p3 =

(
cV 2 +

exp(−2as,V 2(α̃2−α2,min))

a2
1,V 2

)
V̇ 2

PG,2 (7)

within its effective operation range represented by
α2,min. Finally, the equation for valve V3 is simply
given by its equal-percentage characteristic, such that

p3− p2 =

(
cV 3 +

exp(−2as,V 3α̃3)

a2
1,V 3

)
V̇ 2

PG,3. (8)

7) Blower drive: The blower drive consists of a speed-
regulated electric motor, which transforms the desired
rotational speed N into the effective one Ñ. This pro-
cess is modelled by a PT1 element with rise limitation,
i.e.

d
dt

Ñ = satl+,N
l−,N

(kN(N− Ñ)), (9)

where the saturation of a signal x with limits l− and
l+ is defined by

satl+l−(x) =

 l−, x < l−
x, l− ≤ x≤ l+
l+, x > l+

, l+ > l−.

8) Valve actuators: Closely related to (9) are the equations
for the valve actuators. Besides rising limitations,
quantisation effects and input delays are additionally
included, such that

d
dt

α̃i(t) = sat
l+,αi
l−,αi

(kαi(quantqαi
(αi(t−Td,αi))− α̃i(t)))

(10)
is obtained. Here, the indices i = 1,2,3 represent
the corresponding valve. Furthermore, the operator
quantq(x) denotes the quantisation of the signal x with
step size q and is defined by

quantq(x) = sgn(x) ·q ·
⌊
|x|
q

+
1
2

⌋
, q > 0.



Variables
Sym. Description Unit
α̃i effective position of valve Vi −
αi desired position of valve Vi −

ṁin charge mass flow into reactor kg3
s

ṁPyr pyrolysis gas mass flow into reactor kg3
s

Ñ normalized effective roational speed of blower −
N normalized desired roational speed of blower −
p1 normalized pressure in pressure reservoir mbar
p2 normalized pressure in front of valve V1 mbar

Sym. Description Unit
p3 normalized pressure after blower mbar

ρPG std. density of product gas kg3

m3

V̇N2 ,res resultant std. volume flow of nitrogen gas:
V̇N2 ,res = V̇N2 ,1 +V̇N2 ,2 +V̇N2,3

m3
h

V̇PG,1 std. volume flow of product gas through blower m3
h

V̇PG,2 std. volume flow of product gas to gas burner m3
h

V̇PG,3 std. volume flow of product gas in feedback m3
h

Parameters and Constants
Sym. Description Values Unit

a1,Vi valve Vi characteristic curve parameter 11.8; 0.5; 0.1 m3

h
√

mbar
as,Vi valve Vi characteristic curve parameter 3.9; 6.8; 5.9 −
α2,min lower valve V2 actuator limit 0.22 −
cPl flow resistance of front plant 0.5 ·10−3 h2 mbar

m6

cVi flow resistance of pipe to valve Vi 0; 0.01; 0.006 h2 mbar
m6

g0 blower characteristic curve parameter 1.0 ·10−5 h2 mbar
m6

g1 blower characteristic curve parameter 5.2 ·10−5 minhmbar
m3

g2 blower characteristic curve parameter −9.7 ·10−4 min2 mbar
kg proportionality factor of blower 0.9 −
kN gain factor of blower drive 10 1

s

Sym. Description Values Unit
kPyr reaction factor of pyrolysis 0.2 −
kαi gain factor of valve Vi actuator 2.0;1.5;1.0 1

s

l±,N slope limit of blower drive ± 1
60

1
s

l±,αi slope limit of valve Vi actuator ±{0.3;0.04;0.01} 1
s

Nn blower nominal rotation speed 6544.4 1
min

qαi valve Vi actuator quant step size 0.03; 0.03; 0.01 −
ρN2 std. density of nitrogen gas 1.25 kg

m3

ρPyr std. density of pyrolysis gas 1.6 kg
m3

Tp1 pressure reservoir time constant 32.718 s
TPyr time constant of pyrolysis 30 s
Td,αi time delay of valve Vi actuator 1.5; 2.5; 1.5 s

TABLE I: Nomenclature for physical variables, parameters and constants

Hereinafter, (1) to (10) are referred to as plant and include
the process as well as the actuator model. All parameters
are identified using output error least squares, i.e. the output
error e j = ŷ j−y j, j = 1, . . . ,n of the measured output y j and
the simulated one ŷ j is minimized by

min
θ̂

n

∑
j=1

e2
j , (11)

where θ̂ denotes the vector of estimated parameters. Since
the parameter identification is not the main focus of this
paper, it is not further discussed.

III. ANALYSIS AND DISCUSSION

In the following, the plant is represented as a DAE system,
which is linearized about two operating points and transfer
matrices for each one are obtained. The methodologies of
RGA, DRGA and SVA are firstly described, secondly applied
to the plant and thirdly corresponding results are discussed.

A. Plant Simplification

At first, the physical variables are renamed into control
variables, such that

u =
[
u1 u2 u3 u4 z1 z2

]>
:=
[
α1 α2 α3 N ṁin V̇N2,res

]>
,

x =
[
x1 x2 x3 x4 x5 x6

]>
:=
[
p1 ṁPyr α̃1 α̃2 α̃3 Ñ

]>
,

d = d1 := p3,

y =
[
y1 y2 y3

]>
:=
[
p1 p3 V̇PG,1

]>
.

(12)

Subsequently, the plant in control nomenclature is rewritten
as nonlinear semi-explicit delayed DAE system with constant
input delays

ẋ(t) = f (x(t),d(t),u(t),u(t−Td,αi)), (13a)
x(0) = x0, u0(θ) = φ(θ), θ ∈ [−Td,αi ,0], (13b)
0 = g(x(t),d(t),u(t)), (13c)
y(t) = h(x(t),d(t),u(t)) (13d)

with f : R6×R×R6 → R6, g : R6×R×R6 → R and h :
R6×R×R6→R3. Note that the physical variables p2, V̇PG,2
and V̇PG,3 are eliminated when transforming (1) to (10) into
(13) and therefore neither appear in the control nomenclature
(12) nor in the plant’s DAE realization (13). For the sake of
linearization, input delays, quantisations and saturations are
neglected, i.e.

u(t−Td,αi)≈ u(t), (14a)
quantq(u(t))≈ u(t), (14b)

satl+l−(u(t))≈ u(t) (14c)

is assumed in (13). Although the latter effects are neglected
to simplify further calculations, they still exist in the plant
(13). As all further analysis results are tested using (13), it
will turn that they remain valid despite this simplification, s.
Sec. IV.
Since ∂g

∂d>
in (13) assuming (14) is non-singular, (13) is

called index 1 DAE system and therefore the linearization
can be used for further analysis [30]. Then, the linearized



DAE system is described by

∆ẋ(t) = ∂ f
∂x>

∣∣∣
OP

∆x(t)+ ∂ f
∂d>

∣∣∣
OP

∆d(t)+ ∂ f
∂u>

∣∣∣
OP

∆u(t), (15a)

∆x(0−) = x0− xe, (15b)

0 = ∂g
∂x>

∣∣∣
OP

∆x(t)+ ∂g
∂d>

∣∣∣
OP

∆d(t)+ ∂g
∂u>

∣∣∣
OP

∆u(t), (15c)

∆y(t) = ∂h
∂x>

∣∣∣
OP

∆x(t)+ ∂h
∂d>

∣∣∣
OP

∆d(t)+ ∂h
∂u>

∣∣∣
OP

∆u(t). (15d)

Solving (15c) w.r.t. ∆d leads to

∆d(t) =
(
−
(

∂g
∂d>

)−1
∂g

∂x>

)∣∣∣
OP

∆x(t)

+

(
−
(

∂g
∂d>

)−1
∂g

∂u>

)∣∣∣
OP

∆u(t).
(16)

By inserting (16) into (15a) and (15d), an index-reduction is
performed and the corresponding LTI state space realization

∆ẋ(t) = A∆x(t)+B∆u(t), ∆x(0−) = x0− xe,

∆y(t) =C∆x(t)+D∆u(t)
(17)

is obtained. Appropriate to the extension of the Hartman-
Grobman-Theorem [30], the nonlinear index 1 DAE system
has the same local behaviour as the linearized one, iff the
corresponding equilibrium is hyperbolic. The latter statement
can directly be read from the diagonal elements of

A =



� � � � � �
0 − 1

TPyr
0 0 0 0

0 0 −kα1 0 0 0
0 0 0 −kα2 0 0
0 0 0 0 −kα3 0
0 0 0 0 0 −kN

 , (18)

where � abbreviates large formulas. The calculation of A11
is tedious, but for all possible equilibria we get a negative
value due to the stability of the linearized model.
By applying the Laplace transformation to (17), the transfer
function matrix for the corresponding OP is

G(s) =C(sIn−A)−1B+D; G(s) ∈ R[s]3×6. (19)

This transfer function matrix is analyzed via RGA, DRGA
and SVA in the next section.

B. RGA

1) RGA Description: Originally, Bristol [7] introduced
RGA as follows

[Λ]i j = λi j =
ki j

k̃i j
=

(
∂yi
∂u j

)
uk=0,k 6= j(

∂yi
∂u j

)
yk=0,k 6=i

, (20)

where ki j denotes the open loop gain and k̃i j the closed loop
gain. The relative gain λi j represents an interaction measure
for the effect of a manipulated variable u j on a controlled
variable yi. While ki j simply corresponds to an element of
the static gain matrix

K = G(0), (21)

the determination of k̃i j, which corresponds to the effect of
a manipulated variable u j on a controlled variable yi when
all other controlled variables are constant, is more involved
and often done experimentally. Nevertheless, the relative gain
array Λ can equivalently be calculated, s. e.g. [9], via

Λ = K ◦
(
K−1)> , (22)

where ◦ is the Hadamard product.
Subsequently, five paring rules [1] based on the RGA’s results
are shortly recalled:

1) λi j = 1: Open and closed loop gain are equal. Optimal
preconditions to control yi with u j.

2) λi j = 0: Either open loop gain is zero or closed loop
gain is infinitely large. Controlling yi with u j is not
recommended.

3) 0 < λi j < 1: The closed loop gain is bigger than the
open loop one. The smaller λi j is, the less suitable is
u j to control yi.

4) 1 < λi j < ∞: The closed loop gain is bigger than
the open loop one. Controlling yi with u j is however
possible.

5) λi j < 0: Closed and open loop gain have opposite signs.
Controlling yi with u j is not recommended.

Furthermore, note that the sum of the elements in Λ in
each line or column is one. All elements are dimensionless
and invariant under scaling [7]. The controllability of the
considered system gets lost for |λi j| → ∞ [9].

2) RGA applied to the Plant: While u1, u2 and u3 are
manipulated variables, u4 is a steering variable and z1 as
well as z2 are disturbance variables. Therefore, K is split
into an effective part Ke and a residual part Kr, i.e.

K =
[
Ke Kr

]
, (23)

such that ∆y1,s
∆y2,s
∆y3,s

= Ke

∆u1,s
∆u2,s
∆u3,s

+Kr

∆u4,s
∆z1,s
∆z2,s

 , (24)

where the index s denotes the static case. Substituting K by
Ke in (22), gives

Λ1 =

0.7650 0 0.2350
0 1 0

0.2350 0 0.7650

 (25)

for operation point 1, and

Λ2 =

0.9209 0 0.0791
0 1 0

0.0791 0 0.9209

 (26)

for operation point 2.
3) RGA Discussion: The resulting pairing is u1 ↔ y1,

u2↔ y2 and u3↔ y3. This result corresponds to the currently
implemented control concept.



C. DRGA

1) DRGA Description: Expanding RGA (22) to the dy-
namic case [9] intuitively leads to DRGA defined by

Λd(s) = G(s)◦
(
G(s)−1)> . (27)

According to the expanded pairing rule, λi j of pairs of
manipulated and controlled variable should be approximately
one for frequencies within the closed loop’s bandwidth.
However, because of several disturbances, it is often hard to
analyse or to determine a fixed bandwidth for the frequencies
of a closed loop. Thus, it is reasonable to consider a large
frequency bandwidth in the framework of the analysis.

2) DRGA applied to the Plant: In order to apply the
DRGA to the plant, G(s) is split in the same way as K in (23)
and the effective part Ge(s) is used in (27). The results for
both OPs are illustrated in Fig. 2, where it can be seen that
the pairing changes for ω ' 10−2 1

s compared to the static
case. In this frequency domain, the pairing u1↔ y2, u2↔ y1
and u3↔ y3 should be chosen.

3) DRGA Discussion: Referring to the lack of motivation
for DRGA from a practical perspective, we will firstly
explain some aspects. The obvious motivation to consider
a wide frequency bandwidth is given by periodic reference
signals. However, this does not hold for process plants, since
most control tasks consist of set point controller design.
Nevertheless, there are other reasons to investigate a wide
frequency domain for process engineering applications. For
instance, it is possible that a certain partial transfer function
damps lower frequencies and excites higher ones (or vice
versa), which can be interpreted as internal disturbance.
Hence, a pair must be chosen, such that the disturbance effect
can quickly be detected at the plant output, enabling the
controller to react. In the following situations, an excitation
of different frequency domains in a plant or in a control loop
can generally appear:

1) external disturbances, e.g. day/night phases, tempera-
ture variations, wind, pressure or voltage fluctuations,

2) plant input disturbances, e.g. changes in the input
properties (concentration, viscosity, mass flow),

3) plant internal disturbances, e.g.
• forced nonlinearities due to quantisations and

switching operations,
• structural disturbances due to neglected couplings

and nonlinear terms,
• time discrete realizations in a continuous process,
• time delays in the process

4) periodic reference signals with different frequencies
(typical in mechanical or electrical applications)

For most of the above mentioned aspects, there exist con-
ventional control methods, e.g. periodic reference signals
and measurable disturbances can be controlled via feedfor-
ward. Hence, the results of DRGA can be used to fight
non-modeled or non-measurable disturbances by letting the
controller overwhelm them.
Reconsidering our application, a reason for investigating a
higher frequency domain and thus changing the pairing lies

in the time delays of the valve actuators. In order to motivate
the latter statement, consider the transfer function of a time
delay element with delay Td under feedback, i.e.

T (s) =
e−sTd

1+ e−sTd
. (28)

Its poles are calculated by using the approach s0 = σ + iω .
A separation of real and imaginary part gives

1+ e−σTd cosωTd = 0, (29a)

−e−σTd sinωTd = 0. (29b)

From (29b), it follows ω = kπ

Td
, k ∈ Z, such that (29a) is

fulfilled for k = 2k̃+1 and therefore

ω =
(2k̃+1)π

Td
, k̃ ∈ Z. (30)

For k̃ = 0, the frequency ω = π

Td
is obtained. Since Td ≈ 2s is

valid for the valve actuators’ delays, frequencies ω ≈ 100 1
s

can be excited.
To conclude, by investigating mathematical models of differ-
ent disturbances, a relation between them and the excitation
of corresponding frequency domains can be given.

D. SVA

1) SVA Description: Another possibility to analyse mul-
tivariable control problems is SVA. The singular values
σi ∈ R+

0 , i = 1 . . .m of a matrix M ∈ Cn×m are defined by

σi(M) =
√

λi{MHM}, (31)

where λi are the eigenvalues of the symmetrical matrix MHM
and MH denotes the conjugate transpose. If the singular
values are arranged as follows

σ1(M)≥ σ2(M)≥ . . .≥ σkM > 0,
σk+1(M) = σk+2(M) = . . .= σm(M) = 0,

(32)

the first k = rk(MHM) singular values are positive, the
remaining ones are zero [10]. Then, the condition κ ∈ [1,∞),
s. e.g. [1], of M can be introduced by

κ(M) =
σ1

σk
(33)

for non-singular M. If κ is large, M is called badly con-
ditioned, which is an evidence for singularity and bad
invertibility. In order to perform an SVA based on κ(K),
where K is the static transfer matrix, s. (21), the following
remarks should be considered [1]:

1) The number of manipulated and controlled variables
must be the same when κ(K) is analysed.

2) If κ(K) is large, the system is badly conditioned and
thus hard to control, independent of the RGA’s result.

3) The absolute value of κ(K) depends on the scaling of
manipulated and controlled variables.

Since no measure can be given to declare κ(K) as large
due to differently scaled variables, a comparison by pairwise
cancellation of manipulated and controlled variables is nev-
ertheless possible. In this context, configurations (configs)



(a) Operation point 1 (b) Operation point 2

Fig. 2: DRGA for both operation points

with lower conditions than the original one are preferred.
Moreover, 3) illustrates an important difference to RGA,
where the result does not depend on the scaling.

2) SVA applied to the Plant: Using the matrix Ke, which
is defined via (23) and (24), the condition is

κ(Ke) := κ(Ke,0) = 19.01 (34)

for operation point 1 and

κ(Ke) := κ(Ke,0) = 20.23 (35)

for operation point 2, where the second index denotes the
corresponding config. However, these two absolute values
cannot be interpreted, since ui(t) and yi(t), i = 1,2,3, are
not scaled equivalently, s. also 3).

3) SVA Discussion: Nevertheless, an interpretation is pos-
sible by systematically cancelling pairs of manipulated and
controlled variables. The result of the latter approach is
shown in TABLE II, which allows the following conclusions:
• Configs 2 and 8 indicate a badly conditioned Ke and are

thus practically infeasible.
• Since the conditions of configs 3, 4 and 7 have not

decreased compared to config 0, they can be neglected.
• Although configs 5, 6 and 9 have lower conditions than

config 0, they are infeasible from process engineering
perspective.

• Config 1 has a lower condition than config 0 and
practically means that the third control loop is omitted,
which is possible from process engineering perspective.

Hence, config 1 is the only feasible cancellation (control
loop reduction), since deviations from the desired value are
allowed for y3.

Apart from systematic cancelling of pairs, it is also con-
ceivable to investigate the replacement of u1, u2, and u3 by
u4, since the latter one is steered, while the others are con-
trolled. The corresponding result is depicted in TABLE III,
which indicates that replacing u1 by u4 is the only possible
alternative compared to the original config 0. Practically, this
result means that the pressure difference along the blower
is controlled by the blower’s rotational speed instead of
the position of valve V1, which is feasible from process

config controlled manipulated κ(Ke,n), n = 0,1, . . . ,9
variables variables OP 1 OP 2

0 y1, y2, y3 u1, u2, u3 19.01 20.23
1 y1, y2 u1, u2 13.28 13.06
2 y1, y2 u1, u3 1.4e+16 8.1e+16
3 y1, y2 u2, u3 13.34 21.80
4 y1, y3 u1, u2 39.16 90.80
5 y1, y3 u1, u3 2.84 2.54
6 y1, y3 u2, u3 12.08 12.87
7 y2, y3 u1, u2 38.28 88.69
8 y2, y3 u1, u3 1.4e+16 2.7e+15
9 y2, y3 u2, u3 11.80 12.76

TABLE II: SVA 1 – systematic cancelling

engineering perspective. Thus, the pairing u4↔ y2, u2↔ y1
and u3↔ y3 is chosen for this case.

config controlled manipulated κ(Ke,n), n = 10,11,12
variables variables OP 1 OP 2

10 y1, y2, y3 u1, u2, u4 6.3e+17 2.2e+17
11 y1, y2, y3 u1, u3, u4 2.1e+16 1.5e+16
12 y1, y2, y3 u2, u3, u4 19.06 18.10

TABLE III: SVA 2 – systematic replacing

IV. SIMULATIVE VERIFICATION

The recommended actions, which result from the previous
analyses, are tested in simulation experiments (exps) and
compared to the implemented control concept, s. Fig. 3.

y1,d
PI-Controller

y2,d

y3,d

u4

Plant
u3

u2

u1

PI-Controller

PI-Controller

y1

y2

y3

z1

-
+

-
+

-
+

z2

Fig. 3: Implemented control concept



For simulations (s. Fig. 4), the plant model described in
(13) is used. The recommended actions are briefly summa-
rized as follows:

1) retaining the implemented concept (RGA), s. Fig. 4a,
2) interchange of u1 and u2 (DRGA), s. Fig. 4b,
3) omitting the third control loop (SVA 1), s. Fig. 4c,
4) manipulating u4 instead of u1 (SVA 2), s. Fig. 4d;

On the one hand, in exps 1) to 3), the same controller
parameters are applied and the reference signal depends
explicitly on x6, such that

y2,d(t) =
{

y2,d,max · x2
6(t), y2,d(t)≤ y2,d,max

y2,d,max, else

with y2,d,max = 400mbar. On the other hand, in exp 4), the
controller parameters are adapted since a different physical
quantity is manipulated. Additionally, a ramp, which does
not depend on x6, is chosen for y2,d , as it would otherwise
depend on the manipulated variable u4. Hence, the simulation
results for exps 1) to 3) can be compared directly. By
comparing the results for exps 1) and 2), it turns out that
an interchange of u1 and u2, improves the tracking and the
disturbance behaviour of y2, while the reactions of y1 and
y3 are similar. A possible reason for this issue is that higher
frequency domains are excited by the valve actuators’ time
delays, s. Sec. III-C. Since the performance declines for exp
3), an open third loop is not recommended. If y2,d may
be independent of x6, it seems convenient to manipulate u4
instead of u1 (exp. 4)). Moreover, it is possible to save energy
by applying the latter approach as the blower is not driven
at maximum rotational speed.

V. CONCLUSIONS

Based on the results of RGA, DRGA and SVA applied to
a dynamic model of the product gas stage in a pyrolysis pro-
cess, we derived recommendations to adapt the implemented
control concept. Especially, DRGA revealed a modified
pairing, if the system operates at higher frequency domains.
With the help of a simplified calculation, we have shown
that higher frequency domains can be excited due to the
valve actuators’ time delays. Numerical simulations confirm
the improved performance of the closed loop when applying
the modified pairing from DRGA. This modification has also
been implemented successfully in the real plant. Hence, it is
possible to overcome complicated disturbing effects, while
retaining a simple control structure, which commonly leads
to a higher acceptance by the plant personnel.
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(a) Simulation with current concept (RGA) (b) Simulation with interchanged u1 and u2 (DRGA)

(c) Simulation with open third loop (SVA 1) (d) Simulation for manipulating u4 instead of u1 (SVA 2)

Fig. 4: Simulation exps for results of RGA, DRGA, SVA 1 and SVA 2


