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Summary 

Some of the efforts which have been made to investigate the gasification of biomass in 

supercritical water are presented in this work. The work is basically motivated by the 

increasing demand for energy worldwide and the limitations that fossil fuels currently have in 

terms of existence, long-term availability, supply as well as their negative impact on the 

environment. The exploitation of renewable energies should be the adopted trend and the 

shift to abundant sources such as biomass is continuously increasing. Several strategies and 

roadmaps have been suggested to push forward in this direction in the coming decades. 

As a renewable energy source, microalgae have shown a good capability of rapid growth and 

biomass productivity due to their simple structure and direct utilization of light. Therefore, 

several configurations of closed systems or Photobioreactors have been developed to 

implement in outdoor cultivation of algal cells under controlled conditions (e.g. mixing, 

nutrients and air supply) using sunlight. In this context, the algal biomass of the species A. 

obliquus was used as the feedstock for gasification under supercritical conditions due to its 

reported high biomass productivity. The biomass was cultivated outdoors through the project 

partner in Hamburg (Strategic Science Consult GmbH) within flat˗panel Photobioreactors 

using a pilot unit as well as the novel façade structure of the BIQ˗House. These research 

activities were conducted in the framework of the project PHYKON (Prototyp zur 

hydrothermalen Konversion, funding code 22407012) that is supported by the Agency for 

Renewable Resources (FNR). 

On the other hand, the hydrothermal conversion processes have been the focus of many 

workgroups in the recent decades. This is supported by a number of advantages that are not 

available through classical conversional processes. Processing biomass in its already-existing 

moisture or water content is a major benefit under supercritical conditions, eliminating the 

need to dry biomass, which is an energy-consuming step, and exploiting the changed 

properties of water such as density and viscosity at elevated temperatures and pressures. The 

unique properties of the water molecule above its critical point (T > 374 ˚C, P > 22.1 MPa) 

helps creating a reactive medium that enables the decomposition and conversion of any 

organic materials in wet biomass streams with their various sources and compositions. 
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Considering supercritical water gasification (SCWG) in this study, a combustible gas mixture 

which contains mainly hydrogen (H2), carbon dioxide (CO2), methane (CH4) as well as 

ethane (C2H6) is the major product. The scope of work was to conduct the gasification of 

algal biomass under supercritical conditions, and investigate the influence of major process 

variables such as temperature and feed concentration on the system performance. This was 

experimentally realized on continuous operation using three laboratory units with tubular 

reactors. Given the operation of these units, the process of SCWG consists mainly of three 

zones; feed pre˗heating, reaction and phase separation. 

System performance was evaluated in terms of the carbon gasification efficiency (CGE), the 

composition of the product gas as well as the quality of the residual water stream (e.g. its 

content of total organic carbon, TOC) leaving the process after conversion. The availability 

of inorganic nutrients, being part of the wet biomass prior to SCWG, was investigated in both 

the aqueous and solid phases resulting from the process. The distribution and recovery of 

these inorganic elements was also evaluated based on the system configurations presented in 

this work. 

The influence of the reactor temperature was experimentally determined in the range of 600 ˗ 

690 ˚C, whereas the feed concentration was varied between 2.5 and 20 wt% total solids at the 

highest temperature. The operating pressure was kept in most of the experiments at 28 MPa. 

An alkali metal salt (K2CO3 or KHCO3) was used as a homogeneous catalyst in a 

concentration (K+) of 1500 ppm. This concentration was varied in some experiments, 

reaching up to 3000 ppm, to evaluate the influence of salt addition on system performance. 

The mean residence time for the entire experiments was in the range of 1 to 4 minutes, 

depending on the corresponding flow rates (set between 0.2 and 1 kg.h-1), operating 

conditions and reactor volume (~ 0.2, 0.3 and 0.4 liter).  

High carbon gasification efficiency, a maximum value of 96.4%, was calculated from the 

experimental work using a biomass concentration of 2.5 wt% (figure S1). The efficiency 

decreased noticeably (to 82%) upon introducing the highest concentration (20 wt%). 

Extended continuous operation over two days (50 hours) was successfully achieved. 

Increased hydrogen yield was observed during the experiments, when higher temperature and 

lower feed concentrations were set. To the contrary, the yield of combustible hydrocarbons, 

mainly methane and ethane, was clearly higher at lower temperatures and higher feed 

concentrations.  
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These findings related to the yield of H2 and CH4 come in accordance with several previous 

works (refer to ch. 4.4 and 4.5) and are also supported by a thermodynamic basis. Moreover, 

the contribution of water molecules to the overall gas production at diluted concentrations 

was distinguished and it confirms the reactive role of water under supercritical conditions. 

 

     

      

      

Figure S1 - Influence of feed concentration on carbon gasification efficiency and the TOC levels 
in the residual water – Operating conditions: T = 690 ˚C, P = 280 bar (data from LUII) 

A further finding was the contribution of purging or flushing the units with water after each 

experiment on hot and cold basis to the net recovery of inorganic residues. Solids 

precipitation, including valuable elements such as phosphorus, is a major challenge 

associated with biomass in SCWG. A major fraction of phosphorous tended to migrate to the 

solid phase during operation, a phenomenon related to low solubility in the supercritical 

regime that was reported in earlier works. A total recovery up to 89% of phosphorus was 

achieved, of which up to 62% was found in the solid phase. About 94% of potassium was 

recovered and the purging contributed in gaining a major fraction in the aqueous phase. The 

recovery percentages of micro-nutrients at optimum conditions were (Mg: 84.5%, Ca: 79.2%, 

Si: 64.7% and S: 64.5%), with Mg and Ca being detected in higher amounts in the solid 

phase.  

Utilizing the aqueous phase of SCWG including its content of inorganic elements serves a 

crucial role for recycling natural resources. Around 95% of the total nitrogen content in the 

algal biomass can be recovered after SCWG in the aqueous form and be potentially used for 

algal growth, reducing the cost of the fresh nutrients. For this purpose, the residual water was 

applied a culture medium for the algal growth indoors on a lab-scale using artificial 

illumination. The residual water was tested first in the raw state as well as after treatment 

using two techniques. The first treatment technique is done via activated carbon filtration and 

the second is through an ultraviolet (UV) light treatment. Growth inhibition was observed and 
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referred to the existence of potentially-toxic substances which evolved during gasification as 

side products or unreacted intermediates. Upon treatment, these toxic substances were 

eliminated and the cultivation was made possible. 

Process simulation with the aid of the software Aspen Plus was also conducted in this work. 

The goal of simulation was to evaluate the influence of the temperature and feed 

concentration on the composition of the gaseous species and compare the results with those 

obtained from the experimental work. A broader range of temperatures (450 ˗ 750 ˚C) and 

feed concentrations (2.5 ˗ 25 wt%) was applied in the simulated models. The hydrothermal 

gasification as well as the gas compositions were mainly calculated via the reactor model 

(R˗Gibbs), which applies the minimization of the Gibbs free energy. The produced data 

showed comparable trends to the experimental results, especially regarding the composition 

of hydrogen and methane. An example of the effect of feed concentration on the composition 

of the major produced gaseous species is shown below in figure S2 for both model-based and 

experimental results.  

In addition, a useful quantitative analysis of the basic energy requirements of SCWG (e.g. 

thermal energy, power consumption for pumping) was obtained at different operating 

conditions. The thermal energy recovery of the hot product stream was found to have a major 

significance in the process, as it represents the highest share of the total thermal energies 

which is necessary for maintaining a good efficiency. 

 
Figure S2 – Influence of feedstock concentration on the composition of the major components in 

the produced gas based on a simulated feedstock model (ASI) and experimental results (ER)  
[Conditions: P = 280 bar, feed conc. 10 wt%] 
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As part of the proposal included in the framework of the project PHYKON, a basic concept 

which aims at coupling algal cultivation and supercritical water gasification was initiated. 

The concept is demonstrated below in figure S3. In this scheme, all energy and material 

streams are utilized according to the specific needs of each process. These streams include 

the residual water of SCWG as well as the inorganic nutrients that are needed for the growth 

of microalgae. The gaseous stream of SCWG consists of a combustible gas mixture along 

with carbon dioxide. Carbon dioxide, produced at high pressure, can be separated and used as 

the main carbon source for algal cultivation. A fraction of the combustible gas mixture can be 

thermally utilized to supply any make-up heat required within the system and the exhaust gas 

would then increase the share of CO2 contribution for cultivation. 

 
Figure S3 – A proposed concept for coupling algal cultivation and supercritical water 

gasification taking into account energy and nutrients recovery 

Thermal management is also present in the integrated system. The excess thermal energy 

from sunlight in the case of cultivation or the heating required to maintain the operation of 

SCWG can be utilized by the means of circulating (heat exchange) or storing for use at a later 

point for cultivation during cold days. In the framework of this study, some work packages 

have been conducted on the road to address the aforementioned concept. This includes the 

two core processes (outdoor cultivation and supercritical water gasification), as well as the 

application of the residual water as the cultivation medium for the growth of microalgae. 
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Zusammenfassung 

In der vorliegenden Dissertation wurde die Vergasung von Mikroalgen in überkritischem 

Wasser untersucht. Die Relevanz der Arbeit ergibt sich aus dem weltweit steigenden 

Energiebedarf und der beschränkten Verfügbarkeit von fossilen Brennstoffen. Außerdem 

können durch den Einsatz von erneuerbaren Energiequellen die negativen Auswirkungen der 

fossilen Brennstoffe auf die Umwelt reduziert werden. Die Nutzung erneuerbarer Energien 

sollte selbstverständlich werden. Dafür spricht, dass die Verlagerung hinzu reichlich 

regenerativen Quellen, wie z. B. der Biomasse, kontinuierlich zunimmt. Es wurden bereits 

auf verschiedenen Ebenen Strategien und Pläne vereinbart, um den Fortschritt in den 

kommenden Jahrzehnten zu garantieren. 
 

Mikroalgen haben als eine erneuerbare Energiequelle ein großes Potential, aufgrund ihrer 

einfachen Struktur und der direkten Nutzung von Licht, sowie der guten 

Wachstumsgeschwindigkeit und der Biomasseproduktivität. Daher wurden verschiedene 

geschlossene Kultivierungssystemen oder Photobioreaktoren entwickelt, um die Kultivierung 

im Freien unter Verwendung von Sonnenlicht und kontrollierten Bedingungen (Mischen, 

Nährstoffe- und Luftzufuhr) durchzuführen. In diesem Zusammenhang wurde die Mikroalgen 

A. obliquus als Edukt für die Vergasung unter überkritischen Bedingungen eingesetzt. Die 

Algenbiomasse wurde durch den Projektpartner in Hamburg (Strategic Science Consult 

GmbH) in Flat˗Panel˗Photobioreaktoren in einer Pilotanlage sowie der neuartigen Fassade 

des BIQ˗Hauses kultiviert. Diese Forschungsarbeiten wurden im Rahmen des von der 

Fachagentur Nachwachsende Rohstoffe (FNR) geförderten Projekts PHYKON (Prototyp zur 

hydrothermalen Konversion, Förderkennzeichen 22407012) durchgeführt. 
 

In den letzten Jahrzehnten ist die hydrothermale Konversion der Schwerpunkt vieler 

Arbeitsgruppen weltweit gewesen. Dies ist auf mehrere Vorteile zurückzuführen, die durch 

die klassischen Verfahren nicht erreicht werden können. Der größte Vorteil des Verfahrens 

besteht darin, dass die Biomasse unter überkritischen Bedingungen im nassen Zustand 

bearbeitet werden kann. Eine Trocknung der Biomasse ist daher nicht notwendig, wodurch 

wiederum Energie eingespart werden kann. Zudem werden die besonderen Eigenschaften von 

Wasser, wie z. B. Dichte und Viskosität, bei erhöhter Temperatur und bei erhöhtem Druck 

genutzt. Die Eigenschaften der Wassermoleküle im überkritischen Bereich (T > 374 °C, P > 

22,1 MPa) tragen zur Schaffung eines reaktiven Mediums bei, das den Abbau von 

organischen Substanzen ermöglicht. 
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Bei der Vergasung in überkritischem Wasser (SCWG) ist das Produkt ein brennbares 

Gasgemisch, das hauptsächlich Wasserstoff, Kohlenstoffdioxid, Methan und Ethan enthält. 

Im Rahmen der experimentellen Arbeiten wurde die Vergasung von Algenbiomasse unter 

überkritischen Bedingungen durchgeführt und der Einfluss der Hauptprozessvariable 

(Temperatur und Feedkonzentration) auf die Systemleistung untersucht. Die Untersuchungen 

wurden im kontinuierlichen Betrieb in drei Laboranlagen mit Rohrreaktoren realisiert. Der 

Kern des Prozesses besteht aus drei Bereichen; Feed-Vorwärmung, Reaktion und 

Phasentrennung. 

Die Systemleistung wurde in Bezug auf die Menge und Zusammensetzung des Produktgases 

untersucht; sowie auf die Qualität des Prozessabwassers (z. B. gesamter organischer 

Kohlenstoff, TOC) nach der Vergasung. Die Verfügbarkeit von anorganischen Elementen, 

die vor der SCWG Bestandteil der nassen Biomasse waren, wurde sowohl in der aus dem 

Prozess entstandenen wässrigen als auch in der Feststoff˗ Phase bewertet. Die Verteilung 

sowie die Gewinnung dieser anorganischen Nährstoffe wurde ebenfalls anhand der 

eingesetzten Anlagenkonfigurationen untersucht. 

Der Einfluss der Reaktortemperatur wurde im Bereich von 600 ˗ 690 °C untersucht. Bei der 

höchsten Temperatur wurde die Konzentration der Biomasse zwischen 2,5 und 20 Gew.% 

variiert. Der Betriebsdruck wurde meistens bei 28 MPa gehalten. Ein Alkalisalz (K2CO3 oder 

KHCO3) wurde als homogener Katalysator in einer Konzentration (K+) von 1500 ppm 

verwendet. Die Konzentration von K+ wurde in einigen Versuche variiert (bis maximal 3000 

ppm), um den Einfluss der Salzzugabe auf den Prozess zu bewerten. Die mittlere Verweilzeit 

für die gesamten Experimente lag im Bereich von 1 bis 4 Minuten, abhängig von dem 

entsprechenden Durchfluss (min. / max. ~ 0,2 / 1 kg.h-1), den Betriebsbedingungen und dem 

Reaktorvolumen (~ 0,2; 0,3 und 0,4 l).  

Experimentell wurde bei einer Biomassekonzentration von 2,5 Gew.% ein maximaler 

Kohlenstoff-Vergasungsumsatz (CGE) von 96,4% berechnet (s. Abb. S1). Die CGE sank 

signifikant ab (auf 82%) wenn die höchste Konzentration (20 Gew.%) genutzt wurde. Ein 

kontinuierlicher Betrieb über zwei Tage (50 Stunden) wurde erfolgreich durchgeführt. Bei 

höheren Temperaturen und niedrigeren Feedkonzentrationen wurde eine höhere 

Wasserstoffausbeute erzielt. Dagegen war die Menge an brennbaren Kohlenwasserstoffen, 

hauptsächlich Methan und Ethan, bei niedrigeren Temperaturen und höheren 

Feedkonzentrationen deutlich höher.  
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Diese Ergebnisse, bezogen auf die Wasserstoff- und Methanausbeute, decken sich mit denen 

einiger früherer Arbeiten (vgl. Kap. 4.4 und 4.5) und werden auf der Basis der 

Thermodynamik gestützt. Dazu kommt, dass einen deutlichen Beitrag der Wassermoleküle zu 

der gesamten Gasproduktion bei niedrigen Konzentrationen gab. So wurde die 

Reaktionsfähigkeit von Wasser unter überkritischen Bedingungen verdeutlicht. 

 

     

 
 

  

Abbildung S1 – Einfluss der Feedkonzentration auf die CGE und den gesamten organischen 
Kohlestoffgehalt (TOC) im Prozessabwasser (RW) – Betriebsbedingungen: T = 690°C, P= 280 bar (LUII) 

Eine weitere Feststellung war der Beitrag des Spülens mit Wasser in heißem und kaltem 

Zustand nach jedem Versuch. Dadurch konnten anorganische Rückstände aus dem System 

wiedergewonnen werden. Die Ablagerung von Feststoffen, einschließlich wertvoller 

Elemente wie Phosphor, ist eine große Herausforderung bei der SCWG. Der Großteil des 

Phosphors tendierte dazu, in eine feste Form überzugehen. Dieses Phänomen, welches bereits 

in früheren Arbeiten beschrieben wurde, hängt mit der geringen Löslichkeit im überkritischen 

Bereich zusammen. Es wurde eine Wiedergewinnung des Phosphors bis zu 89% erreicht, 

wovon 62% im festen Zustand gewonnen wurde. Bis zu 94% des Kaliums wurden 

wiedergewonnen, wobei das Spülen dabei half den Großteil davon in der wässrigen Phase zu 

überführen. 

Die Wiedergewinnung von Mikronährstoffen unter optimalen Bedingungen erzielte folgende 

Erträge: Mg: 84,5%, Ca: 79,2%, Si: 64,7% und S: 64,5%), wobei Mg und Ca in der festen 

Phase in höherern Mengen festgestellt wurden. Die Nutzung der wässrigen Phase von SCWG 

spielt aufgrund des Gehalts an anorganischen Elementen eine wichtige Rolle beim Recycling 

natürlicher Ressourcen. Es wurden etwa 95% des gesamten Stickstoffgehalts in der 

Algenbiomasse, nach SCWG, in wässriger Form wiedergewonnen und potenziell für das 
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Algenwachstum verwendet. Dadurch ist es möglich, die Kosten für die benötigten frischen 

Nährstoffe zu reduzieren und die Umweltbilanz des Verfahrens zu erhöhen.  

Zu diesem Zweck wurde dem Prozessabwasser ein Kulturmedium für das Algenwachstum im 

Labor mit künstlicher Beleuchtung zugeführt. Das Prozessabwasser wurde sowohl im 

Rohzustand als auch nach der Behandlung mit zwei Methoden getestet. Zuerst wurde die 

Aktivkohlefiltration angewendet und dann die ultraviolette (UV-) Bestrahlung als zweite 

Behandlungsmethode. Die Wachstumshemmung der Mikroalgen wurde durch die Existenz 

potentiell toxischer Substanzen, die während der Vergasung als Nebenprodukte oder nicht 

umgesetzte Zwischenprodukte entstanden, verursacht. Bei der Behandlung wurden diese 

toxischen Substanzen entfernt und die Algenkultivierung im Prozessabwasser war möglich. 

Die Prozesssimulation mit Hilfe der Software Aspen Plus wurde im Zuge dieser Arbeit 

durchgeführt. Ziel der Simulation war es, den Einfluss von Temperatur und 

Feedkonzentration auf die Vergasungsprodukte zu bewerten und die Ergebnisse mit denen 

der Laborversuche zu vergleichen. In den Modellen wurden ein breiter Bereich von 

Temperaturen (450 ˗ 750 °C) und Feedkonzentrationen (2,5 ˗ 25 Gew.%) angewendet. Die 

hydrothermale Vergasung sowie die Gaszusammensetzungen wurden hauptsächlich mit Hilfe 

des Reaktormodells (R-Gibbs) und durch die Minimierung der Gibbs˗Energie berechnet. Die 

Ergebnisse zeigten vergleichbare Trends zu den experimentellen Ergebnissen, insbesondere 

hinsichtlich der Zusammensetzung von Wasserstoff und Methan.  

Ein Beispiel für den Einfluss der Feedkonzentration auf die Zusammensetzung der 

produzierten Gase wird in Abbildung S2 dargestellt. In dieser Abbildung sind sowohl die 

modellgestützten, als auch die experimentellen Ergebnisse dargestellt. Zusätzlich wurde eine 

quantitative Analyse in Bezug des grundlegenden Energiebedarfs von SCWG (z. B. 

thermische Energie, Energieverbrauch von Pumpen) bei verschiedenen Betriebsbedingungen 

durchgeführt. Die thermische Energierückgewinnung des heißen Produktstroms hat eine 

erhebliche Bedeutung in diesem Prozess, da sie den größten Anteil daran hat, einen hohen 

thermischen Wirkungsgrad zu erreichen.  

Im Rahmen des Projektes PHYKON wurde ein Grundkonzept zur Kopplung von 

Algenkultivierung und SCWG initiiert. Das Konzept wird nachfolgend in Abbildung S3 

dargestellt. In diesem Schema werden alle Energie- und Stoffströme nach Bedarf jedes 

Prozesses genutzt. Diese Ströme umfassen das Prozessabwasser von SCWG und die 
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anorganischen Nährstoffe, die für das Wachstum von Mikroalgen benötigt werden. Der 

gasförmige Strom von SCWG besteht aus einer brennbaren Mischung und Kohlenstoffdioxid. 

Kohlenstoffdioxid, das unter hohem Druck produziert wird, kann abgetrennt und als die 

Haupt-Kohlenstoffquelle für die Algenkultivierung verwendet werden. Ein Bruchteil des 

brennbaren Gasgemisches kann thermisch genutzt werden, um die erforderliche Zusatzwärme 

innerhalb des Systems zu liefern. Zudem würde sich durch das Abgas ebenfalls der Anteil des 

CO2-Beitrags für die Kultivierung erhöhen. 

 
Abbildung S2 – Einfluss der Feedkonzentration auf die Zusammensetzung der 

Hauptkompenenten des Produktgases basierend auf einem simulierten Feed-Model (ASI) und 
Laborversuche (ER)  [Betriebsbedingungen: P = 280 bar, Feedkonz. 10 Gew.%] 

Das Wärmemanagement ist auch im integrierten System vorhanden. Die überschüssige 

Wärme, die durch Sonnenlicht im Falle der Kultivierung gewonnen wird, kann mittels 

Speichern zur Verwendung für einen späteren Zeitpunkt der Kultivierung (z. B. während 

kalter Tage) genutzt werden. Durch Wärmeaustausch kann die Wärme aus den heißen 

Strömen für den Betrieb von SCWG genutzt werden. Im Rahmen dieser Studie wurden einige 

Arbeitspakete zur Beurteilung des oben genannten Konzeptes durchgeführt. Dazu gehören 

die beiden Kernprozesse (Algenkultivierung und die Vergasung in überkritischem Wasser) 

sowie der Einsatz von Prozessabwasser als Kultivierungsmedium für das Algenwachstum. 
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Abbildung S3 – Ein vorgeschlagenes Konzept zur Kopplung von Algenkultivierung und SCWG 
unter Berücksichtigung der Energie- und Nährstoffgewinnung 
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1. Introduction 

1.1. Energy supply and demand 

The increasing demand for energy with the growing population continues to form an 

escalating problem during the recent decades. This is in particular the case, especially with 

the major dependence on common sources, demonstrated in figure 1.1, for energy generation 

worldwide. To date, fossil fuels including coal, natural gas and oil represent the major 

sources of energy supply that are used to produce heat and power for heating, cooking, 

electricity generation as well as transportation. According to statistics conducted by various 

sources, the global energy consumption has exceeded 13 billion tons of oil equivalent by the 

end of 2015. 

 
Figure 1.1 – Global energy consumption between 1990 and 2015 (in million tons oil equivalent)P0F

1
P   

According to the information forming the graph above, this number reflects a significant 

increase, approximately 50%, given the consumption in 1990. On the other hand, the 

availability of fossil fuel in terms of existence and cost is not present everywhere at the same 

extent. It rather depends on a number of factors or circumstances such as major global or 

geopolitical events, which are not necessarily related to the fuel’s absolute availability in a 

certain location. For example, the oil crises in the modern history started in the seventies of 

the last century, particularly in 1973 and 1979. The spark for the crises was the political 

disputes in the Middle East, which resulted in a sharp cut-off of oil supplies by major 

producers at the time.  

                                                           
1 Source: BP Statistical Review of World Energy 2016 
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Such a situation led to a rapid increase in oil prices to a high record, rising from $3.6 per 

barrel annual average crude oil in 1973 to over $37 by the end of this decade2. The steep 

increase during the first half of 2008 was the outcome of a significant shortage in the market 

supply fueled by various incidents in some countries including Venezuela, Nigeria and Iraq3. 

This resulted in an increase that is accelerated by the rising market demand back then. In the 

same year, the global economic recession caused the demand for energy to drop off, leading 

the oil prices to fall from about $133 to $40 per barrel between mid- and end of the year 

respectively4, before they relatively stabilize in 2009. A reflection of the price fluctuation is 

demonstrated in figure 1.2 which shows the average price of the Europe Brent Spot Price 

over twenty years.  

 
Figure 1.2 – Price fluctuation of crude oil (Europe Brent Spot) between 1997 and 2017 4 

On the contrary, an opposite trend occurred when oil prices dropped to low-record values in 

1998 (below $10) and 2014 (below $50). The reason for the decrease in 1998 was the excess 

amounts available in the market due to oversupply accompanied by economic recession in 

East Asia. This caused a major decline in oil demands. In 2014, the increased shale oil 

production in the United States and the maintained levels of production by OPEC led to the 

decrease in oil prices. This created a severe pull˗back of investments in the oil and gas sectors 

[Clayton 2015, Dalarossa 2014], followed by a huge wave of job layoff in these fields 

worldwide. 

                                                           
2 Source: InflationData, historical crude oil prices (https://inflationdata.com) 
3 Source: Resources for the future: (http://www.rff.org/blog/2009/2008-oil-price-shock-markets-or-mayhem)  
4 Source: U.S. Energy Information Administration – Sport prices of crude oils and products 
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1.2. Environmental concerns associated with fossil fuel 

The consumption of fossil fuel results in the release of carbon dioxide. The presence of such 

a greenhouse gas in earth’s atmosphere has become a concern which is directly reflected 

through the climate change phenomena or global warming. Greenhouse gases such as water 

vapor, ozone and COR2R exist in the earth’s atmosphere to help keeping its temperatures warm 

enough to sustain life. This takes place by absorbing and emitting some the solar radiation in 

the infrared range. However, any deviation from certain concentration of greenhouse gases in 

the atmosphere will affect the balance of the ecosystem. Ideally, the amount of greenhouses 

gases is maintained in a certain balance within the atmosphere. The increase of COR2R levels in 

the atmosphere has started with the industrial revolution in the eighteenth of the last century. 

It continues in the recent time due to the increasing anthropogenic activities, mainly related to 

fossil fuel burning for electricity generation, transportation and industrial processes, beside 

the change of land use such as deforestation [Quéré et al. 2013]. Therefore, COR2R has been 

continuously added to the atmosphere at an increasing rate ever since as concluded from 

figure 1.3, leading global warming that is recognized by a temperature increase relative to 

average values of previous years (i.e. anomaly). 

  
 

Figure 1.3 – Annual average global concentrations of COR2 Rin the atmosphere over time [a] and 
the corresponding temperature anomalies [b] [Source: Environmental protection Agency (EPA) 2016 - 

Climate Change Indicators, Quéré et al. 2013] 

The global atmospheric concentrations of COR2R have exceeded 400 ppm as of 2015 compared 

to 317 ppm in 1960. The majority of the warmest years since 1880 have occurred since 2001, 

having 2016 as the warmest on record. As a result, continuous loss of land ice and consequent 

rise of sea level occurs. The impact of these ascending trends creates a threat to the 

ecosystems and biodiversity, which is alarming enough to reconsider the way energy sources 

are handled. 
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1.3. Renewables as an alternative source of energy 
 

The search for alternatives to fossil fuel continues in several directions. In the recent decades, 

the exploitation of various renewable sources of energy, which possess no risk on the 

environment, has been the focus of many organizations worldwide. The reason for the 

transition is the fact that fuels that stem from renewable sources (ex.: plants or micro-

organisms) produces CO2 which does not alter the balance of greenhouse gases in the 

biosphere [Cherubini et al. 2011].  

On the contrary to fossil fuels, of which their carbon content, was absent from the biosphere’s 

natural cycle for millions of years and therefore cannot be balanced by photosynthesis. An 

example of the efforts made for the transition to more dependence on renewable energies is 

portrayed in figure 1.4. In the figure, a summary of the primary energy consumption in metric 

tons of carbon equivalent (MTCE) in Germany, categorized by fuel source, the ratio of 

domestic supply to imports as well as relative shares in 2015, over a time span of ten years.  

 
Figure 1.4 – Primary energy consumption by source, the ratio of domestic supply to imports and 

relative shares in 2015, for Germany in 2005 and 20155 

According to statistics, the majority (about 80%) of the energy consumption in Germany is 

based on imported fossil fuel, typically crude oil, hard coal, lignite and natural gas. 

Nevertheless, the overall descending trend of total consumption and the increase in the share 

of renewables is obvious and continuing to rise through the next years. In terms of power 

generation, renewables (Mainly wind, biomass and solar PV) have contributed to around 30% 

of the total power consumption from all sources by 20165. 

                                                           
5 Source: Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) - Energy Study 2016. Reserves, resources & 
availability of energy resources 
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In Europe, the goal to increase the dependence on renewable sources, as a step to secure 

energy sufficiency and challenge climate change, has taken a major step forward and become 

embedded through the National Renewable Energy Action Plan (NREAP) submitted by 

members of the European Unionin (EU) in 2010. The plan, set by the renewable energy 

directive, has urged the EU members to reach 20% of the total energy consumption from 

renewable sources by 2020 [EREC 2011, world energy resources 2016]. Moreover, an 

agreement on a framework to increase the use of renewable sources for energy consumption 

has been made in 2014. The plan, set for 2030, aims at the reliance on renewables up to 27% 

of total energy consumption, with a target to reduce the greenhouse gas by 40% referenced to 

the levels of 1990 [Danish Energy Agency 2015]. Another EU roadmap was formulated and 

suggested a 60% reduction in greenhouse gas emissions by 2040 and 80% by 2050, both with 

respect to the 1990 levels [EU Commission: 2050 low-carbon economy]. 

Globally, various statistics regarding the status of renewable energies and their distribution in 

the different energy sectors are produced on regular basis. The information available in a 

number of energy statistics reports usually provide an inclusive insight with regards to the 

share of renewables in power generation, primary or final energy consumption. In general, 

energy can be derived using different technologies from various renewable and abundant 

sources in nature. Examples include biomass, wind, hydropower, geothermal as well as solar-

based heat and power generation. According to a global status report of renewables [REN21 

2017], the energy produced through renewable sources accounted for 19.3% of global final 

energy consumption in 2015. 

Energy from biomass as well as hydropower account for the majority of energy consumption 

from renewables. The federal institute for geosciences and natural resources indicated that 

renewable sources such as hydropower and solid biomass covered about 14% of primary 

energy consumption worldwide [BGR 2016, renewable information overview 2017]. Based 

on the energy resources report issued in 2016 by the world energy council, hydropower 

supplied 71% of the electricity generated from renewables and 16.4% of all sources globally, 

with a power capacity of approximately 1,064 GW [World energy resources 2016]. 
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1.4. Biomass as a renewable feedstock for energy production 

The term "biomass" describes a broad range of organic lignocellulosic materials that are 

either available in nature or produced by human activities. Unlike fossil fuels, biomass does 

not undergo any geological transformations and thus, can be readily used for direct energy 

production (e.g. burning) or converted to different forms of biofuels such as biodiesel or 

bioethanol. Biomass is the fourth largest energy supply worldwide after oil, coal and natural 

gas. It supplies about 35% of energy in developing countries as a whole and over 90% of the 

total energy used as traditional fuels in many of these countries [KüÇük and Demirbas 1997].  

Energy from biomass, or "bioenergy", can stem from several sources including agricultural or 

crop residues (e.g. seeds, straw, husk and bagasse), forestry as well as municipal wastes such 

as sewage sludge. The distribution of renewable sources and their shares in the global energy 

supply in 2015 is illustrated in figure 1.5. Solid biofuel, including wood and charcoal, is the 

most common type of biomass that is widely used as a major source of heating and for 

cooking in both rural and developing countries.  

   
Figure 1.5 – Global energy supply from renewables in 2015 [Source: Renewables Information overview 

2017] 

As indicated in the figure above, the entire share of biomass in the 2015 global energy supply 

from renewables was about 71%. Other sources such as hydropower, wind, solar, tide, and 

geothermal accounted for the remaining shares of total renewables. Woody biomass provides 

around 90% of the global primary energy which is annually supplied from all sources of 

biomass. The share of forest biomass in global primary energy supply is approximately 56 EJ, 

which makes over 10% of the entire energy supplied annually according to the 2016 report of 

the world energy council [World energy resources 2016]. 
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1.5. Microalgae as a biomass candidate 6 

1.5.1. General overview 

Microalgae represent a broad group of unicellular photosynthetic micro-organisms with a 

simple structure compared to complex higher plants [Chisti 2008]. They utilize sunlight and a 

carbon source, grow rapidly and accumulate several useful molecules [Morweiser et al. 2010, 

Chisti 2007] such as carbohydrates, proteins and lipids, in the form of biomass. Like plants, 

microalgae have some basic needs for growth including light, water, and nutrition. 

Additionally, certain conditions for growth should be available, depending on each species, to 

maintain life. Microalgae can grow in fresh water. They also grow in saline water such as 

natural seawater that contains over 50 inorganic elements [Andersen 2005]. Wastewater 

containing nitrogenous and phosphorous compounds can be a medium for growing 

microalgae too. By utilizing wastewater streams for algal growth, organic constituents from 

municipal and industrial wastewater can be removed as a mean of water treatment to improve 

water quality, decrease its load of organics and heavy metals [Hena et al. 2015]. 

1.5.2. Cultivation techniques 

Algal cultivation is usually conducted under photo-autotrophic, -heterotrophic or mixotrophic 

conditions. The difference between the three modes is the way energy and carbon consumed 

during metabolism. Cultivating microalgae under autotrophic conditions can be advantageous 

due to the consumption of CO2 which can be supplied from different sources such as 

industrial power plants. Photo-heterotrophic cultivation occurs when carbon requirements can 

be fulfilled by organic compounds [Lee 2007]. Here, algal growth can be achieved not only in 

the presence of light but also during dark periods (chemo-heterotrophic). The main advantage 

of this technique is the potential of obtaining high biomass concentrations and overcoming 

the problems associated with limited light on large scale during autotrophic cultivation 

[Huang et al. 2010]. However, the main challenge related to this method is the availability 

and cost of the organic compounds used for growth. A combination of both methods is called 

mixo-trophic, where different sources of energy and carbon can be consumed for growth 

[Perez-Garcia et al. 2011]. 

 
                                                           
6 Parts of this section appeared in the thesis work (Scale-up studies of algal growth and hydrogen production using Chlamydomonas 
reinhardtii in closed Photobioreactors) – Sherif Elsayed, Otto-von-Guericke University Magdeburg, Faculty of Process and Systems 
Engineering, May 2012 
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1.5.3. Process parameters for algal cultivation 

Light is the major parameter which affects the cultivation of microalgae. Basically, the 

growth of microalgae should be controlled by light, because when light is the only limiting 

factor, algal productivity then becomes proportional to the photosynthetic conversion 

efficiency (PCE) [Richmond et al. 2003]. The major criteria which govern light utilization by 

microalgae are related to the light source, intensity and the levels of exposure by the algal 

cells.  

Light is naturally available from the sun for outdoor cultivation. Figure 1.6 shows the spectral 

distribution of sunlight (250 ‒ 3000 nm) and the corresponding irradiance. The spectral range 

(400 ‒ 740 nm) which microalgae and other plants utilize for photosynthesis is defined as the 

photosynthetically active radiation (PAR). Beside the light source, the intensity or irradiance 

power of light plays an important role in the growth process, leading to light limitation, 

saturation and photo-inhibition can be distinguished. Regarding exposure, light can be 

available during cultivation in a continuous or discontinuous manner. Continuous 

illumination is widely used for indoor experiments. Discontinuous light regimes include 

natural or simulated day-night cycles based on growth requirements. 

 

Figure 1.6 – Spectral distribution of solar irradiance [Source: ASTM] 

The availability of nutrients is important for the growth of microalgae and forming complex 

molecules. There are specific elements which are essential for the metabolic activities. Beside 

carbon and hydrogen which are considered to be the backbone of any chemical energetic 

molecule, primary growth elements (Macro-nutrients) are nitrogen and phosphorus.  
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Minor elements that are necessary for growth are calcium, magnesium, sulphur, sodium and 

potassium. Additionally, other elements which are required in trace amounts (Micro-

nutrients) include manganese, copper, iron, zinc and cobalt [Horne and Goldman 1994]. 

Nutrients usually exist within the culture volume in the dissolved form.  

Gases needed by microalgae (CO2 and O2) are practically introduced to the culture volume 

through bubbling or gas diffusion membranes.  The continuous uptake and discharge of gases 

is important for the cultures to maintain a certain degree of physiological balance and keep its 

metabolic activities at a stable level. CO2 is found in the atmosphere in a partial pressure of 

0.04 kPa (0.04 vol.%), which is not sufficient to backup successful cultivation due to 

diffusion limitation. Therefore, a minimum utilizable level in the range 0.1 ‒ 0.2 kPa should 

be available for the culture [Doucha et al. 2005]. A calculation of the CO2 demand of 

microalgae can be done based on the stoichiometry of photosynthesis and biomass formed 

[Posten 2009], indicating that an amount of around 1.7 g CO2 per 1 g biomass is necessary. 

Generally, a major group of microalgae grow under neutral pH levels [Qiang et al. 1998], 

whereas an optimal pH range for growth can be species-specific. The relation between CO2 

and pH is related to the chemical equilibrium between CO2, H2CO3, HCO3
-1 and CO3

-2 in 

the culture. Further CO2 addition requires the pH of the medium to be continuously buffered. 

Temperature is a major factor which regulates cellular and morphological responses of 

microalgae [Munoz and Guieysse 2006]. An optimal temperature for cultivation varies in a 

certain range that can be species-specific and a function of other cultivation conditions. 

Generally, the temperature range which a broad group of microalgae tolerate lies between 10 

and 40 °C, with an optimum value for several species in the range of 20 ‒ 30 ˚C [Singh and 

Singh 2015]. Outdoor cultivation at cold locations usually leads to growth limitation. The 

culture’s temperature should be carefully regulated to keep a suitable environment for growth 

and productivity. This can be done using heat transfer circuits which provide hot or cold 

water across the outer surfaces of the cultivation system, or submerged coils to control the 

temperature within the culture volume. Cultivating microalgae at places with cold or severe 

conditions (ex.: heavy rains or strong winds) can be successful by implementing a 

greenhouse. 
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1.6. Typical biomass conversion processes 

Numerous forms of biomass such as wood, organic wastes and crop residue undergo 

conversion to solid, liquid and gaseous products through several processes. Whether these 

processes are designated as treatment, upgrade or conversion, the aim is to obtain a product 

that has a simpler form and higher energy-density. Depending on the process type, three 

conversion technologies can be distinguished. These technologies are based on 

thermochemical, biological and chemical processes. For example, thermal energy or a wide 

range of fuels can be produced from thermochemical processes such as combustion, pyrolysis 

or gasification. 

1.6.1. Combustion 

Thermochemical processes rely in the first place on applying thermal energy or temperature 

followed by a chemical and physical conversion of the feed material. In the presence of an 

oxidant such as air, direct combustion or burning is the simplest method to obtain energy 

from biomass. Combustion has the highest temperature range compared to other conversion 

processes. The main product is a mixture of CO2, water vapor with some solid residues 

depending on the feedstock nature. Combustion produces the majority of energy generated 

from biomass for heating, cooking as well as electricity generation. 

 

1.6.2. Pyrolysis 

This type of biomass conversion takes place in an oxygen-free environment. Pyrolysis 

typically occurs within temperatures in the range of 300 ‒ 700 ⁰C. During pyrolysis, the 

biomass is decomposed and converted into a liquid phase (tar, liquid hydrocarbons or bio-

crude), solid phase (char) as well as gaseous phase (water vapor, gases or volatiles). 

Torrefaction can be considered as a mild form of Pyrolysis which starts at lower temperatures 

(around 200 ‒ 320 ⁰C). During torrefaction, the moisture content of biomass is released along 

with some volatiles. Other complex structures such as cellulose, hemicellulose or lignin are 

partially decomposed to volatile compounds [Bates and Ghoniem 2012]. The main product of 

torrefaction is a dry solid material that is defined as bio˗coal. 
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1.6.3. Gasification 

The term gasification can be used as a general description for combustion, or an inter˗stage of 

pyrolysis for instance. However, the process dedicated for gasification mainly occurs when 

biomass is converted at higher temperatures (ex.: 700 ‒ 1200 ˚C) in an oxygen˗deficient 

environment. The product is then a mixture of gaseous compounds (ex.: H2, CO, CO2, CH4) 

along with other solid constituents such as char or ash. Gasification includes a series of 

homogeneous and heterogeneous reactions such as decomposition, partial combustion, 

reduction and reforming between the different gaseous species, volatiles and carbon. The 

reactions take place in the different zones of a gasifier built˗up in certain setups (fixed bed, 

fluidized bed, entrained flow) and operation mechanisms, depending on the feedstock nature. 

Steam can be used solely or with air to achieve the conversion. When steam is used, the yield 

of H2 and CO2 increases due to the water˗gas shift reaction [Devi et al. 2003]. 

1.6.4. Biochemical conversion 

A number of non˗thermal processes for the utilization of biomass feedstocks are implemented 

for producing several energetic molecules. Biomass can be converted biochemically to liquid 

fuel such as biogas and bioethanol using micro˗organisms. The use of yeast for the 

production of bioethanol is one example. Bioethanol can be produced from starchy or 

lignocellulosic biomass through hydrolysis followed by fermentation and product recovery 

[Verardi et al. 2012]. Hydrolysis results in the formation of fermentable sugars and it is 

usually performed catalytically via an acid or enzyme [Galbe & Zacchi 2002]. 

Another process is the anaerobic digestion, where the use of microorganisms is conducted to 

break down the organic biodegradable materials of biomass (e.g. crop residues or manure). 

Several types of bacteria are used to decompose carbohydrates (hydrolysis) into digestible 

forms that are further degraded to CO2, H2, NH4
+ and organic acids, before methane or 

biogas is obtained. The remaining solid residues (digestate) can be used as an organic 

fertilizer [Giuntoli et al. 2016] or for animal bedding [Zhang et al. 2015]. Other techniques 

such as dark and photo˗fermentation can be used for the production of H2 from biomass 

through fermentative pathways using anaerobic microorganisms [Hallenbeck 2011], but these 

processes are relatively complex and a significant improvement in their conversion efficiency 

needs to be realized [Chong et al. 2009]. 
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1.7. Hydrothermal conversion 

Typically, thermochemical conversion processes (Combustion, pyrolysis and gasification) 

involve the operation at atmospheric or low pressure as a common practice. As higher 

pressure (> 10 bar) is applied and in the presence of water or biomass’s moisture content, the 

process chemistry changes and other conversion mechanisms can be conducted at different 

combinations of temperature and pressure. These processes are referred to as hydrothermal 

processes. Based on the product desired from each process, they are mainly categorized in 

carbonization, liquefaction or gasification. 

1.7.1. Hydrothermal Carbonization (HTC) 

This process is conducted in the temperature range of 170 ‒ 260 ˚C. The operating pressure 

ranges from below 20 bar [Heilmann et al. 2010] up to 50 bar [Basso et al. 2016] depending 

on the temperature applied, to keep the moisture content of biomass from evaporation. The 

residence time inside the system can vary from 20 ‒ 30 minutes to several hours [Liu and 

Balasubramanian 2014, Erlach et al. 2012] according to feedstock nature and the scope of 

operation. Hydrothermal carbonization might be seen or referred to in literature as wet 

torrefaction due to the production of biochar in both processes. In HTC, biomass reacts with 

the hot pressurized water in a series of complex chemical reactions to produce a biochar. A 

liquid fraction containing reaction intermediates such as furfurals and organic acids can be 

obtained as a byproduct with the release of carbon dioxide [Kambo and Dutta 2015].  

1.7.2. Hydrothermal liquefaction (HTL) 

Wet biomass can be converted through hydrothermal liquefaction (HTL) into an oil product 

or a so-called bio˗crude with relatively high heating value, along with water˗soluble 

compounds, solid residues and gas fraction [Toor et al. 2011]. The temperature and pressure 

at which liquefaction is conducted ranges between 280 ‒ 370 ˚C and 100 ‒ 250 bar 

respectively [Behrendt et al. 2008] with a residence time in the minutes˗range. During HTL, 

the complex structure of biomass is decomposed into unstable fragments of lighter molecules 

using a suitable catalyst or sometimes non˗catalytically [Biller et al. 2011]. These unstable 

fragments are reactive and they re˗polymerize forming oily and stable compounds with 

proper molecular weights [Molten et al. 1983]. The separation of the liquefaction products 

plays a significant role in the overall process assessment. Using physical methods (filtration 

and decanting) as well as solvent chemical extraction, the solid residues, different fractions of 
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bio˗crude and the aqueous phase can be separated [Jazrawi et al. 2013, Valdez et al. 2012]. 

So far, the bio˗crude obtained from HTL cannot directly be used as biofuel for transportation. 

Further upgrading to reduce the nitrogen, sulphur and oxygen content of the bio˗crude is 

necessary [Barreiro et al. 2013]. 

 

1.7.3. Supercritical water gasification (SCWG) 

Gasification in supercritical water or hydrothermal gasification (HTG) features the highest 

temperature and pressure among other hydrothermal conversion processes. Figure 1.7 shows 

a simplified phase diagram of water as a function of temperature and pressure. Above its 

critical point (T = 647 K and P = 221 bar), the boundary between liquid and vapor vanishes. 

This state is then referred to as supercritical. Under these extreme conditions, the water 

molecule comprises unique properties of both its gaseous and liquid states [Beslin et al. 1998, 

Shaw et al. 1991].  

 
Figure 1.7 – Simplified Phase diagram of water [Modified from: 1998 ChemicaLogic Corporation] 

As the critical point is approached, a major decrease of density occurs. In conjunction, the 

viscosity and diffusivity of water tend to have values comparable to those of gases. As a 

medium for gasification, this ensures good transport properties (no mass transfer limitation) 

and rapid reaction kinetics [Calzavara et al. 2004, Williams et al. 2006, Erkonak et al. 2008], 

allowing for high conversion. In addition, the dielectric constant decreases sharply in this 

region and water behaves like a non˗polar molecule that is capable of diluting and dissolving 

organic materials [Kıpçak et al. 2011].  
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As a result, char formation is suppressed when gasification takes place in supercritical water 

[Modell 1985, Matsumura et al. 2005, Furusawa et al. 2007, Yanik et al. 2007]. Figure 1.8 

demonstrates the changes which occur to some of water properties such as density, dynamic 

viscosity, isobaric heat capacity and dielectric constant upon reaching the critical point at a 

supercritical pressure of 280 bar. The isobaric heat capacity (Cp) tends to infinity around the 

critical point compared to its normal values. The peak in Cp can be thought of as mean to 

indicate the high energy demand around this region, given a zero latent heat of vaporization 

[Yakaboylu et al. 2015]. The varying properties in the sub˗ and super˗critical vicinity give an 

opportunity for a flexible operation by tuning temperature and pressure to achieve desired 

mechanisms and reach better process control. 

  
 

  

Figure 1.8 – Effect of temperature on water properties including density, dielectric constant, 
dynamic viscosity and specific heat capacity at P = 280 bar [Source: IAPWS] 

Water molecules can act as a catalyst for acidic or basic reactions following the concentration 

of H3O+ or OH− ions respectively [Akiya and Savage 2002, Kruse and Dinjus 2007, Brunner 

2009]. At high densities, the ionic product (Kw) of water is high. Aqueous phase reactions 

such as biomass hydrolysis [Guo et al. 2007] preferably occur. On the other hand, the ionic 

product is minimized as the density of water sharply decreases under supercritical conditions, 

a case that promotes free radical reactions which are necessary to form gases such as 

hydrogen and methane [Kruse and Gawlik 2003, Sinag et al. 2003].  
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Processing biomass in high moisture content (> 80 wt%) in supercritical water promotes the 

unique and reactive role of water and eliminates the energy˗consuming dewatering or drying 

prior to traditional gasification processes [Boukis et al. 2007]. Moreover, fast reaction 

kinetics lead to a shorter residence time within the system and hence, less space would be 

needed to construct these systems if a comparison with biological treatment processes is 

made [Crocker 2010]. 

 

1.7.4. Reaction pathways of biomass in near˗ and supercritical water 

Basically, the decomposition of biomass leads to the formation of simpler molecules as an 

initial step. These molecules are considered to be the reaction intermediates or the starting 

point for further dissociation regardless of the reactions pathway. The speed, at which these 

reactions proceed are ideally governed by certain kinetics. The definition of detailed reaction 

kinetics under near- and supercritical conditions is not perfectly understood. This is due to the 

nature of the feedstock materials and consequently, the numerous intermediates which are 

present in the reaction medium at these conditions. Having a better understanding of reaction 

kinetics for hydrothermal conversion would definitely contribute to improving the process, 

for example by preventing the formation of unwanted reaction species or finding process 

conditions, at which certain reactions are favored.  

Simplified reaction schemes were suggested in several works addressing hydrothermal 

conversion. A kinetic model for the gasification of the algal species Nannochloropsis sp. in 

supercritical water was discussed [Guan et al. 2012], in which certain reaction pathways 

starting with two types of lumped intermediates were proposed. These two intermediates 

suggested were categorized based on their reactivity in the medium or the speed of their 

decomposition. First order kinetics was assumed for simplicity and due to the lack of other 

information which contradicts this suggestion. The work concluded that the formation of 

gaseous species was mainly associated with the decomposition of the fast˗reacting 

intermediates. There, and based on an experimental analysis of their earlier work, a reaction 

intermediate such as Hexadecane was found to be rapidly reacting to form gases. From the 

model they proposed, it was also stated that the rate of hydrogen production from steam 

reforming was clearly appreciable if compared to that which is generated directly from the 

intermediates decomposition. 
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A higher gas yield was predicted through the model upon increasing temperature. Moreover, 

the work presented a step for the conversion of these intermediates to solid products such as 

char and assumed it to be a stable product, i.e. having a low reactivity which makes it 

unlikely to undergo further conversion compared to gasification of intermediates. Other 

works have addressed the same topic and designed kinetic expressions which mainly 

proposed simplified reaction schemes supporting the first order behavior. These works 

involved different organic feedstock materials such as glucose [Kabyemela et al. 1997] as the 

building unit or starting material of cellulose, indole [Guo et al. 2013], methanol [Castello 

and Fiori 2012] and glycerol [Guo et al. 2013].  

Unlike standard or model chemical compounds, the composition of biomass is rather 

complex. This is due to its structure that is based on cellulose, hemi˗cellulose and lignin. For 

simplification, the reactions included in hydrothermal conversion of biomass at near˗ and 

supercritical can be categorized in two major groups. The first group includes hydrolysis or 

steam reforming, where biomass is decomposed and several liquid reactions intermediates are 

formed (liquefaction). The second group (gasification) is dominant when temperature 

exceeds the critical point and is associated with the formation of gaseous species.  

Figure 1.9 shows another simplified form of a suggested reaction scheme which can describe 

the conversion of biomass, starting from cellulose, in sub˗ and supercritical water using 

certain key compounds. Such a conversion scheme was presented by Kruse et al. in several 

works which are based on experimental results and was adopted later in further publications.   

 

 

 

 

 

 

 

 

 

Figure 1.9 – A Simplified reaction scheme of biomass conversion in sub˗ and supercritical water 
starting from cellulose and identified by key compounds. [Source: Kruse et al. 2003] 
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According to the scheme, the breakdown of the large or long-chain molecules precedes the 

decomposition of sugars to molecules of a shorter chain such as aldehydes, alcohols or 

organic acids. Cellulose hydrolysis or reforming occurs rapidly, with water accelerating the 

decomposition of biomass structure to smaller units of sugars [Sasaki et al. 1998, Kruse and 

Dinjus 2007]. This decomposition occurs completely under sub˗critical conditions [Minowa 

et al. 1998]. Simultaneously, parallel or competing reactions would lead to dehydration to 

different derivatives of furfurals and phenolic compounds [Kruse et al. 2003]. These types of 

substances react further to produce a mixture of gaseous products under supercritical 

conditions. As stated earlier, high molecular weight products such as solids depositing in the 

form of tar and char may also be formed due to extended polymerization of the existing 

intermediates [Rönnlund et al. 2011, Kruse and Denjuis 2007]. 

Due to the large number of intermediates and reaction pathways involved in the hydrothermal 

conversion, it is a difficult task to list such reactions in full details. However, the overall 

equations listed below in table 1.1 give an overview on some fundamental reactions occurring 

in the conversion medium. A crucial reaction in SCWG is the hydrolysis or steam reforming 

of the organic substance to obtain carbon monoxide and hydrogen (Eq. 1.1). A general 

formula of a key compound (C Hx Oy) which can describe biomass or other organic chemicals 

was adopted in several works for simplicity. The subscripts (x) and (y) indicate the H/C and 

O/C molar ratio respectively.  

Table 1.1 – Basic gasification reactions possibly occurring during hydrothermal 
conversion of biomass [Source: Susanti et al. 2010, Rönnlund et al. 2011] 

 Reaction 
Reaction  

no. 
ΔHr

0
(298K)  

kJ.mol-1 Description 

CHxOy + (1 – y) H2O → CO + (1 – y + [(x/2]) H2 1.1 + ve* 
Reforming or 
decomposition 

CO + H2O   ↔   CO2 + H2 1.2 ˗ 41.2 Water˗gas shift reaction 

CO + 3 H2   ↔   CH4 + H2O 1.3 ˗ 206.2 CO Methanation 

CO2 + 4 H2  ↔   CH4 + 2 H2O 1.4 ˗ 165 CO2 Methanation 

C + CO2   ↔   2 CO 1.5 +172.5 Boudouard equilibrium 

CO + H2  ↔ C + H2O     1.6 ˗ 131.3 CO˗hydrogenation 

CO2 + 2 H2  ↔   C + 2 H2O 1.7 ˗ 90.1 CO2 hydrogenation 

CnH2n + H2  ↔  CnH2n+2 1.8 ˗ ve* Alkene hydrogenation 
 
* The +v and -ve sign indicate endothermic and exothermic reactions respectively. 
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This general reaction is endothermic, since energy is required to break˗up the starting 

molecule. More energy is needed for decomposition as the chain length of the organic 

molecule increases. For example, the reaction enthalpies of reforming some model 

compounds used in hydrothermal gasification, such as methanol and isooctane to syngas are 

91.7 and 1274.5 KJ.mol-1 respectively [Boukis et al. 2003, Susanti et al. 2010]. After 

decomposition, other reactions occur such as the water˗gas shift reaction, from which 

hydrogen and carbon dioxide are released. The formation of methane is achieved by the 

methanation of CO and CO2 via reacting both gaseous species with hydrogen. These three 

reactions (Eq. 1.2 ˗ 1.4) are energy-releasing, i.e. exothermic. Other reactions would possibly 

occur, resulting in the formation of light hydrocarbons (ex.: ethane, propane) or even coke in 

some cases from reduction or hydrogenation reactions. 

 

1.7.5. The catalytic role of salts 
 

One factor which plays a role during hydrothermal or supercritical water gasification is the 

existence of dissolved salts within the reaction medium. Certain amounts of an alkali metal 

such as potassium carbonate or bicarbonate (K2CO3, KHCO3) can be added by dissolving in 

a model compound or a slurry biomass feedstock. This addition enables the dissolved salt to 

act as a homogeneous catalyst that favors some reactions over others. Based on previous 

works, the existence of such salts in the feedstock proved to have their catalytic activity 

through forming a reaction mechanism which promotes the production of gaseous species 

such as hydrogen. These mechanisms, however, were proposed in literature as proposed 

schemes and are mentioned here as a possible explanation for the changes taking place. Also, 

other works reported that the addition of a salt like K2CO3 suppresses the formation of coke 

or char [e.g. Matsumura et al. 2005] and leads to an improvement in gasification efficiency 

[e.g. Schmieder et al. 2000]. 

Elliott et al. 1983 discussed a mechanism for the decomposition of K2CO3 in high 

temperature pressurized systems. The work credited the alkali catalysis of the water˗gas shift 

reaction in aqueous solutions to the works of Yoneda et al. 1943a,b and 1944a,b. The 

mechanism, represented with the following equations below, includes both the formation and 

decomposition of a formate salt intermediate in a solution containing dissolved K2CO3. As a 

result, the equilibrium of the water˗gas shift reaction moves towards H2 production and CO2. 

In the first step (Eq. 1.8), K2CO3 is hydrolyzed and converted to KHCO3 in the aqueous 

medium.  
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The ionization of the salt promotes the formation of potassium formate (Eq. 1.9). As a result 

and given the decomposition of formate (Eq. 1.10) with the regeneration of bicarbonate (Eq. 

1.11), H2 and CO2 are generated. The water˗gas shift reaction is simply the summation of 

these reactions. According to the mechanism, an increase in both CO2 and H2 concentrations 

are expected by the addition of such a catalyst. 

𝐊𝟐𝐂𝐂𝟑 +  𝐇𝟐𝐂 →  𝐊𝐇𝐂𝐂𝟑 + 𝐊 𝐂𝐇 Eq 1.8 
𝐊 𝐂𝐇 + 𝐂𝐂 → 𝐇 𝐂𝐂𝐂𝐊 Eq 1.9 

𝐇 𝐂𝐂𝐂𝐊 + 𝐇𝟐𝐂 →  𝐊𝐇𝐂𝐂𝟑 +  𝐇𝟐 Eq 1.10 
𝟐𝐊𝐇𝐂𝐂𝟑 →  𝐊𝟐𝐂𝐂𝟑 +  𝐇𝟐𝐂 + 𝐂𝐂𝟐 Eq. 1.11 

Such a mechanism was also highlighted in later works [e.g. Onsager 1996, Sinag et al. 2003, 

Yanik et al. 2008]. Nevertheless, the work of Elliott et al. 1983 provided a criticism for this a 

mechanism based on their experimental work, indicating no evidence of bicarbonate 

formation from Eq. 1.10. Instead, a modified mechanism for the catalysis of the water-gas 

shift reaction was proposed (fig. 1.10), through which formaldehyde, formate and hydroxide 

ions (OH−) are formed as intermediates.  

 
 

 

Figure 1.10 – A suggested mechanism for the catalyzed water-gas shift reaction in high 
temperature pressurized aqueous systems involving a dissolved salt [Elliott et al. 1983] 

In this mechanism, any source of hydroxide ion (OH–) acts as a catalyst for the water-gas 

shift reaction. In addition, the mechanism indicates that the decomposition of the existing 

formate salt in the system is the rate-limiting step. The carbonate salt reacts completely with 

water on one hand. Simultaneously, formate is produced by the reaction of carbon monoxide 

CO with OH-, which originate from the carbonate salt. The formate then decomposes to 

carbonate and formaldehyde. Based on this mechanism, the released H2 would originate from 

the decomposition of formaldehyde. 
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2. Literature and Technology Review 

2.1. Introduction 

This chapter highlights part of the research activities in the field of hydrothermal conversion 

in near˗ and supercritical water. In general, there are a variety of applications when dealing 

with fluids at elevated temperatures and pressures, depending on the work conducted and its 

objectives. An example is applying supercritical CO2 as a solvent for the extraction of other 

compounds, due to its non˗toxicity, environmental safety and availability at low cost 

[Díaz˗Reinoso et al. 2006, Zhang et al. 2010]. It is also used as a solvent in other applications 

that include the production of fine particles on the submicron level, by the rapid expansion of 

system mixtures from supercritical state [Türk et al. 2006]. On the other hand, supercritical 

water can be used in the synthesis of nanoparticles such as copper or nickel oxides, a 

technique where a fine tuning of process conditions allows the control of particle size 

formation or nucleation [Hayashi and Hakuta 2010]. These interesting fields, however, are 

mentioned only as examples of application versatility and will not be the focus of this study.  

 

2.2. Feedstock materials and process objectives 

As pointed out in the previous chapter (Ch. 1 Introduction), the gasification in supercritical 

water or the hydrothermal conversion generally utilizes the unique properties of water that 

only exist in the vicinity of its critical region. The idea of utilizing water in this manner was 

first introduced by Modell et al. 1978 and Modell 1985. These early works demonstrated that 

a gaseous mixture of H2, CO2 and CO can be obtained from model compounds (glucose) as 

well as cellulosic materials (forest products) using supercritical water without char formation. 

Since then, the exploitation of wet materials under comparable conditions hast started and 

continued. 

Typically, the conversion of carbonaceous materials under high temperatures and pressures 

can be conducted on catalytic or non˗catalytic basis. Depending on the mechanism of feed 

delivery to the system and product discharge, continuous and batch processes can be 

distinguished. Elliott et al. 1989 developed a process for the conversion of high˗moisture 

biomass (cellulose, sucrose and sorghum) to CH4, CO2 and H2, in a continuous˗flow reactor 

under a reduced temperature (350 ˚C) and using a Ni˗based catalyst. 
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In general, numerous kinds of materials can be used in different processes of hydrothermal 

conversion. This depends in the first place on the scope of work or the product targeted from 

each process.  Standard chemicals or model compounds are widely used under sub˗ and 

supercritical conditions on different scales of operation. Examples of such compounds include 

glucose, ethanol, glycerol, formaldehyde, benzene, isooctane and phenol. Some experiments 

are designed to investigate the influence of the feed’s molecular structure on the process 

performance or the type of product formed [Chakinala et. al. 2013]. Other experiments are 

conducted to generate a kinetic expression or suggest a reaction pathway that is valid or 

plausible at the corresponding operating conditions for a given compound [Kabyemela et. al. 

1997, Akgül et. al. 2013, Guo et al. 2013, Abelleira et. al. 2013]. These experiments are 

typically carried out in small scale systems such as batch autoclaves or continuous tubular 

reactors of small dimensions. These experiments usually include certain measures (ex.: 

conversion efficiencies, production rates or species concentration in a certain phase), which 

optimally describe the process performance depending on the objective of each work. 

On the other hand, agricultural byproducts or crop residues and other waste materials have 

gained noticeable attention in the recent decades due to their vast amounts, treatment or 

disposal necessity, and their high content of moisture. Several works tend to focus on 

releasing the stored energy of the biomass in the form of a solid, liquid or gaseous biofuel. 

Erlach et al. 2012 presented a conceptual design, using balance calculations with the aid of 

Aspen Plus simulation, of an industrial˗scale plant for the hydrothermal carbonization of 

wood. The goal was to provide a mean of treating this material to upgrade its heating value 

and decrease its water content prior to entrained flow gasification. This was conducted to 

compare carbon capture rates and the overall process efficiency with entrained flow and 

fluidized bed gasification of the raw wood. 

Ro et al. 2007 evaluated wet gasification of animal wastes (manures) in a conceptual study 

based on energy content of both the feed and product gas as well as proposed reaction 

schemes. According to estimates, the work claimed that these wastes, especially swine 

manure, can be converted with a net positive energy return if an efficient heat recovery (90%) 

is achieved, at a threshold concentration of 8 wt%. Rice husk was used by Basu et al. 2009 for 

supercritical water gasification in a batch reactor. The influence of temperature (400 ‒ 680 

°C) and feed concentration (2 ‒ 14 wt%) on the process efficiency was studied. Maximum 

gasification efficiency on carbon basis (defined as CGE and is explained in section 3.3 of the 

next chapter) of 70% was obtained at the lowest feed concentration and the work reported 
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linear increase of this value upon raising temperature. Güngören Madenoğlu et al. 2011 tested 

several types of ligno˗cellulosic biomass (cauliflower residue, acorn, tomatoes residue and 

hazelnut shell) for SCWG in a continuous˗flow system at T = 600 ˚C and P = 35 MPa using 8 

wt% feed concentration. Potassium and sodium carbonate were added as catalysts and the 

values of CGE were improved by addition of these salts into the reacting system. Other 

feedstock materials were used for hydrothermal liquefaction or supercritical gasification in 

continuous˗flow systems, such as fruit pomace [Hammerschmidt et al. 2014], corn silage, 

clover grass [D'Jesús et al. 2005, D'Jesús et al. 2006], potato˗starch gels, pyroligneous acid 

[Möbius et al. 2012] and wood sawdust [Antal et al. 2000]. 

Several works discussed the utilization of black liquor, a chemical by˗product from the 

pulping industry that consists of an aqueous solution of lignin residues, hemicellulose and 

inorganic compounds [Magdeldin et al. 2015, Cao et al. 2011]. This material contains about 

40% inorganic chemicals that can be recovered using supercritical water gasification, where 

the organic fraction of black liquor is gasified and the inorganics are separated by 

precipitation. [Sricharoenchaikul 2009]. Black liquor is typically recovered by boilers on a 

large scale in preset or existing technologies, where it has to be concentrated before 

combustion [De Blasio et al. 2016]. In table 2.1, different types of carbonaceous materials are 

highlighted in terms of their content of moisture, energy and ash. The values listed in the table 

below may vary depending on the nature or conditions through which these materials evolved 

as well as the method of collection. Therefore, using a range of values would be acceptable to 

address these materials. Certainly, the degree or extent to which these materials exist varies 

depending on the country, its location, resources and the lifestyle of its population. 

Table 2.1 – Different types of biomass and some of their basic analyses 
 

 Moisture content 
wt% 

Calorific value (HHV) 
MJ.kg-1  

Ash content (550 ˚C)  
wt% 

Microalgae (misc.) a > 95 f 20 ˗ 22 10 ˗ 15 
Sewage sludge (secondary) b 87 15.4 27.02 
Cow manure (fresh) a 86 ˗ 88 15 ˗ 17 13 ˗ 14 
Rice husk c 7.9 14.87 19.9 
Brewery spent grain (Malt) d 4 ˗ 6 N/A 2.4 ˗ 7.9 
Wood pellets a 6.5 ˗ 8.5 18.6 ˗ 19.1 0.27 ˗ 0.65 
Wheat straw a 8.01 ˗ 10.3 15.63 ˗ 17.2 4.23 ˗ 7.16 
Corn silage e 62 ˗ 70 3.9 ˗ 4.5 18.3 
Hazelnut shell a 12 ˗ 13 17 ˗ 20 1 ˗ 3 

 
a Based on data collected from ECN Phyllis classification database, b Qian et al. 2015, c Basu et al. 2009, d Aliyu and Bala 2011 
e D’Jesús et al. 2005, f The values depend on the culture density during growth, moisture content can be significantly reduced upon harvesting. 
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2.3. Exploitation of algal biomass 
 

Extensive efforts have been presented in several works to utilize microalgae, evaluate the 

given processes and define a systematic approach for describing the corresponding systems. 

The works conducted in these systems has covered the different thermochemical techniques 

referred to earlier (HTC, HTL and HTG) using different scales and modes of operation.  

2.3.1. Hydrothermal carbonization 

Heilmann et. al. 2010 reported on hydrothermal carbonization of microalgae and the energetic 

content of the algal char produced. Two strains of microalgae were selected (Chlamydomonas 

reinhardtii and Dunaliella Salina) and put in a 450 ml stirred batch reactor under T = 190 ‒ 

210 °C, P = 16.5 bar. Certain concentrations of algal feed were used (5, 7.5, 15 and 25 wt%) 

and the residence time was varied between 0.5 to 3 h. The key outcome of the experiment was 

to measure the amount of recovered carbon in the algal char relative to aqueous filtrate and 

CO2 evolved. About half of the carbon present in the feed was found, along with nitrogen in 

the aqueous filtrate in the form of reaction by˗products. The char obtained from both strains 

was also compared with natural coal and char from a lignocellulosic material (Prairie grass). 

The quality, in terms of energy content, of the algal char produced was in the bituminous 

range according to the values presented. Also, the work stated the potential of a shift to 

continuous operation, given the relatively low residence time and mild conditions adopted. 

2.3.2. Hydrothermal liquefaction 

Increasing both temperature and pressure to values around the critical point of water provides 

a new dimension for operation in terms of product characteristics. Under these conditions, a 

liquid substance referred to bio˗crude or bio˗oil can be obtained and the process is then 

denoted as hydrothermal liquefaction. Several algal species or strains have been used for the 

conversion process. Some examples include Spirulina, Chlorella vulgaris and Porphyridium 

cruentum [Vardon et al. 2011, Biller and Ross 2011]. The majority of the works published in 

the category hydrothermal liquefaction deals with batch reactor [Toor et al. 2011]. In the work 

of Valdez et al. 2012, a mini batch reactor of 4.1 ml was used in the temperature range of 250 

‒ 400 °C and residence time of 10 to 90 minutes to convert microalgae (Nannochloropsis) 

without the use of a catalyst. Operation pressure was not reported. Dichloromethane was used 

to separate the aqueous and organic phases. Two fractions of bio˗crude, heavy and light, were 

distinguished and separated by the addition of n˗Hexane.  
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Based on the results, the work concluded that the yield of total bio˗crude (heave and light) 

depends on system temperature at the first place. In addition, producing more of one fraction 

over the other is directly related to temperature and reaction time adjustment. These 

statements are generally supported in a different work [Barreiro et al. 2013] regardless of the 

strain used. According to the experiments, using higher feed concentration, from 5 up to 35 

wt% at 350 °C and 60 min residence time, resulted in an increased oil yield from 36 to 46% 

respectively. 

Nannochloropsis was also used by Toor et al. 2013 in a batch autoclave of larger volume (400 

ml). Filtration was used to separate the aqueous phase and acetone was the chemical applied 

to extract the bio˗crude. The bio˗crude yield at the same temperature as in the work of Valdez 

et al. 2012 are similar (46 wt%) despite the difference in the biomass loading (25 wt%) and 

residence time (30 min) in the work of Valdez et al. 2012. The influence of high 

lipid˗containing feedstock on the production bio˗crude was supported in the two works along 

with other works (ex.: Biller et al. 2011). This, along with other process variable, gives an 

indication regarding the importance of species selection for hydrothermal liquefaction.  

 

2.3.3. Gasification in supercritical water 

Gasification of algal biomass in supercritical water proceeds at the highest temperature and 

pressure compared to other hydrothermal conversion systems. Here, the goal is to convert the 

organic stream into a combustible gaseous mixture of high energetic value along with carbon 

dioxide. The published works in this field have covered several species of microalgae, 

different systems of various sizes, under batch and continuous mode of operation. Of the early 

works processing algal biomass, Minowa and Sawayama 1999 presented. The work gave a 

brief analysis of the gasification of 12.6 wt% C. vulgaris in a 12 cm3 batch autoclave with a 

magnetic stirrer. A nickel˗based catalyst on silica˗alumina, heated using an electric furnace to 

350 ˚C at a relatively reduced pressure (18 MPa).  

The gaseous product consisted mainly of CO2, H2 and CH4 and all the nitrogen content of the 

algal species was converted to ammonia in the aqueous effluent. As the catalyst loading was 

increased 3˗folds, the CGE was doubled from 35% to 70% and the gas composition 

approached the equilibrium composition, but did not match it. They stated that a complete 

conversion is possible at a higher reaction temperature or with a larger amount of catalyst with 

no further investigations. 
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Stucki et al. 2009 conducted a catalytic gasification of Spirulina platensis in supercritical 

water with different feed concentrations (2.5 – 20 wt%). A complete gasification (100% CGE) 

in an unstirred batch reactor (V = 30 ml) at T = 400 °C and a P = 30.8 – 34.5 MPa to a 

methane˗rich gas was reached. A ruthenium˗based heterogeneous catalyst was loaded in the 

reactor. A feed˗to˗methane thermal conversion of 60 – 70% was achieved based on the 

calorific value of the algal biomass used. One run was conducted without a catalyst at the 

lowest feed concentration. This resulted in a very low CGE (10%) and a gas product, which 

consisted mainly of CO2 and H2. This is a clear indication that implementing a metal˗based 

catalyst has the advantage of operating at lower temperature and still reach good conversion. 

In the work of Chakinala et al. 2010, Chlorella Vulgaris was tested for gasification in 

supercritical water using a batch system in the shape of quartz capillaries (ID = 0.2 cm, L = 15 

cm). The study investigated the influence of reaction time (1 – 15 minutes), temperature (400–

700 ˚C), feed concentration (2.9 and 7.3 wt%) and the use of several types of metal˗based 

catalysts in some experiments. The goal was to evaluate the gasification efficiency (GE) and 

the composition of the gaseous products (H2, CO2, CO, CH4 and some C2˗C3 hydrocarbons).  

Using the lower and higher feed concentration at 600 ˚C resulted in a GE was 68% and 53% 

respectively. The work also referred to other experiments conducted, not reported in the work 

though, in algal concentrations lower than 2.9 wt%, where a complete gasification was 

achieved. It confirmed the significant impact of operating at higher temperature on the amount 

of gases produced, in particular when a GE of 83% was achieved with a 7.3 wt% feed 

concentration at the highest temperature applied (700 ˚C). These experiments were conducted 

non˗catalytically and with a reaction time of two minutes.  

Regarding the reaction time, the work concluded that 5 minutes (at T = 580 ˚C) resulted in a 

GE of max. 73% if no catalysts were used, even if the reaction time was increased beyond this 

value. As Inconel®1 powder and a nickel wire were used as a catalyst, the GE was improved to 

84% compared with 53% at the same temperature mentioned earlier. Inconel® powder was 

introduced in this work as a mean to mimic the catalytic effect of the reactor walls (when 

Inconel®˗based reactors are used) on gasification, which was discussed elaborately in earlier 

works [ex.: Antal et al. 2000, Boukis et al. 2003, Potic et al. 2004]. Furthermore, the 

experimental results showed that a complete conversion using a Ru/TiO2 catalyst at 700 ˚C 

was possible, even at lower temperature (600 ˚C) if excess Ru/TiO2 was used. 

                                                           
1 Inconel refers to brand name which refers to a group of nickel-chromium based alloys 
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Continuous˗flow systems for wet gasification have been presented in literature as well. Elliott 

et al. 2012 used a bench˗scale tubular reactor, of 1-liter volume, at T = 350 °C and P = 20 

MPa. Among several strains tested including macroalgae and mixed strains, Spirulina and 

Nannochloropsis salina were relevant to highlight. They were fed at a concentration of 20 − 25 

wt%. A simple separator for minerals (salts or ash) and a sulphur stripper were integrated in 

the system to reduce the risk of plugging and catalyst deactivation respectively. The minerals 

are removed batch˗wise as they accumulate in the separator. The material used for sulphur 

removal was Raney nickel. Since the heat recovery was not planned for this scale of 

operation, heat was provided externally. A Ru/C˗based catalyst bed was used for the 

experiments. Depending on the specific run, the system was operated at a continuous mode 

for a range of 6 − 10 hours. A direct indication of residence time was not referred to in the 

work, but a volumetric flow rate range of 1 − 1.5 L.h-1 algal feedstock was stated and another 

term, liquid hourly space velocity (LHSV), in the range of 1.2 − 1.9 h-1 was used and was 

defined as the liters of slurry processed over the liters of catalyst bed at the designated 

operating temperature. 

Detailed measurements and calculations of the CGE, COD conversion, trace elements in both 

solid minerals and aqueous phase as well as the spent catalyst were conducted. High CGE 

were obtained with Spirulina compared to Nannochloropsis salina (90% and 59% 

respectively). The authors suggested an explanation to the reduced conversion based on the 

high lipid content of Nannochloropsis salina, which resulted in incomplete gasification of the 

long chain fatty acids, leading carbon losses in the catalyst bed and aqueous byproduct. 

During some of the tests, several findings or challenges were reported. This includes the loss 

of a fraction of the carbon along with the separated minerals, evidences of catalyst 

deactivation during longer term operation, high levels of ammonia in the aqueous phase and 

while phosphate precipitation in the mineral separator. 

Miller et al. 2012 addressed the gasification of algal biomass in their work. A tubular reactor 

heated via a three˗zone split furnace was available for the continuous gasification of Spirulina 

at T = 550 − 660 °C and P = 23.5 MPa without a catalyst. A two˗streams configuration was 

applied by using supercritical water that is combined with the algal biomass at a mixing tee in 

a 1:1 ratio. Two high concentrations were used for the experiments (17.5 and 25 wt%) and a 

range of residence time of 1 − 40 seconds was tested. Two measures were used to express the 

efficiency of operation; the gasification efficiency, as the ratio between the total gaseous 

products obtained and the mass of dry algal biomass.  
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The second measure is the gasification rate, expressed in units of concentration per time. The 

work defined this metric as the amount of gas produced, relative to the feed volume, divided 

by the average residence time. A set of factorial experiments was conducted to investigate the 

interaction between the major process variables (temperature, feed concentration and 

residence time). A maximum gasification efficiency of 95% was achieved using the longest 

residence time (τ = 40 s). The GE efficiency may sometimes exceed 100% in many cases, 

given the contribution of water as a reactant for the total gaseous products (refer to chapter 

materials and methods). No data on carbon balance (i.e. CGE) was presented.  

Based on the interaction introduced by the factorial experiments, the impact of operation 

temperature was found to have the crucial significance. Further, changing the residence time 

was more effective at lower temperatures. In addition, the work covered other topics, 

demonstrating the reliable pumping of very concentrated slurry (paste˗like) using a piston 

cylinder. It also provided a relation between the flow regime and gasification rate, indicating 

that the gasification rate peaks around the turbulent region of the pipe flow (Reynold’s 

number, Re = 4000). 

Another system for the catalytic gasification of Phaeodactylum tricornutum in a 

continuous˗flow mode was described by Bagnoud˗Velásqueza et al. 2014. The laboratory unit 

contained a salt separator and the reactor (ID = 12 mm and L = 1.4 m) was packed with a 

Ru/C catalyst. The procedure was to pump a model compound (5 wt.% glycerol) first to 

preheat the system, followed by the 6.5 wt.% algal feed. Operating at 32.3 MPa, temperatures 

of 360, 470 and 420 ˚C for the preheater, salt separator and reactor respectively were applied. 

A weight hour space velocity of 0.42 gfeed.gcat.-1h-1 was set.  

Based on the results from one experiment using the algal feed, the effluent was not oily and 

not clear (TOC = 8740 mg.L-1). A drop in CGE (from 100% down to 31.1%) as well as the 

rate of gas production was noticed after switching from glycerol to algae. Also, the switching 

resulted in a decreased of methane production, accompanied by an increase of H2, C2H6 and 

C3H8. The software Aspen plus was used to calculated the thermodynamic equilibrium 

composition of gases (based on the minimization of the Gibbs free energy) at similar feed 

concentrations and operating conditions. The results, however, did not match with those 

obtained during the experiment at steady state. Some difficulties were pointed out in the work 

such as the catalyst poisoning by sulphur. The poisoning was faster or more severe compared 

to the work of Elliott et al. 2012, despite using a lower concentration of algal feedstock.  
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This indicates the significance of the sulphur removal system in the earlier work. Another 

challenge was the blockage of the active metal sites due to coke deposition. Added to that, the 

precipitation of some heteroatoms such as P, Mg and Ca on the catalyst was identified from 

the SEM˗EDX analysis. One main message interpreted from this work is the variation or 

dependence of system performance and gas composition on the configuration, flow regime 

and mode of operation. This was supported by comparing the results obtained with those from 

several previous works. 

The results discussed in this chapter demonstrate a broad range of approaches depending on 

the scope of each work. To conclude the varieties of the systems associated with hydrothermal 

conversion, the following figure (fig. 2.1) shows a schematic summary of basic units and 

operational sub-processes involved in such systems. 

 

Figure 2.1 – Basic sub-processes involved in hydrothermal gasification (HTG). 

At the end of this chapter, table 2.2 provides a quantitative summary of previous works 

related to hydrothermal gasification with the focus on algal biomass as a feedstock. Related to 

the works listed in the table, the collected data take into consideration the algal species, 

operating temperature, pressure, available catalyst for operation, feedstock concentration, 

system size, mode of operation, residence time as well as the efficiency of gasification. 

• Vertical or horizontal setup 
• Tubular reactors, autoclaves or capillaries 
• Batch or continuous mode of operation 

Configuration / 
Mode 

• Direct pumping using a slurry pump 
• Indirect pumping using a hydraulic fluid (e.g. water) 

Feeding 
(liquid or slurry) 

• Heat exchange with the hot effluent stream 
• Electric heating coil, heated sand bath 
• Fuel burning (natural gas, propane, or part of the product gas) 

Pre-heating / 
Heating 

• Homogeneous: dissolved in the feed (e.g. salts) 
• Heterogenous: A catalyst bed, reactor walls or catalyst 
powder/granules mixed  with feed 

Catalysis 

• At a sub- or near-critical temperature before the reaction zone 
• After the reaction zone 
• No extraction 

Minerals or salt 
extraction 

• Expansion of the output stream/-s using a backpressure regulator 
• Flash (knock-out) drums for gas-liquid separation 
• Filtration/Separation of solid particles (ashes or salts) 

Phase separation 
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2.4. Treatment of sewage sludge 

Given the concept of utilizing renewable sources for continuous energy production, there is an 

emerging need to treat waste streams such as sludge or fecal matter to prevent the spread of 

pathogens and maintain acceptable quality of aquatic resources. This is of particular concern 

in poor communities, where a lack of proper sanitation and limited access to clean water is 

common [Arthurson 2008]. Sewage sludge has also drawn the attention as a promising 

feedstock in hydrothermal conversion. This is due to its energy content and the production in 

large amounts from wastewater treatment plants [Gong et al. 2014]. Developing hydrothermal 

conversion systems, such as the supercritical gasification of sewage sludge, would achieve a 

double benefit by generating energy˗rich gas product and providing a safe disposal of this 

material at the same time [Gasafi et al. 2008]. 

Chen and co˗workers investigated the gasification of secondary sludge in a 140 ml batch 

reactor under near˗ and supercritical conditions. Based on a solid concentration of 8.9 wt%, 

the work studied the influence of temperature variation (350 − 450 °C) and residence times of 

5 to 25 minutes on the formation and distribution of the gaseous products, liquid intermediates 

as well as solids within the system. It was concluded that the organic constituents of sludge 

were almost completely dissolved and converted in water at 425 °C. The key message from 

the work was that temperature had the dominant influence over residence time in terms of gas 

yield, composition and product distribution [Chen et al. 2013]. 

In the work of Boukis et al. 2017, a catalytic process for the conversion of digested sludge (a 

by-product of anaerobic biogas production) under supercritical conditions was operated on 

pilot˗scale using continuous flow. The work involved a ruthenium˗based catalyst preceded by 

a bed of ZnO on top, in order to adsorb sulphur which exists in the feedstock and was not 

extracted in a salt separation system prior to the reactor. The gasification was conducted at a 

reaction temperature of 420 ˚C and pressure of 280 bar. Methane was the targeted or primary 

product of the process. In addition, the recovery of basic elements in the sludge such as 

nitrogen and phosphorus was demonstrated. The work showed the ability of processing as 

much as 334 kg of this material and recovering over 55% of the ash which makes up about 20 

− 30 wt% of the raw sludge. 
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The influence of feed concentration and residence time on the gasification of primary sewage 

sludge was presented by Wilkinson et al. 2012. The gasification efficiency and gas 

composition was evaluated using a 9 ml batch reactor maintained at a temperature of 800 °C. 

Residence time was varied between 7, 10 and 14 minutes with solid concentrations of 3.84 

and 21.3 wt%. Gasification efficiency reached 100% for both concentrations at this high 

temperature. However, the maximum value was achieved at lower concentration and shorter 

residence time (7 minutes) compared to 10 minutes using a concentration of 21.3 wt%. The 

frame work in which this study has been made was the comparison between supercritical 

water gasification and anaerobic digestion, giving an insight of the system size and energy 

requirement. In this context, it was concluded that SCWG is efficient in treating the organics 

and converting them to energy. Nevertheless, a minimum solid concentration of about 30 wt% 

was necessary for an auto-thermal or energy˗neutral operation without heat recovery, 

according to the authors.   

In another work, a combination of gasification, followed by oxidation of sewage sludge in 

supercritical water was presented [Qian et al. 2015]. A feed concentration of 13 wt% solids 

was adjusted; gasification temperatures of 450 to 600 °C were applied to the 0.6 liter reactor 

for 20 minutes. The produced effluent, liquid and solid residues, was treated using hydrogen 

peroxide (H2O2) as an oxidant under supercritical conditions. The results showed an impact of 

both the temperature and oxidation coefficient (n) on the gaseous products (yield and 

components), liquid effluent quality (TOC and NH3˗N) as well as solid residues in terms of its 

amount. The work alleges the feasibility of a combined process; SCWG at 450 °C and SCWO 

at 600 °C with an oxidation coefficient (n = 1), achieving enhanced effluent quality. 
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2.5. Toward process development 

2.5.1. Slurry pumping  

The ability of a reliable pumping of the feedstock to near˗ or supercritical pressures 

contributes significantly to the stability and success of the hydrothermal processes. 

Pressurizing water or any model compound is usually associated with no operational 

difficulties. The Pacific Northwest National Laboratory (PNNL) published an elaborate report 

on pumping biomass slurries (Berglin et al. 2012). The work consisted of several milestones 

to scale up a system that converts wet slurries to high˗value hydrocarbon fuels. Several 

assessments based on information acquired from pumps vendors are available in this review. 

The study was focused on hydrothermal liquefaction. However, the details provided and the 

arguments made would be applicable for other hydrothermal conversions processes, where 

aqueous feed or slurry is involved. This is because pumping in these processes is conducted at 

high-pressure (near- / supercritical) and proceeds at ambient temperature in most of the cases.  

The major factors influencing a reliable pumping are the feedstock nature of the pumped 

material and the scale of operation. Model compounds are pumped easily since they are 

simple liquid solutions. On the contrary, biomass and waste materials contain a variety of 

solid constituents, which can have fibrous structures, large particles, be sticky or viscous and 

contains insoluble inorganic fraction. This is in particular when pumping becomes an issue, 

especially as the concentration of these compounds increases.  

Positive displacement equipment such as piston or screw pumps are widely applied to provide 

the desired operational pressure. These pumps are capable of delivering the feed at high 

pressures, can provide a stable and precise flow. On a laboratory scale, pumps similar to those 

used in liquid chromatography (HPLC) function properly. An example of these pumps 

includes those manufactured by Eldex® and BISCHOFF®. However, these pumps are only 

suitable at small scale, as they are mostly limited by low throughput (< 2 L.h-1) and can 

handle diluted feed streams in case solids are considered. Upon the need to operate using 

higher solid concentrations, a pressurized cylinder can be integrated into the system. This has 

been available in some work groups (ex.: D'Jesus et al. 2005, Miller et al. 2012), where a 

floating piston inside a cylinder is driven by a working fluid, like water, on its other side. This 

enables a complete separation between the feed to be pressurized and the internal parts of the 

pump. Practically, this cylinder can be thought of as a form of a piston pump that is driven by 

another pump for pressure development. 
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When large˗scale operation is planned, different pumps that are off˗the˗shelf are necessary. 

Pump selection should be made carefully depending on the desired throughput range of operation, 

maximum solid content or viscosity that the pump is able to handle. There are several 

manufacturers providing pumps that can operate reliably with slurry materials. Examples include 

Serva®, Weir minerals® and Feluwa®. The double˗hose diaphragm pumps from Feluwa are 

used in several workgroups (for example at the University of Cádiz, Karlsruhe Institute of 

Technology and Duke University) in the field of supercritical water on a pilot scale. An 

illustrative diagram of the equipment is shown in figure 2.2. The positive displacement pump 

allows no contact between the pressurized medium and the pump’s internal parts. This is 

achieved by flowing the feed through a rubber cylindrical diaphragm (hose) that compresses 

the feed (in yellow) through a squeezing action across flow direction (green arrows). 

 
Figure 2.2 – Illustrative sketch of Feluwa’s hose diaphragm pump 2 

Pressure is developed on the surface of the hose via a piston that works against a hydraulic 

and actuation fluid (in blue), typically oil [FELUWA hose diaphragm pumps ˗ operation and 

maintenance manual 2014]. Intake and discharge valves are located at the bottom and the top 

of the volume subjected to pressure. Valve operation is sometimes a concern when large, 

sticky or fibrous particles are present, causing the valve not to be fully sealed.  

In practice, pre˗processing or pretreatment is often required to prepare the slurry materials for 

pumping in continuous˗flow systems. Typically, the slurry is preferred to be well˗mixed to 

ensure homogeneity and avoid the formation of hot spots in the reaction zone due to the 

existence of agglomerates or large particles. Also, continuous mixing prevents settling of the 

solids and the formation of concentration gradients in the feed tanks.  

                                                           
2 Credit: FELUWA: http://www.mining-technology.com/contractors/pumps/feluwa-1/feluwa-11.html 
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The other issue is associated with the particle size distribution of the slurry, which might 

hinder smooth pumping. Although some feedstock materials such as microalgae have fine 

particles, other sources of biomass feedstocks can contain particles or clumps of sizes up to 

4˗6 mm. Therefore, a limit for the tolerance of a given pump to particles’ diameter or length 

should be predefined. Cutting or milling the slurry is practiced to control the particle size class 

of the feed input and ensure successful operation. Furthermore, viscosity is another factor that 

plays a role in pumping, beside the two issues mentioned above. Figure 2.3 shows the effect 

of varying slurry (secondary sludge) concentration on the viscosity. These measurements are 

usually conducted under different rates of shear stress, which gives a better insight when 

defining the suitable range, depending on the pipe sizing and velocities. 

 
Figure 2.3 – Viscosity of different concentrations of milled secondary sludge at different shear 

rates3 

The figure curves indicate that a viscosity increase of one to two orders of magnitude can be 

the result of using slurries of higher concentration. The feed material should be maintained in 

a pump˗able or flow˗able state to avoid any blockage or pipe failure. The composition of 

processed material, surrounding temperature as well as the degree of milling or mixing have 

an impact on the material’s viscosity and therefore, these factors have to be taken into 

consideration, especially using thick or high concentrated slurries. 

 

                                                           
3 Data obtained at the laboratories of the Pratt School of Engineering, Duke University, June 2016 
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2.5.2. Recycling of natural resources 

An important aspect that contributes to further development of hydrothermal processes is the 

utilization of byproducts. Referring to both mass and energy streams, the efficient use of these 

resources is a key milestone to scale˗up and economic feasibility. In addition to energy 

management, the utilization of the minerals that exit the process in aqueous or waste streams 

has become a major concept of research works in the recent years. This concept was discussed 

on the different types of conversion systems presented in this chapter (HTC, HTL and HTC), 

demonstrating the potential to exploit these materials depending on the field of application.  

Minowa and Sawayama 1999 provided a brief description, in which the recovered solution 

from catalytic gasification of C. vulgaris was used for gasification.  The authors indicated that 

entire nitrogen content of the algal cells was converted into ammonia after conversion (NH4
+ 

concentration in the effluent was 9000 mg.L-1). As the effluent was separated from the 

catalyst, it contained low TOC (258 mg.L-1). A dilution of 300˗fold was needed to test the 

recovered effluent and compare it with a standard medium (Chlorella Ellipsoidea Medium) 

over a two˗weeks cultivation batch. Despite the availability of nitrogen, the growth of 

microalgae was with the absence of other nutrients that were not found in the gasification 

effluent. Therefore, using this aqueous fraction solely resulted in a growth rate of one eighth 

of that measured in the standard medium. A mixture of gasification effluent and a standard 

medium having lower N concentration was successful and the growth rate was comparable to 

that of standard medium. 

Haiduc et al. 2009 presented a conceptual idea with an integrated system referred to as 

SunCHem. The system is a combination of algal cultivation and the catalytic HTG of algal 

biomass in a batch reactor. As a first step of the concept proof, the two processes were tested 

separately. Phaeodactylum tricornutum was the feedstock for gasification. The major product 

was a gaseous mixture containing mainly methane and CO2, along with minimal 

concentrations of H2 and C1˗C3 hydrocarbons. Five other strains of microalgae and 

cyanobacteria were tested for cultivation using standard solutions.  

The point of evaluation in the work was the influence of nickel, stemming from corrosion 

products on the algal growth. Certain levels of Nickel would exist due to a material loss of the 

reactor walls. They accumulate in the process effluent and tend to have a prohibitive role for 

the growth of microalgae. In this work, the HTG process effluent was not used for cultivation. 

Instead, a nickel solution was added to the culture medium in adjusted concentrations (1 ˗ 25 



[Gasification of algal biomass in supercritical water with the potential of energy and nutrients recovery – Ch. 2]         [Sherif Elsayed] 

41 
 

ppm) to simulate the Ni levels expected in the HTG process effluent containing the nutrients. 

For all the species tested, the growth was negatively influenced by the presence of Ni even in 

the ppm concentration range (1 ˗ 10 ppm). Ni concentrations above 25 ppm lead to a complete 

growth inhibition. 

Few years later, Biller et al. 2012 discussed a similar concept by establishing a closed˗loop 

system between algal cultivation and hydrothermal liquefaction based on nutrient recycling of 

the aqueous phase. Several strains of both microalgae and cyanobacteria were processed in 

batch reactors at T = 300 and 350 °C. The process water was recovered from the bio˗crude, 

analyzed for nutrients (ex.: NH4
+, PO4

3-, K and Acetate). A number of cultivation 

experiments were performed for each of the strains in a standard growth medium, defined as 

media, and the growth behavior was compared to that using the nutrients˗containing process 

water rates in a series of dilutions (50˗ to 600˗fold) using distilled water. The Analysis of the 

uptake levels of different compounds during cultivation were conducted to the spent water. 

Basically, the process water contained all the required nutrients for growth and doubling of 

the algal cells. However, they existed in much higher levels than they in standard growth 

media did. The work also mentioned the phenolic compounds, which evolve as intermediates 

during the process to levels up to 178 ppm, and one element, Nickel, and their potential of 

inhibiting algal growth. Therefore, the high dilution was necessary and that made the growth 

of tested strains possible in different degrees, in some cases better than the standard media due 

to the mixo˗trophic nature of growth (i.e. by the existence of organic carbon in the process 

water). It was concluded that achieving optimum growth is controlled by adjusting the 

dilution ratio depending on the characteristics of growth behavior of each strain. A dilution of 

200 and 400 folds was suggested based on these specific experiments. 

An integrated part of the experiments conducted by Bagnoud˗Velásquez et al. 2014 discussed 

effluent recycling and the levels of its toxicity upon cultivation, as a goal to complete a closed 

cycle of nutrients. The study was carried out to assess the toxicity levels of soluble 

Aluminium on algal growth during cultivation. Aluminium may stem from system corrosion 

or catalyst leaching during hydrothermal conversion. Three species were selected for testing 

(Chlorella sorokiniana, Chlorella vulgaris and Scenedesmus vacuolatus). Low 

concentrations, as low as 25 μg.L-1, was found to create a toxic environment for algal growth 

due to the existence of Al˗hydroxides. In general, the growth behavior showed different levels 

of tolerance to Aluminium (S. vacuolatus > C. sorokiniana > C. vulgaris). 
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Further efforts by Bagnoud˗Velásquez et al. 2015 continued to evaluate the feasibility of 

nutrient recycling. Here, P. tricornutum was liquefied hydrothermally (T = 400 ˚C and P = 20 

MPa) in a batch autoclave. After separating the product mixture, the nutrient˗containing 

aqueous effluent was used to grow microalgae in a flat panel photo˗bioreactor of a relatively 

large size (5-L culture volume). The effluent solution was diluted by a factor 25. After 

dilution, the ammonium concentration was within the applicable range for algal cultivation 

[Meiser et al. 2004]. The effluent contained high levels of sodium concentrations, about 60 

times higher than that in the standard medium. The low content of some elements’ salts (S˗, 

Mg˗, Ca˗ and Fe˗) were adjusted in the HTL effluent to be in the concentration vicinity of the 

standard medium.  

Although a lag phase of four days was experienced at the beginning of cultivation with the 

HTL aqueous effluent, the algal cells were able to adapt to the medium change afterwards. 

The authors suggested possible explanation for the lag phase including the high sodium 

content in the HTL effluent compared to chloride, the existence of some organic compounds 

that would change the carbon uptake mode of microalgae, and the initial inhibition caused by 

some constituents that was overcome by the algal cells. 

The results showed that a biomass productivity of (0.5 ˗ 1 g DW.L-1d-1) was reported in the 

work, a good value compared to those using the standard medium (0.96 ˗ 1 g DW.L-1d-1). The 

work stated that the productivity retained its good values even at high culture concentrations 

(> 10 g DW.L-1). The work concluded that the nutrient from hydrothermal conversion can 

replace to a certain extent the minerals needed to grow microalgae. A complete replacement 

would consequently mean a complete recovery from the high˗temperature high˗pressure 

process. 

The effluent of HTC was also tested by Du et al. 2012 for cultivating Chlorella vulgaris. Due 

to the high nutrients level in the effluent (especially Na and K), dilutions of 50˗, 100˗ and 

200˗fold were applied and algal growth was compared with growth under standard conditions 

in a 150˗ml culture volume. The culture showed an enhanced N and P removal rates with the 

diluted effluent compared to the standard medium. The algae produced from the effluent 

water cultivation contained high C (about 20% higher) and low N (about 8 7.8% lower) 

relative to that cultivated in the standard medium, which makes it superior if biofuels are to be 

produced from it.  
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The work demonstrated that the biomass productivities were higher using the diluted effluent, 

approximately 10 and 7 times higher for the 50˗ and 100˗fold diluted effluent relative to the 

standard medium, respectively (0.160, 0.092 and 0.013 g.L-1d-1). The work argued that the 

effluent produced at higher temperatures conversion, comparing HTL, contains several 

compounds that lead to growth inhibition. In their explanation, the HTC˗produced 

mono˗sugars and amino acids in HTC can be harmlessly used by the algal cells for growth, C 

and N uptake. 

 

2.5.3. System corrosion 

Corrosion is an inherent phenomenon in high˗temperature and high˗pressure systems. A 

combination of supercritical condition and a corrosive environment is challenging for the 

selection of construction materials [Boukis et al. 2001]. Several factors lead to corrosion under 

high temperature using aqueous solutions. This includes the existence and dissociation of 

reaction species such as acids or salts formed in the presence of some heteroatoms like S, Cl 

and N [Hodes et al. 2004], the solubility of gases (especially O2 and H2) and corrosion 

products (e.g. NiCl2), as well as the stability degree of the protective oxide layers [Kritzer et 

al. 1999]. According to [Xiang et al. 1996, Kriksunov & Macdonald 1995 and Boukis et al. 

1998], corrosion during SCWO becomes more critical in the subcritical region, where both 

water’s density and dielectric constant are relatively high; in other words, before the major 

changes to water’s physical properties start to occur around the critical point. 

Boukis et al. 2011 demonstrated that materials such as stainless steel (316) in a solution 

containing mainly 600 ppm chlorides anions was subjected to stress corrosion cracking (SCC) 

and pitting in the subcritical temperature range (260 – 310 °C). This occurred in a continuous 

flow (1g.min-1) tubular reactor (L = 1 m, ID = 0.75 cm) with an exposure periods (212 and 

834 hours) and a pressure of 250 bar. At the higher temperature, general corrosion was also 

recognized through some solid corrosion products which exited the system. In the 

supercritical region, the presence of aqueous chloride solution also showed corrosion impact 

during the gasification of potassium chloride at a temperature of 700 ˚C and pressure of 300 

bar [Boukis et al. 2013]. A difference in corrosion rates between two different reactor 

materials which are made of nickel-based alloys was demonstrated in the presence of chloride 

solution and potassium hydrogen carbonate [Boukis et al. 2008]. The two works related the 

corrosion rates to the change in the composition of each alloy, especially the alloy content of 

molybdenum, which played a role in the corrosion resistance. 
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Marrone and Hong 2009 discussed the challenges associated with corrosion in supercritical 

water systems. They summarized the efforts that has been made in this field and gave 

examples of the procedures necessary to control or minimize corrosion. A basic procedure is 

to have a corrosion˗resistant construction material. Compared to stainless steel and carbon 

steel that are frequently used in a wide range of chemical processes, nickel˗chromium˗based 

alloys have a better performance in supercritical environments [Boukis et al. 2010, Marrone 

and Hong 2007]. The difference between these types is the variation or existence of some 

basic elements; Ni, Cr, Fe, Mo and Nb in the alloy. 

Another procedure is to prevent the corrosive species from coming in contact with the reactor 

wall. This can be realized by separating the reaction zone from the metal surface, for example 

by flowing water in between to create a protective layer. Also, the water film helps preventing 

salt build˗up inside the reaction zone. This design is defined in literature as the transpiring 

wall reactor (TWR). Such a technique has been presented in several works (ex.: Abeln et al. 

2001).  However, the use of large amount of clean water for the isolating film as well as the 

temperature fluctuations in the reaction zone was a challenge of applying this technique [Chen 

et al. 2014]. Other methods for corrosion control that were covered in the work of Marrone et 

al. 2009 are adjusting process variables, applying a protective layer (coating) with high 

corrosion resistance and the use of a sacrificial surface (liner) as a shield on the reactor wall.
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Table 2.2 – Summary of selected works in the field of hydrothermal gasification of algal feedstock 
 

 

a Reaction time at T > 374 °C (holding time) 
e GE here is the carbon-to-gas conversion, same as CGE 
l Gasification efficiency based on the total amount of gases produced and not carbon-based 
n Based on one experiment at τ= 40 s 
f ECE: Energy conversion efficiency, based on the heating value of the produced gas to that of the dry algae 
s ECE: Energy conversion efficiency, based on the combined heating value of the product (HTL+HTG) to that of the dry algae 
k Based on the volume of feed cylinder with no refilling. 
 

Author, year Algal species T  

(°C) 

P  

(MPa) 

Catalyst˗/s used Efficiency, % 

(CGE) 

Mode 

(System size) 

Residence 

time 

Feed conc. 

 (wt%) 

Bagnoud˗Velásquez 

et al.  2014 

Phaeodactylum tricornutum 360˗470 32.3 Ru/C 30.4 ± 0.9 cont. (158.3 ml) 

duration (ca. 5 - 6 h) 

N/A 6.5 

Miller et al. 2012 Spirulina 550˗650 23.5 no catalyst 7 - 47.5 L  

(max. 95.2 l, n) 

cont. (13 ml) 

(6 - 90 min)k  

1 ˗ 40 s 17.5 & 25 

Elliott et al. 2012 Nannochloropsis salina & Spirulina 350 20 Ru/C 90% (Spirulina) 

59% ( N. salina ) 

cont. (1 Liter) 

duration (6 - 10 h) 

N/A 20 ˗ 25 

Chakinala et al. 2010 C. vulgaris 400˗700 

(600) 

24 Ru/TiO2, NiMo, CoMo, 

PtPd,  Inconel® powder 

max. 82% w/o cat.e 

100% w cat.e 

batch quartz capillaries 

(0.5 ml) 

1 ˗ 15 min 

(2 min) 

2.9 & 7.3 

Guan et al. 2012 (I) Nannochloropsis sp. 410 - Ru/C 45% (1 g/g cat. loading) 

100% (2 g/g cat. loading) 

batch (5 ml) 75 min 1.8 ˗ 13.5 

Guan et al. 2012 (II) Nannochloropsis sp. 450˗550 24 no catalyst max. ~ 60 batch (10 ml) 75 min 1 ˗ 15 

Haiduc et al. 2009 P. tricornutum 400 30 Ru/C (Ru on granular 

coconut carbon catalyst) 

4 ˗ 8 w/o cat. 

34 ˗ 74 w cat. 

 batch (30 ml) 60 - 67 min 2.5 ˗ 13 

Stucki et al. 2009 Spirulina platensis 399˗409 31 - 35 Ru/ZrO2, Ru/C 60 – 70 f batch (30 ml) 60 ˗ 361 a 2.5 ˗ 20 

Minowa et al. 1999 C. vulgaris 350 18 Ni-based on silica 

alumina 

35% (0.76 g/g cat. loading) 

70% (0.25 g/g cat. loading) 

batch (120 ml) N/A 12.6 

Onwudili et al. 2013 C. vulgaris, S. platensis, S. latissima 500 36 NaOH, Ni–Al2O3 57.3 w/o cat. (S. platensis) 

92.6 w cat. (S. latissimi) 

batch 30 min 6.66 

Brown et al. 2010 Nannochloropsis sp. 500 35 no catalyst 90 s batch (35 ml) 60 5.4 ˗ 16.2 
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3. Materials and methods 

3.1. Overview 

In this chapter, the experimental procedures followed as well as the laboratory apparatuses 

used for the supercritical water gasification of algal biomass are illustrated. A detailed 

explanation of the algal growth techniques and the corresponding process variables is not the 

core of this work and therefore, only a brief overview on the cultivation system will be 

presented. Among the numerous algal species which can grow outdoors, A. obliqqus 

(formerly Scenedesmus obliquus, reclassified to Acutodesmus obliquus) was selected for 

cultivation. The selection was mainly based on their tendency to a rapid growth, efficient 

carbon dioxide fixation [Sforza et al. 2014,] and high biomass productivities on large scale 

[Abomohra et al. 2013]. Cultivating other species and including them as a parameter in the 

gasification process was not part of this work. 

3.2. Biomass production 

A. obliquus was cultivated first in a pilot unit in Hamburg˗Reitbrook [Hindersin et al. 2013] 

and, at a later stage, within the novel structure (BIQ˗House, Hamburg˗Wilhelmsburg) that is 

shown below in figure 3.1. This structure represents a closed cultivation system 

(photo˗bioreactor) of a flat-panel configuration. The building itself offers 15 residential units 

of areas ranging between 50 and 120 m2. Forming the exterior (façade) on two sides of the 

house (south˗east and south˗west), 129 vertical flat panels are fixed to face the surrounding, 

covering an area of about 200 m2 that is subjected to sunlight, and holding a total culture 

volume of about 4 m3. 

The cultivation is based on natural light as the energy source and carbon dioxide as the carbon 

source for biomass production. As mentioned previously (chapter 1), the performance of such 

systems is mainly a function of the light intensity, exposure, optical light path across the 

culture, mixing, aeration rate as well as process mode of operation [Hindersin et al. 2014, 

Grobbelaar 2007]. Each of the flat panel units has a width of 0.7 m and a height of 2.7 m, 

with a light path or thickness of 1.7 cm. The inner volume containing the aqueous algal 

culture is held between two layers of a clear laminated safety glass (LSG). This material is a 

protective type of glass which is capable of retaining the culture content between the panels in 

case of fracture through thin interlayers of polyvinyl butyral (PVB). The algal culture is kept 

in a continuous motion by mixing via compressed air and CO2 coming upwards inside the 

panels. 
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In addition, small beads (scrapers) exist in continuous motion within the culture in order to 

inhibit the settling of biomass and prevent bio˗pollution [Smart Material House BIQ, July 

2013]. The culture density is kept at a constant level with the aid of optical density or turbidity 

measurements. This technique allows the required dilution through the addition of fresh 

medium when turbidity rises, so that an optimum growth environment is maintained during 

cultivation. Such a mode of operation is defined as turbido-stat [Kuenen et al. 2009, 

Najafpour 2007]. Using a compact air flotation system within the house’s basement, the 

produced biomass is separated by concentrating part of the circulated culture. 

 

 
 

Figure 3.1 – The novel construction (BIQ house) in Hamburg˗Wilhelmsburg  
[Photos Credit: S. Elsayed and J. Arlt] 

The concentration reaches a factor of 10 ‒ 20 depending on the existing cultivating conditions. 

Afterwards, the remaining liquid is pumped back into the flat panels for further use. In the 

case when higher biomass concentrations are necessary, centrifugation can be conducted 

offline. Circulating the culture, biomass separation, air and CO2 supply as well as heat 

management are controlled automatically using adequate process equipment which are placed 

and operated on the ground level of the building. 



[Gasification of algal biomass in supercritical water with the potential of energy and nutrients recovery – Ch. 3]         [Sherif Elsayed] 
 

53 
 

The source of CO2 that is added to the culture medium is the flue gas resulting a small 

combined heat and power unit (CHP) running on biogas. Nutrition is available through an 

aqueous solution containing the basic macro˗ and micro˗elements needed for growth and 

biomass accumulation. Depending on the uptake level, the amount of nutrients is adjusted 

within the culture medium to keep an optimum growth behavior and avoid nutrients 

limitation. The basic components of the nutrient source (Flory Basis 2) used for cultivation 

are shown in table 3.1. Other trace elements such as Copper (Cu), Iron (Fe) and Zinc (Zn) are 

available in the nutrient. Due to the low percentage of nitrogen in Flory Basis 2, additional 

nitrogen source is supplied in the form of urea. 

Table 3.1 – The composition of the nutrient applied for algal cultivation. 

 

Flory Basis 2 

 

N P2O5 MgO K2O SO3 

wt% 

3 15 5 35 23.5 

 

Thermal or heat management is conducted depending on the weather conditions or 

temperature of the surroundings. During sunny summer days, the temperature of the culture 

medium can rise up to 35 ‒ 40 ˚C. The elevated temperature can be reduced by running the 

culture through a set of heat exchangers to absorb the thermal energy originally falling on the 

surfaces of the flat panels. The excess thermal energy can be utilized for various purposes 

such as heating of the domestic water. The opposite thing occurs as temperature falls, for 

example below 5 ˚C. This is when the culture is heated up to maintain good algal metabolism. 

The biomass productivity, including the night losses due to respiration, ranged during all 

seasons from 5 g.m-2.d-1 up to 30 g.m-2.d-1 with a mean productivity of 9 ±7 g.m-2.d-1 

[Hindersin et al. 2014]. 
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3.3. Feed preparation 

The feedstock to gasification was received from our project partner (Strategic Science Consult 

GmbH) in Hamburg, in the form of concentrated algal slurry (fig. 3.2). It had solids 

concentration ranging between 15 and 27 wt% depending on the delivered batch. The slurry 

was mixed with distilled water according to the concentration assigned to each experiment. 

An alkali metal salt (K2CO3  or KHCO3) was dissolved in the feed as a homogeneous catalyst 

in an ion concentration (K+) of 1500 ppm. The content of solids (dry matter, DM) in the slurry 

was measured before and after each experiment by drying for 24 hours at a temperature of 105 

°C (ULE 400, Memmert). Additionally, a thickening agent (Xanthan) was added to the slurry 

in a ratio of 0.2 wt% to prevent settling of the particles and ensure a homogeneous mixture. 

 

 

 

 
 

Figure 3.2 – Microalgae in the slurry form (left) and as a dried biomass (right) 

An elemental analysis of the dried microalgae was conducted (DIN EN ISO 11885, DIN EN 

13137, DIN EN 15104, DIN 51721, DIN EN 51722-1, DIN 51732, LECO TruSpec CHN 

Makro, Agilent ICP˗OES Vista Pro) for several batches and is shown in Tab 3.2. Further 

analyses determined an ash content of 10 wt% at 550 °C (DIN EN 14775, LECO TGA 701) 

and an average higher heating value (HHV) of 23.2 MJ.kg-1 DM (DIN EN 14918, IKA C5000 

control). The description of these analytical methods can be found in the appendix (8.4). 

Table 3.2 – Elemental composition of the algal biomass feedstock to gasification 
 

Batch TOC O 
*balance* 

H N P K S Mg Ca Si Na Al Fe Cl 

 wt% (dry˗basis) 
1 52.6 ~ 27.3 7.1 8.7 1.6 0.9 0.7 0.5 0.2 0.2 0.06 0.06 0.10 0.02 

2 50.7 ~ 29.1 7.0 6.7 0.7 0.8 0.6 0.2 0.3 0.1 0.06 0.03 0.07 0.02 

3 52.1 ~ 30.3 7.3 6.9 0.8 0.9 0.6 0.6 0.3 0.1 0.06 0.03 0.02 0.02 

4 48.6 ~ 31.3 7.1 8.6 1.0 0.8 0.8 0.2 0.6 0.5 0.06 0.03 0.04 0.03 
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3.4. Process performance and product analysis 

In order to evaluate the process in terms of efficiency and the nature of produced streams, the 

entire fractions obtained from each experiment were sampled and analyzed. The combustible 

gaseous mixture was analyzed using a gas chromatograph (HP 5890) to obtain its chemical 

composition. The solid precipitates were chemically analyzed (DIN ISO 10694) and 

physically examined by imaging (elemental mapping) using field emission scanning electron 

microscope (FE˗SEM, DSM 982 Gemini, Carl Zeiss Ltd., Oberkochen, Germany). Analyses 

of the residual water from gasification were conducted and some values including total 

organic carbon, TOC (DIN EN 1484) and total nitrogen bound, TNb (DIN EN ISO 12260) were 

measured. Other measurements for the ions of certain elements (ex.: K, Mg, Na, Si, Al, Cr, 

Fe, Mo, Ni) were obtained using inductively coupled plasma optical emission spectrometry 

(ICP˗OES, DIN ISO 11885, Agilent 725). An important value to calculate is the carbon 

gasification efficiency (CGE). This term is defined as the amount of carbon measured in the 

gaseous product divided by the total organic carbon in the dry biomass feedstock. Based on 

the following equation (Eq. 1), the carbon gasification efficiency can be calculated as the 

weight summation of carbon atoms existing in each component (i) of the gaseous species 

produced. 

    Carbon gasification efficiency (CGE) =   
� 𝜶𝒊𝒊

 𝒄𝒊 𝒏  𝑴
𝒘  𝒎  

 

                         Eq. 1 

wehre: 
• α i: number of carbon atoms of component ‘i’ in the gas product, ˗ 
• ci: concentration of component ‘i’ in the gas product, mol% 
• n: total number of moles produced, ˗ 
• M: molar mass of carbon, g mol-1 
• w: weight fraction of total organic carbon in feed, ˗ 
• m: amount of feed, g 

 

Using CGE is often preferred over gasification efficiency or gasification quotient, which uses 

the entire gas production, expressing efficiency in a percentage (GE) or fractional form (GQ) 

and is not based on the carbon balance. The performance of gasification can also be evaluated 

from a different perspective, if the quality of the aqueous phase has no less priority than the 

production of combustible gases. For example, another term which reflects the aqueous 

product quality and gives an indication of the process efficiency is the TOC removal 

efficiency. This term gives an indication of organic loading in the residual water, and it would 

be similar to CGE if no organic carbon was converted to inorganic carbon in the aqueous 

phase, or in case no precipitation containing organic carbon occurs. 
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3.5. Growth of microalgae using the residual water from gasification 

The growth of A. obliquus was carried out by the cooperation partner (SSC GmbH and the 

university of Hamburg) using several batches of the residual water from gasification and a 

standard cultivation medium (control). This cultivation was conducted using the 

Multi˗Cultivator (MC1000-OD, Photon Systems Instruments, Czech Republic). The supply of 

nutrients was available through the standard medium containing a concentration of 2 g.L-1 

Flory Basis Fertilizer 1 (Euflor, Germany) and 446 mg N˗NH4Cl. And since this nutrient 

source does not contain nitrogen, the amount of nitrogen in the residual water was adjusted 

(diluted) by the addition of 2 g.L-1 Flory Basis Fertilizer 1. This was done to compensate any 

possible nutrients losses during supercritical water gasification. 

The culturing vessels contained 80 ml of inoculum or pre˗culture in a water bath at a 

temperature of 30 °C. For energy supply, the vessels were irradiated continuously with a light 

intensity of 500 μmol photons m-2 s-1. The cultures were aerated using air bubbles enriched in 

CO2 (4 vol%) and the pH of the growth medium was adjusted and kept at 7. Cell growth, 

measured in cell dry weight (CDW, g.L-1) for the days of cultivation, was monitored by 

measuring the optical density at a wavelength of 750 nm (OD750) and the calculation of an 

OD˗CDW correlation curve. 

Treatment of the residual water to eliminate or reduce the effect of potentially toxic 

substances was conducted using two methods; activated carbon filtration and 

photo˗degradation. An amount of five hundred milliliters of the residual water was filtrated 

four consecutive times using activated carbon in a 4 ‒ 7 μm pore size filter with 50 g of 

activated carbon. Photo˗degradation was achieved using a strong ultraviolet (UV) radiation. 

The same volume (500 ml) of the residual water was irradiated for 4 h and the amount of 

evaporated water was replaced with double distilled water. 

The total organic carbon (TOC) and total nitrogen (TN) of the residual water treated using 

activated carbon filtration as well as UV˗degradation were measured using a total organic 

carbon analyzer (TOC-Vcpn) as well as a total nitrogen measuring device (TNM˗1, Shimadzu, 

Japan). The possible loss of these elements after treatment was determined. The sum 

parameter phenolic compounds or phenol index was analyzed using the photometric cuvette 

test (LCK345, Hach Lange, Germany). Further details with regards to the experimental 

procedures followed for cultivation using the residual water is available in the work of Patzelt 

et al. 2014. 
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3.6. Experimental setup (Supercritical water gasification) 

The experiments included in this work were conducted in three laboratory units on a 

continuous mode of operation. Simplified flow diagrams of the process units are presented in 

this section. Basically, the systems include feed preheating, reaction and gasification in 

supercritical water as well as phase separation of the product mixture.  The phase separation 

systems of the three units operate in the same manner. The hot gaseous mixture leaving the 

reactor was cooled down, filtered to remove any solid residues, its pressure was relieved using 

a backpressure regulator (TESCOMTM, Emerson Electric) and separated from the residual 

water at atmospheric pressure. The removal of salts or inorganic fraction of the biomass is 

achieved either before or after the reaction zone as explained in the following sections. 

3.6.1. Laboratory unit I (LUI) 

In this unit (refer to fig. 3.3), the gasification in supercritical water takes place in a tubular 

reactor (ID = 1.8 cm, L = 152 cm) made of a nickel˗chromium˗based alloy. Depending on the 

experiment, the reactor was maintained in a temperature range of 600 ‒ 650 °C and a pressure 

of 280 bar. The algal biomass concentration in the feed stream was varied between 10 ‒ 15 

wt%. The feed was brought to the reactor using indirect pumping (HPLC Pump, Bischoff) in a 

feed cylinder via pressurized water on the other side of a cylinder piston. 

 
 

 

 

 Reactor: Alloy 602 
 
 ID  1.8 cm, L = 152 cm 
 
 Reactor temperature:  

600 ‒ 650 °C 
 
 Pressure: 280 bar 
 
 Flow rate: 216 – 290 g.h-1 
 
 Residence time: 175 – 260 s 
 
 Catalyst: dissolved K2CO3 
 
 Biomass conc.: 2.5 – 5 wt% 

Figure 3.3 – Simplified flow diagram of laboratory unit I with system and process conditions 

A second stream containing pure deionized water was pumped into the system from the top to 

preheat the feed stream at the reactor inlet. This stream was heated up in the range of 500 ‒ 

600 ˚C. As a result of this configuration, the feed stream is mixed with water at the reactor 

inlet in a mixing chamber. This resulted in a final concentration of 2.5 to 5 wt% in the reactor. 
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Depending on the conditions assigned to each experiment, a total flow rate ranging between 

216 ‒ 288 g.h-1 was set for the combined biomass and water streams (total feed). Based on 

these values and given the density of supercritical water under these conditions, a mean 

residence time of about 175 ‒ 260 seconds was calculated in the reaction zone. After exiting 

the reactor, the hot gaseous mixture is cooled down and separated from the residual water 

which was sampled, weighed and analyzed. The volume of produced gas was measured using 

a gas meter (TG 3, Ritter Apparatebau GmbH) and analyzed for chemical composition. The 

inorganic constituents or nutrients of algal cultivation which were left over from gasification 

were then extracted from the bottom of the reactor using a manually-operated valve at certain 

times during operation. This fraction was referred to as salt brine (SB). 

3.6.2. Laboratory unit II (LUII) 

The second set of experiments was carried out in the laboratory unit (II). In the configuration 

illustrated in figure 3.4, the system was operated using a one˗stream feedstock input to the 

reactor. At the beginning, the feed is preheated up to 400 ‒ 420 ˚C and then delivered to the 

reactor by indirect pumping in a similar technique as for LUI. The gasification took place in a 

tubular reactor (ID = 1.8 cm, L = 75 cm) made of alloy 602 at a reactor temperature in the 

range of 600 ‒ 690 °C depending on the experiment, and pressure of 280 bar. The 

concentration of algal biomass was varied between 2.5 and 20 wt% for the experiments in this 

system. A mass flow rate of 150 g.h-1 for the feed stream was kept constant and the mean 

residence time of 177 ‒ 206 seconds was calculated under these conditions.  

 

 

 

 

 Reactor: Alloy 602 
 
 ID 1.8 cm, L = 75 cm 
 
 Reactor temperature:  

600 ‒ 690 °C 
 
 Pressure: 280 bar 
 
 Flow rate: 150 g.h-1 
 
 Residence time: 177 – 206 s 
 
 Catalyst: dissolved K2CO3 
 
 Biomass conc.: 2.5 – 20 wt% 

Figure 3.4 – Simplified flow diagram of laboratory unit II with system and process conditions 
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In order to extract the salts before hydrothermal conversion and decrease the load of inorganic 

constituents inside the reactor, a technique was applied by extracting some of these salts 

before entering the reactor using a vertical two˗way connection (Tee˗shaped) working as a 

by˗pass for salts through a high˗pressure valve. Using this technique, the salts, being almost 

separated due to their existence on the threshold of solubility near the critical point of water 

(370 ‒ 400 ˚C), would be extracted and collected separately. This separated fraction, salt brine 

(SB), is then removed from the system at certain time periods during operation based on the 

biomass concentration. 

3.6.3. Laboratory unit III (LUIII) 

The third unit, illustrated in figure 3.5, has a comparable configuration to LUII. The major 

characteristic here is the size of the alloy 602 reactor which has a middle length (120 cm) 

compared to the first and second laboratory units. The other difference involved is the salt 

extraction technique, or the mechanism through which the salt brine is separated from the 

system before the reactor. In this unit, an automatically-operated valve for the extraction of 

salts was activated. This valve can be adjusted during operation using the software, to either 

open or seal for certain time intervals and in the desired frequency, depending on the 

experimental conditions and the feed concentration.  

 

 

 

 

 Reactor: Alloy 602 
 

 ID 1.8 cm, L = 120 cm 
 
 Reactor temperature: 650 °C 
 
 Pressure: 250 – 280 bar 
 
 Flow rate: 330 – 1020 g.h-1 
 
 Residence time: 60 – 190 s 
 
 Catalyst: dissolved K2CO3 
 
 Biomass conc.: 2.5 – 5 wt% 

Figure 3.5 – Simplified flow diagram of laboratory unit III with system and process conditions 

Similar to the second unit, two separate lines, one for the residual or process water and other 

for the salt brine, exit the hot zones of gasification and preheating respectively. After that, 

they are directed to the phase separation system, where their pressure is then relieved just 

before separation from the product gas mixture and being collected for measurements. 
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3.7. Pre˗testing and system startup 

Typically, a model compound such as ethanol (C2H5OH) was used during some early 

experiments for testing purposes prior to introducing the algal biomass in the system. This 

procedure is common and several compounds, especially alcohols, are used in other works for 

the same purpose. Ethanol was also used during the starting phase before switching to algal 

biomass. The aim of this procedure was to build up pressure in the system, reach a stable, 

steady˗state operation and evaluate the system technical status before each experiment.  

Ethanol has the advantage of having a comparable carbon mass fraction (52 wt%) to that of 

the microalgae available for gasification. Also, it can be converted easily into a combustible 

gas mixture under supercritical conditions due to its simple structure. Different concentrations 

of ethanol were used (5 ‒ 11 wt%) and the balance calculations were conducted based on the 

mass of carbon atoms in the gaseous and aqueous phases. As the operational variables (T, P, 

flowrates, gas composition) were stabilized, a switch to biomass was activated. 

3.8. Heat supply and temperature control 

The thermal energy required to preheat the systems and maintain its temperature at the desired 

levels was provided through electric heating coils. To ensure a good temperature profile 

during the experiments, several measurements (fig. 3.6) were conducted to compare the inner 

and outer temperature profile along the reactor during a demonstration run with supercritical 

water at a temperature of 620 °C, pressure of 250 ‒ 260 bar and flow rate of 150 g.h-1. 

 
 

 

 
 

 
 

Figure 3.6 – Inner and outer temperature measurements for one of the tubular reactors (LUI) 
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A movable capillary thermocouple was inserted inside the reactor from the top, having the 

mixing chamber as the reference point, to measure the inner temperature at certain depths. 

These depths match the corresponding positions of the thermocouples on the outer surface of 

the reactor. A slight temperature offset was observed between the reactor’s inner volume and 

its outer surface. Such a difference can be expected due to the heat losses across the reactor 

wall and the flow dynamics inside the reactor. Once the reactor is in operation, the incoming 

preheated fluid would maintain the reactor hot enough with the surplus of having the heating 

coils in case additional heating is needed. 

Similar procedures were carried out to evaluate the inner and outer temperature measurements 

of the preheater before the reactor in the third laboratory unit. An example is demonstrated in 

figure 3.7, where several measurements were conducted at two temperature settings of the 

heating coils. The dashed lines represent the temperatures measured by the thermocouples on 

the outer surface along the 67 cm length of the preheater.  

 
Figure 3.7 – Inner and outer temperature measurement along the preheater in LUIII  

Flowrate = 200 g.h-1 and the following temperature settings for the hot zone: 
I) min/max: 400/420 °C   II) min/max: 400/500 °C – modified from [Stoll 2016] 

The temperature along the preheater showed a very comparable profile at the lower settings 

applied (I). As the temperature of the middle section was increased (up to 500 ˚C) in the 

second setting (II), a difference between the inner and outer temperature, about 80 ˚C, was 

identified around this position. Despite the low flow rate applied, this offset might be thought 

of as a delay of response, if a measurement error is excluded. It may occur due to the cold 

temperature of the incoming feed or the heat losses on the outer surface. 
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4. Results and Discussion1 

The experimental results from the three units of supercritical water gasification (SCWG) are 

presented in this section. The major product from the experiments was a combustible gas 

mixture which consisted of hydrogen, carbon dioxide, methane and ethane. In addition, minor 

amounts of carbon monoxide and light hydrocarbons (e.g. propane, propene and ethylene) were 

obtained in low concentrations during some experiments. The inorganic constituents of the 

biomass feedstock were found either in the aqueous phase (salt brine, residual water) or in the 

form of solid residues.  

4.1. Summary of the results from the first laboratory unit I (LUI) 

A summary of the operating conditions and corresponding results obtained from LUI are listed 

below in table 4.1. The plan to evaluate a stable and extended operation, depicted by steady-

state and long-duration experiments was the main objective in this unit. As a result, a 

continuous operation, up to 50 hours, was achieved under supercritical conditions. The rates of 

gas production ranged between 7 ‒ 8 L.h-1 in average. The highest carbon gasification efficiency 

(CGE) for the 5 wt% feed concentration was 62.3%. This value increased significantly (up to 

94 %) as a more diluted biomass (2.5 wt%) was used. 

Table 4.1 – Summary of the experimental conditions and obtained results from LUI 

Exp. Feed 
conc. 

Flow 
rate 

T Residence 
time 

Avg. gas 
production 

Duration CGE TOC 
conversion 

- wt% g.h-1 °C min L.h-1 h % % 
1  

 
5 

240 600 4.0 6.3 23 57.0 95.2 
2  

216 
630 4.0 7.0 8.5 60.0 98.2 

3  
650 

4.0 8.0 30 62.3 98.5 
4 4.0 8.5 48 61.5 98.4 
5  

2.5 
 
288 

 
650 

2.9 8.2 45 88.0 97.5 
6 2.9 7.6 22 82.1 95.0 
7  

600 
3.2 8.4 50 93 96.0 

8 3.2 7.9 48 94 95.3 
 

Moreover, high conversions of total organic carbon (TOC) were achieved for the entire 

experiments. This was reflected in the clarity of the residual water. The values of TOC 

conversion were even higher than CGE in some cases. Such a finding can be explained by the 

fact that part of the organic carbon in the algal biomass was converted to an inorganic form in 

the aqueous phase, which was measured in high concentrations in the residual water after 

gasification. 
                                                           
1 Part of the results presented in this chapter appeared in earlier works (Elsayed et al. 2014, Patzelt et al. 2014 and 
Elsayed et al. 2016) 
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4.2. Summary of the results from the second laboratory unit II (LUII) 
 
The set of experiments in this unit was conducted with the goal of assessing the process 

performance upon using algal biomass in several concentrations, reaching up to 20 wt%. 

Thicker biomass slurries were available, but they were not tested due to difficulties associated 

with pumping. The highest temperature (690 ˚C) was applied in this unit and an operating 

pressure of 280 bar was maintained. A summary of the operating conditions and the obtained 

results is provided in table 4.2. The maximum value of CGE (96.4 %) was achieved, when the 

lowest concentration of biomass was used (2.5 wt%). The average rate of gas production in 

LUII was comparable to that in LUI at the same temperature, feed concentration and operating 

pressure. However, there was a clear improvement in CGE in LUII. The highest rates of gas 

production, specifically 23.6 and 27.5 L.h-1, were achieved with the highest concentrations of 

biomass in the feed streams, 20 and 15 wt% respectively. Minor concentrations of CO (less 

than 0.4 mol%) were also present in the gaseous product. 

Table 4.2 – Summary of the experimental conditions and obtained results from LUII 

Exp. Feed 
conc. 

Flow 
rate 

T Residence 
time 

Avg. gas 
production 

Duration CGE TOC 
conversion 

 

- wt% g.h-1 °C min L.h-1 h % % 
1 2.5  

 
 
 

150 

690 2.9 6.3 8.4 96.4 99.6 
2  

 
5 

600 3.4 7.6 10.0 87.0 98.9 
3 620 3.3 8.0 6.5 88.2 99.2 
4 650 3.1 8.0 11.0 89.5 99.0 
5 690 2.9 10.4 8.5 91.0 98.0 
6  

10 
620 3.3 11.8 9.0 70.0 97.7 

7 650 3.1 10.2 11.0 72.0 98.3 
8 690 2.9 15.4 9.2 87.0 98.0 
9 15 690 2.9 27.5 8.3 86.0 98.2 

10 20 690 2.9 23.6 8.4 82.0 98.6 
 
Using the highest biomass concentration, a value of CGE (82%) was achieved. Although it is 

difficult to directly compare these results with other systems of previous works, this is 

considered to be one of the highest CGE reported so far. This statement is made, given such a 

concentration of organic materials and a continuous flow SCWG system of this scale. Other 

results obtained in previous works included either systems of much smaller scales [e.g. Miller 

et al. 2012], less feed concentrations [e.g. Cao et al. 2011, Güngören et al. 2011, Xiao et al. 

2013] or involved the use of a heterogeneous catalyst [e.g. Bagnoud-Vela´squez et al. 2014, 

Elliott et al. 2012]. The maximum duration of stable operation achieved in this unit was 11 

hours. Experimental work based on extended operation was not planned in this unit. 
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4.3. Summary of the results from the third laboratory unit III (LUIII)  
 
The focus here was to study the influence of three variables on the process performance and 

gasification products. These variables include the addition of salts in the input stream, 

operating pressure and residence time. The operating conditions and results summary from 

LUIII is listed below in table 4.3. The highest pressure of all runs (300 bar) was applied in this 

unit. However, pressure was not found to have a noticeable influence on the process in the 

range of experimental conditions tested. Two experiments were conducted without the addition 

of potassium bicarbonate in the algal biomass, whereas two other experiments were carried out 

using a maximum concentration of dissolved potassium of 3000 ppm K+.  

Table 4.3 – Summary of the experimental conditions and obtained results from LUIII (T = 650 ˚C) 

Exp. 
 

Feed 
conc. 

Flow 
rate 

Residence 
time P 

Avg. gas 
production Duration 

Dissolved 
K+ 

CGE 
TOC 

conversion 

- wt% g.h-1 min bar L.h-1 h ppm  % % 
1 

5 
 
 

462 2.6 280 16.3 6.5 0 57.0 93.8 
2 330 3.4 

280 
 

15.0 7.8 

1500 

65.0 96.0 
3 462 2.6 20.0 7.0 66.3 97.0 
4 667 1.9 33.0 7.0 66.2 86.0 
5 1020 1.1 52.0 7.8 70 88.6 
6 462 2.6 22.0 5.0 3000 74.0 97.0 
7  

 
2.5 

 
 

462 
 

 

2.6 
 

 

280 13.8 7.0 0 72.0 - 
8 250 13.4 7.0 

1500 
 

77.9 94.1 
9 280 14.0 7.8 76,5 93.0 
10 300 13.0 7.5 76.0 94.0 
11 462 2.6 280 14.2 6.5 3000 84.0 96.7 

The temperature was kept at 650 ˚C during these experiments. Relatively higher flow rates (up 

to 1020 g.h-1) were applied in this unit. This flow rate corresponds to a biomass loading of 51 g 

TS.h-1. As a result of that, the mean residence time which was calculated based on these 

conditions was as low as one minute for the highest flow rate applied. This is considered as the 

shortest residence of the entire work included in the three units. Compared to LUII, the 

automated salts extraction system designed for this unit enabled a more frequent removal of the 

aqueous fraction defined as salt brine (SB). The values of CGE calculated here were lower 

compared to those from LUII. As a result, the concentrations of TOC in the aqueous fractions 

increased noticeably. This was reflected on the decreased values of TOC conversion in the 

residual water. An average gas production as high as 52 L.h-1 was measured during operation 

with the highest biomass loading. 
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4.4. Influence of temperature 

Based on the results obtained from the two laboratory units (LUI and LUII), the influence 

which temperature has on the process performance evaluated through carbon gasification 

efficiency, the concentrations of TOC in the residual water as well as the yield of the gas 

components was investigated. In LUI, the results indicated that a temperature increase from 

600 to 650 °C contributed to a slight improvement in the CGE, by about 6% (see figure 4.1). 

This was calculated using biomass concentration of 5 wt%. 

  

Figure 4.1 – Influence of temperature on the carbon gasification efficiency (CGE) and the TOC 
concentration in the residual water – Operating conditions: feed conc. 5 wt%, P = 280 bar (data from LUI) 

The increase in CGE within this temperature range appeared to be linear, but its trend did not 

indicate a significant improvement for a further temperature rise anywhere close to 700 ˚C or 

higher, for instance. As a result of the improved gasification on carbon-basis under these 

conditions, the reduction of TOC concentrations in the residual water was clearly obvious 

starting 630 ˚C. A decrease in the TOC levels by approximately 50% (from ~ 1000 mg.LP

-1
P to ~ 

500 mg.LP

-1
P) was achieved upon rising the temperature from 600 ˚C to the 630 ‒ 650 ˚C regions. 

The experimental work conducted in LUII (figure 4.2) showed comparable findings in this 

context with regards to LUI. The influence of temperature was studied at two different 

concentrations (5 and 10 wt% TS) with increasing the temperature up to 690 ˚C. For the feed 

containing 5 wt% TS, increasing the temperature from 600 ˚C to 690 ˚C did not achieve a 

major change (improvement) in the gasification efficiency. A rise of 4 ‒ 5 % in the value of 

CGE was the overall effect of the temperature rise in LUII. However, the absolute values of 

CGE were much enhanced than in LUI. 
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In numbers, CGE increased from 56 ‒ 62% to 87 ‒ 88.5% based on the "600 ˚C to 650 ˚C" 

temperature rise in LUI and LUII respectively. The different values of CGE in both units can 

be probably referred to the different rates of biomass loading in both cases, where higher 

biomass loading rates in LUI (10.8 g.h-1 TS) compared to (7.5 g.h-1 TS) in LUII would explain 

such a decrease. A clear enhancement in CGE was calculated using the 10 wt% concentration 

of biomass in LUII. By increasing the temperature from 620 ˚C to 690 ˚C, an increase from 

70% to 87% was accordingly achieved. The improvement trend appeared much better 

compared to that using the 5 wt% concentration. Such a finding would give an indication that 

the gasification temperature has the upper hand, i.e. a more significant influence on CGE 

improvement at a higher concentration. 

  

Figure 4.2 – Influence of temperature on the carbon gasification efficiency (CGE) and the TOC 
levels in the residual water  

Operating conditions: P = 280 bar, feed conc. [a] 5 wt% and [b] 10 wt% (data from LUII) 

The concentrations of TOC in the residual water continued to decrease in a similar manner as 

for LUI. Higher concentrations of TOC were expectedly detected in the residual water of the 

experiments with the higher feed concentration. In both cases, a decline of about 50% was 

measured between 620 ˚C and 690 ˚C for the two concentrations used. In LUII, the formation 

of inorganic carbon in the residual water was less compared to LUI, which led to a higher TOC 

for the same concentration (5 wt% TS).  

The results obtained in this section come in compliance with previous works which discussed 

the influences of temperature, pointing out an increase in the gasification efficiency upon 

increasing temperature [e.g. Boukis et al. 2004, Chakinala et al. 2010] regardless of the 

feedstock type and its concentration. The higher CGE at elevated temperatures is expected and 

can only make sense, given the endothermic nature of biomass decomposition or reforming in 

the supercritical medium. 
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Demonstrating the influence associated with temperature is quite interesting, despite the fact 

that the temperature change here did not cover a wide range. On the other hand, there was a 

change in the chemical composition and the yield of the major gas components (H2, CH4, CO2 

and C2H6) at the different temperatures applied. Figure 4.3 illustrates the changes which 

occurred regarding the major gas components of SCWG in the form of molar yield per 1 gram 

total solid or dry biomass. The yield of produced hydrogen and carbon dioxide increased at the 

higher temperatures. This was accompanied by a decrease measured in the yield of methane. 

Although ethane was found in concentrations below 10 mol%, it showed a decreasing trend at 

higher temperature. At the low temperatures, propane was also detected in minor 

concentrations (< 2 mol %) among the produced gas components in both units. Also, traces of 

ethene and propene (~ 0.4 mol %) were measured in LUI at lower temperatures. The maximum 

volumetric amount of the total gas yield was around 1.26 L.g-1 TS and it was obtained using the 

5 wt% feed concentration at the highest temperature. 

  

Figure 4.3 – Influence of temperature on the gas yield (data from LUII) 
Operating conditions: P = 280 bar, feed conc. [a] 5 wt% and [b] 10 wt% (data from LUII) 

Overall, the increased yield of hydrogen and carbon dioxide from the gasification of organic 

materials at supercritical conditions was reported in earlier works [e.g. Lee et al. 2002, Garcia-

Jarana et al. 2008, Ref3, Ref4]. The increase of hydrogen and decrease of methane yield at 

elevated temperatures can be explained on a thermodynamic basis, according to the overall 

reactions contributing to their formation [Kruse et al. 2008]. In quantities, the absolute yield of 

the carbon-containing species, especially at lower temperatures, would have been higher than 

expected, if a complete gasification was assumed. 
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4.5. Influence of biomass concentration 

The influence of changing biomass concentration on the carbon gasification efficiency and the 

concentrations of TOC in the residual water is demonstrated in figure 4.3. The results were 

obtained from operation with four biomass concentrations (2.5 ‒ 20 wt% TS) in the feed stream. 

The reason behind selecting 690 ˚C for SCWG was to evaluate changing biomass concentration 

at the highest CGE which can be obtained, in accordance with the results of the previous 

section. Using the most diluted feed stream (2.5 wt% TS), the highest CGE (96.4 %) was 

achieved. The decrease in CGE showed a linear trend in the concentration range applied, 

despite the high temperature applied to the system. 

 

 

Figure 4.4 – Influence of biomass concentration on carbon gasification efficiency and the TOC 
levels in the residual water – Operating conditions: T = 690 ˚C, P = 280 bar (data from LUII) 

The lowest value of CGE (82%), i.e. worst process performance in terms of gasification, was 

calculated while using the highest biomass concentration (20 wt% TS). The change of CGE 

was clearly reflected in the physical appearance as well as the TOC concentrations in the 

residual water exiting the system after cooling. In particular, the TOC increase was linear and 

started to have what seems to be an exponential trend with biomass concentrations above 15 

wt% TS.  
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The value of TOC reached approximately 5000 mg.L-1 (the darkest aqueous fraction in fig. 4.3) 

using the highest biomass concentration, compared to a value below 100 mg.L-1 when 2.5 wt% 

feed concentration was used. On the other hand, the influence of biomass concentration on the 

yield of the major gas components is presented below in figure 4.4. The obvious trend here was 

the yield of hydrogen in the gas mixture, as it reached a maximum value during operation with 

the lowest biomass concentration. A major decrease, by approximately 4 folds, was measured 

as the biomass concentration was increased from 2.5 to 20 wt% TS. 

Methane showed an increasing trend as the concentration of biomass in the feed stream was 

increased. The yield of methane was almost doubled between the lowest and highest feed 

concentrations. An increase in the yield of ethane, from 2.3 to 4 mmol.g TS-1, was measured 

between the lowest and highest ends of feed concentrations. Except from a slight decrease at 

the higher concentrations, major changes in the amount of produced carbon dioxide was not 

observed during these experiments. 

 
Figure 4.5 – Influence of biomass concentration on the molar yield of the major gas components at 

different biomass concentrations – Operating conditions: T = 690 ˚C, P = 280 bar (data from LUII) 

The specific yield of the total gas product was negatively affected at higher concentrations. 

That was due to the reduction in CGE between the lowest and highest concentrations used. The 

maximum amount of the total gas product obtained per 1 gram of algal biomass was around 1.4 

Liter with the 2.5 wt% feed concentration, compared to 1 Liter using the 20 wt%. In this 

context, an interesting finding regarding the contribution of water to the hydrogen production 

was concluded from the experimental work.  
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The results showed that at the lowest biomass concentration (2.5 wt%), the amount of hydrogen 

measured significantly increased, beyond the hydrogen content of the dry biomass being 

processed. In this case, the molecules of water contributed to the overall yield of hydrogen and 

around 45 to 50 % of the produced hydrogen originated from the water medium. The similar 

finding was also reported in previous works [e.g. Boukis et. al. 2003, Kruse and Dinjus 2005] 

and it confirms the reactive role which water plays under supercritical conditions, especially at 

low concentrations. 

The effect of feedstock concentration on the system performance in terms of the gas amount 

and composition was previously discussed in others works. Although these works included 

systems with different configurations (e.g. Quartz Capillaries: Chakinala et al. 2010), other 

types of feedstocks, or both (e.g. dewatered sludge in a batch system: Xu et al. 2012), it was 

reported that the specific gas yield or gasification efficiency was improved at lower feed 

concentrations, preferably in a combination with a higher temperature. 

Caputo et al. 2016 reported a significant drop in CGE (from 77 to 23.8%) between 3 and 5 

wt% feed concentrations of algal biomass respectively, despite a further dilution with a pure 

water stream before gasification. The operating conditions on continuous operation were: [T = 

663 ˚C, P = 240 bar and residence time = 2.13 minutes]. Other results for obtained from a batch 

system [Guan et al. 2012] highlighted the influence of biomass concentration on hydrogen 

production at 500 ˚C. There, the molar yield of hydrogen decreased by almost three folds [from 

~ 10 to ~ 3.3 mmol.g-1 TS] as the loading of algal biomass was increased from 1 to 15 wt%. No 

major changes in the other evolved gaseous species (CO2, CH4, C2H6) was reported.  

Similar to the influence of changing temperature, the composition of hydrogen and methane 

showed opposite trends at the different feed concentrations. The decomposition of biomass in 

the presence of water excess, i.e. diluted streams, have been shown to produce more hydrogen 

than methane. An argument for that was made by Kruse et al. 2003 based on the competition 

between the formation of both gaseous species in the frame of thermodynamics and 

stoichiometry. The explanation indicated that water is necessary for the production of hydrogen 

through biomass reforming or the water-gas shift reaction. On the contrary, it is not directly 

contributing to the methanation reactions [the methanation of CO and CO2 results in the 

production of water]. Therefore, and according to Le Chatelier principle of equilibrium, 

hydrogen production would be favored in the presence of more water, where the methane 

formation would then be promoted in a medium with less water content. 
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As mentioned earlier in this chapter, the levels of total inorganic carbon (TIC) in the aqueous 

phase of gasification were noticeably high. In particular, the concentration of TIC was even 

higher than the TOC for the same samples. According to the mass balance calculations, the 

share of TIC solely and compared to TOC for each experiment did increase at the higher 

concentrations of algal biomass (see table 4.4). Such a remark, given the fact that the elemental 

analysis of the dry algal biomass feedstock barely showed any contribution of inorganic 

carbon, indicates the conversion of organic carbon to an inorganic form during the process. The 

appreciable amount of TIC in the aqueous phase probably originated from the formation of 

dissolved carbonates from the several cation species of the converted microalgae. 

Table 4. 4 – The share of carbon in the aqueous phase of supercritical water gasification       
[Operating conditions: T = 690 ˚C and P = 280 bar (Data from LUII)] 

Feed conc. 

Measurements in the entire aqueous phase of SCWG 
as a percent of the total carbon in the feedstock: 

Total organic carbon  
(TOC)  

Total inorganic carbon  
(TIC)  

2.5 0.49% 2.17% 
5 3.51% 3.82% 
10 3.12% 5.05% 
15 4.60% 8.53% 
20 5.60% 9.01% 

An inclusive measurement such as the phenol index could not provide an evidence of 

significant amounts of phenolic compounds in the residual water. This basically refers to 

amounts which would be in concentrations that are high enough to cover the gap of carbon 

balance which is created from the reduced CGE at higher concentrations. Relatively, the 

existence of these compounds in the residual water was detected in minor concentrations 

compared to the extracted fraction (salt brine). This means that the majority of phenolic 

constituents were actually available in the subcritical region, in concentrations which are 

approximately one order of magnitude higher compared to that in the residual water. A good 

interpretation of this finding would imply that these evolved compounds were almost entirely 

destructed under supercritical conditions to form gaseous species as suggested by the reaction 

scheme presented in the first chapter of this work. Other unreacted intermediates or 

polymerized molecules from side reactions probably contributed to the increased TOC at 

higher biomass concentrations. No extensive or quantitative measurements of these substances 

were conducted. 
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4.6. Influence of the dissolved salts addition 
 
Another variable introduced through the experimental work was the concentration of an alkali 

metal species (potassium) in the algal biomass feedstock. For this purpose, two sets of 

experiments were conducted at 650 ºC in the third unit (LUIII), using two different 

concentration of biomass in the feed stream (2.5 and 5 wt%) for each set. The flow rate was 

maintained at 462 g.h-1 and the source of the alkali metal was a dissolved potassium 

bicarbonate (KHCO3). The amount of this compound was added in different concentrations 

starting from zero (no addition), to 1500 ppm (used during the entire experimental work in the 

3 units) reaching and 3000 ppm of the metal ion (K+). 

The results presented in figure 4.6 relate the concentration of dissolved potassium to the two 

major indicators of process performance discussed beforehand (CGE and TOC). Gasifying both 

feed concentrations under these conditions demonstrated an improvement in CGE at increased 

concentrations of K+. This increase, as already highlighted in section 4.4 and 4.5, was moving 

hand-in-hand with the decrease of the TOC levels in the residual water for each experiment. 

 

  

Figure 4.6 – Influence of the dissolved salts addition on the carbon gasification efficiency and the 
TOC concentrations in the residual water 

Operating conditions: T = 650 ˚C, P = 280 bar, feed conc. [a] 2.5 wt% and [b] 5 wt% (data from LUIII) 

An increase in CGE (from 72 to 84% and from 54 to 74%) was reflected in the TOC decrease 

(from 499 to 327 mg.L-1 and from 1039 to 811 mg.L-1) for the lower and higher biomass 

concentrations respectively. Analogous to the case of temperature influence, the gasification 

improvement in connection with the concentration of K+ seemed to be more significant at the 

higher concentration. This is despite the fact that better carbon gasification and less loading of 

organic carbon was obtained at lower biomass concentrations.  
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Some changes occurred to the gas yield as a response to the variation in the amount of 

dissolved salt. An overall increase of the total yield was experienced at each concentration (see 

figure 4.7). This increase, however, was in the range of 12% for the 2.5 wt% feed concentration 

referred to the case where no K+ was added. Except from a slight increase in the yield of 

hydrogen and carbon dioxide, no major changes was observed. Using the 5 wt% concentration, 

the increase in the total gas yield was more than 62% with 3000 ppm of K+.  

With an increase of about 40% in the yield of CO2 at the 5 wt% feed concentration, the 

increase of hydrogen was quite obvious, being the main contributor to the rise in the total yield. 

The reduced CGE at the higher concentration can be concluded from the low absolute yields of 

methane and ethane compared to the 2.5 wt% feed, regardless of the effect of alkali metal. The 

increased yield of H2 and CO2 can be explained by the catalyzed water-gas shift reaction as 

presented earlier (Ch. 1, sec. 1.7.5). Through this reaction, the consumption of CO proceeds in 

the first place to yield CO2 and H2. The simultaneous increase of CH4 and CO2 does not 

comply with the results in the previous sections of this chapter.  

  
 

Figure 4.7 – Influence the of dissolved salt addition on the yield of the major gas components 
Operating conditions: T = 650 ˚C, P = 280 bar, feed conc. [a] 2.5 wt% and [b] 5 wt% (data from LUIII) 

A possible explanation for such a finding was suggested on the basis of the physical properties 

of water under supercritical conditions, promoting free radical reactions that leads to the 

formation of CH4 [Sinag et al. 2003]. Other works which studied the influence of the addition 

of an alkali metal also demonstrated an increased yield of the produced gas mixture as a whole 

or specifically the yield of H2 and CO2 after the addition of potassium-based salt. Examples 

cover several types of biomass such as sunflower stalk and corncob [Yanik et al. 2008] or 

wastes including straw [Schmieder et al. 2000] or sewage sludge [Xu et al. 2013].  
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In another work, a concentration of 5 wt% corn starch was used for SCWG in a continuous 

flow system (T = 700 ˚C, P = 250 MPa, ṁ = 180 g.h-1] at different concentrations of K+, from 

0 to 3000 ppm [D´Jesus et al. 2005]. The work indicated improved carbon gasification (from 

82% to 92%) between 0 and 500 ppm K+. The CGE almost plateaued beyond 500 ppm K+ and 

the work concluded that no significant rise in CGE was obtained with further addition of 

potassium. No results regarding the specific yield of each gas component was available to 

compare the yield of major species. 

Compared to the results obtained in this section, the higher temperature and the lower feed 

capacity may give a good explanation for the CGE increase in the work referred to. Besides, 

the different composition and structure of the materials selected as a feedstock would 

consequently allow a large spectrum of results at the same operating conditions. As an 

example, inorganic species such as metals usually exist in many aqueous feedstocks or waste 

streams. Their existence would probably have a catalytic role which might influence the 

composition or yield of the produced gas during hydrothermal conversion. For instance, the 

algal biomass used in this work has a potassium concentration of about 0.8 ‒ 0.9 wt% in the dry 

form, which corresponds to values less than 100 ppm depending on the biomass concentration 

in the feed stream. Such differences would make comparing experimental results from different 

works challenging without a standardized basis for performance measurement and feedstock 

assessment. 

4.7. Influence of residence time 

To evaluate the influence of residence time in the reaction zone, some experiments were 

conducted in LUIII at constant temperature (650 ˚C), feed concentration (5 wt% TS), pressure 

(280 bar) and fixed amount of added potassium (1500 ppm K+). The residence time for these 

experiments was varied between approximately 1.1 and 3.4 minutes. This was practically 

achieved by feeding the biomass at different flow rates (330 ‒ 1020 g.h-1).  

As previously summarized in table 4.3, there was no significant change of the carbon 

gasification efficiency at the range of residence times investigated. However, a slight decrease 

in CGE, from 70 to 65 %, was calculated at the longer residence time. The decrease of CGE 

might be explained by the possible formation of a stable reaction intermediate which were not 

converted any longer even at higher residence time. In another possible description, the 

increase in CGE might be the result of possible enhancement in flow dynamics inside the 

reactor at higher flow rates.  
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Yet, this argument would require further experimentation at higher throughputs, smaller reactor 

volumes or a combination of both. Higher concentrations of total carbon (TC) were measured 

at the shortest residence time, despite the improved CGE. This is a direct result of the increased 

flow rate, and consequently, the higher biomass flow in the system. 

With regards to the gas yield in the product mixture, only slight changes were recognized as 

illustrated in figure 4.8. An overall decreasing trend in the major gas components was observed 

as the residence time was increased. This slight decrease was more obvious in the case of 

hydrogen compared to the other carbon-containing species. The yield of some light 

hydrocarbons (in the order: C2H6 > C3H8 > C2H4 > C3H6) was relatively higher at the shortest 

residence time (by 5 ‒ 6 folds), although their absolute amounts in the experiments were minor 

(< 1 mmol.g TS-1) compared to the major gas species. 

 

Figure 4.8 – Influence of residence time on the yield of the major gas components 
Operating conditions: T = 650 ˚C, P = 280 bar, Feed conc. = 5 wt% (Data from LUIII) 

The results of this section give an indication that when the residence time becomes outside a 

certain effective range, there may be low or no influence upon further changes. Operation at an 

optimum residence time, not too short for a complete gasification and not too long to avoid tar 

or char formation, is crucial for designing systems working under supercritical conditions, 

especially on a large scale where the precise reactor sizing is directly related to conversion 

efficiency.  

Earlier works reported the influence of residence time on the process output in different ranges, 

from few seconds up to several minutes, on continuous operation. A decrease in CGE was 

reported using 5 wt% corn silage under a temperature of 700 ˚C and pressure of 250 bar in the 

range of 1 ‒ 3 minutes on continuous operation [Boukis et al. 2004]. The authors stated that the 

decrease might give an indication regarding the formation of tar or solids as side products.  
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On the other hand, an increase in CGE was demonstrated in the work of D´Jesus et al. 2006 at 

a wide range of residence times [0.6 to 10 minutes] and temperatures (300 to 700 ˚C) using 

corn silage in a continuous flow system. In this work, a linear increase of CGE was observed 

upon increasing residence time until a region, where the highest CGE or a complete 

gasification was reached. Beyond this region, barely or no improvement in the gasification was 

measured. This region, however, was extended at lower temperatures, meaning that residence 

time was more effective at temperatures below 600 ˚C. Above this temperature, residence time 

was influential around ~ 0.6 to 2.2 minutes. At the highest temperature, the demonstrated 

composition of the major gas products (H2, CO2, CH4 and C2H6) was stable and no changes 

were observed at residence times more than 1.5 minutes 

Shorter residence times were also tested for the conversion of biomass in supercritical water. 

Miller et al. 2012 reported high gasification efficiency (95.2%) of algal biomass at a 

temperature of 600 ˚C and pressure above 250 bar as indicated in the work. This value was 

obtained at the longest residence time which was in the seconds region (40 s) on continuous 

operation with lower loading (Feed flow rate < 48 g.h-1). The process performance was 

described in terms of the gasification efficiency (GE) and not on carbon basis. It was clear from 

the work that shorter residence time (down to 1.1 s) resulted in a continuous decrease of the GE 

(min. 8.3%). Carbon monoxide was also present in the gas mixture in fractions that are 

compared to those of CO2 

Model compounds such as glucose were also used to test the influence of residence time. Lee et 

al. 2012 reported that a complete CGE (100%) was achieved at 700 °C for a range of residence 

times (10 ‒ 50 s), and flow rates (120 ‒ 480 g.h-1). The feedstock used in this work was 0.6 M 

glucose (~10.8 wt%) in a continuous flow reactor at 280 bar and temperatures of 600 ‒ 700 ˚C. 

The total gas yield remained almost constant at 700 °C, and was not a function of the residence 

time past 10 seconds. In this region, the yield of hydrogen and methane were relatively stable. 

No data regarding the yield change of CO2 versus residence time was presented at 700 ˚C. At 

the lower temperature (600 ˚C), an increase in the yield of H2, CO2 and CH4, by approx. 5, 5.3 

and 3.5 folds, respectively, was experienced. The maximum value of CGE was approximately 

67% at the longest residence time. Also, appreciable amounts of CO (comparable to CH4) were 

present, probably due to the short residence time applied.  
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4.8. Assessment of the aqueous phase and the potential of effluent utilization 

The aqueous phase is the major fraction which exited the gasification process as a byproduct. 

This fraction corresponded to a range from 80 up to 97.5 wt% of the total output streams from 

all experiments conducted in the three units. The aqueous phase was divided into two fractions: 

The major fraction which left the reactor in the form of steam that was condensated after 

cooling (residual water, RW). The second fraction is a minor volume which represents the 

extracted salts and was defined as the salt brine (SB). The residual water ranged in color from 

yellowish, brownish to greyish (see figure 4.9) and it did have an aromatic odor that was clear 

to detect in some cases. In addition, small amounts of dark and tar-like sediments were 

identified from some experiments, especially as concentrated biomass was used. 

 
Figure 4.9 – Random samples of the residual water resulting from supercritical water gasification  

The concentrations of ionic phosphorus (P) and nitrogen (N) which were measured in the 

aqueous phase is demonstrated in figure 4.10. The focus in this work was the existence of these 

elements in the aqueous phase, since they are the basic macronutrients for the growth of 

microalgae, given the potential of using the aqueous phase for that purpose as already stated. 

The measurements show that the majority of nitrogen (96 – 99 wt %) was found in the RW in 

the form of ammonium (NH4
+), whereas the SB contained higher concentrations of phosphate 

ions (PO4
–3) compared to the RW. 

  

Figure 4.10 – Distribution of (a) ionic phosphorus and (b) nitrogen in the aqueous phase of 
gasification, between the residual water and salt brine (data from LUII) 
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The residual water of gasification is deemed as a valuable byproduct if its nutrient’s content is 

utilized for cultivation. In this context, a list which provides a qualitative assessment of some 

compounds that were found in the residual water of gasification (table 4.5) was presented in the 

work of Patzelt et al. 2014. The assessment, made to several batches of residual water obtained 

at 600 ‒ 650 ˚C, demonstrated the existence of twenty-eight substances (ex.: pyridines, aniline, 

quinolines, indoles) which are considered potentially toxic with respect to their impact in an 

algal culture. 

Table 4.5 – List of existing compounds in the residual water of SCWG (source: Petzelt et al. 2014) 

Aniline 
Acetophenone 
Quinoline 
Isoquinoline 
Indole 
(p-Hydroxyphenyl) phosphonic acid 
9H-Carbazole-9-methanol 
3-Methylbenzenamine 
3-Methylphenol 
2-Methylquinoxaline 
2-Methylquinoline 
4-Methylquinazoline 
5-Methylquinoline 
4-Methylquinoline 
4-Methyl-1H-indole 
6-Methyl-1H-iIndole 
9-Nitroso-9H-carbazole 
2-Methylpyridine 
3-Methyl-1H-pyrrole 
3-Methy-pyridine 
2,6-Dimethylpyridine 
2-Ethylpyridine 
2,5-Dimethylpyridine 
2,3-Dimethylpyridine 
3-Ethylpyridine 
2,4,6-Trimethylpyridine 
2,3,6-Trimethylpyridine 
2,3-Cyclopentenopyridine 

These compounds evolved during SCWG either as unreacted intermediates or through some 

side reactions.  Therefore, the treatment of the aqueous phase was definitely necessary before 

applying it as the cultivation medium for microalgae. Carrying out such a treatment, the 

removal or reduction of the possible toxic compounds affecting the growth can be achieved.   
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For this purpose, treatment using activated carbon filtration (ACF) and ultraviolet (UV) 

degradation were implemented. To evaluate the influence of the two treatments approaches, 

measurements of phenol-index, content of total carbon (TC) and total nitrogen (TN) were 

conducted prior to using the residual water for cultivation. The activated carbon filtration was 

conducted four consecutive times (ACF1 to ACF4) and the UV degradation proceeded for four 

hours (UV4). The obtained measurements are listed in table 4.6. Changes in the three measured 

parameters were identified after treatment using the two approaches. In both cases, the total 

carbon of the residual water was reduced in a comparable extent. About 15% of the TC 

remained in the RW after treatment. 

Table 4.6 – Influence of activated carbon filtration and ultraviolet treatment of the residual water 
on the phenol index, total carbon (TC) and total nitrogen (TN) (Data from Patzelt et al. 2014) 
 

 Phenol index TC TN 

mg.L-1 
Untreated RW 190.0 1558.0 2913.0 

ACF1 13.2 764.0 2748.0 

ACF2 4.7 708.2 2632.0 

ACF3 3.2 692.4 2462.0 

ACF4 3.0 276.5 2529.0 

UV4 58.3 238.5 595.7 

The UV treatment resulted in about 80% elimination of the TN from the residual water. This 

was definitely an unwanted scenario, especially as the dominant species of the TN (NH4+) is a 

required nutrient for algal cultivation. On the other hand, ACF did not contribute to a major 

removal of TN, as the levels were not significantly altered after treatment (over 86% of the TN 

remained in the RW). Activated carbon filtration succeeded in an almost reduction of the 

phenol index starting the second stage (ACF2). Such an efficient removal was not the case 

using UV treatment, since around 30% of the phenolic compounds remained in the treated 

residual water.  

Despite the fact that the phenol index was reduced to different extents using the UV treatment 

and ACF, the chemical compound (Phenol) was present in the RW after both treatment 

methods. This is apparently because other phenolic compounds which were not assessed 

already existed in the RW before treatment. In all treatment steps, the pH of the RW, which is 

slightly alkaline (pH in the range of 8-10) remained relatively stable at upon ACF and 

decreased from 10 to 8.5 after UV treatment. 
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Furthermore, the assessment of the substances listed table 4.4 before and after treatment 

indicated that the majority of these chemicals were eliminated after treatment (successful 

removal of 23 and 26 compounds using UV and ACF respectively). Four new substances (1,8-

Naphthyridine; Methylpyrazine; 2,5 Dimethylpyrazine and 3 Methylbenzenamine) were 

detected after UV treatment [Patzelt et al. 2014]. 

The formation of certain reaction intermediates or byproducts during hydrothermal conversion 

is normal. The uses or implementation of residual water differs according to the work 

orientation. The reaction intermediates of SCWG can be considered final products of 

hydrothermal liquefaction [Kruse et al. 2010]. Such compounds were also highlighted in other 

published works. A number of chemical substances were reported from the hydrothermal 

liquefaction of microalgae (Nannochloropsis sp.) at a temperature of 350 ˚C [Brown et al. 

2010]. Indole was found with approximately 40 other compounds which were identified as 

products formed by major and minor existence. The author referred the formation of indole to 

the hydrolysis of the chlorophyll in microalgae to smaller fragments.  

Chen et al. 2013 investigated the aqueous phase from the gasification of sewage sludge under 

near- and supercritical conditions (350 – 450 ˚C) in a batch reactor. Aniline, Indole, phenols 

and pyridine-based compounds were detected among many other substances including. The 

results of the two works mentioned in this section serve only as evidence that such chemicals 

are usually formed during hydrothermal conversion, despite the different range of operating 

conditions, under which these experiments were conducted.  
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4.9. Cultivation of microalgae using the residual water of gasification 

In the next step, the residual water of SCWG was tested as a cultivation medium for the growth 

of microalgae. The growth of A. obliquus using three batches of the RW before applying the 

two treatment approaches is demonstrated in Figure 4.11a. Also, the UV- and ACF-treated 

fractions were tested for growth and compared to that untreated RW (Figure 4.11b). In both 

cases, the comparison was made in both cases with a reference or standard growth medium 

described in chapter 3. The growth of microalgae in these cases was measured by the cell dry 

weight (CDW) over the days of cultivation. 

   

Figure 4.11 – Compared to a standard medium, the growth of A. obliquus in different batches of 
residual water from SCWG [a] and the effect of RW treatment on the algal growth [b]  

[Modified from Patzelt et al. 2014]  

From the growth curves, it can be observed that A. obliquus cultivated in the three different 

batches of the residual water showed a growth delay or inhibition for a period of four days, 

compared to the standard medium. Nevertheless, this was followed by a low growth rate, in the 

same time when standard medium culture was already in the linear growth phase (as of day 1). 

The growth behavior was in compliance with measurements of algal photosynthetic activity 

[Patzelt et al. 2014]. The growth inhibition was possibly a result of toxic substance present in 

the RW. Culture adaptation to an inadequate medium would occur and may explain the 

recovery which was in the form of an inefficient growth starting day 5.  

The algal cultivation occurring in the treated fractions showed a comparable growth behavior to 

that of the standard medium. The toxicity of the chemical substance in the RW was eliminated 

or at least reduced noticeably using both treatment approaches. Growth started for all samples 

including the standard medium as of day 1. Interestingly, the ACF-treated fraction showed a 

higher growth rate than the standard medium, which might indicate the existence of organic 

substances in the RW that can be digested by microalgae for an enhanced growth. 

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

gr
ow

th
 ra

te
, g

.L
-1

 

time, days 

Standard RW1
RW2 RW3

0

1

2

3

4

5

6

7

0 1 2 3 4

gr
ow

th
 ra

te
, g

 L
-1

 

time, days 

Standard untreated RW
UV treated RW AC treated RW

[b] [a] 



[Gasification of algal biomass in supercritical water with the potential of energy and nutrients recovery – Ch. 4]           [Sherif Elsayed] 
 

83 
 

4.10. Carbon distribution in the gasification products 

In general, the distribution of carbon among the products of supercritical water gasification 

reflects the process performance by defining its efficiency and giving an indication of the 

extent, to which the output streams are loaded with organic or carbonaceous constituents. An 

elemental mass balance of the total carbon (TC) leaving the system in the gas, aqueous and 

solid phases was conducted and the results are demonstrated in figure 4.12. The balance 

calculations were obtained based on the experimental results from the two laboratory units 

LUII and LUIII. The operating conditions and corresponding results were summarized 

previously in table 4.2 and 4.3 of this chapter. 
 

The fraction of carbon which is present in the gas phase with respect to that in the feed 

translates directly to the carbon gasification efficiency (CGE). This fraction varied depending 

on the process parameters set for each experiment and their influence on the process efficiency 

in terms of gas production (refer to previous sections 4.2 – 4.6). The term (n/d) or not detected 

designates the fraction of carbon which could not be traced in the balance calculations. This 

fraction probably stemmed from precipitations within the system fittings or pipelines, of which 

no recovery was possible.  

  

Figure 4.12 – Distribution of total carbon (TC) among the output streams of gasification from two 
laboratory units: [a] LUII and [b] LUIII 

 

In the aqueous phase, the total carbon represented a combination of both the organic and 

inorganic carbon which are formed upon gasification. The high concentrations of inorganic 

carbon in the aqueous phase gives an indication of the organic to inorganic carbon conversion 

(CO3
–2) in the residual water. For this reason, using the term (TOC conversion) to express the 

system performance may only be useful when the main objective of such processes is rather 

handling the aqueous phase or treating the organic content of wet streams and not obtaining a 
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gaseous product. Depending on the flow rate or biomass loading, this organic-to-inorganic 

conversion of carbon in the experiments presented was in the range of 5 to 15 wt% of the TOC 

found in the biomass feedstock. Consequently, the higher this organic-to-inorganic conversion 

becomes, the less the value of CGE is achieved. 
 

The solid fraction which contains carbon represented the least amount of the three phases 

detected after gasification. The carbon in the solid phase was basically found in two forms. 

These forms depended on the system configuration or the laboratory unit which was used for 

the experiments. From the set of experiments conducted in the LUI, some char-like particles 

which precipitated on the inner walls of the reactor were identified in some experiments. In the 

two other laboratory units (LUII and LUIII), the form in which carbon appeared was different. 

This is due to the salts separation mechanism that was implemented in the preheating zone at 

the reactor inlet. 

At the position of salts extraction in the temperature range of 350 – 420 °C, some of the 

biomass which was not gasified at this point left the system along with the salt brine. 

Consequently, carbon-rich phase, ranging in physical appearance between sticky substances to 

particle sediments evolved. The highest amount of total carbon present in the aqueous phase 

was measured during the two experiments with the highest flow rates, namely 667 and 1020 

g.h-1. This dark tar-like substance would represent complex intermediates or polymerized 

molecules that are usually formed during hydrothermal liquefaction at lower temperatures than 

that of SCWG. These materials were chemically analyzed and physically examined, showing 

high concentrations of carbon. In addition, an analysis using gas chromatography–mass 

spectrometry (GC ˗ MS) gave an indication regarding the existence of high molecular mass 

compounds. Although the chemical structure of these compounds was difficult to determine as 

a result of molecular fragmentations, the existence of long chain alkenes such as hexadecene-

based compounds was indicated. 

Overall, the results obtained provide a quantitative indication for the system performance in 

terms of carbon distribution. When considering each reactor individually, temperature and 

biomass concentration had the major influence on the process efficiency and hence, the carbon 

distribution in the three phases. Comparing different process conditions, the higher biomass 

loading in LUIII, approximately 3 to 7 times higher than that in LUII, resulted in a clear 

decrease in CGE. A SCWG unit with an efficient performance would necessarily include the 

major fraction of carbon in the gas phase. Any deviation from this allows or increase the 
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tendency of the possibly un-gasified carbon in an intermediate form to find an its way through 

the aqueous phase or alternatively deposit in the form of solids. This becomes a significant 

operational challenge, especially in cases when the residence time is the limiting factor for a 

complete conversion, at higher biomass concentration in the feed stream, or at increased flow 

rates when the salt extraction mechanism is not finely adjusted. 

 
4.11. Recovery of the nutrients after gasification 

As presented in chapter one, the growth of microalgae depends mainly on the presence of 

macro- and micro-elements in the cultivation medium. These elements, or nutrients, are usually 

fed to the culture in the form of dissolved salts at certain concentrations that depend on the 

needs of the algal cells and the growth conditions. Part of these elements is usually taken up by 

the cells, contributing to its full structure. The excess elements are either consumed by the 

young fresh cells or left in the culture medium if the cells are mature enough and no longer 

growing. 

Figure 4.13 demonstrates the average nutrient distribution of the dry biomass which was used 

for the gasification in supercritical water. Based on the ultimate analysis, the dominating 

components of these nutrients were nitrogen, phosphorus and potassium. Minor amounts of 

sulphur, magnesium, calcium, silicon as well as traces of iron, sodium, aluminum and chlorine 

were also measured. To achieve the recovery of natural resources and improve process 

economy, these elements are targeted for utilization through recycling from SCWG and re-

using them in the algal cultivation. 

 
Figure 4.13 – Elemental distribution of the inorganic elements in the algal biomass 
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This means that these elements should be ideally extracted as a by-product from the 

gasification process and be fed into the culture medium in an aqueous form. Under near- and 

supercritical conditions, the availability of these elements takes a different form in the product 

streams. This is due to the destruction of algal cells and the carbon conversion during 

gasification. The distribution of the total nitrogen (N), phosphorus (P) and potassium (K) in the 

two phases (solid and liquid) resulted from SCWG are shown in figure 4.14. The data in the 

diagram represent average values from the mass balance calculations based on the experiments 

conducted from the two laboratory units LUII and LUIII. The total recovery of the three 

elements is shown in the diagrams as a reference. Mass fractions which are not detected are 

identified in the diagram with a dashed pattern and negative value. 

  

Figure 4.14 – Distribution and recovery of the macro-nutrients (N, P and K) from the gasification 
products for: [a] LUII and [b] LUIII [aqueous: aq.; recovery: rec.; n/d: not detected] 

The recovery of total nitrogen in both cases was clearly high (97.3% and 95.8 for LUII and 

LUIII respectively) compared to phosphorus (LUII: 89.1% and LUIII: 52.3%) and potassium 

(LUII: 94.1% and LUIII: 68.2%). The vast majority of nitrogen was available in the aqueous 

phase in the form of ammonium. Minor amounts of nitrogen were also detected in the solid 

fraction of some experiments. On the other hand, both phosphorus and potassium showed an 

increased tendency to exist in the solid phase compared to nitrogen. The recovery of both P and 

K was clearly lower from the experiments that were conducted in LUIII. An explanation for the 

low recovery might be supported by the increased precipitations in this unit due to its 

configuration. Compared to the second unit, LUIII included longer pipelines between the 

reactor and phase separator which are both connected via separate product and salt extraction 

lines. 
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More losses were concluded with regards to the micro-nutrients after gasification. The recovery 

of these elements was calculated and found as follows for LUII (Mg = 84.5%, Ca = 79.2%, Si = 

64.7% and S = 64.5%) and LUIII (Mg = 33.2%, Ca = 18%, Si = 22.1 and S = 40.2 %), with 

magnesium and calcium being detected in higher amounts in the solid phase. A similar 

graphical representation for these elements is found in the appendix (8.16). The trace elements 

(Cl, Al, Na and Fe) were also found in the output streams in very low concentrations compared 

to the other elements and therefore, they were difficult to trace and be included in the balance 

calculations. 

Several works highlighted the migration of inorganic elements, sometimes referred to as 

heteroatoms in this context, to the solid phase under near- and supercritical conditions during 

the gasification of several feedstock materials as well as salt solutions. The works of Leusbrock 

et al. 2012, Zhu et al. 2011, Yanagida et al. 2009 and Acelas 2014 discussed this phenomenon 

with a special focus on phosphorus as a natural resource that has a limited availability. These 

works indicated the high tendency of phosphorus to precipitate in the solid phase under these 

conditions. It was found out that phosphorus migrates to the solid phase in the form of 

Phosphate (Ca˗, K˗, Mg˗ PO4) salts, which was also observed based on X˗ray diffraction 

(XRD) analysis conducted to one of the solid samples obtained from the experimental work. A 

possible method which can be applied for the recovery of phosphorus is extraction using acid 

or alkaline leaching, a method which was suggested in a previous work [Stark et al. 2006]. 

Typically, the accumulation or deposition of salts in the system possibly occurs during 

operation in the supercritical region. This could be problematic for the stability or durability of 

continuous operation. As mentioned earlier, chemical analyses and elemental mapping were 

conducted to the solid residues evolved during gasification in the framework of our 

experimental activity. These residues were extracted either from the unit after a routine 

maintenance of the system parts (reactor, filters, valves and connections) or from the sediment 

residues in both residual water and salt brine. 

As shown in table 4.7, three major fractions of solid residues were distinguished. The first 

fraction was rich in salts (e.g. P-, Ca-, K- and Mg- salts). Its color was ranging between a white 

to bright grey color. The second fraction varied in color from dark grey to black and it 

contained high concentrations of coke or carbon which evolved through a complex 

intermediate during hydrothermal conversion. The third fraction contained corrosion products 

(e.g. Ni-, Cr- and Fe- oxides). A combination of these three fractions was found as well. 
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Table 4.7 – Solid residues from supercritical water gasification and their elemental composition 

This procedure was based on purging or flushing the system using water at the end of each 

experiment for a few hours. As a result, this procedure contributed to the recovery a major part 

of the salt precipitates within the unit. Figure 4.15 demonstrates the major influence of purging 

the system in some experiments which were carried out in LUII and LUIII. Purging was 

practically realized following two steps. The first step involved purging with hot water under 

supercritical conditions directly at the end of the experiment.  

  

Figure 4.15 – Major contributions of purging to the recovery of N, P and K from supercritical 
water gasification for: [a] LUII and [b] LUIII 

At this point, the system was still hot, but it was actually cooling down due to switching off the 

heating coils and the continuous flow of water without preheating. Consequently, this step 

contributed to recover some of the un-converted biomass residues inside the reactor and collect 

some of trapped gas within the system. After this, the system was purged under subcritical 
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wt% 
C - 

    

   500 μm 

67.00 

    

   500 μm 

1.26 

     

  500 μm 

O 41.33 26.01 18.88 
Na 0.16 - - 
Mg 6.11 - 0.41 
Al 2.51 0.44 1.37 
Si 2.75 - 0.10 
P 16.71 - 0.44 
K 13.92 - 0.76 
Ca 16.50 - - 
S - 2.58 0.18 
Ni - 3.26 35.48 
Cr - - 28.73 
Fe - - 12.39 
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conditions, by maintaining the high pressure at atmospheric temperature. The cold purging here 

helped in extracting some salts which have re-dissolved in water at low temperatures. At the 

last stage, the system was opened, water was circulated again across the unit and any remaining 

solids were finally separated. The aqueous phase resulted from this procedure was analyzed in 

the same manner as for the samples taken during the experiments. The balance calculations 

were conducted taken into account this additional fraction. Purging had a relatively low 

contribution to the recovery of total nitrogen due to its good recovery in the aqueous phase 

during the process. On the other hand, major contributions ranging between 50 and 75 wt% of 

the total recovered P and K was obtained from purging.  
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5. Process Simulation 

5.1. Solution strategy 
A model obtained through the software (Aspen Plus®) by AspenTech was developed to 

demonstrate the gasification of algal biomass in supercritical water with a computer-based 

simulation. The work was based on three major coordinates. At first, the possibility to provide 

a method to process a non-conventional feed such as microalgae in the software was analyzed. 

Then, the influence of major process variables (e.g. temperature and biomass concentrations) 

on the composition of the product gas was investigated. Finally, an energy assessment of the 

different sub-processes included in the system was carried out taking into consideration the 

energy sources and sinks of each process step. In this regards, two process configurations (1-

stream and 2-streams operation) were simulated based on operation in the laboratory units 

where the experimental work was conducted. 

Basically, the software uses a combination of state and transport equations to calculate the 

missing parameters at equilibrium. The results are then presented through a user-friendly 

interface with the aids of process diagrams, tables and graphical representation. There are two 

property methods included that were implemented in the calculations: 

 PENG-ROB: This equation of state model (Peng–Robinson) is selected to describe the 

thermodynamic properties of the system given in this work. This model is suitable for 

hydrocarbon systems and can be applied to provide reasonable calculations in systems 

involving supercritical water [Tang and Kitagawa 2005, Letellier et al. 2010]. 

 IAPWS 95 (International Association for the Properties of Water and Steam, adopted in 

1995): This method provides adequate steam table correlations and it is suitable for 

calculating the properties of water as the major component in several streams of the process 

(See values comparison with another method in Appendix 8.18). 

Some assumptions were made prior to establishing the model, in order to simplify or set a 

basis for the calculations. These assumptions state that:  

 A temperature of 20 °C and a pressure of 1 bar were set as the reference conditions. 

 The reaction system is operated under isobaric and isothermal conditions. 

 Heat losses in the reaction zone are neglected. 

 Calculations are made under steady state operation. 

 The inorganic fraction of the feedstock which exits the system in the form of ash or salts is 

set as an inert component of the system and is not part of the equilibrium calculations. 
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5.2. Feedstock decomposition 

Given the elemental analysis obtained from the experimental work and assuming a molecular 

mass of 100 kg.kmol-1, a hypothetical formula (C4.3 H7 O1.9 N0.6 AFE0.08) was suggested for 

the feed on a dry basis. The ash forming elements (AFE) were added only for the sake of 

completeness. It includes the inorganic constituents of microalgae (e.g. P, K, Mg, Ca) which 

leave the process in the form of solid precipitates (ash or salts). 

Due to the absence of biomass materials within the Aspen component database and the 

difficulty to process such components using the reactor models available in the software, one 

mean to overcome this issue is to implement a so-called pseudo-component, i.e. define a 

feedstock in terms of some input data such as elemental and proximate analysis as well as 

another property like the heat of combustion. Afterwards, one step prior to gasification in 

SCW should be carried out. This step includes the decomposition of microalgae to simpler 

molecules that can be further processed as conventional components in the reaction system of 

the model. Two cases were suggested based on this concept. The first assumes hypothetical 

decomposition of microalgae (Eq. 5.1) to its elemental constituents (C, H2, O2, N2) and this 

case is referred to as feed decomposition to basic elements (FDE). The second case (Eq. 5.2) 

assumes the decomposition of biomass in water to produce a mixture of synthesis gas (CO 

and H2) along with nitrogen. This case is defined as feed reforming to synthesis gas (FRS).  

Case I:  C4.3 H7 O1.9 N0.6                4.3 C + 0.95 O2 + 3.5 H2 + 0.3 N2                           Eq. 5.1 

Case II: C4.3 H7 O1.9 N0.6 + 2.4 H2O               4.3 CO + 11.8 H2 + 0.3 N2                          Eq. 5.2 

In both cases, the feedstock is processed in the reactor model R-Yield (figure 5.1). This is 

where the suggested decomposition to simpler molecules takes place based on a pre-defined 

yield that is calculated from the stoichiometry of each of the two reactions mentioned above. 

The produced mixture from R-Yield is then combined with water and delivered to the reaction 

system under supercritical conditions. 

                                                                                    

 
 
 

Case I – FDE: 
 C 
 H2 
 O2 
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Case II – FRS: 
 CO 
 H2 
 N2 

Figure 5.1 – Feed decomposition to simpler molecules in the R-Yield reactor model 
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5.3. Algal biomass simulant 

Another method to simulate the biomass feedstock in the Aspen model is to create a mixture 

of standard or conventional compounds that are available in the software database. Using this 

method, the decomposition step which was applied in the previous section, for FDE and FRS, 

is eliminated and the model can be illustrated on a simpler basis for calculations.  

From more than fourteen compounds, several combinations were made to create an optimum 

mixture that corresponds to the composition or weight fraction of the basic elements in the 

algal biomass. As a result, two combinations using four compounds were created and referred 

to as algal simulants (AS). The selected compounds, illustrated in table 5.1, were 

Aminobutyric Acid, Fufuryl Alcohol, Methyl Acetate and Methyl Butyrate. The combinations 

which resulted in a good match to microalgae were found to be in the ratios of 60 to 40 wt%.  

Table 5.1 - A combination of conventional compounds achieving similar weight percentage of the 
basic elements in microalgae 
 

Algal Biomass Simulant I (ASI) 
Aminobutyric Acid 

(60 wt%) 
Elemental 

wt% 
Furfuryl Alcohol  

(40 wt%) 
Elemental 

wt%  
Elemental 

wt%  
in mixture 

Chemical Formula C4H9O2N C 0.465 Chemical Formula C5H6O2 C 0.612 0.524 
Molar Mass 103.12 H 0.087 Molar Mass 98.10 H 0.061 0.077 

 O 0.310  O 0.326 0.317 
N 0.136 N 0.000 0.081 
Algal Biomass Simulant II (ASII) 

Methyl Cyanoacetate 
(60 wt%) 

Elemental 
wt%  

 

Methyl Butyrate 
(40 wt%) 

Elemental 
wt%  

 

Elemental 
wt%  

in mixture 
Chemical Formula C4H5NO2 C 0.484 Chemical Formula C5H10O2 C 0.587 0.526 

Molar Mass 99.09 H 0.050 Molar Mass 102.13 H 0.098 0.069 
 O 0.323  O 0.313 0.319 

N 0.141  N 0.000 0.085 

Having defined an expression for the feed using the methods explained above, two reactor 

models will be implemented in the different runs of simulation. The first model is the Gibbs 

reactor (R-Gibbs). This model is based on calculating an equilibrium composition which 

achieves a minimum level of the Gibbs free energy. For this model, a few input requirements 

are necessary, typically operation pressure and temperature. In the second model, the 

stoichiometric reactor (R-Soich), one or a series of reactions are provided in advance with a 

molar extent or fractional conversion of the input components. The model then calculates the 

enthalpy of reactions based on the given information. Both models are discussed elaborately 

in the following sections of this chapter. 
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5.4. Thermodynamic equilibrium 

The chemical equilibrium calculations are commonly conducted through the use of 

equilibrium constants of known reactions, a procedure which is useful for simple tasks. 

However, such calculations tend to be complex when the equilibrium composition is 

determined by a number of simultaneous reactions, in which several species are involved. 

Therefore, another method for solving these kinds of problems is made by obtaining the 

equilibrium composition through minimization of the system’s Gibbs free energy.  

Typically, the Gibbs model does not require the determination of reaction stoichiometry. Only 

the system temperature and pressure, or alternatively the operation pressure and reaction 

enthalpy should be available as an input for calculations. To relate thermodynamic variables 

with the Gibbs free energy, a combination of the first and second law of thermodynamics 

takes the following differential form:  

                                                            dU = TdS – PdV                                                     Eq. 5.3 

Using the definition of a system’s enthalpy (Eq. 5.4) with its differential in terms of the 

pressure, volume and internal energy, and by applying equation 5.3, the following expression 

(Eq. 5.5) can be obtained: 

                                                                H = U + PV                                                        Eq. 5.4 

dH = dU + (PdV + VdP) = (TdS – PdV) + (PdV + VdP)       

                                                             dH = TdS + VdP                                                   Eq. 5.5 

By introducing the term (Gibbs free energy, G) and using equation. 5.5, the pressure and 

temperature dependence of the Gibbs free energy in a given system can be expressed by 

equation 5.7: 

                                                            G = H – TS                                                             Eq. 5.6 

dG = dH – (TdS + SdT) = TdS + VdP – (TdS + SdT) 

dG = VdP – SdT                                                      Eq. 5.7 
 

For a system under constant pressure and temperature, the change of Gibbs free energy equals 

to zero. In other words, the condition (dG = 0) occurs as the system’s available energy reaches 

its minimum value. This state becomes valid when the system is at equilibrium [Nobel 2005]. 
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In the systems which include reactive species, a chemical reaction proceeds in the direction of 

decreasing the Gibbs free energy until it stops as the chemical equilibrium is established. 

Under these conditions, an increase in the Gibbs free energy means a violation to the second 

law of thermodynamics. Limiting equation 5.7 to an isothermal condition with the assumption 

of an ideal gas behavior leads to the following equation: 

                                         ∫  𝑝
𝑃0 𝑑𝑑 = ∫  𝑛𝑛𝑛

𝑃
𝑑𝑑𝑝

𝑃0 = 𝑛𝑛𝑛 ln 𝑃
𝑃0

                                        Eq. 5.8 

The variable (P) in the adjusted Gibbs function (Eq. 5.8) refers to the set pressure of the 

system and (Pº) is the pressure at a reference or standard condition. To specify this equation 

with respect to the number of moles of gases (n), the equation can be rearranged to: 

𝑑(𝑑)
𝑛

 =
𝑑(𝑑°)
𝑛

 + 𝑛𝑛 ln
𝑑
𝑑°

                                               Eq. 5.9 

The term (G/n) represents the Gibbs free energy per mole in a system comprising multi-

components. This specific quantity is defined as the chemical potential and is mostly given 

the symbol (μ) in literature. The chemical potential is an expression which reflects the free 

energy change within the system per mole of any existing species [Perry 2008]. For a reactive 

system involving several components, the formula is simplified to: 

                                                                  𝜇𝑖 = 𝜇𝑖° +  𝑛𝑛 ln 𝑃
𝑃°

                                                     Eq. 5.10 

Once the gas involved is non-ideal, a new term (fugacity, f) substitutes the pressure in 

equation 5.10. This term can be considered as a pressure substitute for real gases at a certain 

temperature. The fugacity of a component (i) is a function of the molar concentration (yi) and 

system pressure as written in equation 5.11. The term Φi is dimensionless and refers to the 

fugacity coefficient. Now, equation 5.10 would take the following form (Eq. 5.12): 

                                                                     𝑓𝑖 = 𝜙𝑖𝑦𝑖 𝑑                                                        Eq. 5.11 

                                                                 𝜇𝑖  = 𝜇𝑖° +  𝑛𝑛 ln 𝑓𝑖
𝑓𝑖°

                                                     Eq. 5.12 

Where (𝜇𝑖°) is the chemical potential of a given component at standard pressure. Now, for a 

system containing (N) number of species at a constant temperature and pressure, the 

expression of Gibbs free energy at equilibrium can be written as:  

                                                                 (𝑑𝑑)𝑛,𝑃  = � (𝜇𝑖𝑑𝑛𝑖)𝑛,𝑃
𝑁
𝑖=1 = 0                                Eq. 5.13 
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Using an adequate equation of state such as that of Peng-Robinson, the fugacity coefficient 

can be determined. The Peng-Robinson equation of state (PR-EoS) relates temperature, 

pressure and molar volume (Ṽ) by putting them in terms of critical properties and an acentric 

factor (w) of the components found in this system. The general form of the PR-EoS is 

[Castello and Fiori 2011]: 

                               𝑑 =  𝑛 𝑛
Ṽ−𝑏

−  𝑎 𝛼
Ṽ (Ṽ+𝑏) + 𝑏(Ṽ−𝑏)

                                                    Eq. 5.14 
 

The bulky parameters (a, b and 𝛼) are extensions of the following:  

 𝑎 =  0.457 𝑛2 𝑛𝑐
2

𝑃𝑐
                                                                              

 𝑏 =  0.078 𝑛 𝑛𝑐
𝑃𝑐

                                                                                   

 𝛼 = [ 1 + (0.3746 + 1.5422 𝑤 − 0.2699 𝑤2)(1−�𝑛
𝑛𝑐

) ] 2                           
 

In the case when mixtures of different species are considered, the parameters a and b in 

equation 5.14 should be calculated with respect to the pure substances by the means of the van 

der Waal mixing rules as follows:   

𝑎𝑚𝑖𝑚 =  ∑ ∑ 𝑦𝑖𝑦𝑗�𝑎𝑖𝑎𝑗  (1 − 𝑘𝑖𝑗)𝑁
𝑗

𝑁
𝑖                                                                                 Eq. 5.15 

𝑏𝑚𝑖𝑚 =  ∑ ∑ 𝑦𝑖𝑦𝑗𝑁
𝑗

𝑁
𝑖

𝑏𝑖+𝑏𝑗
2

                                                                                                           Eq. 5.16 
 

The parameter kij is a binary interaction parameter that has a role in improving the phase 

equilibrium correlations of mixtures [Staudt and Soares 2012]. It can be predicted from the 

regression of equilibrium data, calculated using solver functions or by empirical correlations 

[Poling et al. 2007, Lwin 2000, Fateen et al. 2013]. These rules provide a good accuracy for 

equilibrium calculations of non-polar systems [Twu et al. 2002], which matches the nature of 

water under supercritical conditions. By applying the compressibility factor (Z=  𝑑Ṽ/𝑛𝑛) in 

equation 5.14, the following polynomial equation is obtained:  

                          𝑍3 − [1 − 𝐵] 𝑍2 + [𝐴 − 2 𝐵 − 3𝐵2 ] 𝑍 − [ 𝐴𝐵 − 𝐵2 −  𝐵3] = 0                         Eq. 5.17 
 

where; 𝐴 = 𝑎𝑃
𝑛2𝑛2

  ,   𝐵 = 𝑏𝑃
𝑛𝑛
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At this point and after determining the value of the compressibility factor, the fugacity 

coefficient and chemical potential can be obtained for each component in the mixture that 

corresponds to the equilibrium composition according to the following equation [Castello and 

Fiori 2011]: 

ln(ϕ𝑖) = 𝑏
𝑏𝑚𝑖𝑚

(𝑍 − 1) − ln (𝑍 − 𝐵) − 𝐴
2√2 𝐵

 �2
∑ 𝑦𝑗𝑎𝑖,𝑗𝑗

𝑎𝑚𝑖𝑚
− 𝑏

𝑏𝑚𝑖𝑚
� ln ( 𝑍+�1+√2�𝐵

𝑍+�1−√2�𝐵
 )   Eq. 5.18 

The entire calculations are conducted using an iterative technique in the model created by 

Aspen Plus. These calculations are based on the previous algorithm or sequence of equations, 

by achieving the conditions of the Gibbs free energy minimization. The molar concentration 

of each of the produced species is initially assumed and subsequently, the composition of the 

product mixture leading to the minimum value of Gibbs free energy is calculated. 

 

5.5. Process Configuration 

Two process schemes were suggested for the gasification of algal biomass in supercritical 

water. Adopted and modified from the experimental work, the schemes have taken into 

consideration two configurations. The first scheme is based on a 1-stream operation, where 

the entire feedstock is preheated and delivered to the reactor in a single stream. The second 

scheme has a 2-streams configuration. This is where the total input to the reaction system is 

divided into two fractions (pure water and algal slurry of higher-than-final concentration), 

preheated separately with the hot gaseous mixture before mixing and entering the reactor. The 

idea of demonstrating 1˗stream and 2˗streams schemes via Aspen simulation aims at 

investigating the heating mechanism and energy requirements for both cases. 

In the 1˗stream configuration (fig. 5.2a), the feed is brought to the operating pressure by 

pumping through (PUMP1). It is then preheated in the heat exchanger (HEX), where the 

thermal energy of the hot product stream is utilized. Further heating is required through 

(HEX-H), as a make-up for the heat losses occurring past the reaction zone, to bring the 

feedstock to the reaction temperature (FEED-RT). This is followed by supercritical water 

gasification, where the Gibbs reactor (SCWG) is used.  The conversion of the decomposed or 

simulated feedstock results in a combustible gaseous mixture. Exiting the reactor, the hot 

product stream (PROD-H) is cooled down by heating the pressurized feedstock as pointed out 

earlier. Afterwards, it is directed to a high-pressure separation column (SEP), where the 

product gas is separated from the residual water. The pressure of the product gas can be 
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utilized through expansion (EXP) using a gas turbine and work can be generated. This may be 

considered as compensation for the energy consumed in pumping the feedstock. 

The gaseous product is expanded to about 2˗3 bar. Exploiting the product stream can be 

achieved thermally by burning. Hydrogen can be separated and used for other applications, 

but such a decision will depend in the first place on system performance and process 

economics. The major gas fraction (GF1) exits the process as the final product and part of it 

(GF2) is thermally utilized to preheat the feedstock using a gas burner (BURNER), where the 

hot exhaust gases is cooled down (HEX-C) against the preheated feed stream to make up for 

heat losses. The dotted line between HEX-C and HEX-H is hypothetical energy stream that 

reflects the duty required for the make-up heating. 

In the two˗streams configuration (figure 5.2 b), additional process equipment are involved as a 

result of splitting the total feed input. A stream of pure water is pressurized (PUMP2) along 

with the other stream containing the feedstock. The product mixture leaving the reactor at the 

operation temperature and pressure (PROD-HH) is split into two fractions (PROD-H1 and 

PROD-H2). Each fraction is used to preheat both feed and water streams. After preheating, 

the two streams (H2O-HOT and PROD-C) are combined and then heated further in HEX-H to 

the desired temperature before mixing and entering the reactor. 

For both schemes considered in this study, the feedstock decomposition (FDE and FRS) 

proposed in section 5.2 is outlined in a separate block (DECOMP), to which the feed is 

pumped and heated to a temperature which matches that of the reactor. Since this step is 

hypothetical, the decomposed feedstock has to be cooled down back to ambient temperature 

before further processing. The decomposition block is omitted when the simulation is 

conducting using the two other feed types (ASI and ASII). The two reactor models, R-Gibbs 

and R-Stoich, were set for different simulation runs. The amount and composition of the 

product gas were calculated at different reactions temperatures (600, 650, 700 ˚C) and feed 

concentrations (2.5, 5, 10, 15, 20 wt%). With regards to the aqueous fraction of the process, 

the residual water (RES-HP) exits the process at the bottom of the phase separator and its 

pressure is relieved. Regardless of the salts extraction mechanism applied in the experimental 

work, no salts separation is taken into account in the calculations. As the gasification process 

was the major focus in this work, the units (treatment, algal cultivation) and aqueous streams 

with dashed lines at the bottom of each scheme were kept only for the sake of concept 

demonstration for coupling supercritical water gasification with the cultivation of microalgae.  
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Figure 5.2 – Two suggested conceptual process schemes for the gasification of algal biomass in supercritical water    
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5.6. Results and Discussion (Process Simulation) 

The created process models were run according to the different feedstock types presented 

earlier in this chapter. Two goals were set from conducting the simulation; the first goal was 

to investigate the influence of reaction temperature and biomass concentration on the 

gasification under supercritical conditions. The second goal was to evaluate the energy 

requirements of the different processes included in the proposed schemes. 

A total flow rate of 100 kg.h-1 was set for the feed to and a sensitivity analysis was made by 

several combinations of temperature and biomass concentration. After quantifying the energy 

terms of the process, the thermal efficiency can be obtained under different operating 

conditions. This helps providing information regarding the potential of running an energy-

neutral or auto-thermal process and provides a useful insight for designing such systems on 

larger scales. 

From the four feedstock models proposed earlier in this chapter, two models (FDE and ASI) 

were selected as surrogates for the biomass in the process simulation. The selection was made 

based on the major constituents of the product gas (H2, CO2, and CH4) and their molecular 

composition (fig. 5.3) from different simulation runs. The results were then compared to some 

of the experimental results at the same operating conditions, a reaction temperature of 650 ºC, 

an operating pressure of 280 bar and a biomass concentration of 10 wt%. Similar trends using 

the four models was observed under the same operating pressure, at biomass concentrations of 

5 and 20 wt% at reaction temperatures of 650 and 690 ˚C respectively. 

 

Figure 5.3 – Gas composition from supercritical water gasification of four simulated feedstock 
models compared to experimental results [ER: Experimental results, FDE: Feed decomposition to basic 

elements, FRS: Feed reforming to syngas, ASI&II: Algal Simulant] 
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According to the results from the models based on FDE and ASI, the gaseous mixture was 

found to have concentrations of hydrogen, methane and carbon dioxide which are relatively 

closer to those from the experiments than in the case of FRS and ASII. The difference, 

however, was that the simulation results showed for all models higher concentrations of 

hydrogen accompanied by lower methane levels, especially using low concentration of 

simulated feedstock (5 wt%). Nevertheless, the process simulation was still able to depict the 

influence of changing process variables on the gas composition as discussed in the following 

sections of this chapter. 

 

5.6.1. Influence of reaction temperature 

Running the process models at different temperatures provided a clear demonstration (fig. 5.4) 

of the influence this major variable has on the composition of the produced gaseous mixture. 

A wide range of temperatures (450, 550, 650 and 750 °C) compared to the experimental work 

was applied with a feed concentration of (10 wt%) and an operating pressure (28 MPa). The 

results generally show rising levels of hydrogen and a continuing decrease of methane upon 

elevating the reaction temperature. 

  

Figure 5.4 – Influence of reaction temperature on the composition of the major components in 
the produced gas for the two models based on FDE and ASI 

Conditions: P = 280 bar, feed conc. 10 wt% [a] FDE model and [b] ASI model 
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of its value at 450 ˚C. Carbon dioxide was found to have a higher stability over this 

temperature range. There was a slight decrease in the composition of carbon dioxide, but the 

change did not have a sharp course such as that of H2 and CH4, keeping its levels in the range 
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In addition to the major gas components, minor concentrations of carbon monoxide as well as 

traces of ethane, propane and propylene were calculated in the gaseous mixture from the 

simulated models. This does not come in accordance with the experimental results, where the 

levels of carbon monoxide were 0.3 mol% at maximum at the highest temperature applied 

(690 ˚C), and the measured ethane levels of about 9 mol% in a temperature range of 620 – 690 

˚C. 

The increasing trend of hydrogen and decreasing trend of methane were previously concluded 

from the experimental results at the same feed concentration. Increasing the reaction 

temperature would probably favor some reactions over others according to thermodynamics. 

An explanation might be that at higher temperature, the methanation reactions which consume 

H2 are slowed down due to the exothermic nature of these reactions. As a result, additional H2 

remains as a surplus in the gaseous mixture, raising its total levels in at such an elevated 

temperature. The concentration of CO would increase then as a result of its slowed-down 

methanation at higher temperature, which was better depicted through process simulation. 

However, the decreasing levels of CO2 at elevated temperatures were not in compliance with 

the experimental work, where CO2 were found to be increasing over the temperature range 

tested. One possibility for such a difference might be based on the fact that the equilibrium 

calculations would translate to more consumption of CO2 during methanation. That might 

provide an explanation to the rise in the levels of CO (0.1 to 3 mol%) between 450 and 750 ˚C 

instead. 

Generally, comparing the results obtained from process simulation with the relevant values 

obtained from the experimental work is a useful approach, as the influence of temperature on 

the trends of the major gas components was supported by process simulation. The fact that the 

values which were obtained during the experiments and those from simulation are not 

identical can be related to the different basis for calculations as well as the assumptions 

considered in the simulated models. The two models, based on FDE and ASI, have both 

demonstrated very little differences regarding the compositions of the three gas components in 

the temperature range applied. Nevertheless, the decision to use both models for the sake of 

demonstration continues in this chapter as a mean of double-checking or verifying the results. 
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5.6.2. Influence of feedstock concentration 

As pointed out in chapter 4, the reaction temperature and feedstock concentration are the two 

major process variables which have the dominant influence on the gasification in supercritical 

water. Therefore, the simulation was run using a broad range of concentrations (2.5 – 20 wt%) 

at a reaction temperature of 690 ˚C and pressure of 280 bar. The molecular composition of 

hydrogen, methane and carbon dioxide was calculated and the results are shown in figure 5.5. 

The experimental results (ER) under similar operating conditions are plotted along with the 

results obtained from Aspen modeling and distinguished with dashed lines. 

Both models (FDE and ASI) showed to very comparable results using the five concentrations, 

whereas the ASI-based simulation demonstrated a slightly lower H2, higher CH4 and CO2 

concentrations. Additionally, a bit more time was generally needed for the FDE models to 

achieve convergence due to the extra steps associated with feed decomposition. In a similar 

trend such as that of the experimental results, the concentration of H2 in the product gas 

decreased by increasing feedstock concentration. The molar concentration of H2 lost about 

50% of its value referred to the most diluted feedstock (2.5 wt%), when the concentration was 

increased to the highest value.  

  
Figure 5.5 – Influence of feed concentration on the composition of the major components in the 
product gas, compared to experimental results (ER), for the two models based on FDE and ASI 

Conditions: P = 280 bar, T = 690 ˚C [a] FDE model and [b] ASI model 

A factor contributing to that is also the significant rise in the concentration of CH4, which 

increased by almost 10 folds using the feedstock stream with the highest concentration. The 

molar composition of CO2 was relatively stable over the range of feed concentrations 

simulated, staying in the range of approximately 30 – 35 mol% in the five cases for both feed 

models. 
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The simulated models continued to show clearly higher levels of hydrogen in the gas mixture 

compared to the experimental results, especially at the lower feedstock concentrations. There 

was an offset of approximately 15 to 20 % at the lower three concentrations used. The 

difference decreased to about 10 – 12% at the feed concentrations of 15 and 20 wt%.  Such an 

observation may indicate that the equilibrium composition associated with the simulated 

models may have demonstrated a higher contribution of water to the overall hydrogen 

production under these conditions. This increase in the levels of hydrogen was reflected at the 

composition of methane in the gas mixture, obtaining over six times lower methane than what 

the experimental results showed for the lowest feed concentration. However, the offset was 

continuously decreasing until there results of the simulated models and the experimental 

results were quite comparable at the concentrations of 15 and 20 wt%. The composition of 

carbon dioxide in the gas mixture was the most component which was predicted by the Aspen 

models compared to the experimental results for all concentrations.  

Additionally, the composition of the product gas mixture included minor amounts of carbon 

monoxide; with an increase from 0.8 to about 2.3 mol% between the lowest and highest feed 

concentrations respectively. The experimental results have only showed a slight rise in the 

molar composition, from 0.2 to 0.4 mol%, between 2.5 and 20 wt% respectively. Similar to 

what was indicated for the influence of reaction temperature, the models were not able to 

provide an adequate representation of ethane in the gas mixture compared to the experimental 

results, in which its molar composition was in the range 3 and 7.8 mol%. The models depicted 

an increase by 5 – 6 folds when raising the feed concentration from 2.5 to 25 wt%. 

Nevertheless, and despite being represented in trace concentrations (≤ 0.002 mol%) from 

simulation, the overall decrease supports the data obtained from the experimental results. 

 

5.6.3. Gasification Quotient 

This term (abbreviated as GQ) is a synonym for the gasification efficiency (GE) in a fractional 

form. It defines the total amount of gaseous products divided by the amount of feed input in a 

certain time period under a given process condition. The gasification quotient was introduced 

here to give another indication of the process performance other than carbon gasification 

efficiency or the removal efficiency of the total organic carbon. The value of GQ would 

typically exceed unity at conditions including combinations of high conversion efficiency, 

high temperature or diluted feed streams.  
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Figure 5.6 illustrates the change of GQ at different reaction temperatures and feed 

concentrations for the models based on FDE and ASI as well as the experimental results (ER). 

The term GQ would give an indication of water contribution to the overall gas production. As 

demonstrated in the figure, the GQ reaches maximum values at the highest reaction 

temperatures (690 ˚C for ER, 750 ˚C for FDE and ASI). Likewise, the highest values of GQ 

were observed clearly with the two lowest feed concentrations of those investigated. 

  
 

Figure 5.6 – Variation of gasification quotient versus temperature and feed concentration 
Conditions: [a] Feed conc. 5 wt%, P = 280 bar, [b] T = .690 ˚C, P = 280 bar 

The offset between the experimental results and those from the simulated models can be 

explained by a number of factors. The first factor is the already overestimated values of 

hydrogen in the gas product from simulation as previously mentioned. The second factor 

would definitely be the complete carbon conversion (CGE) that was assumed in process 

simulation, which would partly increase the gap between the simulated models and 

experimental results. The third factor is the percentage of inorganic elements existing in the 

algal biomass (ash) that consequently results in a lower gas yield compared to model 

compounds. In addition to these factors, the reaction kinetics, especially at higher feed 

concentrations, would have a role in creating the difference between the experimental and 

model-based results. As pointed out earlier, the thermodynamic equilibrium was the basis for 

model calculation. In other words, the simulated models only consider the changes to the 

Gibbs free energy of the system and its components. Reaction kinetics will logically undergo 

changes depending on the temperature and feed concentration, but the models were simplified 

and no input data were given for reaction kinetics, assuming it to be not limiting under these 

conditions. 
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5.6.4. Energy Assessment 

The results obtained from the simulated models include an energy analysis during the process. 

These data (e.g. equipment duties, heat recovery) may provide an appreciable start basis for 

designing such systems especially at a large scale. The calculations presented in this section 

assumed a system with an operating capacity of 100 kg.h-1 total feed input. The concentrations 

of the feed stream was varied between 2.5 and 25 wt% and the reaction temperature was set to 

different values between 450 and 750 ˚C. Operating pressure was maintained constant at 280 

bar. 

Several runs were conducted using the two feed types selected, at a feed concentration of 10 

wt%, a reaction temperature of 650 ˚C and pressure of 280 bar. Basically, the power sums 

which are included in the process are represented in figure 5.7. These terms are: 1) the 

enthalpy associated with gasification in supercritical water (DSCWG); 2) the heat circulated 

within the system based on the thermal recovery of the hot product stream (DHeat Recovery); 3) 

the duty required to preheat the feed stream further to the desired reactor temperature 

(DAdditional heating); 4) the power required for pumping (PPumping) and 5) the power which can be 

generated by expanding the pressurized gaseous product (PGas expansion). 

 
Figure 5.7 – Example of the duty shares (power) of supercritical water gasification (ASI model) 
[-ve for energy required] - Conditions: Flowrate 100 kg.h-1, Feed conc. = 10 wt%, T = 650 ˚C, P = 280 bar 

The simulation showed comparable results based on the 1˗stream and 2˗streams 

configurations implemented, in terms of the energy content of the product gas. According to 

the simulation, a slight decrease of the recovered heat for the 2-streams configuration resulted 

5% 

87% 

-6% 

-1% 1% 

Based on 89.1 KW net duty 

D (SCWG) D (Heat circulated) D (Additional heating) P (Pumping) P (Gas expansion)
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in an additional energy for further preheating to the desired temperature at the reactor’s inlet. 

Corresponding to operation, the 2˗streams configuration would typically involve more piping 

and would have a decreased thermal efficiency due to increased heat losses compared to 1-

stream˗based operation. Still, the simulated models could not provide a clear influence upon 

introducing the 1- and 2-streams system on the gasification efficiency in terms of gas quantity 

or composition. From an energy-related point of view, adding more equipment (ex.: pump or 

a heat exchanger) to a process of the same capacity, given the energy consumption or 

efficiency of these equipment, would consequently result in an increased power demand. For 

this reason, the 1-stream configuration was selected to run the different models. This 

configuration would be also recommended for designing these systems unless significant 

benefits of the 2-streams configuration are proved. The results of the basic energy terms for 

the different process units included in the system are listed in tables 5.2 and 5.3. 

The energy needed to decompose and gasify the feed under supercritical conditions varied 

depending on the feed model applied in the calculations. The term (DSCWG) represents the 

duty of the Gibbs reactor under supercritical conditions. Both feed models showed different 

results concerning the total energy related to gasification. The feed type FDE resulted in 

higher exothermic conditions than ASI. This is due to the hypothetical step of feed 

decomposition which was implemented in the FDE model, and which resulted in a major 

difference in the input streams to the reactor compared to the ASI models. 

By increasing the temperature from 450 to 750 ˚C, a decrease in the energy release from the 

reactions by 6 and 8 KW was observed for ASI and FDE feed types respectively. As a result, 

more energy was required to maintain the reaction system at the elevated temperatures. This 

was reflected through the higher demand (duties) for preheating and the increased share of 

additional energy for further heating to reactor temperature. The increase of temperature in 

this range resulted in higher yield of the total gases. The theoretical power which can be 

obtained from the expansion of produced gas increased by 3 folds compared to the value at 

450 ˚C. 

In the case of changing feed concentration (table 5.3), the results showed that higher feed 

concentrations led to higher release of reaction enthalpy and lower duty for the overall 

preheating of the feed. However, additional heating was still required to reach the reactor 

temperature in this case (650 ˚C). Yet, the availability and amount of the product gas at higher 

concentrations would lead to an improved thermal efficiency for the process as a whole. 
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Table 5.2 - Energy requirements at different temperatures for the two feed types [Throughput 100 kg.h-1 Feed, feed conc. = 10 wt%, P = 280 bar]* 

Temperature, ˚C 450  550 650 750  
Power/Duty Equivalent (kW) FDE ASI FDE ASI FDE ASI FDE ASI 

Duty equivalent of the feed stream (EF) 64.72 67.22 64.72 67.22 64.72 67.22 64.72 67.22 
Reaction in supercritical water (DSCWG) 14.22 6.53 12.60 6.36 10.00 4.14 6.42 0.70 
Duty of the major heat exchanger used for preheating (DHx) 70.48 68.57 79.42 79.82 86.83 87.26 93.72 94.17 
Duty related to additional heating (DAdditional heating) -6.35 -3.70 -6.50 -4.30 -7.12 -5.30 -7.90 -6.24 
Duty equivalent of the gas product (Dbiofuel) 57.25 57.50 58.81 59.10 61.86 62.10 65.42 66.10 

Power required for pumping (PPumping) -0.91 -0.90 -0.91 -0.90 -0.91 -0.90 -0.91 -0.90 

Power equivalent of gas expansion (PGas expansion) 0.43 0.43 0.57 0.57 0.93 0.95 1.35 1.35 

Fraction of the gas product needed for additional heating (wt%) 11.10 6.80 11.20 7.25 11.50 8.50 12.10 9.51 

 

Table 5.3 – Energy requirements at different feed concentrations for the two feed types [Throughput 100 kg.h-1 Feed input, T = 650 °C, P = 280 bar]* 

Feed concentration (wt%) 2.5  5  10 20  25 
Power/Duty Equivalent (kW) FDE ASI FDE ASI FDE ASI FDE ASI FDE ASI 

Duty equivalent of the feed stream (EF) 16.18 16.81 32.36 33.61 64.72 67.22 129.44 134.44 161.8 168.06 
Reaction in supercritical water (DSCWG) 0.55 -0.94 3.20 0.236 10 4.1 24.6 13.1 32.0 17.7 
Duty of the major heat exchanger used for preheating (DHx) 92.49 93.14 90.83 91.1 86.83 87.3 79 79.5 75.1 76 
Duty related to additional heating (DAdditional heating) -4,88 -4.32 -5.72 -4.72 -7.115 -5.3 -9.60 -6.31 -10.76 -6.81 
Duty equivalent of the gas product (Dbiofuel)  17.56 17.48 33.1 32.8 61.86 62.1 118.9 118.4 148.1 145.8 

Power required for pumping (PPumping) -0.91 -0.90 -0.91 -0.90 -0.91 -0.90 -0.91 -0.90 -0.91 -0.90 

Power equivalent of gas expansion (PGas expansion) 0.45 0.45 0.67 0.67 0.93 0.95 1.24 1.25 1.36 1.37 

Fraction of the gas product needed for additional heating (wt%) 28 25 17.5 14.3 11.5 8.5 8 5.4 7.2 4.7 
 
* Negative sign refers to energy requirements or energy input
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The heat recovery of the product stream is very crucial in such high temperature process, as it 

represents the highest share of energy which maintains the process performance stable. 

Theoretically, it is introduced in the process once and is then circulated during operation. 

Hence, this term does not contribute to the total energy output of the system. The absolute 

amount of heat recovery typically increases upon raising the reaction temperature. On the 

contrary, the decrease of heat requirements at higher concentrations is due to the increase of 

feed amount that is converted to a gas mixture given an exothermic condition. The additional 

energy required to further heating arises from the heat transfer efficiency, which was assumed 

to be around 87 – 90 % based on the calculations included in the models. This term is provided 

through burning part of the product gas mixture and recovering its heat. This fraction is 

illustrated along with the power equivalent calculations in both tables of the previous page.  

The term related to gas expansion shows that the phase change associated with supercritical 

water gasification can result in a positive power in case a gas turbine is used for electricity 

generation. The results show that as of 10 wt% feed concentration, the gas expansion can 

contribute with an equivalent power to that required for feed pumping. Above this 

concentration and with a temperature as high as 650 °C, the energy resulted from expansion 

can theoretically exceed that which is used for pumping. In practice, these values would differ 

due to the losses or conversion efficiencies that lead to an increased power consumption for 

pumping and also a decreased power produced from expansion. Another phenomenon occurs 

upon expansion is the major temperature drop of the gas mixture after throttling. In the 

simulated models, the temperature dropped down to low values (˗40 / ˗60 °C) at the turbine 

exit. Such a low temperature might be utilized, for example, to cool down some equipment 

during operation. One drawback is the fact that moist gas streams would lead to ice formation 

on the blades of the turbine causing damage of the equipment. In all cases, the contribution of 

these steps (fig. 5.8) to the overall efficiency is minor as illustrated earlier and much attention 

should be given to the management of thermal energy within the process. 

 

Figure 5.8 – Overall process steps for the gasification of biomass in supercritical water 
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5.6.5. Overall process efficiency 

The formula presented in equation 5.19 was used to calculate the overall efficiency of the 

simulated system. The formula took into consideration the total energy required for or 

released through supercritical water gasification, the energy required for additional heating, 

the energetic content of the combustible gas mixture (i.e. biofuel), the energy required for 

pumping and the potential energy which would be available through the expansion of the 

high-pressure gas. 

η =  
±E𝑺𝑺𝑺𝑺 − E𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝒉𝒉𝒂𝒂𝒂𝒂𝒉 + E𝑩𝒂𝒂𝑩𝑩𝒉𝒂 − E𝑷𝑩𝑷𝑷𝒂𝒂𝒉 + E𝑬𝑬𝑷. 

E𝑩𝒉𝒉𝒂
           Eq. 5.19 

The calculations explained earlier in this chapter were based on the R-Gibbs reactor model for 

the core process of gasification. This have demonstrated the dependence of gas composition 

on temperature and feed concentration and enabled to compare the influence of these two 

variables with the results obtained from the experiments. However, the simulated models were 

based on a complete carbon conversion in the feed stream to a gaseous mixture. That is why 

an overestimation of the gas amount (seen from GQ in section 5.6.3) was present. This has in 

turn an influence on the energy terms in the process and would lead to exaggerated values 

from simulation. For that reason, the reactor model R-Gibbs was replaced by the model (R-

Stoich) in this section and several runs were made under different process conditions.  

A series of basic reactions were set up according to table 5.4. In the R-Stoich reactor model, 

more information has to be defined before solving. This includes temperature, pressure, 

number of reactions with their corresponding stoichiometric coefficients and molar 

conversion. The molar conversion of each reaction was adjusted, so that a similar gas 

composition is achieved (e.g. H2: 35.5 mol%, CH4: 24.2 mol%, CO2: 32 mol%, C2H6: 7.9 

mol%, CO: 0.3 mol%) compared to that of an experiment conducted at the same operating 

conditions (P = 280 bar, feed conc. = 10 wt%, T = 650 ˚C, P = 280 bar).  

A feed conversion of 90% was assumed, allowing the rest of algal simulant (ASI) to exit the 

process in the residual water. The results, indicating the different energy terms discussed 

earlier and represented in the overall process efficiency, were then compared to those obtained 

using the R-Gibbs model using the two feed types. 
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Table 5.4 – Suggested reaction scheme with the corresponding molar conversion for ASI model 

Reactions Equation Mol. conversion 
[(X1) C4 H9 O2 N + (X2) C5 H6 O2] + (X3) H2O    

(X4) CO + (X5) H2 + (X6) NH3 + (X7) H2O 
 

Eq. 5.20 
 

0.9 

(A) CO + (B) H2O   (C) CO2 + (D) H2 + (E) H2O Eq. 5.21 0.81 
(L) CO2 + (M) H2    (N) CH4 + (O) H2O Eq. 5.22 0.39 
(P) CO + (Q) H2     (R) CH4 + (S)H2O Eq. 5.23 0.95 

(T) CH4  (U) C2H6 + (V) H2 Eq. 5.24 0.39 
 

 

Figure shows the course which the overall efficiency takes upon changing feed concentration 

(figure 5.9a) and reaction temperature (figure 5.9b). The results indicate a stronger influence 

of feed concentration on the overall efficiency. A maximum efficiency of 93.5 % for the feed 

type ASI and 82.4 % for FDE was relatively stable in the concentrations starting 10 wt%. The 

model (R-Stoich.) showed a quite similar trend to the feed type FDE. 

 
Figure 5.9 – Overall process efficiency at different feed concentrations [a] and temperatures [b] 

of the R-Gibbs models (for FDE and ASI) compared to the R-Stoich. model using ASI 

A feed concentration between 10 and 20 wt% seems to be the optimum for operation when 

these values are considered. Above this concentration, handling the feedstock in terms of 

mixing and pumping would lead to difficulties that would affect operation. Given the several 

assumption made at the beginning to simplify the calculations, the actual efficiencies will be 

tend to be lower than those calculated. Therefore, operating at diluted feed stream would not 

allow a sustainable operation and lead to low overall process efficiency. 

 

 

20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30

O
ve

ra
ll 

ef
fic

ie
nc

y,
 %

 

Feed conc., wt% [a] T = 650 ˚C 

FDE ASI ASI (Stoich.)

20
30
40
50
60
70
80
90

100

400 450 500 550 600 650 700 750 800

O
ve

ra
ll 

ef
fic

ie
nc

y,
 %

 

Reaction temp, ˚C [b] Feed conc. = 10 wt% 

FDE ASI ASI (Stoich)



[Gasification of algal biomass in supercritical water with the potential of energy and nutrients recovery – Ch. 5]       [Sherif Elsayed] 

113 
 

References (Chapter 5) 

1. Brown, T.M., Duan, P., Savage, P.E. 2010. Hydrothermal Liquefaction and Gasification of 
Nannochloropsis sp. Energy & Fuels, 24(6), 3639-3646. 

2. Castello, D., Fiori, L. 2011. Supercritical water gasification of biomass: Thermodynamic 
constraints. Bioresource technology, 102(16), 7574-82. 

3. Fateen, S.-E.K., Khalil, M.M., Elnabawy, A.O. 2013. Semi-empirical correlation for binary 
interaction parameters of the Peng–Robinson equation of state with the van der Waals mixing 
rules for the prediction of high-pressure vapor–liquid equilibrium. Journal of Advanced Research, 
4(2), 137-145. 

4. Kruse, A., Gawlik, A. 2003. Biomass conversion in water at 330-410 °C and 30-50 MPa. 
Identification of key compounds for indicating different chemical reaction pathways. Industrial 
and Engineering Chemistry Research, 42(2), 267-279. 

5. S. Letellier, F. Marias, P. Cezac, J. Serin. 2010. Gasification of aqueous biomass in supercritical 
water: a thermodynamic equilibrium analysis, The Journal of Supercritical Fluids, 51, 353–361. 

6. Lwin Y. 2000 Chemical Equilibrium by Gibbs Energy Minimization on Spreadsheets, Int. J. 
Engng Ed., 16(4), 335-339. 

7. Nobel, Park S. 2005. Appendix IV - Gibbs Free Energy and Chemical Potential. In: 
Physicochemical and Environmental Plant Physiology (3rd Edition), Academic Press. Burlington, 
pp. 545-553. 

8. Patzelt, D.J., Hindersin, S., Elsayed, S., Boukis, N., Kerner, M., Hanelt, D. 2014. Hydrothermal 
gasification of Acutodesmus obliquus for renewable energy production and nutrient recycling of 
microalgal mass cultures. Journal of Applied Phycology, 27(6), 2239-2250. 

9. Perry, R.H. 2008. Ch. 4: Thermodynamics. In: Perry's Chemical Engineers' Handbook, (8th 
Edition), McGraw-Hill, New York. 

10. Poling, B.E., Prausnitz, J.M., O’Connell, J.P. 2007. The properties of gases and liquids (5th 
Edition), McGraw-Hill, Singapore. 

11. Staudt, P.B., Soares, R.d.P. 2012. A self-consistent Gibbs excess mixing rule for cubic equations 
of state. Fluid Phase Equilibria, 334, 76-88. 

12. Tang, H., Kitagawa, K. 2005. Supercritical water gasification of biomass: thermodynamic analysis 
with direct Gibbs free energy minimization, Chemical Engineering Journal 106, 261–267. 



[Gasification of algal biomass in supercritical water with the potential of energy and nutrients recovery – Ch. 6]       [Sherif Elsayed] 
 

114 
 

6. Conclusions and prospects for future works 
 
The results demonstrated in chapter two and the experimental results of this work give an 

indication that the efficiency of the systems implementing hydrothermal conversion depends 

to a major extent on the configuration, capacity and mode of operation. A large spectrum of 

results was obtained according to the objective of each study, nature of the feedstock 

(moisture content, physical and chemical properties) and the different operating conditions. 

From this study, the results show that the gasification of algal biomass in supercritical water 

can be conducted with high efficiency on continuous operation. This experimental work 

demonstrated that the efficiency of supercritical water gasification (SCWG) is directly 

influenced by the major process variables, specifically the temperature and biomass 

concentration of the feedstock. The highest carbon gasification efficiency (CGE) or the 

highest specific gas yield was achieved at the highest temperature applied (690 ˚C). 

Similar finding related to the solid content in the feedstock was concluded using the most 

diluted biomass of all concentrations tested. The contribution of water to the overall gas 

production was significant at low feed concentrations, which confirms the reactive role of 

water under supercritical conditions and the benefit of the high moisture content for an 

improved gasification efficiency with respect to carbon conversion. The quantity and 

composition of the produced gas can be controlled through the process variables, which 

allows adjustable conditions based on the desired component in the gas product. 

Regarding the process configuration (1-stream and 2-streams), a less complex system with 

lower power consumption promotes the 1-stream process. Despite the reported improvement 

of the 2-streams configuration with regards to the fast heating rate and the prevention of char 

formation, the performance of the 1-stream configuration can be optimized by adjusting some 

variables such as residence time and flow dynamics in order to achieve a high conversion. 

As a valuable byproduct, utilizing the residual water from SCWG for cultivation helps in 

recycling natural resources. This provides an important step forward considering the eco-

balance and the economics of cultivation. Treating the residual water was deemed necessary 

to remove some substances which have a growth-inhibiting effect during cultivation. Unlike 

activated carbon filtration, the UV-treatment reduced the amount of total nitrogen in the 

aqueous phase and could not remove the phenolic compounds entirely. Yet, the two methods 

were able to remove the majority of the growth-inhibiting substances from the residual water. 
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Solid precipitations, especially those of Phosphorus salts, can be minimized by further 

optimization of system design and the fine-tuning of process conditions. This would be 

achieved in a way that increases the solubility of these solids in the aqueous phase, or enables 

an efficient extraction mechanism before or after gasification without disturbing operation. 

Eventually, this will reduce the risk of plugging, lead to longer operation and directly 

translate to a stable system performance. It would also increase the availability of these 

inorganic constituents as a target for the coupled systems. 

Process simulation is a very useful and handy tool to optimize system variables and produce a 

wide range of information for the gasification process. Even though the calculations made 

using Aspen Plus were mainly based on thermodynamic equilibrium and no kinetic 

expressions were implemented in the models, similar trends were obtained compared to the 

experimental results. This contributes to a major cut-off in time and efforts associated with 

conducting experiments, especially on a large scale of operation. 

Despite the lack of non-conventional compounds (biomass) in the input databank of Aspen 

Plus, several methods, some of which were presented in this work, can be adopted to provide 

an acceptable description of the feedstock as a first step before the simulation runs. The 

simulated models could give useful information regarding the influence of temperature and 

feed concentrations on the composition of the gaseous products. Another benefit was the 

obtained results of the major energy sources and sinks in SCWG, giving a possible start basis 

for the design of these systems especially if process scale-up is considered. Compared to the 

experimental work, some deviations in the simulation results were noticed. Such a remark 

was expected and can be explained by the assumptions made in process simulation and the 

gasification efficiency in the real systems. Also, the heat losses in the high˗temperature zones 

were not represented in the models and therefore, these factors should be taken into account 

before considering any projection that is based on the simulation results. 

From an energy-efficiency perspective, the gasification of biomass in supercritical water 

should be preferably conducted at the highest possible feed concentration and the lowest 

possible supercritical temperature. Practically, there may be a limit regarding the biomass 

concentration depending on the nature of the feedstock. For example, the processing a 

feedstock by the means of mixing and pumping can be challenging using a 20 wt% feed 

concentration (i.e. 80% moisture content). This is particularly the concern, given the high 

pressure of supercritical systems and the need of a reliable pumping on continuous operation. 
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Hence, biomass concentrations above this value would not be recommended. In addition, a 

feedstock with high content of organic matter and less ash would be preferred. Despite the 

reported improvement of CGE at higher temperatures, a temperature limit should be set 

depending on the optimized gasification through adjusting other process variables. The 

experimental work in this study concludes that temperatures below 650 ˚C are not sufficient 

for an efficient SCWG on continuous operation. This value may also differ depending on the 

system configuration, feedstock nature and throughput applied. 

As for the prospects of future works, scaling up coupled systems such as the one discussed in 

this work will be challenging considering the costs associated with algal cultivation. Process 

economics which include fixed costs (e.g. fabrication of photobioreactor panels) and 

operating costs (e.g. culture harvesting and aeration) would remain a hurdle even at larger 

scales, especially if the produced biomass is only used for gasification. This is also the case 

for process economics, given the variation of biomass productivities in outdoor cultivation. 

Algal biomass can be rather used for the extraction of high-value molecules (e.g. omega˗3, 

β˗carotene) which are sold commercially. The spent culture (algal residues) can be utilized, 

along with other organic waste streams, for hydrothermal conversion. 

Supercritical water gasification is a flexible process in terms of the feedstock type. In other 

words, the process can be used to convert a wide range of biomass materials with high 

moisture content. Therefore, the tendency to apply the already-available materials, such as 

waste streams including sewage sludge or agricultural crop residue, would allow better 

process economics by omitting the production costs of a feedstock such as microalgae. By 

exploiting these organic wastes, SCWG can be economically feasible at larger scales (e.g. 

total throughput ≥ 500 ˗ 1000 kg.h-1). Coupling algal cultivation and SCWG would still be 

achievable. This can be realized if the algal biomass is simply replaced by a waste stream as 

the feedstock for gasification. All other by-products from the SCWG of wastes (CO2, 

nutrients from wastes) can then be recovered and directed to cultivation. By designing such a 

system, the cultivation of microalgae can benefit from the wastes that are converted via 

SCWG to a combustible mixture. At the same time, treatment of the waste streams can be 

simultaneously achieved. 
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08. Appendix 

8.1. Thermo-physical properties of water under sub- and supercritical conditions 

  
 
 

  
 
 

Figure A1.1 – Major changes which occur to water around the critical point at different pressures  
(Specific heat capacity, dynamic viscosity, density, ionic product) [Source: NIST Chemistry WebBook]
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8.2. Cultivation systems 

Microalgae grow in nature within open ponds or lakes. Extended man-made water bodies can 

also be designed for the same purpose. Those systems which have direct contact to the 

environment are defined as open cultivation systems. The major advantages of such systems 

are the relatively low capital cost, simple construction and operation. Photo-bioreactors 

(PBR) are cultivation systems which have no direct contact to the environment, can be 

operated indoors and are usually made up of transparent materials such as glass or plastic for 

light access. The major advantages of these systems are the well-controlled environment for 

cultivation which decreases the potential for contamination or unwanted species, flexibility of 

operation as well as the compact design. Basic PBR designs include the tubular, flat-panel 

and annular configurations. Table A1.1 provides a brief comparison between open and closed 

systems. These factors promote higher chances for the total process efficiency and higher 

productivities.  

Table A1.1 – Qualitative Comparison between open cultivations systems and Photobioreactors  
          [Modified from: Brennan et al. 2010, Pulz and Gross 2004] 
 

 Open cultivation systems Photobioreactors 
Area required large (-) relatively low (+) 

Contamination risk high (-) low (+) 
Evaporative losses high (-) low (+) 
Operational costs low (+) high (-) 

Control (ex.: Temp., pH)  difficult (-) easy (+) 
Investment cost low (+) high (-) 

Surface-to-volume ratio low (-) high (+) 
Light utilization low (-) high (+) 
System cleaning easy (+) difficult (-) 

Biomass productivities low (-) high (+) 
Scale-up easy (+) difficult (-) 

Shear stress on algal cells low (+) high (-) 
Quality of biomass low (-) high (+) 

Culture mixing poor (-) good (+) 

The main challenge related to building up closed cultivation systems in large scales is the 

high capital and operating costs compared to open systems. Therefore, the adequate design of 

photo-bioreactors should contribute to a process which achieves high yield of biomass in 

order to compensate the high cost of the manufacturing. Also, having relatively high biomass 

concentrations in the culture contributes to making harvesting more economic [Carvalho et 

al. 2006]. 
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8.3. BIQ house modules 

The figure below shows how the modules or flat panels are mounted on a steel frame forming 

the façade of two sides of the BIO house (pictures on top). The picture on the bottom shows 

flow direction of culture medium and the continuous supply of compressed air (CO2 

included). This technique keeps the necessary elements of growth (air, CO2; nutrients, light 

and temperature distribution) at good levels and prevent the deposition of algal cell during 

cultivation.  

 

 
  

Figure A3.1 – Façade elements of the BIQ house: the flat panels reactor modules (PBR) 
[Source: International Building Exhibition Hamburg, Smart Material House BIQ, IBA Hamburg GmbH, July 2013] 
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8.4. Methods applied for samples analysis 

Table A3.1 – The methods applied for the analysis of the solid and liquid samples from 
supercritical water gasification 

Analytical Method Description of the measured parameter/s – phase 

DIN ISO 10694: 1996-08 Determination of the total organic and total carbon (TOC, 
TC) after dry combustion – solid 

DIN EN 13137: 2001-12 
 

Determination of the total organic carbon (TOC) in waste, 
sludge and sediments – solid 

DIN EN 15104:2011-04 
 

Determination of the total content of carbon (TC), hydrogen 
and nitrogen – solid 

DIN 51721:2001-08 
Determination of the carbon content and hydrogen content – 
solid 

DIN EN 51722-1: 1987-01 Determination of the nitrogen content (TN) – solid 
DIN 51732:2007-08 
 

Determination of the total carbon, hydrogen and nitrogen 
(C-H-N) – solid 

DIN EN ISO 10304-1:2009-07 
 

Determination of the dissolved anions by liquid 
chromatography of ions (Cl, NO3

-, NO2
-, PO4

-3 and SO4
-2) – 

aqueous 

DIN EN ISO 11885:2009-09 
 

Determination of selected elements (e.g. Al, Ca, Cr, Fe, K, 
Mg, Mo, Na, Ni, P, S, Si) by inductively coupled plasma 
optical emission spectrometry (ICP-OES) – aqueous 

DIN EN 12260: 2003-12 Determination of the bound nitrogen (TNb), following 
oxidation to nitrogen oxides – aqueous 

DIN EN 1484: 1997-08 
 

Determination of the total organic carbon (TOC) and 
dissolved organic carbon (DOC) – aqueous 

DIN 38406-5:1983-10 
Determination of ammonia-nitrogen (Ammonium-N) (E5) – 
aqueous 
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8.5. Significance of feed mixing 

Figure A3.2 shows four different concentrations of algal biomass feedstock (from left to 

right: 2.5, 5, 10 and 15 wt%) without mixing for about 100 hours (~ 4 days) and the occurring 

particles settling. The figure can be described by other expressions such as phase separation 

or concentration gradient within the feed suspension. The settling is clearly observed at the 

two lower concentrations prepared. 

 
 

    

Figure A3.2 – Particles settling without feed mixing at different concentrations after 100 hours 

 

 

 

 

 

 

 

 

 



[Gasification of algal biomass in supercritical water with the potential of energy and nutrients recovery – Appendix] [Sherif Elsayed] 
 

123 
 

8.6. Analysis of the calorific value of the algal biomass:  

Table A3.2 – Elemental analysis of a dried algal biomass sample 

Sample associated with (Batch 4) Unit Value 

Total organic carbon (TOC) % 48.6 
Aluminium (Al)  

 
 
 
mg.kg-1 

2990 
Calcium (Ca) 6030 
Eisen (Fe) 420 
Potassium (K) 8000 
Magnesium (Mg) 2020 
Sodium (Na) 597 
Phosphorous (P) 10030 
Sulphur (S) 8040 
Silicon (Si) 5030 
Chlorine (Cl) 315 

 

Table A3.3 – Determination of the calorific value of the algal biomass  

Parameter Unit Value 

Higher heating value (HHV) kJ.kg-1 20.993.1; 21.086.0; 20.788.2 
Analysis humidity a wt% 9.8 
HHV (based on 100% dry biomass) kJ.kg-1 23.273.8; 23.376.9; 23.046.6 
Hydrogen content in microalgae wt% 7.1 
Lower heating value (LHV) b kJ.kg-1 19.184.4; 19.277.4; 18.979.4 

a These samples were conditioned with constant value of humidity for analysis. This was 
conducted to improve the accuracy of the measurements. 

b An expression used to relate the high heating value (HHV) to the lower heating value 
(LHV), taking into consideration the heat of vaporization of the moisture content and the heat 
released by the combustion of the hydrogen content of the biomass, can be written as: 

LHV = HHV ˗ 2454 (W + 9H) 

where:  

 W = water or moisture content of the sample in percent (wt%) and 
 H is the hydrogen content in percent (wt%) 

This expression is derived from the international flame research foundation (IFRF) 

combustion handbook. 
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8.7. Supercritical water gasification of a model solution (Ethanol) at different 
concentrations 

As indicated in chapter (3), conducting pre-experiments was a procedure that was followed in 

order to prepare the unit before switching to the algal biomass. Some data were collected 

based on the experiments carried out with a solution of ethanol in three concentrations (5, 9 

and 11 wt%). Since no regular pattern for these experiments was the scope of work, it was 

added in the appendix to demonstrate that these model solutions containing no slurry or solid 

particles are simpler or easier to convert to a gaseous mixture under supercritical conditions 

with high carbon gasification efficiency (CGE). This can be identified from table A4.1 

through the high rates of gas production as well as the carbon gasification efficiency. Carbon 

represents about 52 wt% of the ethanol molecule, which is comparable to the algal biomass. 

However, the algal biomass contains around 10 wt% inorganic constituents in the form of 

salts or ash. Therefore, it is expected that higher gas production and enhanced CGE can be 

achieved with a solution such as ethanol. 

Table A4.1 – Summary of the pre-experiments conducted with an ethanol solution 

Feed 
concentration 

T P Flow 
rate 

Duration 

 

Maximum gas 
production 

CGE 

 

wt% ˚C bar g.h-1 h L.h-1 % 
9 600 250 150 5.8 26 98.2 

9  620 250 150 4.9 30 99.8 

11 600 250 288 5.0 45 96.8 

5 650 280 580 6.3 55 97.4 

5 650 280 600 5.0 58 99.3 

5 650 280 700 6.5 57 98.6 
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8.8. Quality of the residual water from SCWG 
 

Table A4.2 – List of the qualitatively detected substances in the aqueous phase of SCWG and 
the influence of the two treatment methods applied on the removal of these substances [Patzelt 
et al. 2014] 

Compounds 
 

In  
residual water 

after  
UV-treatment 

after 
AC filtration 

2-Methylpyridine x 
  3-Methyl-1H-pyrrole x 
 

x 
3-Methy-pyridine x 

  2,6-Dimethylpyridine x 
  2-Ethylpyridine x 
  2,5-Dimethylpyridine x 
  2,3-Dimethylpyridine x 
  3-Ethylpyridine x 
  Aniline x 
  (p-Hydroxyphenyl)-phosphonic acid x x x 

2,4,6-Trimethylpyridine x 
  2,3,6-Trimethylpyridine x 
  Acetophenone x 
  3-Methylbenzenamine x 
  3-Methylphenol x x 

 2,3-Cyclopentenopyridine x 
  Quinoline x x 

 Isoquinoline x 
  Indole x x 

 2-Methylquinoxaline x 
  2-Methylquinoline x 
  4-Methylquinazoline x x 

 5-Methylquinoline x 
  4-Methylquinoline x 
  4-Methyl-1H-indole x 
  6-Methyl-1H-iIndole x 
  9H-Carbazole-9-methanol x 
  9-Nitroso-9H-carbazole x 
  1,8-Naphthyridine 

 
x 

 Methylpyrazine 
 

x 
 2,5-Dimethylpyrazine 

 
x 

 3-Methylbenzenamine 
 

x 
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8.9. Conductivity of the salt brine 

Some measurements of conductivity to salt brine resulting from supercritical water 

gasification was made as an indicator of the salt existence in the aqueous phase. The higher 

the amount of ionized salts in the medium, the more its tendency to conduct electricity. The 

results of these measurements are listed below in figure A4.1. They are based on the salt 

brine from the experiments conducted in LUII at a temperature of 690 ˚C and flow rate of 

150 g.h-1. The measurement unit is presented in the form of milli-siemens per centimeter 

(mS/cm). The electrode was calibrated in reference to distilled water (1 – 3 μS.cm-1). This is a 

qualitative measure in terms of the entire ionic species that are found in the aqueous sample.  

 

Figure A4.1 – Measurements of the conductivity of some samples of the salt brine resulting from 
supercritical water gasification of algal biomass (LU II) 
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8.10. Energy content of the gas product from SCWG 

Based on the specific yield of the gas product from SCWG, the energy content (lower heating 

value, LHV) is listed below in the following table:  

Table A4.3 – Energy content of the gas product from SCWG [Data from LUII] 

Exp.  

No 

 

Yield 
 

H2 
 

CH4 
 

CO2 
 

C2H6 
LHV,   

MJ.kg-1 TS 

1 ml.g-1 TOC 1218.56 521.87 899.75 78.39  

15.8 
ml.g-1 TS 622.93 266.78 459.95 40.07 

2 ml.g-1 TOC 896.72 375.83 698.77 123.45  

18.2 
ml.g-1 TS 450.15 188.67 350.78 61.97 

3 ml.g-1 TOC 804.75 580.17 583.91 183.29  

23.0 
ml.g-1 TS 412.03 297.04 298.69 94.20 

4 ml.g-1 TOC 1036.82 689.04 875.06 227.80  

20.0 
ml.g-1 TS 520.48 345.90 439.28 114.36 

5 ml.g-1 TOC 893.17 567.51 789.84 133.24  

17.7 
ml.g-1 TS 458.20 291.13 405.19 68.35 

6 ml.g-1 TOC 362.16 344.89 458.93 115.18  

18.5 
ml.g-1 TS 181.80 173.13 230.38 57.82 

7 ml.g-1 TOC 565.83 642.62 674.14 179.62  

20.0 
ml.g-1 TS 284.08 322.63 338.46 90.18 

8 ml.g-1 TOC 386.29 399.47 470.58 141.95  

21.2 
ml.g-1 TS 193.74 200.36 236.02 71.19 

9 ml.g-1 TOC 600.28 598.49 692.41 139.01  

18.5 
ml.g-1 TS 311.54 310.61 359.36 72.15 

10 ml.g-1 TOC 355.35 623.72 631.04 137.64  

18.8 
ml.g-1 TS 184.43 323.71 327.51 71.44 
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8.11. Analysis of a complex intermediate of hydrothermal conversion 

This analysis was conducted to a tar-like sample resulted that was extracted from the 

preheating section at T = 390 ºC. The same was dissolved in acetone and analyzed via gas 

chromatography mass spectroscopy (GC-MS). The analytical procedures were as followed 

[GC-MS column: Stabilwax, 1μL injected, injection temperature 250 °C, temperature prog.: 5 

min at 40°C, heating rate 8°C/min until 250°C, 10 min at 250°C, detector temperature 260 

°C]. The sample was partially soluble in acetone and several peaks were detected (see figure 

A4.2). 

 

 

Figure A4.2 – [a] GC-MS chromatogram (with indicated retention time) of a sample extracted 
from LUIII in the preheating section at a temperature of 390 ºC and [b] fragmentation peaks of 

the compound detected at 22.13 min of retention time. 
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In Table A4.4, the major peaks with their corresponding retention time were reported. When 

possible, the assignment of the mass spectra with a database and the quality of the assignment 

was made. Otherwise, the detected peak of the mass fragmentation with the higher mass to 

charge ration (m/z) was provided. The analysis could not provide an accurate identification of 

the compounds in the sample, as they were not matched with any compound in the database. 

This can be possibly explained by the fact that the sample contained mainly of fragments or 

partially decomposed molecules that –CH2 units for instance.  

For the molecular peak at 280 m/z, an indication of a high molecular mass component is 

presumed, but it is more difficult to determine its structure. For the sake of comparison, the 

mass spectra of 2-hexadecene, 3,7,11,15 tetramethyl is reported. The two spectra are quite 

similar, not identical though, and the quality match is relatively high. 

 

Table A4.4 – Retention time of the chromatogram with possible assignment of few compounds - 
When it was not possible, the peak with higher mass to charge ration (m/z) is indicated. 

Retention 

time 

 

Name 

 

Quality 

 

Peak observed at higher (m/z) 

20.12 Possibly an alkane - 127 (122; 113; 99;85;71;57;43)1 

22.13 Possibly: 2˗hexadecene 3,7,11,15 
tetramethyl or isomer 

86 280 

22.27 Possibly: 2˗hexadecene 3,7,11,15 
tetramethyl or isomer 

86 280 

22.49 Possibly: 2˗hexadecene 3,7,11,15 
tetramethyl or isomer 2 

95 280 

 

 

 

 

 

 
                                                             
1 Other main fragmentation peaks. 
2 It is obvious that this is a compound relatively similar to the one reported in the database. However, a different 
compound is ideally identified for each retention time. Another possibility is that these detected compounds are 
long chain alkanes with some degree of instauration. 
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8.12. Analysis of a solid particle using X-ray diffraction (XRD)  

These results (Figure A4.3 and table A4.5) were obtained using a diffractometer system to 

analyze a solid particle from one extended experiment (duration 22 hours). The sample 

(color: bright grey) was extracted from the system after operation. It was concluded that the 

sample contained high concentrations of inorganic elements such as phosphorus and 

potassium. The existence of these elements was also confirmed using elemental mapping 

(scanning electron microscopy, SEM). 

 

Figure A4.3 – X-ray diffraction analysis of a solid sample extracted after SCWG [Data from 
LUI] 

(Operating conditions: T = 650 ºC, P = 280 bar, Feed conc. = 2.5 wt% - Duration = 22 h) 
 

Table A4.5 – Chemical formulas matching the structures detected in the XRD analysis 

Power diffraction 
file (PDF)-No. 

 
Score 

 
Name 

 
Scale factor 

 
Chemical Formula 

01-089-4675 44 Potassium 
Magnesium 
Phosphate 

0.478 KMg (PO4) 

00-011-0232 41 Calcium Phosphate 0.374 Ca4 P2O9 

01-087-0089 21 Berlinite, syn 0.082 Al (PO4) 
01-087-1707 46 Kalsilite 0.277 K Al (SiO4) 
00-048-0367 25 Aluminum Oxide 0.151 Al2O3 

00-015-0047 22 Leucite 0.078 K Al Si2O6 
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8.13. Determination of the gas composition 

The data obtained in this section (Figure A4.4 and Table A4.6) is an example of a regular gas 

sampling which was conducted every 30 minutes during operation under steady-state 

conditions.  

 

 
Figure A4.4 – Gas chromatogram [Exp. code ESL13-G7] [Date from LUIII] 

(Operating conditions: T = 650 ºC, P = 280 bar, Feed conc. = 2.5 wt%) 
 

Table A4.6 – Retention time, composition and component detection based on gas 
chromatography 

Retention time 
min. 

Composition 
vol% 

Gas component 
- 

0.894 42.84502 Hydrogen 

2.352 13.57464 Methan 

3.695 34.75010 Carbon dioxide 

6.192 2.49843e-1 Ethylen 

7.119 5.19854 Ethan 

13.421 1.32954e-1 Propylen 

14.681 3.81393e-1 Propan 
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8.14. Elemental mapping using scanning electron microscopy (SEM) 

Figure A4.5 and Table A4.7 provide the results of the elemental mapping that was conducted 

to some precipitates (grey powder) that evolved during gasification in supercritical water. 

The analysis of this precipitate indicates high concentrations phosphorus, calcium, 

magnesium and potassium. 

      
 

Figure A4.5 – Elemental mapping using scanning electron microscope (SEM) [Data from LUI] 
(Operating conditions: T = 650 ºC, P = 280 bar, Feed conc. = 5 wt% - Duration = 30 h) 

 

Table A4.7 – Results of the SEM analysis (weight and atomic percentages of the detected elements) 

Element wt% Atom% 
C  15.09 24.39 
O  41.67 50.56 
Na  0.21 0.18 
Mg  6.88 5.50 
Al  2.08 1.50 
Si  0.22 0.15 
P  13.83 8.67 
S  0.42 0.26 
Cl  0.07 0.04 
K  6.43 3.19 
Ca  7.45 3.61 
Cr  1.67 0.63 
Fe  1.04 0.36 
Ni  2.93 0.97 
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8.15. Salt extraction mechanisms during supercritical water gasification 

The simplified figure below (fig. A4.6) shows a basic demonstration of the extraction 

mechanism of inorganic elements (salts) during operation under near- and supercritical water 

conditions. Two methods were conducted based on the experimental work; a method of 

removing the salts at the bottom of the reactor after gasification (LUI). The other mechanism 

for salt extraction is applied under near-critical conditions before gasification (LUII and 

LUII). 

 
Figure A4.6 – Extraction of inorganic constituents during supercritical water gasification 
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8.16. Recovery of the micro-nutrients from supercritical water gasification 

From the different phase of gasification under supercritical conditions, the distribution and 

percent recovery of the micro-nutrients for algal growth is shown below in figure A4.7.  

 

 

Figure A4.7 – Distribution and recovery of the micro-nutrients (S, Mg, Ca and Si) from the 
gasification products for: [a] LUII and [b] LUIII [aqueous: aq.; recovery: rec.; n/d: not detected] 
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8.17. Process Simulation using Aspen Plus (Selected database components) 

 

Table A5.1 – List of the components which were selected from the Aspen database for process 
simulation 

Component 
ID 

Type 
 

Component name 
 

Alias 
 

H2O Conventional WATER H2O 
MICROALGAE Nonconventional  MICROALGAE  - 

H2 Conventional HYDROGEN H2 
CO Conventional CARBON-MONOXIDE CO 
O2 Conventional OXYGEN O2 

CO2 Conventional CARBON-DIOXIDE CO2 
N2 Conventional NITROGEN N2 

CH4 Conventional METHANE CH4 
C2H4 Conventional ETHYLENE C2H4 
C2H6 Conventional ETHANE C2H6 
C3H6 Conventional PROPYLENE C3H6-2 
C3H8 Conventional PROPANE C3H8 

ETHANOL Conventional ETHANOL C2H6O-2 
NH3 Conventional AMMONIA H3N 
2MP Conventional 2-METHYLPYRIDINE C6H7N-D1 

N-MET-01 Conventional N-METHYLPYRROLE C5H7N 
3-MET-01 Conventional 3-METHYLPYRIDINE C6H7N-D2 
2:6-D-01 Conventional 2,6-DIMETHYLPYRIDINE C7H9N-D2 
ANILI-01 Conventional ANILINE C6H7N-1 

PHENO-01 Conventional PHENOL C6H6O 
2:4:6-01 Conventional 2,4,6-TRIMETHYLPYRIDINE C8H11N-D1 

METHY-01 Conventional METHYL-PHENYL-KETONE C8H8O 
N:N-D-01 Conventional N,N-DIMETHYLANILINE C8H11N 
3-MET-02 Conventional 3-METHYL-4-METHYLETHYL-PHENOL C10H14O-D4 
QUINO-01 Conventional QUINOLINE C9H7N-D2 
ISOQU-01 Conventional ISOQUINOLINE C9H7N-D1 
8-MET-01 Conventional 8-METHYLQUINOLINE C10H9N-N5 
QUINA-01 Conventional QUINALDINE C10H9N 
1-PEN-01 Conventional 1-PENTADECENE C15H30-2 
N-HEP-01 Conventional N-HEPTADECANE C17H36 

METHY-02 Conventional METHYL-MYRISTATE C15H30O2-N1 
METHY-03 Conventional METHYL-PALMITATE C17H34O2-N1 
OLEIC-01 Conventional OLEIC-ACID C18H34O2 
STEAR-01 Conventional STEARIC-ACID C18H36O2 
BETA--01 Conventional BETA-CHOLESTEROL C27H46O 

C Solid CARBON-GRAPHITE C 
CALCI-01 Solid CALCIUM-OXIDE CAO 
POTAS-01 Solid POTASSIUM-OXIDE K2O 
CALCI-02 Solid CALCIUM-PHOSPHATE CA3(PO4)2 
POTAS-02 Solid POTASSIUM-CARBONATE K2CO3 

AMMONIUM Conventional NH4+ NH4+ 
1-NIT-01 Conventional 1-NITROBUTANE C4H9NO2-D1 
A-AMI-01 Conventional A-AMINOBUTYRIC C4H9NO2 
FURFU-01 Conventional FURFURYL-ALCOHOL C5H6O2 
METHY-01 Conventional METHYL-CYANOACETATE C4H5NO2 
ISOPR-01 Conventional ISOPROPYL-ACETATE C5H10O2-D2 

METHY-02 Conventional METHYL-BUTYRATE C5H10O2-5 
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8.18. Calculation of water properties 

Table A5.2 shows a comparison between some of water’s properties that are calculated based 

on the International Association for the Properties of Water and Steam (IAPWS) as well as 

the National Institute of Standards and Technology (NIST). The objective here is to show that 

the values used in the property method in the Aspen simulation (IAPWS) is quite similar to 

the same properties obtained with the NIST-based calculations. 

Table A5.2 – Three properties of water under near and supercritical conditions, given by two 

references of calculations (NIST and IAPWS) at a pressure of 280 bar 

Temperature 
(˚C) 

Density  
(kg.m-3) 

Cp  
(kJ.Kg-1.K-1) 

Viscosity  
(µPa.s) 

NIST IAPWS NIST IAPWS NIST IAPWS 
300 747.68 748.00 5.12 5.12 92.56 92.63 

320 709.68 709.75 5.49 5.51 85.49 85.51 

340 664.17 663.85 6.10 6.15 78.29 78.24 

360 605.36 605.03 7.34 7.05 70.24 70.19 

380 512.21 511.51 11.70 12.04 59.20 59.12 

400 259.44 261.65 26.92 26.99 35.51 35.68 

420 169.41 169.13 10.1 9.93 30.42 30.41 

440 140.40 140.42 6.79 6.75 29.90 29.91 

460 123.99 124.07 5.38 5.30 30.13 30.14 

480 112.84 112.95 4.60 4.52 30.63 30.63 

500 104.51 104.64 4.10 4.04 31.25 31.25 

520 97.94 98.06 3.76 3.71 31.93 31.93 

540 92.54 92.64 3.51 3.48 32.64 32.65 

560 87.98 88.07 3.33 3.30 33.38 33.39 

580 84.05 84.12 3.19 3.17 34.13 34.13 

600 80.60 80.67 3.08 3.06 34.88 34.89 

620 77.54 77.60 2.99 2.98 35.64 35.64 

640 74.78 74.84 2.92 2.92 36.39 36.39 

660 72.29 72.34 2.87 2.87 37.14 37.14 

680 70.02 70.07 2.82 2.83 37.89 37.89 

700 67.93 67.97 2.78 2.80 38.63 38.64 
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8.19. Reaction intermediates in the residual water 

As pointed out in chapter 4, the residual water from SCWG contained traces of several 

reaction intermediates, including alcohols, cyclic compounds such as aniline, pyridine and 

phenols as well as ketones. In the work of Patzelt et al. 2014, a qualitative list which involves 

28 substances measured in the RW was presented. These substances, with other possibly 

occurring substances which are reported in literature, were inserted in the Aspen database 

before simulation and their existence in the RW stream after was investigated. A list 

including some of these compounds is shown in table 5.2. Of the 28 substances, the models 

predicted the presence of nine substances. 

Table A5.3 – List of the reaction intermediates found in the residual water of gasification 

Component calculated from the 
simulated models 

 
 

Feed model (FDE) Feed model (ASI) 
Feed concentration, wt% 

5 25 5 25 
Reaction temperature, °C 

450 750 450 750 450 750 450 750 
Substances predicted by the models and reported in the RW 
2-Methylpyridine x x x x x x x x 
3-Methylpyridine x x x x x x x x 
2,6-Dimethylpyridine x  x x   x x x 
Aniline  x  x x x x x 
2,4,6-Trimethylpyridine   x x   x x 
Quinoline    x   x x 
Isoquinoline       x x 
3-Methyl-4-Methylethyl-Phenol        x 
Phenol x x x x x x x x 
Substance predicted by the models 
8-Mthylquinoline         x 
Quinaldine        x 
Methyl-Phenyl-Ketone  x x x  x x x 
N-Methylpyrrole  x  x x x x x 
Ethanol x x x x x x x x  

Also, the existence of five additional substances was predicted by the models. In both 

models, increasing feed concentration and temperature resulted in the presence of more 

intermediates. Despite their existence in trace amounts, compounds such as ethanol and 

phenol were found at relatively higher levels than the others. Quantitative trends were 

difficult to conclude. However, the existence of such intermediates was reported in literature 

[e.g. Brown et al. 2010, Kruse et al. 2003], where they were presented as products of pre-

gasification (liquefaction) or the result of polymerization or side reactions at high 

temperatures. 
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8.20. Coupling algal cultivation and SCWG 

8.20.1 Conceptual basis 

The idea of coupling both cultivation and gasification stems basically from the fact that both 

systems benefit from the aqueous nature mutually; one system through the growth of 

microalgae, where nutrients, OR2R and COR2R are available. The other system is where having 

water under supercritical conditions is the key concept to gasification and conversion to a 

combustible gas mixture. Figure A6.1 outlines a conceptual scheme that represents the two 

integrated systems described earlier. The scheme demonstrates how a successful coupling of 

both cultivation and SCWG can be realized. 

 
Figure A6.1 – Schematic representation of integrating algal cultivation and supercritical water 

gasification with the potential of nutrients and energy recovery P2F

3 

Here, an ideal strategy prioritizes the efficient management of materials and energy streams 

in both systems. Such a strategy can be realized by designing heat networks or thermal 

looping between hot and cold streams, storing any surplus thermal energy that would be 

available for reuse when needed. In the case of cultivation, the ambient temperature shows a 

noticeable variation depending on the seasonal and day time at a given location. During 

sunny summer days, the temperature of the culture medium rises to levels, where growth 

inhibition might be possible. To the contrary, as the temperature drops below 10 °C at night 

                                                             
3  This figure was modified from the grant application of the project (PHYKON) – SSC Strategic Science Consult, 
Dr. habil. Martin Kerner, November 2012 
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or during winter, warming the culture becomes necessary to keep the algal cells at a warm 

and an acceptable level of activity for growth. As proposed, the excess thermal energy 

absorbed by the culture medium can be collected and stored using a heat pump in a 

geothermal well, where the temperature is relatively constant irrespective of seasonal time. 

This way, a mean of cooling the culture down to an optimum level for growth is provided.  

The stored heat would be available to warm up the culture medium at low temperatures. The 

requirements of carbon dioxide for cultivation can be fulfilled entirely from SCW gasification 

by two routes. One route can be achieved by separating CO2 from the combustible product of 

gasification under high pressure after cooling. Another route for supplying CO2 is by burning 

the combustible mixture of gasification partially as previously discussed in Chapter 5 

(Process Simulation) to make-up the heat losses in the SCWG system. This is a simple 

approach and the available CO2 in this case would need to be pressurized before delivering to 

the culture medium. Both routes will probably be necessary for supplying the culture with 

this carbon source as long as a photoautotrophic growth is pursued. In any case, the decision 

of CO2 separation, buffer storing and possible make-up will depend mainly on the cultivation 

system configuration, performance as well as process economics.  

The degree of utilizing the concentrated salts in aqueous or solid form plays a role in the 

success of the coupling concept, as it helps establishing a closed loop of natural resources and 

decrease the operating costs associated with nutrients supply for cultivation. Beside the salts, 

the residual or process water from gasification will have to be treated either by filtration or 

using UV light to eliminate any toxic intermediates before recycling for cultivation. 

Moreover, the experimental results of this work along with other data available in literature 

(Ch. 2 Literature review) demonstrated the need to dilute the process water prior to the reuse 

for algal growth. 
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8.20.2 Biomass Productivity 

As pointed out earlier (Ch. 1 Introduction), the major advantage of algal cultivation is the 

possibility of utilizing sunlight and using it as the source of energy for growth. By ensuring a 

proper access to light through adequate exposure and mixing, the culture can be maintained 

healthy, provided that other growth parameters are adjusted and kept at optimum conditions 

for a given species.  

Since the suggested system of photo-bioreactors is operated outdoors, the major hurdle for 

cultivation becomes the variation of culture growth at different solar irradiance. The variation 

of irradiance or light intensity is practically a function of geographic location, seasonal and 

daytime. Added to that, the existence of clouds and their intensity usually results in a 

fluctuating irradiance on a given day. Considering the availability of sufficient solar energy 

for cultivation over the course of one day, optimum months for cultivation can be 

distinguished. Therefore, it would be difficult to generate a term that describes the 

productivities of an algal culture outdoors without using mean or average values. In addition 

to these factors, the productivity of outdoor cultivation also depends on the PBR 

configuration. 

In this regard, an important term to highlight is the photosynthetic conversion efficiency 

(PCE). The term itself depends on several variables governing the performance of cultivation 

systems and biomass accumulation. At ideal or non-limiting growth conditions, the maximum 

PCE is calculated to be in the range of 9–10% [Bolton and Hall 1999, Stephens et al. 2010]. 

According to Melis 2009, this value can be translated into a biomass yield of approximately 

77 g.m−2.d−1 for an average irradiance of 35 mole photons.m−2.d−1. Another work showed that 

maximum average productivities of 40 g.m−2.d−1 can be obtained in outdoor PBR systems 

[Williams and Laurens 2010].  Despite the lower value of mean annual productivity obtained 

in the work of Hindersin et al. 2014 (~ 10 g.m−2.d−1), the authors indicated that by optimizing 

growth conditions and sunlight utilization, a biomass productivity of 22 g.m−2.d−1 can be 

calculated. Given these data on biomass productivity, two mean values (20 and 40 g.m−2.d−1) 

were assumed in order to form a basis for this study. These values would correspond to a 

system or an arrangement of outdoor Photobioreactors with a flat panel configuration. 
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8.20.3 Layout of the cultivation system 

Some assumptions (listed in table A6.1) were made to help designing the suitable cultivation 

system in terms of its size specifically. The assumptions were set in conjunction with the feed 

requirement for SCWG using three different capacities (50, 100 and 200 kg.h-1) at 

concentrations of 5, 10 and 15 wt% DM. Combinations of these two variables are made. 

Accordingly and based on the two productivities values suggested earlier, the overall surface 

area subjected sunlight can be obtained. As a result, the numbers of panels for cultivation and 

the land area needed for cultivation can be calculated. 

Table A6.1 – Scenarios based on two biomass productivities and different SCWG throughputs 

Biomass productivity,  
20 g.m-2.d-1 

Cultivation 
area, m2 

Number of flat 
panels 

culture volume, 
m3 

Land dimension 
L x W, m 

 

- SCWG feed (5 wt% DM) 
- Throughputs: 50, 100, 200 kg.h-1 

3000 1500 60 92 x 40 
6000 3000 120 - 
12000 6000 240 - 

 

- SCWG feed (10 wt% DM) 
Throughputs: 50, 100, 200 kg.h-1 

6000 3000 120 - 
12000 6000 240 - 
24000 12000 480 - 

 

- SCWG feed (15 wt% DM) 
- Throughputs: 50, 100, 200 kg.h-1 

9000 4500 180 - 
18000 9000 360 - 
36000 18000 720 - 

Biomass productivity,  
40 g.m-2.d-1 

Cultivation 
area, m2 

Number of flat 
panels 

culture volume, 
m3 

Land dimension 
L x W, m 

 

- SCWG feed (5 wt% DM) 
- Throughputs: 50, 100, 200 kg.h-1 

1500 750 30 - 
3000 1500 60 - 
6000 3000 120 - 

 

- SCWG feed (10 wt% DM) 
- Throughputs: 50, 100, 200 kg.h-1 

3000 1500 60 - 
6000 3000 120 180 x 40 
12000 6000 240 - 

 

- SCWG feed (15 wt% DM) 
- Throughputs: 50, 100, 200 kg.h-1 

4500 2250 90 135 x 40 
9000 4500 180 - 
18000 9000 360 - 

The selection can be refined and limited to three cases by setting a limit for the size of the 

cultivation system. Using algal feedstock to SCWG of concentrations above 15 wt% was not 

considered in this study. The reason for that is the effort associated with dewatering the algal 

culture to high concentrations, the difficulty to handle and pump thick slurries and the 

decrease in gasification efficiency upon hydrothermal conversion. 
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The combinations listed include several scenarios with numbers of flat panels up to 18000. 

Large culture volumes (max. 720 m3) would result from using such extended sets of 

cultivation units. This excessive number of units would lead to difficulties due to the high 

total investment cost, despite the cost reduction associated with fabrication and operation. 

Therefore, conservative scenarios are suggested by applying certain limitations, such as 

considering the systems with a number of flat panels ≤ 3000. Three cases can be selected 

(table AT7.1). The area of the land dedicated for building up a cultivation system will depend 

on the arrangement of the photo-bioreactors. The numbers of flat panels and total culture 

volume are based on flat panel units having a height, width and thickness (light path) of 2 m, 

1 m, and 0.02 m respectively.  

Through stacking or arranging the flat panels (figure A6.2) with an acceptable spacing 

between the units (ex.: 1˗2 m) and by adjusting them to an optimal tilt angle (ex.: 5 ˗ 20˚) for 

an optimum utilization of solar irradiance, the total land area required to construct this system 

would be reduced. For example and given the three cases selected in this study (1500, 2250 

and 3000 flat panels), the algal cultivation systems can be constructed on a land area of 3465, 

5198 and 6930 m2 respectively. This can be achieved for a given land of rectangular 

dimensions of 40 meters width and lengths of 92, 135 and 180 meters respectively. For these 

suggested dimensions, a central space for equipment and instrumentations can be taken into 

consideration. 

 

 

Front view 

Figure A6.2 – Arrangement of flat panels for large scale cultivation of microalgae 

 

 

Side view 
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