
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Fine-grained Type Prediction of Entities
using Knowledge Graph Embeddings

Bachelor’s Thesis of

Radina Sofronova

at the Department of Informatics

Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf H. Reussner

Second reviewer: Prof. Dr. Harald Sack

Advisor: M.Sc. Russa Biswas

01 July 2019 – 31 October 2019

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, 31st October 2019

. .

(Radina Sofronova)

Abstract

Wikipedia is the largest online encyclopedia, which appears in more than 301 di�erent

languages, with the English version containing more than 5.9 million articles. However,

using Wikipedia means reading it and searching through pages to �nd the needed infor-

mation. On the other hand, DBpedia contains the information of Wikipedia in a structured

manner, that is easy to reuse.

Knowledge bases such as DBpedia and Wikidata have been recognised as the foundation

for diverse applications in the �eld of data mining, information retrieval and natural

language processing.

A knowledge base describes real-world objects and the interrelations between them as

entities and properties. The entities that share common characteristics are associated with

a corresponding type. One of the most important pieces of information in knowledge bases

is the type of the entities described. However, it has been observed that type information

is often noisy or incomplete. In general, there is a need for well-de�ned type information

for the entities of a knowledge base.

In this thesis, the task of �ne-grained entity typing of entities of a knowledge base, more

speci�cally - DBpedia, is addressed. There are a lot of entities in DBpedia that are not

assigned to a �ne-grained type information, rather assigned to either coarse-grained type

information or to rdf:type owl:Thing. Fine-grained entity typing aims at assigning

more speci�c types, which are more informative than the coarse-grained ones.

This thesis explores and evaluates di�erent approaches for type prediction of entities in

DBpedia - the unsupervised approach vector similarity using knowledge graph embeddings,

as well as the supervised one - CNN classi�cation. Knowledge graph embeddings from the

pre-trained RDF2Vec model are used.

i

Zusammenfassung

Wikipedia ist das größte Online-Enzyklopädie, die in mehr als 301 Sprachen erscheint.

Lediglich die englische Sprachversion enthält mehr als 5.9 Millionen Artikeln. Damit man

die Informationen von Wikipedia verwenden kann, muss man die Artikel lesen, um die

benötigten Informationen zu �nden. Andererseits enthält DBpedia die Informationen von

Wikipedia in einer strukturierten Weise, die einfach wiederzuverwenden ist.

Wissensdatenbanken wie DBpedia und Wikidata wurden als Grundlage für verschiede-

ne Anwendungen im Bereich Data Mining, Informationsaufbereitung und Verarbeitung

natürlicher Sprache verwendet.

Eine Wissensdatenbank beschreibt Objekte und ihre Beziehungen als Entitäten und Prä-

dikate. Die Entitäten, die gemeinsame Merkmale aufweisen, sind einem entsprechenden

Typ zugeordnet. In vorhergehenden Untersuchungen wurde festgestellt, dass die Typin-

formationen häu�g verrauscht oder unvollständig sind. Es besteht ein Bedarf an genau

de�nierten Typinformationen für die Entitäten der Wissensdatenbanken.

In dieser Arbeit wird die Aufgabe der feingranularen Typvorhersage von Entitäten einer

Wissensbasis, in dem vorliegenden Fall - DBpedia, behandelt. Es gibt viele Entitäten in

DBpedia, die keiner feingranularen Typinformation zugeordnet sind, sondern entweder

grobgranularer Typinformation oder rdf:type owl:Thing. Die feingranulare Typ-

vorhersage von Entitäten hat das Ziel, spezi�schere Typen zuzuweisen, die informativer

sind als die grobgranularen.

In dieser Bachelorarbeit werden verschiedene Ansätze zur Typvorhersage von Entitäten in

DBpedia untersucht und bewertet - das unüberwachte Lernverfahren Ähnlichkeit von Vek-
toren mithilfe von Einbettungen in Wissensgraphen sowie das überwachte Lernverfahren

- CNN-Klassi�kation. Dabei werden Wissensgrapheinbettungen aus dem vortrainierten

RDF2Vec-Modell genutzt.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Motivation and Background . 1

1.2. Objective . 3

1.3. Structure of the thesis . 3

2. Foundations 5
2.1. Semantic Web . 5

2.1.1. Resource Description Framework 5

2.1.2. Knowledge Base . 6

2.1.2.1. Entity . 7

2.1.2.2. Entity Typing . 8

2.1.2.3. DBpedia . 8

2.2. Deep Learning . 9

2.2.1. Knowledge Graph Embeddings 9

2.2.1.1. RDF2Vec . 9

2.2.2. Neural Networks . 12

2.3. Similarity Measures . 18

2.3.1. Cosine Similarity . 18

2.4. Set Theory . 19

3. RelatedWork 21

4. Approach 23
4.1. Vector Similarity . 23

4.2. 1D Convolutional Neural Network . 26

5. Evaluation 29
5.1. Dataset . 29

5.2. Experimental Setup and Results . 31

6. Conclusion 37
6.1. Summary . 37

6.2. Future Work . 37

v

Contents

Bibliography 39

A. Appendix 41
A.1. List of 59 classes used in the scope of the thesis 41

A.2. Correlation . 43

vi

List of Figures

1.1. Distribution of the entities of �ve types in DBpedia. 2

2.1. RDF Triples. 6

2.2. RDF Graph. 7

2.3. Types in DBpedia Ontology structure. 9

2.4. RDF2Vec (Amended from [1]). 10

2.5. CBOW and Skip-Gram models [17]. 11

2.6. CBOW and Skip-Gram vector constructions [17]. 12

2.7. Components of a typical CNN layer [7]. 14

2.8. An example of 2D convolution [7]. 15

2.9. Sparse interactions and Parameter sharing [8] 16

2.10. Dropout applied to a fully-connected neural network [8]. 18

2.11. Cosine similarity between two vectors - di�erent examples. 19

4.1. Vector Similarity Approach. 24

4.2. Generation of the class vector of dbo:Library. 26

5.1. Hits@1 - RDF2Vec . 33

5.2. Hits@3 - RDF2Vec . 34

5.3. Hits@1 - SetTheory . 35

5.4. Hits@3 - SetTheory . 36

A.1. Correlation - Actor. 43

A.2. Correlation - AdultActor. 43

A.3. Correlation - Airline. 43

A.4. Correlation - Artist. 44

A.5. Correlation - Athlete. 44

vii

List of Tables

1.1. Distribution of entities in subclasses. 3

5.1. Accuracy of 1D CNN models. 32

A.1. Correlations - Part 1. 45

A.2. Correlations - Part 2. 46

ix

1. Introduction

Wikipedia, as a multilingual online encyclopedia created and maintained as an open

collaboration project, is currently among the top ten most popular websites and the most

widely used encyclopedia [12]. However, the information in Wikipedia is structured and

unstructured, making not all of it machine-understandable. Structured data in Wikipedia

is presented in the form of an infobox containing property value pairs, which summarize

the content of a Wikipedia article. On the contrary, DBpedia, as a knowledge graph, stores

knowledge in a machine-readable form and provides a way for information to be organised,

searched and utilised. The information in DBpedia is derived by extracting structured data

from Wikipedia pages through an external framework. Knowledge bases such as DBpedia

are used in the �eld of data mining, information retrieval and natural language processing.

A knowledge base contains a set of facts about the entities and represents the knowledge

in a structured repository [3]. Another important feature of a knowledge base is that it

groups the entities in classes by de�ning their type, e.g. Germany is an entity which has

the type Country. Type information is very important in a knowledge base.

1.1. Motivation and Background

Entity typing is the process of assigning a type to an entity and is a fundamental task in

knowledge base construction. Types in a knowledge base are organized as a hierarchical

structure - a type hierarchy. Traditional entity typing focuses on a small set of types -

coarse-grained types, e.g. Person, Organization, Settlement. Those types are at the top

levels of the type hierarchy and do not provide very speci�c information. On the other

hand, �ne-grained entity typing assigns more characteristic types to an entity.

One primary problem in this domain is that the majority of the entities have a coarse-

grained type. A proof to this statement is given in table 1.1 and �gure 1.1.

Table 1.1 gives information about the distribution of the entities of �ve types, namely

Sports Team, Company, Settlement, Activity and Event. The �rst column gives the total

count of entities which come under the corresponding class in the type hierarchy, whereas

the second column contains the count of the entities that have exactly the given type,

excluding its subclasses. The pie charts in �gure 1.1 show the distribution of entities of a

1

1. Introduction

(a) Distribution of the entities of type Sports Team and its subclasses.

(b) Distribution of the entities of type Company and its subclasses.

(c) Distribution of the entities of type Settlement and its subclasses.

(d) Distribution of the entities of type Activity and its subclasses.

(e) Distribution of the entities of type Event and its subclasses.

Figure 1.1.: Distribution of the entities of �ve types in DBpedia.

2

1.2. Objective

Class # total entities # entities without

subclasses

Percentage

SportsTeam 352006 320835 91.1%

Company 70208 55524 79.1%

Settlement 478906 246163 51.4%

Activity 19464 8824 45.3%

Event 76029 19418 25.5%

Table 1.1.: Distribution of entities in subclasses.

particular class in its subclasses. Each chart is divided into parts, which present a given

subclass. It is clearly visible that the greater part of the entities have a coarse-grained type.

1.2. Objective

The objective of this thesis is to explore and evaluate di�erent approaches for type predic-

tion of entities in DBpedia.

One of the analyzed approaches is unsupervised, namely - vector similarity (sec. 4.1), using

knowledge graph embeddings from the pre-trained RDF2Vec model. The unsupervised

model relies on the knowledge mining performed by the knowledge graph embedding

algorithm, instead of training a similarity estimator.

One supervised approach is also explored - convolutional neural networks (CNNs) (sec.

4.2). The vector representations of the entities from the pre-trained RDF2Vec model are

used. A CNN performs a classi�cation task - categorization of entities into di�erent types.

1.3. Structure of the thesis

The structure of the thesis is as follows: In chapter 2, background information and relevant

terms are introduced, which are important for a good understanding of the rest of the

thesis. Chapter 3 describes the approach developed in the course of the thesis, followed by

a presentation, an evaluation and an analysis of the results in chapter 4. Finally, chapter 5

concludes the thesis and presents future directions of research.

3

2. Foundations

This chapter presents the basic concepts that are important for the understanding of the

rest of the thesis. They are separated in two main �elds - semantic web and deep learning.

The concepts introduced in this chapter are from those two domains.

2.1. Semantic Web

The Semantic Web represents a new vision about how the Web should be constructed

so that its information can be processed automatically by machines on a large scale. It

is closely related to the traditional Web. The term "Semantic Web" was coined by the

inventor of the WWW, Sir Tim Berners-Lee, who de�ned it as follows: "Semantic Web

is an extension of the current Web in which information is given well-de�ned meaning,

better enabling computers and people to work in cooperation" [4]. Overall, the Semantic

Web allows machines to understand the meaning (semantics) of the information on the

Web [19].

2.1.1. Resource Description Framework

The Resource Description Framework (RDF) is the main building block for the Semantic

Web, as it allows knowledge representation in a structured and machine-understandable

manner. RDF is a standard for encoding data and is used for representing information about

resources and their relations existing in the real world. RDF decomposes information into

facts, so that each fact has a clearly de�ned form, in order to be machine-understandable.

RDF de�nes the facts as statements. Each RDF statement is a triple, which has the following

form: <subject, predicate, object>, with the order of the elements of a triple being strict.

The subject and object are the resources, which have some relationship and the predicate

de�nes the nature of this relationship. A collection of RDF statements is called an RDF

Graph and represents some knowledge as a collection of pieces of information.

The three components of an RDF triple are resources and for each resource a Uniform
Resource Identi�er (URI) is created in order to identify it uniquely and globally. The object

is not necessarily identi�ed by a URI, as it can also be a literal, in the case that it describes

5

2. Foundations

data values that do not have a separate existence. URIs are written in angular brackets,

whereas the literals are written in quotation marks.

In the de�nition of the Semantic Web, it was stated that it allows machines to understand

the meaning (semantics) of the information on the Web. The RDF statements describe

resources and relations between them, but the meaning is still missing. A way to introduce

semantics in the RDF data is de�ned by the RDF Schema (RDFS). "RDFS is an extendable

knowledge representation language that one can use to create a vocabulary for describing

classes, sub-classes and properties of RDF resources. [19]" RDFS introduces the separation

of resources into groups, namely classes. The classes themselves can be related with

the property rdfs:subClassOf, which results in an hierarchical relationship of the

classes.

As previously mentioned, a collection of RDF triples forms a directed graph. The vertices

of the graph are the subjects and objects, whereas the edges of the graph are the predicates.

Two important predicates are rdf:type and rdfs:subClassOf. The �rst predicate

is used to connect an entity to its type, whereas the second one is used to connect a class

to one of its subclasses. An example of a collection of RDF triples is listed in �g. 2.1. The

same example in a form of an RDF Graph is depicted in �g. 2.2. A short form of the URIs

is used in the graphs for better visibility. The pre�xes used are as follows: dbr stands for

<http://dbpedia.org/resource/> and dbo stands for <http://dbpedia.org/ontology/>.

Figure 2.1.: RDF Triples.

The red nodes in the graph depict some instances of the class dbo:Person. The

green nodes depict classes, as well as their hierarchical relationship. In the example,

dbr:Roger_Federer is of type dbo:Tennis_Player. dbo:Tennis_Player
is a subclass of dbo:Athlete, which itself is a subclass of dbo:Person. Therefore,

it can be deduced that dbr:Roger_Federer is of type dbo:Tennis_Player, as

well as dbo:Athlete, as well as dbo:Person. The same applies to the resource

dbr:Rafael_Nadal. In the presented RDF Graph dbr:Alan_Dwan is an instance of

the class dbo:Person, and dbr:Carl_Lewis is of type dbo:Athlete and dbo:Person.

2.1.2. Knowledge Base

Knowledge bases create an organized collection of data, adding a semantic model to the

data, which includes a formal classi�cation with classes, subclasses, relationships and

6

2.1. Semantic Web

Figure 2.2.: RDF Graph.

instances (ontologies and dictionaries), on one hand, and rules for interpreting the data,

on the other. Balog [3] describes a knowledge base as follows: “A knowledge base (KB) is

a structured knowledge repository that contains a set of facts about the entities.”

Knowledge bases consist of sets of triples K ⊆ E ×R × (E ∪L), where E is a set of resources

referred to as entities, R - a set of relations and L - a set of literals. An entity is identi�ed

by a URI and represents a real-world object. A relation is a predicate and a literal is a

string, date, or number. In a triple <s, r, o>, s is known as a subject, r as a relation, and o

as an object [5].

Examples of knowledge bases are DBpedia, Wikidata, YAGO etc. The focus of this the-

sis lies on predicting type information for entities in DBpedia. Therefore, DBpedia is

the knowledge base, which is mainly analyzed in the course of the thesis. DBpedia is

thoroughly described in sec. 2.1.2.3.

2.1.2.1. Entity

An entity is an object that can be distinctly identi�ed. Common entities are people,

locations, products, events etc. Further, an entity is characterized by its identi�er, type,

attributes and relationships to other entities. Of central importance in the course of this

thesis is the type of an entity.

7

2. Foundations

2.1.2.2. Entity Typing

Entities of a knowledge base are categorized into multiple entity types. Types can also

be regarded as classes (semantic categories) that group together entities with similar

properties. Analogy can be made to object-oriented programming, whereby an entity

of a type is like an instance of a class. The members of a class are known as instances

of the class. The set of possible entity types are often organized in a hierarchical struc-

ture. For example, the entity Qatar Airways is an instance of the type Airline,

which is a sub-type of Organisation. Qatar Airways is therefore associated with

a type-path /Thing/Agent/Organisation/Company/Airline, having the �ne-

grained type Airline and a coarse-grained type - Organisation. Fine-grained entity

typing is an important sub-task of knowledge base completion and will be explored in

detail in the course of the thesis.

• Coarse-grained Entity Typing assigns small set of types such as Person, Organisation,

Place to the entities in a knowledge base.

• Fine-grained Entity Typing assigns more speci�c types such as Artist, Tennis Player,

Company to the entities in a knowledge base. Those types are much more informative

and precise.

2.1.2.3. DBpedia

DBpedia is a knowledge base that is derived by extracting structured data from Wikipedia

through an open source extraction framework [13]. It is presented in [12]. The extracted

information for each Wikipedia page takes the form of an RDF graph. The collection of

all RDF graphs forms a large RDF dataset. This dataset can be viewed as Wikipedia’s

machine-readable version, with the original Wikipedia remaining the human-readable

one. DBpedia allows asking sophisticated queries against Wikipedia and linking other

datasets on the Web to Wikipedia [19].

DBpedia is not a result of a one-time process but rather of a continuous community e�ort,

with numerous releases since its establishment in 2007. The research carried out in this

thesis is based on the latest release that is available at the time of writing, DBpedia 2016-10,

and especially on the English version.

The DBpedia Ontology forms the structural backbone of DBpedia. It de�nes classes and

properties which organize the resources. The DBpedia Ontology was created manually

by considering the most frequently used infoboxes in Wikipedia. The attributes of the

infoboxes are mapped to the classes and properties, when RDF statements are generated.

The DBpedia Ontology is clean and consistent, but its coverage is limited to entities that

have an associated infobox [19].

8

2.2. Deep Learning

The DBpedia Ontology consists of 760 types, forming a 7-level type hierarchy. The type

hierarchy is a directed acyclic graph, which provides a way to categorize and organize

entities. Fig. 2.3 shows an example of a part of the DBpedia Ontology of height 4. From

the �gure can be seen that the root node is Thing. In later analysis the root will be ignored,

as it gives no information regarding the type of an entity.

To summarize, DBpedia is a huge collection of RDF graphs, with precisely de�ned semantics.

A way to access DBpedia is to directly download its RDF dump �les. This process is

presented in chapter 5.

Figure 2.3.: Types in DBpedia Ontology structure.

2.2. Deep Learning

2.2.1. Knowledge Graph Embeddings

A knowledge graph is a representation of a knowledge base as a graph. Knowledge Graphs

such as DBpedia are a valuable source of background information for a list of tasks in the

�eld of data mining, natural language processing, information retrieval and knowledge

extraction. The key idea in the concept of knowledge graph embedding is to represent

components of a knowledge graph (i.e., entities and relations) as k-dimentional vectors in

a continuous vector space in order to simplify manipulation while preserving the structure

of the knowledge graph.

2.2.1.1. RDF2Vec

In this thesis, a pre-trained knowledge graph model is used. This subsection introduces

RDF2Vec - a generic method for embedding entities in knowledge graphs into lower-

9

2. Foundations

Figure 2.4.: RDF2Vec (Amended from [1]).

dimensional vector spaces. The generation of the entities’ vectors is task and dataset

independent, meaning that, once the vectors are generated, they can be used for any task

and algorithm, e.g., SVM, Random Forests, Naive Bayes, Neural Networks, KNN etc. In this

thesis, the entity vectors generated by RDF2Vec are used to determine the cosine similarity

between the vector representations of the entities in the vector space. The vectors are

also used for training a 1D Convolutional Neural Network model. A visualisation of the

function of the model is presented in �g. 2.4.

RDF2Vec [17] is an approach that uses language modeling approaches for unsupervised

feature extraction from sequences of words and adapts them to RDF graphs. The vector

representations of DBpedia entities are provided as ready-to-use �les.

First Step - Entity Sequences

RDF2Vec adapts the Word2Vec neural language model for RDF graph embeddings. The

Word2Vec approach uses the word order in text documents and models the assumption that

closer words in the word sequence are statically more dependent [17]. RDF2Vec considers

entities and relations between entities instead of words and word sequences. This is also

the �rst step of the RDF2Vec algorithm - to extract paths of entities from a knowledge

graph. In order to transform the graph data into paths of entities, two di�erent approaches

are used - Random Graph Walks and Weisfeiler-Lehman Subtree Graph Kernels.

• The Random Graph Walks approach generates all graph walks of depth d rooted in

the vertex v through breath-�rst algorithm. These graph walks are generated for

every vertex in the graph. The �nal set of sequences is the union of all graph walks

found for all the vertices in a graph [17].

• The Weisfeiler-Lehman Subtree RDF Graph Kernels approach evaluates the distance

between two instances by counting common subtrees in the graph. The kernel

computes the number of subtrees shared between two or more graphs by using the

Weisfeiler-Lehman test of graph isomorphismus [17]. An adaptation of the algorithm

is needed and is done by considering directed edges and reusing the labels of the

previous iteration, if they are identical with the ones of the current iteration.

10

2.2. Deep Learning

For each vertex v, all the paths of depth d within the subgraph of the vertex on

the relabeled graph are extracted. Then original label of the vertex v is set as the

starting token of each path. This process is repeated until the maximum number of

iterations is reached. The union of the sequences of all the vertices in each iteration

is the �nal set of sequences [17].

After having obtained the sequences of the entities, the neural language model can be

trained, in order to represent each entity in the RDF graph as a vector of numerical values

in a feature space.

Second Step - Word2Vec

Word2Vec is the most popular and widely used neural language model. It was proposed

by Mikolov [14]. It is a two-layer neural net model for learning word embeddings from

raw text. In the case of RDF2Vec, Word2Vec estimates the likelihood of a sequence of

entities appearing in the graph. There are two algorithms, namely Continuous Bag-of-
Words (CBOW) and Skip-Gram model. In following, both algorithms are presented.

• The Continuous Bag-of-Words (CBOW) (�g. 2.5) predicts target words from context

words within a given window. The input layer contains the average of the input

vectors of all surrounding words from the weight matrix. The result of the �rst layer

is projected in the projection layer. Finally, a score for each word is computed by

using the weights from the output weight matrix. This score is the probability that

a word is a target word [17].

• The Skip-Gram model (�g. 2.5) does exactly the opposite - predicts context words

from target words.

(a) CBOW model (b) Skip-Gram model

Figure 2.5.: CBOW and Skip-Gram models [17].

The vector constructions of both models are presented in �g. 2.6. As optimizations

hierarchical softmax and negative sampling are used. After the training, all words (in

the case of RDF2Vec - entities and properties in the path) are projected into a lower-

11

2. Foundations

dimensional feature space and semantically similar words (entities) are positioned close to

each other.

(a) CBOW vector construction (b) Skip-Gram vector construction

Figure 2.6.: CBOW and Skip-Gram vector constructions [17].

2.2.2. Neural Networks

Neural Network

A network consists of several layers, namely an input layer, an output layer and one or

more hidden layers. The input layer receives the data and sends it to the �rst hidden layer.

The hidden layers themselves transform the input through a non-linear function with the

purpose of getting a more abstract representation of the data. Having more than one

consecutive hidden layers is preferable, as the deeper the neural network is, the more

abstract representation can be found. The multiple hidden layers are also the reason for

the name of the term "deep" learning. After all hidden layers, the output layer transforms

the data to an output format, which can be a set of label scores (in the case of classi�cation

tasks) or a binary true or false.

Each layer of the neural network consists of neurons. A neuron is a mathematical function

that models the functioning of a biological neuron. Typically, a neuron computes the

weighted sum of all inputs. The connection between two neurons of successive layers has

a weight. The weight de�nes the in�uence of the input to the output for the next neuron.

In a neural network, the initial weights are random and are updated iteratively to learn

to predict a correct output during the model training [15]. The weighted sum of all the

inputs is passed through a non-linear function, called activation function. The input of

a neuron is also in�uenced by a bias - an individual bias value is associated with every

neuron and is updated in each iteration.

More formally,

y = a(wᵀx + b).

12

2.2. Deep Learning

In this equation, x is the input in the form of a vector, y is the output. w is the vector,

containing the weights and b is the bias. The function a is the activation function. There

is a series of activation functions that can be used, but all of them have the following

three properties in common: they are di�erentiable, bound the output and are non-linear.

Examples of activation functions are the sigmoid function:

σ (x) =
1

1 + ex

and the hyperbolic tangent function:

tanh(x) =
ex − e−x

ex + e−x
.

Neural networks are used to perform supervised learning and prediction tasks. Input data

is provided to the neural network. This input data is named a training dataset. A training

dataset contains labeled data, which means that the result is known. In this thesis, the

training dataset consists of the vector representation of some entities and their types as

labels. The model is evaluated, using a test dataset. It has the same structure as the training

dataset, but contains data that is not present in it. Using this data, the performance of the

model is evaluated. It is important that the training and test datasets are disjunctive.

Convolutional Neural Network

Convolutional neural networks (CNNs), �rst introduced by Le Cun [11], are a specialized

kind of neural networks for processing data that has a known grid-like topology, e.g.

time-series data, which can be thought of as a 1D grid taking samples at regular time

intervals, or image data, which can be thought of as a 2D grid of pixels [7].

The name “convolutional neural network” indicates that the network employs a mathe-

matical operation called convolution, which is a kind of linear operation. CNNs are neural

networks that use convolution in place of matrix multiplication in at least one of their

layers [7]. Convolutional neural networks (CNNs) are a building block in constructing

complex deep learning solutions for various natural language processing, speech, and time

series tasks [8].

A typical convolutional layer consists of three stages, as depicted in �g. 2.7. The �rst stage

performs several convolutions in parallel in order to produce a set of linear activations. In

the second stage, each of those linear activations is run through a non-linear activation

function. In the third stage, a pooling function is used to further modify the output of the

layer [7].

In a regular neural network, the transformation between two subsequent layers involves

multiplication by the weight matrix which has the same size as the input. By contrast, in

convolutional neural networks, a weight matrix of a size smaller than the input size is

slided over the input. When this weight matrix is placed over a set of input values, the

input values are multiplied by the weights on top of them, summed and the central input

13

2. Foundations

Figure 2.7.: Components of a typical CNN layer [7].

value is replaced by the sum.

Convolution

Convolution is the mathematical operation, performing the sliding. A convolution is

initially an operation performed on linear time-invariant systems. A system or transfor-

mation is linear time-invariant, if for two functions x(t) and y(t) the following applies:

If y(t) = T (x(t)), then y(t − s) = T (x(t − s)). As already discussed, convolution is the

operation, in which an input function x(t) is combined with a function h(t) to give a new

output that indicates an overlap between x(t) and the reverse translated version of h(t) [8].

The convolution operation is typically denoted with an asterisk and is de�ned as follows

in the continuous domain:

y(t) = (h × x)(t) =

∫ −∞

∞

h(τ) × (t − τ)dτ

and in the discrete domain it is de�ned as:

14

2.2. Deep Learning

y(i) = (h × x)(i) =
∑
n

h(n) × (i − n).

Both formulas are given for the 1-dimension case, as the data used in this thesis is 1-

dimensional.

In convolutional network terminology, the �rst argument to the convolution (the function

h) is referred to as the input, and the second argument (the function x) - as the kernel (or

�lter). The output is referred to as the feature map [7].

Convolution improves a machine learning system. Two of the characteristics responsible

for the improvement are sparse interactions and parameter sharing.

Sparse Interactions

As previously mentioned, neural network layers use matrix multiplication by a matrix of

parameters with a separate parameter describing the interaction between each input unit

and each output unit. Convolutional networks, on the contrary, have sparse interactions.

This is accomplished by making the kernel smaller than the input [7]. An example with a

2D convolution is given in �g. 2.8. The �lter size is 2x2, being smaller than the input size

of 3x4.

Figure 2.8.: An example of 2D convolution [7].

15

2. Foundations

(a) Fully connected layers.

(b) Locally connected layers.

(c) Locally connected layers with parameter shar-

ing.

Figure 2.9.: Sparse interactions and Parameter sharing [8]

16

2.2. Deep Learning

Fig. 2.9 gives a graphical demonstration of sparse connectivity with an example of a

fully-connected layer, as well as an example with sparse interactions (the two layers being

locally connected). The fully-connected layer has 36 connections, respectively weights,

that the neural network has to learn. With the sparse interactions the connections are

reduced to 12. There is an improvement in e�ciency, as there are fewer parameters to be

stored and also computing the output requires fewer operations.

Parameter Sharing

In a convolutional neural network, each member of the kernel is used at every position of

the input. The parameter sharing used by the convolution operation results in learning

only one set, rather than learning a separate set of parameters for every location [7]. The

example of �g. 2.9 is given also with a locally-connected layer with parameter sharing.

It can be claimed that the number of parameters is further reduced from 12 to 3 (the

dimension of the �lter) [8].

Detector stage

The detector stage takes the output of the convolution, which is an a�ne transformation

and feeds it into a non-linear function. This non-linear function is normally the sigmoid,

hyperbolic tangent (as de�ned previously), or ReLU - f(x)=max(0,x). In most cases, ReLU

has proven to achieve best results [15].

Pooling

The output from the detector stage is the input for the pooling layer. A pooling function

captures summary statistics of sub-regions. The nearby inputs to a certain location

in�uence the result in this particular location after the pooling. There are di�erent pooling

methods - max pooling, average pooling, L2-norm pooling, stochastic pooling, spectral

pooling. Max pooling, e.g., as the name suggests, chooses the maximum value of neurons

from its inputs. In average pooling, the local neighborhood neuron values are averaged to

give the output value [8].

Regularization

Regularization is used in order to prevent over�tting. Some methods focus on reducing the

capacity of the models by penalizing the abnormal parameters in the objective function

by adding a regularization term. Other approaches limit the information provided to the

network (e.g., dropout) or normalize the output of layers (batch normalization) [8].

In the model build in the course of the thesis, dropout was used as a regularization method.

It is one of the most common regularization methods in deep learning. Dropout is a

simple and highly e�ective method to reduce over�tting of neural networks [8]. Some

learned connections may work for the training data but do not generalize to the test data.

Dropout aims to correct this tendency by randomly “dropping out” connections in the

neural network training process. Applying dropout to a network is actually applying a

17

2. Foundations

random mask matrix elementwise (multiplication by 0) during the feed-forward operation.

This results in a prediction not depending on any single neuron during training. The

regularization method dropout is depicted in �g. 2.10.

(a) Standard 2-layer (hidden) neural network.

(b) Standard 2-layer (hidden) neural network with

dropout.

Figure 2.10.: Dropout applied to a fully-connected neural network [8].

Fully-connected Layer

The output of the pooling stage is passed to the next layer. It can be again a convolutional

layer, or an output layer. In the case it is an output layer, it can be a fully-connected layer

using a softmax activation function. Its output is the probability distribution over the

categories (labels) in the case of a classi�cation task.

2.3. Similarity Measures

Calculating entity relatedness and similarity are fundamental problems in numerous

tasks in information retrieval, natural language processing, and web-based knowledge

extraction [6]. As previously mentioned, in the RDF2Vec embedding space (see sec. 2.2.1.1)

semantically similar entities appear close to each other in the feature space. Therefore, the

problem of calculating the similarity between two instances is a matter of calculating the

distance between two instances in the given feature space. To do so, similarity measures

are used and applied on the vectors of the entities.

2.3.1. Cosine Similarity

Cosine similarity is a measure that computes the cosine of the angle between two vectors

projected in a multi-dimensional space. Typically, the angle between two vectors is used

18

2.4. Set Theory

Figure 2.11.: Cosine similarity between two vectors - di�erent examples.

as a measure of divergence between the vectors, and cosine of the angle is used as the

numeric similarity - since cosine has the nice property that it is 1 for identical vectors and

0 for orthogonal vectors [18].

Therefore, this metric indicates the degree of similarity. The cosine of 0° is 1, and for any

angle in the interval (0,180°] is less than 1. It is thus a judgment of orientation: two vectors

with the same orientation have a cosine similarity of 1, two vectors oriented at 90° relative

to each other have a similarity of 0. Even if a vector is pointing to a point far from another

vector, they still could have a small angle if they point in the same direction. That is the

central point on the use of cosine similarity. The mathematical formula for the cosine

similarity between two instances is given as:

sim(e1, e2) = cos(θ) =
V1 ·V2
‖V1‖ · ‖V2‖

. (2.1)

In this thesis, the cosine similarity between a vector of an entity and a vector of an entity

type is explored. The correlation is the following: the smaller the angle, the higher the

similarity. Fig. 2.11 gives an example. The left part is an example of how similar the entity

dbr:Bolshoi_Theatre to the type dbo:Theatre is - we would expect that those two vectors

have a high similarity score, as Bolshoi Theatre is a theatre. The second is an example of

the similarity of the same entity dbr:Bolshoi_Theatre to the type dbo:Person - they have a

low similarity score and the angle between their vectors could be around 90°.

2.4. Set Theory

Sets are viewed as collections of things while elements are viewed as those things which

belong to sets. Normally, a set is de�ned in terms of certain properties shared by its

elements. These properties must be well described, with no ambiguities, so that it is always

clear whether a given element belongs to a given set or not [2]. The expression x ∈ A
denotes that x is a element in A.

19

2. Foundations

Some basic axioms of the Set Theory, worth mentioning, are:

• Axiom of extend For a member x and sets A and B, [A = B] ⇔ [x ∈ A⇔ x ∈ B].

• Axiom of pair: If A and B are sets, then (A, B) is also a set.

• Axiom of subsets: If A is a set and ϕ is a describing property, then the class of all

sets in S, which satisfy this property ϕ, is a set. Moreover, every subclass of a set of

sets is a set.

As previously mentioned, a set is represented by its members, which on the other hand

exhibit the same properties. An average is a single member taken as representative of a

set of members. This is the statement, which was used in our approach in sec. 4.1. For

obtaining a representative of a class of vectors - the class (type) vector, we computed the

average of the vectors of all members of a class.

20

3. RelatedWork

A series of recent studies has focused on RDF type prediction. In this chapter, some related

methods are presented.

A supervised hierarchical classi�cation approach has been proposed in [10]. A hierarchy

of support vector machines (SVM) classi�ers is trained on the bag-of-words representation

of short abstracts and categories of Wikipedia articles. The SVM models output probability

distributions for a given entity over a subset of DBpedia ontology classes. The aggregated

distribution is then processed with respect to the DBpedia ontology in order to make a

reliable prediction of a speci�c type.

Another approach was proposed in [16]. SDType is a statistical heuristic link based type

prediction mechanism. The algorithm assigns types based on ingoing properties of a

given instance. For each property p the SDType algorithm computes the probability that a

speci�c entity e is of certain type, if e appears as a subject in a fact with the property p. In

the same way, the probability is computed for the case that e in an object in a fact with

the property p. Further, each property p is assigned a weight, which re�ects its capability

of predicting the type.

The dataset generated by SDType contains multiple types assigned to a given entity, but a

deeper observation of the types shows that they are mostly types that belong to the same

type-path. Nevertheless, SDType is the current state-of-the-art type inference algorithm.

The dataset generated by it is a part of the DBpedia 2016-10 version
1

- Instance Types
Sdtyped Dbo.

1https://wiki.dbpedia.org/downloads-2016-10

21

https://wiki.dbpedia.org/downloads-2016-10

4. Approach

In this chapter, the approach developed in this thesis is presented. First, the unsupervised

approach vector similarity is thoroughly described and after that, the supervised approach

using a convolutional neural network model.

Both approaches take into account the structure of the type hierarchy. Fine-grained entity

typing requires more attention to be paid to speci�c types (which are lower in the type

hierarchy), because they are much more informative. Let’s take the example of the entity

dbr:Arnold_Schwarzenegger, which has the type dbo:OfficeHolder. This

means that dbr:Arnold_Schwarzenegger can be associated with the following

type-path: /Thing/Agent/Person/OfficeHolder, having the �ne-grained type

dbo:OfficeHolder and a general coarse-grained type - dbo:Person. In the course

of this thesis, the type dbo:Agent is ignored and its descendands (e.g., dbo:Person
and dbo:Organisation) are used as top-level types instead.

Going back to the example with Arnold Schwarzenegger - according to the Wikipedia page

about him, he is not only o�ce holder (politician), but also actor, �lmmaker, businessman,

author, and bodybuilder. All those �ne-grained types about the entity Arnold Schwarzeneg-

ger are missing in the DBpedia knowledge graph. Our approach tries to predict them

as taking into account the entity dbr:Arnold_Schwarzenegger and computing

the vector similarity between the entity vector and the class vectors of all subclasses of

dbo:Person, which is the top-level class in the type hierarchy, beginning from the

current type - dbo:OfficeHolder. The approach does not consider the similarity be-

tween the entity dbr:Arnold_Schwarzenegger and the class dbo:Settlement
e.g., as an entity can not be a person and a settlement at the same time. On the contrary, an

entity can be an o�ce holder and a bodybuilder simultaneously, as both of them describe

a person.

4.1. Vector Similarity

The basic idea of this approach is to take an entity �rst and derive its vector representation

from the pre-trained RDF2Vec dataset. Next, the current type of this entity is retrieved,

using the DBpedia Instance Types dataset. After that, the top-level type in the type-path

of the current type is determined, using recursive SPARQL queries. Finally, all subclasses

of the top-level class of the current class are determined. After this process, the cosine

23

4. Approach

similarity between the entity vector and the vectors of all subclasses is computed, in order

to �nd the most similar types to the given entity.

The approach was explored with two alternatives for the class vectors. The �rst takes

advantage of the pre-trained RDF2Vec vectors of the classes. The second computes the class

vectors using the rules of the Set Theory. Both alternatives use the pr-trained RDF2Vec

vectors of the entities.

Figure 4.1.: Vector Similarity Approach.

24

4.1. Vector Similarity

Vector Similarity using pre-de�ned RDF2Vec vectors of the entities, as well as of
the classes

The approach, as already described above, is furthermore presented graphically in �g. 4.1.

The steps are denoted in the �gure and are as follows:

Step 1: For a given entity - a 200-dimensional vector is retrieved from the RDF2Vec pre-

trained knowledge graph embedding.

Step 2: The current type of the entity is found.

Step 3: The type-path of this type is found and the top-level type is determined.

Step 4: All subclasses of the top-level type are found.

Step 5: A 200-dimensional vector of each of the subclasses is retrieved from the RDF2Vec

pre-trained knowledge graph embedding.

Step 6: The similarity between the entity and the vectors of the subclasses is determined

by computing the cosine similarity between the corresponding vectors.

In the example of �g. 4.1 for the entity dbr:Baker&McKenzie the top-level type

dbo:Organisation is selected. As previously mentioned, in the course of this thesis,

the type dbo:Agent is ignored and its descendands (e.g., dbo:Person and dbo:Orga-
nisation) are used as top-level types instead.

Vector Similarity using pre-de�ned RDF2Vec vectors of the entities, but vectors
of the classes - generated using the Set Theory

This approach is similar to the one described above. The only di�erence is the step before

the computation of the cosine similarity (step 5) - the class vectors from RDF2Vec are not

used. Instead, a class vector is generated, using the Set Theory (sec. 2.4).

The approach of generating a class vector is described as follows. A set is a collection of

objects that share some common properties. Therefore, a set is represented by the objects

in it, namely its members. An average is a single value taken as representative of a set

of values. In this approach this way of thinking is used for obtaining a representative of

a class of vectors - the class (type) vector. The average of the vectors of all entities of a

given class is computed and the resulting vector is used for further computations as a class

vector. The following formula is used, where n ist the count of entities of a given type and

the vi, i ∈ [1,n] are the RDF2Vec vectors of all entities of the class:

mean =
1

n
(v1 +v2 + ... +vn).

An example of the calculation of the class vector of dbo:Library is provided in �g.

4.2. The mean of a set of vectors is calculated component-wise. In other words, for the

25

4. Approach

Figure 4.2.: Generation of the class vector of dbo:Library.

200-dimensional RDF2Vec vectors the mean of the �rst coordinates, than the mean of the

second coordinates and so on is computed. The found coordinates are the coordinates

of the mean vector. The vectors used for the computation are the RDF2Vec vectors of all

entities of the given class.

The RDF2Vec model (sec. 2.2.1.1) projects the entities into a lower-dimensional feature

space and semantically similar entities are positioned close to each other. Thereby, the

cosine similarity values of each entity are sorted in a descending order, resulting in an

ordered list of potentially types for that entity. The most similar types to a given entity

are placed �rst in the list.

4.2. 1D Convolutional Neural Network

The 1D CNN model built on top of RDF2Vec is presented here. The architecture is similar

to the one described in [9], with only one channel. We implemented and trained the

model for classi�cation of entities in multiple classes. 1D CNNs di�er from 2D CNNs

in the dimensionality of the input data and in the way the feature detector (�lter) slides

across the data. 1D CNNs are used in natural language processing, as one word (entity)

is represented as a vector. The �lter covers the whole vector of a word and its height

determines how many words are considered at a time. The sliding of the �lter is performed

in only 1 direction.

26

4.2. 1D Convolutional Neural Network

The input data consists of the entity vectors from the RDF2Vec pre-trained model. They

are of strict dimension, namely 200-dimensional.

Convolutional Layer (Conv1D)

The input data is fed into the convolutional layer. The convolution operation involves a

�lter (also called feature detector) , which is applied to a window of h entities (called kernel

size) to produce a new feature [9]. We set the number of �lters to 128 and the kernel size

to 3. This allows us to train 128 di�erent features on the �rst layer of the network. The

output matrix holds the weights of one single �lter and is called a feature map. The feature

map then goes through a non-linear activation function, such as ReLU in our case.

Pooling Layer (GlobalMaxPooling1D)

A pooling layer is used after the 1D CNN layer. We apply a global max pooling operation

over the feature map which �nds the maximum value of each �lter. The idea behind the

pooling is to capture the most important feature, namely the one with the highest value

for each feature map [9]. The pooling also prevents over�tting of the data. We chose a

global pooling, which means that the pool size is equal to the size of the input.

Regularization (Dropout)

For regularization, we use dropout on the output of the pooling layer. Dropout randomly

sets to zero some proportion of the hidden units during forward propagation. We chose

the dropout rate of 0.2.

Fully-connected Layer (Dense)

The �nal layer is a fully-connected layer, which reduces the size of the vector to a vector

of size equal to the number of classes that we want to predict. Softmax is used as an

activation function. The output is the probability distribution over the labels (in our case -

the entity classes).

After constructing the model, it was trained in 100 epochs with a batch size of 128, in

order to produce predictions for a set of entities. We experimented with two models - the

�rst one using two Conv1D layers and the second one with only one Conv1D layer.

27

5. Evaluation

This chapter describes the dataset, gives an insight into how the data is processed and

�nally presents the results. For computing the cosine similarity, python scikit-learn
1

library

has been used. For the CNN model, Keras
2

- an API used on top of the machine-learning

framework TensorFlow
3
, has been used. The input �les for the CNN model are loaded

using pandas
4
, numpy

5
is used for the representation of vectors and matrices.

5.1. Dataset

The background data, used in the course of this thesis, is the Instance Types dataset of

DBpedia from the following release - DBpedia 2016-10
6
. The RDF triples in the dataset

are produced from DBpedia’s mapping-based extraction of Wikipedia. A mapping assigns

a type from DBpedia’s ontology to the entities that are described by the corresponding

infobox in Wikipedia [12]. The dataset contains entity-type assignments in the form of

facts, namely RDF triples, which have the following structure:

<$resource> rdf:type <$dbpedia_ontology_class> .

An example of one fact in the dataset is the following triple that states that the entity

Bruce Lee is of type Actor.

<http://dbpedia.org/resource/Bruce_Lee>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://dbpedia.org/ontology/Actor> .

The type of an entity in the Instance Types dataset is normally the most speci�c type. As

the types are structured in an hierarchical way, the other types of the entity can be derived

by going up the hierarchy type-path, until its root - owl:Thing, is reached. Considering the

example with the entity Bruce Lee - it has the rdf:type dbo:Actor, which means

1https://scikit-learn.org/stable/
2https://keras.io/
3https://www.tensorflow.org/
4https://pandas.pydata.org/
5https://numpy.org/
6https://wiki.dbpedia.org/downloads-2016-10

29

https://scikit-learn.org/stable/
https://keras.io/
https://www.tensorflow.org/
https://pandas.pydata.org/
https://numpy.org/
https://wiki.dbpedia.org/downloads-2016-10

5. Evaluation

that it is assotiated with the type-path: "/Thing/Agent/Person/Artist/Actor",

meaning that Bruce Lee belongs to all the classes in the type-path.

Distribution of entities in classes

In order to make statistics about the distribution of the entities in classes and to enable

further analysis using the Instance Types dataset, the dataset was separated in parts, each

part containing entities of only one type. By doing this, it was also found that the entities

in the DBpedia’s dataset are divided into 416 classes.

Type Hierarchy

The DBpedia ontology is also taken into consideration. Making use of recursive SPARQL

queries and the RDF predicate rdfs:subClassOf, the structure of the types is found.

The type hierarchy of DBpedia has a tree structure of height 7 and contains 760 classes. The

di�erence between the count of the classes in the Instance Types dataset (416) and in the

DBpedia ontology (760) originates from the fact, that not all types, de�ned as such in the

ontology, are used. For example, dbo:Capital is de�ned as a subclass of dbo:City
in the DBpedia ontology, but there are no instances of that type. The distribution of the

classes in 7 levels of the type hierarchy is as follows:

Level 1: 50 classes

Level 2: 128 classes

Level 3: 210 classes

Level 4: 273 classes

Level 5: 73 classes

Level 6: 23 classes

Level 7: 4 classes.

Selected Classes

Using both the statistics about the distribution of entities in types and the type hierarchy,

59 classes were selected, with which the analysis in the thesis is conducted. A list of those

classes is presented in app. A.1. The classes have the following distribution:

• 15 less popular classes (less than 500 entities)

• 20 having between 500 and 1000 entities

• 24 having more than 1000 entities

Entities

For each of the 59 chosen classes, 500 entities were extracted. From the less popular classes

all entities were taken, as they are less than 500. For this step, the previously mentioned

separation of the dataset in groups, based on their types, was crucial.

30

5.2. Experimental Setup and Results

RDF2Vec vectors

The vectors generated by the RDF2Vec embedding model (sec. 2.2.1.1) are available for

download
7

and the version with 200-dimensional uniform vectors is used in the course

of this thesis. The vectors are generated with 4 hops. For each entity in the graph, the

dataset contains a row with the entity name and the embedded vector. This �le is further

manipulated for the needs of the analysis in the thesis, namely for extracting the vector

representation of certain entities and types.

5.2. Experimental Setup and Results

Vector Similarity

The vector similarity approach (sec. 4.1) is applied for the selected entities (ca. 500) of all

the 59 selected classes. The last step in the vector similarity approach computes the cosine

similarity between an entity and the vectors of the subclasses of its top-level class. After

�nding the top-level class of the selected classes, it was found that all selected classes have

one of the following top-level classes: Person, Organisation or Place. This is the reason,

the results are presented in those three groups, in order to be more clearly visible.

After �nding the cosine similarity values, the hits@1 and hits@3 types were determined

and compared to the current types of the entities in the Instance Types dataset. The result

is presented in bar charts.

Vector Similarity using pre-de�ned RDF2Vec vectors of the entities, as well as of
the classes

The result of the evaluation of this approach is presented in the bar charts in �g. 5.1

(Hits@1 Types) and �g. 5.2 (Hits@3 Types). The vertical axis shows the type, for the

entities of which the vector similarity approach was conducted. The blue part of each

bar is the part of the entities of the given type, for which a match among the hits@1,

respectively hits@3 types was found.

An interesting point is in what degree the �rst and third cosine similarity value found are

related to each other. The degree of dependence between the two values is captured by

the the statistical measure correlation. The correlation for each class is given in sec. A.2.

Further, scatterplots are created to represent the correlation between the two variables in

the case of the following classes - Actor, AdultActor, Airline, Artist, Athlete (sec. A.2).

Vector Similarity using pre-de�ned RDF2Vec vectors of the entities, but vectors
of the classes - generated using the Set Theory

7https://zenodo.org/record/1320211#.Xbnwf25FydI

31

https://zenodo.org/record/1320211#.Xbnwf25FydI

5. Evaluation

The outcome of this approach was evaluated in the same way as described above. The

result is presented in the bar charts in �g. 5.3 (Hits@1 Types) and �g. 5.4 (Hits@3 Types).

The blue part of each bar is again the part of the entities of the given type, for which a

match among the hits@1, respectively hits@3 types was found.

It can be seen, that using the vectors generated by taking the average of the RDF2Vec

vectors of the elements of the given class (set theory) produced much better results than

using the pre-trained RDF2Vec vectors of the classes. It can be claimed that the approach

using the generated vectors succeeded producing the correct hits@1 class in almost all the

cases.

As observed from the experiments, the RDF2Vec pre-trained class vectors do not re�ect

the characteristics of the entities of the class. This is due to the fact that RDF2Vec is path

dependent and considers only the outgoing edges in the RDF graph (which is a DAG),

meaning it takes into account only paths in direction from an entity vertex to a type vertex.

In contrast, the class vectors generated by computing the average of the vectors of the

elements of a given class are able of re�ecting the characteristics of a class, as they are

regarded as the mean of the members of a set (sec. 2.4).

CNN Model

As described in 4.2, �rst one CNN model was created, using two 1D CNN layers. It was

trained with 120 entities (which were correctly typed by the vector similarity approach

using only RDF2Vec vectors) and was tested on 30 other entities (80% training dataset/20%

testing dataset). This experiment was done using 20 classes (the once that had most

correctly typed entities).

Since the number of entities per class was small, the model over�ts with two layers of

1D convolutional neural network yielding 93.5% accuracy. There are two basic ways of

reducing over�tting in neural network models: by training the network on more data or

by changing the complexity of the network.

In this work, both approaches have been tried. In the second experiment, 59 classes with

500 entities from each class have been considered, out of which 80% are used for training

the model and 20% for testing, which results in 81.78% accuracy. Also, we tried to reduce

the complexity of the model to only one 1D convolutional layer which results in 42.61%

accuracy for 59 classes (table 5.1) . It has been observed from the result that for this task,

reducing the complexity of the model works better for the smaller datasets.

CNN Model Less classes and entities All classes and entities

One 1D layer 59.83% 42.61%

Two 1D layers 93.5% 81.78%

Table 5.1.: Accuracy of 1D CNN models.

32

5.2. Experimental Setup and Results

Figure 5.1.: Hits@1 - RDF2Vec

33

5. Evaluation

Figure 5.2.: Hits@3 - RDF2Vec

34

5.2. Experimental Setup and Results

Figure 5.3.: Hits@1 - SetTheory

35

5. Evaluation

Figure 5.4.: Hits@3 - SetTheory

36

6. Conclusion

6.1. Summary

In this work, the problem of predicting type information of entities in a knowledge base has

been addressed, particularly DBpedia. The importance of knowledge bases in representing

information in a structured manner was introduces. Furthermore, some related methods

were described and investigated.

In order to predict entity types, �rst the unsupervised approach vector similarity was

explored. This method takes advantage of the RDF2Vec embedding model for the vector

representation of the entities and the classes. The evaluated results show that the use of

pre-de�ned RDF2Vec vectors for the classes is not bene�cial in predicting the entity types.

Therefore, new class vectors were generated, following the example of the set theory. In

this way, almost all entities were assigned with the correct type. Moreover, a classi�cation

task has been performed using one supervised approach, namely a 1D convolutional neural

network model.

6.2. Future Work

There are plenty of future directions of the current work. Some of those include:

• Performing 1D CNN for all the classes in DBpedia with more number of entities per

class.

• Make use of the vectors from the graph kernel method of RDF2Vec for both cosine

similarity and CNN.

• As observed from the experiments, the class vectors from RDF2Vec do not re�ect

the characteristics of the entities of the class because RDF2Vec generates paths and

considers only the outgoing edges from the vertices of the entities. Retraining the

RDF2Vec model by applying inverse relation from the classes to the entities in the

class and performing the classi�cation task, in order to �nd if this strategy would

improve the results, is an interesting aspect which could be further researched.

37

Bibliography

[1] Remzi Celebi Ammar Ammar. In: Proceedings of the Cyber-Physical Systems PhD
Workshop 2019. url: http://ceur-ws.org/Vol-2456/paper33.pdf.

[2] Robert Andre. Axioms and Set Theory. 2014. isbn: 978-0-9938485-0-6.

[3] Krisztian Balog. Entity-Oriented Search. Vol. 39. The Information Retrieval Series.

Springer, 2018. isbn: 978-3-319-93933-9. doi: 10.1007/978-3-319-93935-3. url:

https://eos-book.org.

[4] Tim Berners-Lee, James Hendler, and Ora Lassila. “The Semantic Web”. In: Scienti�c
American 284.5 (May 2001), pp. 34–43. url: http://www.sciam.com/article.cfm?

articleID=00048144-10D2-1C70-84A9809EC588EF21.

[5] Russa Biswas, Maria Koutraki, and Harald Sack. “Exploiting Equivalence to Infer

Type Subsumption in Linked Graphs.” In: ESWC (Satellite Events). Ed. by Aldo

Gangemi et al. Vol. 11155. Lecture Notes in Computer Science. Springer, 2018,

pp. 72–76. isbn: 978-3-319-98192-5. url: http://dblp.uni-trier.de/db/conf/

esws/eswc2018s.html#BiswasKS18.

[6] Michael Cochez et al. “Biased Graph Walks for RDF Graph Embeddings”. In: Proceed-
ings of the 7th International Conference on Web Intelligence, Mining and Semantics.
WIMS ’17. Amantea, Italy: ACM, 2017, 21:1–21:12. isbn: 978-1-4503-5225-3. doi:

10.1145/3102254.3102279. url: http://doi.acm.org/10.1145/3102254.3102279.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.

deeplearningbook.org. MIT Press, 2016.

[8] Uday Kamath. Deep Learning for NLP and Speech Recognition. Ed. by John Liu and

James Whitaker. Cham, 2019. url: https://doi.org/10.1007/978-3-030-14596-5.

[9] Yoon Kim. “Convolutional Neural Networks for Sentence Classi�cation”. In: Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Inter-
est Group of the ACL. 2014, pp. 1746–1751. url: http://aclweb.org/anthology/D/

D14/D14-1181.pdf.

[10] Tomás Kliegr and Ondrej Sváb-Zamazal. “LHD 2.0: A text mining approach to typing

entities in knowledge graphs”. In: J. Web Semant. 39 (2016), pp. 47–61.

[11] Yann LeCun and Yoshua Bengio. “The Handbook of Brain Theory and Neural

Networks”. In: ed. by Michael A. Arbib. Cambridge, MA, USA: MIT Press, 1998.

Chap. Convolutional Networks for Images, Speech, and Time Series, pp. 255–258.

isbn: 0-262-51102-9. url: http://dl.acm.org/citation.cfm?id=303568.303704.

39

http://ceur-ws.org/Vol-2456/paper33.pdf
https://doi.org/10.1007/978-3-319-93935-3
https://eos-book.org
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://dblp.uni-trier.de/db/conf/esws/eswc2018s.html#BiswasKS18
http://dblp.uni-trier.de/db/conf/esws/eswc2018s.html#BiswasKS18
https://doi.org/10.1145/3102254.3102279
http://doi.acm.org/10.1145/3102254.3102279
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-030-14596-5
http://aclweb.org/anthology/D/D14/D14-1181.pdf
http://aclweb.org/anthology/D/D14/D14-1181.pdf
http://dl.acm.org/citation.cfm?id=303568.303704

Bibliography

[12] Jens Lehmann et al. “DBpedia - A Large-scale, Multilingual Knowledge Base Ex-

tracted from Wikipedia”. In: Semantic Web Journal 6.2 (2015), pp. 167–195. url:

http://jens-lehmann.org/files/2015/swj_dbpedia.pdf.

[13] Pablo N. Mendes, Max Jakob, and Christian Bizer. “DBpedia for NLP: A Multilingual

Cross-domain Knowledge Base”. In: Proceedings of the Eight International Conference
on Language Resources and Evaluation (LREC’12). Ed. by Nicoletta Calzolari (Con-

ference Chair) et al. Istanbul, Turkey: European Language Resources Association

(ELRA), May 2012. isbn: 978-2-9517408-7-7.

[14] Tomas Mikolov et al. “Distributed Representations of Words and Phrases and Their

Compositionality”. In: Proceedings of the 26th International Conference on Neural
Information Processing Systems - Volume 2. NIPS’13. Lake Tahoe, Nevada: Curran

Associates Inc., 2013, pp. 3111–3119. url: http://dl.acm.org/citation.cfm?id=

2999792.2999959.

[15] Jojo Moolayil. Learn Keras for Deep Neural Networks: A Fast-Track Approach to Mod-
ern Deep Learning with Python. 1st. Berkely, CA, USA: Apress, 2018.

[16] Heiko Paulheim and Christian Bizer. “Type Inference on Noisy RDF Data”. In: The
Semantic Web – ISWC 2013. Ed. by Harith Alani et al. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2013, pp. 510–525. isbn: 978-3-642-41335-3.

[17] Petar Ristoski and Heiko Paulheim. “RDF2Vec: RDF Graph Embeddings for Data

Mining”. In: The Semantic Web - ISWC 2016 - 15th International Semantic Web Con-
ference, Kobe, Japan, October 17-21, 2016, Proceedings, Part I. 2016, pp. 498–514. doi:

10.1007/978-3-319-46523-4_30. url: https://doi.org/10.1007/978-3-319-

46523-4%5C_30.

[18] Amit Singhal. “Modern Information Retrieval: A Brief Overview”. In: Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering 24 (2001), pp. 35–

43.

[19] Liyang Yu. A Developer’s Guide to the Semantic Web. SpringerLink. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2011. isbn: 9783642159701.

40

http://jens-lehmann.org/files/2015/swj_dbpedia.pdf
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
https://doi.org/10.1007/978-3-319-46523-4_30
https://doi.org/10.1007/978-3-319-46523-4%5C_30
https://doi.org/10.1007/978-3-319-46523-4%5C_30

A. Appendix

A.1. List of 59 classes used in the scope of the thesis

1. Artist

a) Comedian

b) Actor

c) Fashion Designer

d) Photographer

e) Painter

f) Comics Creator

g) Adult Actor

h) Voice Actor

i) Musical Artist

2. Athlete

a) Snooker Player

b) Body Builder

c) Sumo Wrestler

d) Lacrosse Player

e) Table Tennis Player

f) Skater

g) Jockey

h) Darts Player

i) Poker Player

j) Formula One Racer

k) Horse Rider

l) Nascar driver

m) Badminton Player

n) Chess Player

41

A. Appendix

3. Scientist

a) Medician

b) Entomologist

4. Organisation

a) Cycling Team

b) Australian Football team

c) Law �rm

d) Winery

e) Rugby League

f) Basketball league

g) Broadcast network

h) Library

i) Publisher

j) Hockey Team

5. Company

a) Airline

b) Brewery

c) Bank

6. Place

a) Garden

b) Wine Region

c) Monument

d) Canal

e) Glacier

f) Volcano

g) Golf Course

h) Theatre

i) Roller Coaster

j) Cave

k) World Heritage Site

l) Hotel

7. Language

a) Programming Language

8. Genre

a) Musical Genre

42

A.2. Correlation

A.2. Correlation

Figure A.1.: Correlation - Actor.

Figure A.2.: Correlation - AdultActor.

Figure A.3.: Correlation - Airline.

43

A. Appendix

Figure A.4.: Correlation - Artist.

Figure A.5.: Correlation - Athlete.

44

A.2. Correlation

Class Correlation

Actor 0.529456

AdultActor 0.442402

Airline 0.663913

Artist 0.10312

Athlete 0.222505

AustralianFootballTeam 0.648803

BadmintonPlayer 0.549596

Bank 0.630473

BasketballLeague 0.596523

Bodybuilder 0.737294

Brewery 0.626912

BroadcastNetwork 0.644686

Canal 0.703279

Cave 0.734999

ChessPlayer 0.324538

Comedian 0.363572

ComicsCreator 0.537698

Company 0.831974

CyclingTeam 0.150057

DartsPlayer 0.336342

Entomologist 0.517296

FashionDesigner 0.529456

FormulaOneRacer 0.651314

Garden 0.448983

Glacier 0.757058

GolfCourse 0.682011

HockeyTeam 0.752062

HorseRider 0.642217

Hotel 0.473888

Jockey 0.389885

Table A.1.: Correlations - Part 1.

45

A. Appendix

Class Correlation

LacrossePlayer 0.526022

Language -

LawFirm 0.397312

Library 0.489951

Medician 0.333219

Monument 0.49175

MusicalArtist 0.550251

MusicGenre 0.382212

NascarDriver 0.15976

Organisation 0.715338

Painter 0.400472

Photographer 0.612491

Place 0.721288

PokerPlayer 0.353083

ProgrammingLanguage -

Publisher 0.28252

RollerCoaster 0.818314

RugbyLeague 0.772606

Scientist 0.145496

Skater 0.494113

SnookerPlayer 0.617371

SumoWrestler 0.640482

TableTennisPlayer 0.593807

Theatre 0.372384

VoiceActor 0.642889

Volcano 0.526229

WineRegion 0.617912

Winery 0.69275

WorldHeritageSite 0.416674

Table A.2.: Correlations - Part 2.

46

	Abstract
	Zusammenfassung
	Introduction
	Motivation and Background
	Objective
	Structure of the thesis

	Foundations
	Semantic Web
	Resource Description Framework
	Knowledge Base
	Entity
	Entity Typing
	DBpedia

	Deep Learning
	Knowledge Graph Embeddings
	RDF2Vec

	Neural Networks

	Similarity Measures
	Cosine Similarity

	Set Theory

	Related Work
	Approach
	Vector Similarity
	1D Convolutional Neural Network

	Evaluation
	Dataset
	Experimental Setup and Results

	Conclusion
	Summary
	Future Work

	Bibliography
	Appendix
	List of 59 classes used in the scope of the thesis
	Correlation

