KIT | KIT-Bibliothek | Impressum | Datenschutz

Unconditional uniqueness of higher order nonlinear Schrödinger equations

Kunstmann, Peer; Pattakos, Nikolaos

We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with initial data $u_0\in X$, where $X\in\{M^s_{2,q}(\mathbb{R}), H^\sigma(\mathbb{T}), H^{s_1}(\mathbb{R})+H^{s_2(\mathbb{T})}\}$ and $q\in[1,2]$, $s\ge0$, $\sigma\ge0$, or $s_2\ge s_1\ge0$. Moreover, if $M^s_{2,q}(\mathbb{R})\hookrightarrow L^3(\mathbb{R})$, or if $\sigma\ge\frac{1}{6}$ or if $s_1\ge\frac{1}{6}$ and $s_2>\frac{1}{2}$ we show that the Cauchy problem is unconditionally wellposed in $X$. Similar results hold true for the cubic sixth order nonlinear Schrödinger equation and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ
the normal form reduction via the differentiation by parts technique and build upon our previous work.

Open Access Logo

Volltext §
DOI: 10.5445/IR/1000099946
Veröffentlicht am 18.11.2019
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2019
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000099946
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 28 S.
Serie CRC Preprint ; 2019/22
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter Normal form method, modulation spaces, unconditional uniqueness, higher order nonlinear Schrödinger
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page