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Abstract 

 

Sorption processes on mineral phases are a key mechanism in the context of the safe 

final disposal of radioactive waste in deep geological formations. Especially clay min-

eral surfaces are known for their excellent adsorption properties of metal ions, like 

actinides and many fission products. Previous studies demonstrated their high reten-

tion abilities for diluted background electrolyte conditions (Imax= 0.7 M), comparable to 

pore water of bentonite and Opalinus clay (Switzerland), as well for saline conditions 

(I = 1-4 M) as described for Jurassic and lower Cretaceous clay rock layers Nnorthern 

Germany). The application of a geochemical model (2SPNE/CE), developed for diluted 

systems, was also demonstrated to be suitable for concentrated background electro-

lyte systems.  

The influence of competing ligands on the adsorption of trivalent lanthanides and acti-

nides onto the important natural clay minerals illite du Puy and montmorillonite was 

investigated within the present thesis. Sorption experiments were conducted under 

variation of the background electrolyte concentration, concentration of the competing 

ligand and the partial pressure of CO2. 

Representative competing ligands were chosen to study their impact on the 

An(III)/Ln(III) retention. The main focus was set on the influence of carbonate on the 

adsorption of trivalent lanthanides and actinides in NaCl electrolyte systems. Car-

bonate is omnipresent in natural groundwater. Due to the ability to form strong com-

plexes with metal ions, carbonate is highly relevant for the geochemical behaviour of 

actinides. Beside carbonate, also gluconate and citrate were studied in NaCl and CaCl2 

background electrolyte solutions. Both ligands are model substances for cement addi-

tives. Gluconate is also studied as an analogue for isosaccharinic acid, a degradation 

product of cellulose. Citrate is commonly used as a decontaminant. For this reason 

both are part of the inventory of a repository for low and intermediate level waste. 

In presence of carbonate, a somewhat increased retention of Eu(III) on clay minerals 

surfaces is observed in the slightly acidic and neutral pH range. Due to the formation 

of strong carbonate complexes, a strong decrease in retention is observed in the alka-

line pH range. A variation of the applied partial pressure of CO2 is significantly affecting 

the total concentration of dissolved carbonate / bicarbonate and by this the formation 
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of stable aquatic species. During the batch sorption studies, no indication of a signifi-

cant effect of ionic strength was observed neither for the Eu(III) adsorption onto illite 

du Puy, nor on montmorillonite. With a combined study of quantum chemical calcula-

tions (DFT, AIMD) and spectroscopic methods (ATR-IR, TRLFS) it was possible to 

prove the adsorption of carbonate on the clay mineral surface. The adsorbed car-

bonate forms stable ternary surface complexes with Ln(III)/An(III), and, therefore, is 

responsible for enhancing the retention. At higher pH values a second surface sorbed 

complex containing an additional carbonate ligand is formed. These two carbonate 

stabilized surface complexes were implemented in a geochemical model (2SPNE/CE), 

resulting in a consistent model to accurately describe the adsorption of Eu(III) onto illite 

du Puy and montmorillonite for the whole pH range and under variation of ionic strength 

and the partial pressure of CO2. 

In presence of gluconate, the retention of Eu(III) onto illite du Puy and montmorillonite 

is significantly reduced between pH = 3-12.5 (up to three orders of magnitude). Using 

time resolved laser fluorescence spectroscopy, 3 pH regions of characteristic interac-

tions of adsorbed and competing aquatic species were identified. The competition of 

aquatic species with the cation exchange was observed in the acidic pH and with inner 

sphere surface complexation from neutral to high pH. In presence of Ca2+ the existence 

and influence of quaternary Ca-Cm-OH-GLU could be monitored under alkaline con-

ditions.  

The presence of citrate is influencing the adsorption of Eu(III) onto clay minerals in 2 

different ways. In NaCl background electrolyte solution a reduced retention is observed 

in the slightly acidic pH range, while the retention is increased in presence of Ca2+ in 

the same pH range. From neutral to high pH a nearly quantitative retention is observed 

in both systems. 
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Zusammenfassung 

 

Sorptionsprozesse an Mineralphasen stellen im Kontext eines Endlagers für radioak-

tive Abfälle in tiefen geologischen Formationen einen wichtigen Rückhaltemechanis-

mus für Actiniden und viele Spaltprodukte dar. Insbesondere Tonmineraloberflächen 

verfügen über exzellente Eigenschaften zum Rückhalt von Metallkationen wie z.B. Ac-

tiniden. Belegt wurde dies in frühere Untersuchungen ausführlich für niedrige Hinter-

grundelektrolytkonzentration (Imax= 0,7 M), wie sie z.B. im Porenwasser von Bentoni-

ten und im Opalinuston (Schweiz, Süddeutschland) zu finden sind, sowie auch für hö-

here Hintergrundelektrolytkonzentrationen (I =0,1-4 M) wie sie in Porenwässern der 

Jura- und Unterkreidetonlagerstätten (Norddeutschland) auftreten. Ebenfalls konnte 

bereits erfolgreich ein geochemisches Sorptionsmodell (2SPNE/CE model) zur Be-

schreibung der Sorption unter ebendiesen Bedingungen entwickelt und angewandt 

werden.  

Im Rahmen dieser Arbeit wurde der Einfluss von konkurrierenden Liganden auf die 

Sorption von trivalenten Lanthaniden und Actiniden an den bedeutenden natürlichen 

Tonmineralien Illite du Puy und Montmorillonit untersucht. Sorptionsexperimente wur-

den unter Variation der Hintergrundelektrolytkonzentration, der Konzentration des kon-

kurrierenden Liganden und des CO2-Partialdrucks durchgeführt. Die Untersuchungen 

wurden in Anwesenheit von repräsentativen Konkurrenzliganden durchgeführt. Der 

Hauptfokus der Arbeit wurde auf den Einfluss von Carbonat auf die Sorption trivalenter 

Lanthaniden und Actiniden in NaCl Elektrolytsystemen gelegt. Carbonat ist omniprä-

sent in natürlichen Grundwässern und wegen der Bildung starker Komplexe von hoher 

Relevanz für das geochemische Verhalten von Actiniden. Neben Carbonat wurden 

ebenfalls Gluconat und Citrat in NaCl und CaCl2 Hintergrundelektrolyten untersucht. 

Beide dienen als Modellliganden für polymere Zementadditive. Gluconat wird zudem 

stellvertretend für das Abbauprodukt von Cellulose, die Isosaccharinsäure untersucht. 

Citrat wird, neben dem Einsatz als Zementadditiv, als Dekontaminationsmittel einge-

setzt. Beide besitzen somit auch eine große Bedeutung als Bestandteile von schwach 

und mittelradioaktiven Abfällen.  

Der Rückhalt von Eu(III) an Tonmineralphasen zeigt in Anwesenheit von Carbonat im 

leicht sauren bis neutralen pH-Bereich eine etwas erhöhte Sorption. Im alkalischen 
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bedingt die Bildung von stabilen aquatische Carbonatkomplexen einen massiven 

Rückgang der Sorption. Die Variation des CO2-Partialdrucks beeinflusst die Gesamt-

konzentration des gelösten Carbonats / Hydrogencarbonats und somit auch die Bil-

dung stabiler aquatischer Eu-Carbonatspezies. Im Verlauf der Batchsorptionsreihen 

konnte kein qualitativer Unterschied des Sorptionsverhalten von Eu(III) an den Tonmi-

neralien Illite du Puy und Montmorillonit oder durch die Variation der Konzentration des 

Hintergrundelektrolyten festgestellt werden. Durch eine Kombination aus quantenche-

mischen Berechnungen (DFT, AIMD) und spektroskopischen Untersuchungen (ATR-

IR, TRLFS) konnte die Sorption von Carbonat an Tonmineraloberflächen belegt wer-

den. Das adsorbierte Carbonat stabilisiert seinerseits Ln(III)/An(III) Oberflächenkom-

plexe durch die Bildung ternärer Spezies. In Abhängigkeit vom pH und der vorhande-

nen Carbonatkonzentration konnten zwei unterschiedliche ternäre Oberflächenkom-

plexe nachgewiesen werden. Die Implementierung der experimentellen Befunde in ein 

geochemisches Modell (2SPNE/CE) liefert ein konsistentes Modell zur Beschreibung 

der Sorption von Eu(III) an den Tonmineralphasen Illite du Puy und Montmorillonit über 

den gesamten pH-Bereich und unter Variation des Hintergrundelektrolytes und des 

CO2-Partialdrucks.Die Anwesenheit von Gluconat reduziert den Rückhalt der Eu(III) 

Sorption an Illite du Puy und Montmorillonite um bis zu 3 Größenordnungen über den 

untersuchten pH Bereich von pH = 3-12.5. Durch zeitaufgelöste Laserfluoreszenz-

spektroskopie war es möglich, je 3 pH Regionen unterschiedlicher Einflüsse des Lig-

anden zu definieren. Es konnte eine Konkurrenz zwischen aquatischen Spezies und 

Kationenaustausch sowie zwischen innersphärischen Oberflächenkomplexen aufge-

zeigt werden. Zusätzlich konnte die Existenz und der Einfluss von aquatischen quater-

nären Ca-Cm-OH-GLU Komplexen unter alkalischen Bedingungen nachgewiesen 

werden. 

Der Einfluss von Citrat auf die Sorption von Eu(III) bedingt in NaCl Hintergrundelektro-

lyten eine erniedrigte Sorption im leicht sauren pH-Bereich, wohingegen eine erhöhte 

Sorption in CaCl2 Lösungen im selben pH Bereich beobachtet wird. Im neutralen und 

alkalischen pH-Bereich ist eine quasi quantitative Sorption zu beobachten. 
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1. Introduction 

 

On 1st of January 2014 a strategy for selecting a site for nuclear waste disposal has 

been defined by the government of Germany in a federal law (Gesetz zur Suche und 

Auswahl eines Standortes für ein Endlager für Wärme entwickelnde radioaktive Abfälle) 

[1]. This law defines a timeframe for selecting a suitable repository site. There is a 

general global consensus that the final disposal in deep geological formations is the 

best option to isolate high level nuclear waste from the biosphere and from unauthor-

ized access by third parties. Therefore, three different types of host rock formations 

(crystalline rock, salt and clay rock) are discussed concerning their capabilities to con-

fine radioactive waste in the repository near-field and to inhibit radionuclide dispersion. 

In Germany all three types of host rock are available.  

 

 

Figure 1.1: Multi-barrier-system for final nuclear waste disposal in crystalline rock (Swedish concept, 

KBS-3) [2]. 

Beside the host rock itself, different technical (e.g. waste canisters) and geotechnical 

barriers (e.g. engineered clay barriers) are considered to establish a so called multi-

barrier system. As an example, the Swedish KBS-3 multi-barrier-concept for a nuclear 

waste disposal in a crystalline host rock formation is shown in Figure 1.1. This concept 

visualizes the principal of a multi-barrier system. The first barrier is the technical barrier 

and consists of the fuel matrix, the cladding tube of the fuel rods and a canister made 

of stainless steel covered with copper. An engineered barrier made of certain backfill 
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material like bentonite is planned as a geotechnical barrier and second containment. 

Finally the host rock itself is representing the geological barrier. Within the frame of a 

long term safety analysis, all events from low to high probability have to be considered 

and weighted due to their potential risk for a deep geological repository. Beside natural 

catastrophes like earthquakes or glacial periods and other events which may lead to a 

water ingress have to be taken into account. The application of a multi-barrier system 

should realize the immobilisation of radionuclides by slowing down the water intrusion 

and increasing the radionuclide retention.  

One of the key components in the multi-barrier system for granitic host rocks is 

bentonite which is a clay mixture used as backfill material to fill up cavities in the near 

field. Its major component is smectite (mainly montmorillonite), which has the ability to 

swell when contacted with water. [2]. Thus, bentonite is capable to effectively seal 

fractures and fissures and to suppress water intrusion. A second positive characteristic 

of bentonite is its high retention capacity of dissolved radionuclides by physical and 

chemical sorption processes. Due to the strong interaction of radionuclides with the 

clay mineral surface a high immobilisation of radionuclides is given. Moreover the 

permeability of clay rock is extremely low (~ 5∙10-6 to ~ 5∙10-8 cm/s, [3]). For this reason 

only slow diffusive and no fast advective transport is possible [4].  

Different countries consider clay deposits as host rock formations for deep geological 

disposal (Opalinus Clay in Switzerland [5], Boom and Ypresian clays in Belgium [6, 7], 

Callovo-Oxfordian and Toarcian clays in France). Also for Germany, a mapping of 

potential clay host rock formation took place [8]. Hoth et al. described two different clay 

deposits by regions. The Opalinus clay formation in southern Germany, comparable to 

formations in Switzerland [9], and a Jurassic and Cretaceous clay formation in parts of 

Northern Germany [10]. The northern clay rock formations are characterized by a 

higher salinity caused by saline ground waters nearby rock salt layers or diapirs. 

Clay minerals like illite, montmorillonite or mixed layers are the most relevant 

components in natural claystone and also in bentonite. The sorption of radionuclides 

to these minerals has been investigated in detail in previous studies [11-16]. In general, 

these studies were carried out in diluted electrolyte solutions with an ionic strength of 

around I = 0.7 M or below. Only in a few studies sorption experiments at higher ionic 

strength were performed [17-19] to cover the conditions in clay formations with higher 

salinities in their pore waters.  
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Carbonate as an omnipresent component in natural groundwater will have a high 

impact on many radionuclides, especially the actinides, as they are known to form 

strong aqueous carbonate complexes. With some exceptions [20-25], the majority of 

sorption studies were performed in absence of CO2 and none of them was performed 

under saline conditions and presence of CO2. Hence, the study of trivalent 

actinide/lanthanide interactions with two highly relevant clay minerals illite and 

montmorillonite in the presence of carbonate/bicarbonate and up to high ionic strength 

is the first main topic of the present work. 

Beside dissolved inorganic carbon, natural groundwaters may contain also higher 

concentrations of natural organic ligands (e.g. humic substances). In the vicinity of a 

future nuclear waste disposal also man-made organic anionic ligands with partly strong 

complexing properties can occur. Cement, which is part of the construction and 

container material, contains a large inventory of organic components and potential 

complexing ligands [26-29]. Several organic compounds are used as cement additives 

or admixtures, like poly-carboxylate (PCE) comb copolymers as superplasticizer [29], 

or sodium gluconate [28] and citric acid as retarder [26]. The second focus of this study 

was set on the sorption of trivalent actinides/lanthanides on illite and montmorillonite 

in presence of monomeric admixtures of sodium gluconate and citric acid. They are 

taken as representatives for cement additives and natural organic ligands, respectively 

Both organic ligands are known to form strong complexes with trivalent lanthanides 

[30-33] and actinides [34-36]. Therefore a significant impact on the retention of 

Ln(III) / An(III) is expected. 

The presence of complexing ligands can modify the interaction of a metal cation with 

a solid phase by changing the aquatic speciation of the metal ion or by changing the 

reactivity of the mineral surface itself. The sorption of anionic, organic ligands to 

mineral surfaces is well known [37-40]. Adsorbed organic ligands may modify the 

surface reactivity depending on their structure and number of functional groups. 

Ligands with only one functional group can occupy and block existing mineral surface 

sites. Organic compounds with more than one reactive groups can act as bridging 

ligand generating new sorption sites. The latter process could even enhance metal ion 

sorption. 

The interaction between Ln(III)/An(III) and clay mineral surfaces (illite, montmorillonite) 

in different electrolyte solutions (up to high ionic strengths) and in the presence of 
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competing ligands (carbonate, gluconate, citrate) is the key aspect of this thesis. Batch 

sorption experiments and spectroscopic speciation studies are performed to quantify 

the sorption reactions and to gain an understanding of the sorption mechanism on a 

molecular level. Based on these data, a geochemical model will be proposed to 

describe the experimental results. The applied model is based on the well-established 

2-SPNE/CE surface complexation and cation exchange model by Bradbury & Baeyens 

[12-14, 16, 41, 42]. To apply a sorption model, all relevant interactions between the 

different compounds have to be identified and implemented. 

The applicability of a modified 2-SPNE/CE surface complexation model to describe 

ternary (clay-radionuclide-ligand) systems up to high ionic strengths will be 

demonstrated for the adsorption of An(III)/Ln(III) in presence of carbonate within this 

study. 
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2. Actinide and groundwater geochemistry 

 

A sound understanding of the transport processes of radionuclides (RNs) is a key 

aspect for the safety case of a nuclear waste repository. The migration of RNs with 

groundwater is the main route of transport between the final disposal site and the 

biosphere. For this reason the determination of RNs solubility (source term), 

complexation studies, an understanding of pH and redox potential (Eh) effects and 

interaction of RNs with mineral surfaces is necessary to describe the migration 

behaviour in its entirety. The formation of aqueous complexes with groundwater 

constituents like organic and inorganic ligands, formation of intrinsic and pseudo-

colloids and their impact on the mobilisation or immobilisation has to be understood to 

provide the scientific basis for a sound nuclear waste disposal safety case. 

 

2.1. Carbonate in groundwater 

 

Studies on actinide behaviour under realistic groundwater conditions need to consider 

the presence of carbonate [43, 44]. Since dissolved carbonate is directly linked to a 

gaseous carbon dioxide phase, the partial pressure of CO2 affects the dissolved 

carbonate concentration (and vice versa) and increases the experimental complexity 

of the system (Equation 1). 

Equation 1 

CO2(g)+H2O ↔ CO2(aq)+H2O ↔(H2CO3)↔HCO3
-
 + H 

+
↔CO3

2-
 + 2H 

+
 

 

As described by Equation 1, an increase of dissolved carbonate takes places with 

increasing pH. The aqueous carbonate speciation itself is strongly pH dependent 

(Figure 2.1). The carbonate concentration and speciation in groundwater is defined by 

the partial pressure of CO2 (pCO2
) and the pH (Figure 2.2). In contrast to surface waters, 

which are exposed to an actual gas phase, the p
CO2

 in aquifer groundwaters, without 

contact to any gas phase, is only a numeric parameter. 
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Figure 2.1: pH dependent carbonate speciation including dissolved CO2, bicarbonate HCO3
- and 

carbonate CO3
2- presented as percentage. 
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Figure 2.2: The concentration of carbonate species as a function of pH and their impact on the ionic 

strength for p
CO2

= 𝟏𝟎−𝟑,𝟑 bar, (a), impact of increasing partial pressure of CO2 on the carbonate 

concentrating and ionic strength shown as function of pH (b). The solution speciation was calculated 

using PhreeqC [45] geochemical modelling code, the THEREDA database [46] and starting ionic 

strength of I=0.1 M. 

 

The pH dependent speciation and concentrations are shown as logarithmic 

concentrations (Figure 2.2.a). The dominating species changes with increasing pH and 

the amount of dissolved inorganic carbon (DIC) rises. While the concentration of 
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bicarbonate (HCO3
-) increases with a slope of m = 1, the carbonate concentration 

(CO3
2-) increases with a slope of m = 2 (logarithmic scale) and controls the ionic 

strength above pH = 9.6 with a very steep increase. 

According to the principle of le Chatelier, the concentrations of the carbonate anion 

increases at constant pH values with increasing p
CO2

 (Figure 2.2.b). Beside this, the 

total dissolved inorganic carbonate concentration also rises with p
CO2

. For this reason 

the very high ionic strengths at higher pH values in equilibrium with a defined p
CO2

 limit 

model calculations above a certain pH (depending on the given partial pressure of 

CO2). 
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Figure 2.3: Measured bicarbonate concentrations in groundwaters from Gorleben versus pH [47]. 

Calculated equilibria concentrations at discrete p
CO2

 are added as solid black lines 

 

Between ground level (earth surface) and groundwater table (first aquifer) the CO2 

partial pressure is defined by the characteristics of the seepage, which equals the 

atmospheric p
CO2

 as a first approximation. Below the groundwater level and in deep 

groundwater aquifers the amount of atmospheric, molecular oxygen decreases down 

to zero (reducing conditions) due to the exclusion of the atmosphere and microbial 

degradation of organic compounds. The bacterial metabolism of oxygen leads to the 

production of an equal amount of carbon dioxide, which increases the p
CO2

 by a factor 

of ten or up to one hundred [44]. The carbonate and bicarbonate content of 
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groundwater is usually determined by titrations or DIC measurements. The p
CO2

 is then 

calculated as function of pH [43]. This was done for the Gorleben side (Figure 2.3 [47]). 

The majority of tested groundwater in a range between pH = 6.5-8.5 correspond to a 

partial pressure of CO2 of p
CO2

 = 10−3.5 to 10−2 bar with maximum values of 10-1 bar. 

A general problem of these measurements is outgassing during sampling. 

 

2.2. Aquatic chemistry of actinides 

 

Lanthanides (Z = 58-71, Cerium to Lutetium) and actinides (Z = 90-103, Thorium to 

Lawrencium) are members of the f-block of the periodic table. All actinides are 

radioactive elements and only thorium, protactinium, uranium, neptunium (traces) and 

plutonium (traces) are naturally occurring. The early actinides, from thorium to 

plutonium, show a broad variance in their oxidation state. This is also visible in a 

complex chemical behaviour. From americium to lawrencium trivalent oxidation states 

are the most stable ones. With the exception of nobelium, where the stability of No2+ 

is explained with the saturation of the 5f shell (Table 1). 

 

Table 1: Oxidation states of actinides [48]. 

 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 

+1               

+2               

+3               

+4               

+5               

+6               

+7               

 Only solid state 

 In aqueous solution 

 Dominant oxidation state 

 Postulated oxidation state 
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Due to these similarities, especially for trivalent oxidation states, Lanthanides are often 

used as non-radioactive / -toxic homologues for repository relevant actinides. 

The aquatic chemistry of actinides is determined by physical parameters like pH, Eh, 

temperature, pressure or partial pressure of reactive gas phases (e.g. CO2) and 

chemical parameters like the concentration of the actinide, and presence of 

complexing ligands or reactive surfaces. Tri- and tetravalent actinides occur as 

solvated cations at low pH and as hydrolysed species at higher pH if other ligands are 

absent. The oxidation states An(V) and An(VI) are forming linear oxo complexes called 

actinyl ions [48]. The two axial coordinated oxygen atoms direct other complexing 

ligands to the equatorial plane [49]. The hydrolysis of actinyl ions is starting at 

significantly higher pH compared to trivalent actinides (An3+). 

 

 

Figure 2.4: Structure of An(V) and An(VI) actinyl ions, represented by Np(V) and U(VI) [49] 

 

Beside steric effects, the linear structure of actinyl ions with two highly electronegative 

oxygen atoms generates a change of the charge of the central metal atom. Thus, the 

effective charge Zeff of AnVO2
+ and AnVIO2

2+ is not identical with its formal charge. The 

decrease of the effective charges in equatorial position is described with the following 

series.[50, 51]. 

 

Zeff =   4  3.3 ± 0.1    3  2.3 ± 0.2 

        

 An4+ > AnVIO2
2+ > An3+ > AnVO2

+ 

 

Redox reactions of the actinides An(IV)/An(III) and An(VI)/An(V) are controlled by the 

redoxpotential in solution. 

 



 
 

 

 Actinide and groundwater geochemistry 

 
10 

 
  

An4+ + e- → An3+ 

AnO2
2+ + e- → AnO2

+ 

 

Moreover, a transition from An(V)/An(IV) is in addition correlated with the pH. 

 

AnO2
+ + 4 H+ + e- → An4+ + 2 H2O 

 

 

Figure 2.5: Pourbaix diagram of plutonium calculated in with equilibrium ambient CO2 [52]. 

 

Figure 2.5 shows the redox speciation of plutonium (Eh vs. pH) under ambient 

comditions [52]. The relevance of the trivalent oxidation state is observed under 

reducing conditions from pH = 2-9 (depending on the Eh). Due to their similar chemical 

behaviour trivalent actinides can be compared with analogue trivalent lanthanides. 

Both, Ln(III) and An(III) have a low polarisability and are described as hard Lewis acids, 

according to the concept of hard and soft acids and bases (HSAB). As hard Lewis 

acids actinides and lanthanides prefer interacting with strong Lewis bases [53]. 



 
 

 

 Actinide and groundwater geochemistry 

 
11 

 
  

According to the HSAB concept, the stability of complexes of actinides and lanthanides 

with common ligands present in groundwater is summerized with decreasing stability.  

 

CO3
2- > OH- > F- ≈ SO4

2- ≈ HPO4
2- > NO3

- > Cl- > ClO4
- 

 

Table 2: Stability constants 𝜷𝒏
𝟎  for the formation of a 𝑨𝒏(𝑳)𝟏

𝟑−𝒙 complexes. 

𝐴𝑛(𝐿)𝟏
3−𝑥 CO3

2

- 

OH

- 

HPO42- F- SO4
2

- 

H2PO4- SiO4
2- NO3

- Cl- ClO4
- 

|log∙ 𝛽
𝑛
0| 8.3 6.8 6.2 3.4 3.3 2.5 2.3 1.3 0.2 - 

Literature [54] [54] [55] [54] [54] [55] [56] [54] [54] [57] 

 

A qualitative summary of the complex stability of trivalent 1:1 complexes is given in 

Table 2. Beside the chemo-physical properties of the ligand, the Zeff is affecting the 

complex stability in the same way, from strong An(IV) to weaker An(VI) complexes. 

A general description of the complexation of An(III) with a generic ligand L is given in 

Equation 2. Hereby, An3+ forms a binary complex with n ligands of charge x. 

Equation 2 

𝐴𝑛3+(𝑎𝑞) + 𝑛𝐿𝑥−(𝑎𝑞) ↔ 𝐴𝑛(𝐿)𝑛
3−𝑥∙𝑛 

 n: number of ligands 

 x: charge of the ligand 

 

From Equation 2 a conditional complexation constant is derived, which is valid for a 

given temperature and ionic strength (Equation 3). 

Equation 3 

𝛽𝑛
′ =

[𝐴𝑛(𝐿)𝑛
3−𝑥∙𝑛]

[𝐴𝑛3+(𝑎𝑞)] ∙ [𝐿𝑥−(𝑎𝑞)]𝑛
 

 

 𝛽𝑛
′ : complexation constant at fixed 𝛾𝑖 (constant ionic strength and temperature) 

 [ ]: concentration 

In Equation 4 a complexation constant is given for ionic strength I = 0. 
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Equation 4 

𝛽𝑛
0 = 𝛽𝑛

′ ∙
𝛾𝐴𝑛(𝐿)𝑛

3−𝑥∙𝑛

𝛾𝐴𝑛3+(𝑎𝑞) ∙ 𝛾𝐿𝑥−(𝑎𝑞)
𝑛  

 

 𝛽𝑛
0: complexation constant for I = 0 

 𝛾𝑖: activity coefficient of species i 

 

2.2.1. Hydrolysis 

 

In absence of strong complexing ligands (e.g. CO3
2-) and increased pH, hydrolysis is 

the primary reaction which determines the aquatic speciation of An and Ln. The 

hydrolysis depends strongly on the pH and the effective charge of the cations. In the 

following, An(III) and An(V) complexation is discussed and compared exemplary for 

actinide behaviour under reducing and oxidizing conditions. Therefore, hydrolysis of 

An(III) (Zeff= 3) starts in the neutral pH-range, while for pentavalent An(V) ions (Zeff= 2.3) 

hydrolysed species appear above pH = 9 [50, 51]. A calculated species distribution of 

Cm(III) in 1.0 M NaCl (representative for An(III)) and of Np(V) in 0.1 M NaCl 

(representative for An(V)) for pH = 4.5 - 13 is given in Figure 2.6.a.  

The hydrolysis of An(III) in 1 M NaCl solution starts at pH > 6 with the formation of a 

first 1:1 (e.g. CmOH2+). A second 1:2 species (e.g. Cm(OH)2
+) forms at pH > 7,5. 

Above pH > 10 a neutral 1:3 species (e.g. Cm(OH)3) is the dominating species. 

Compared to the hydrolysis of trivalent actinides, the hydrolysis of pentavalent Np(V) 

is much less pronounced. A first 1:1 complex appears above pH > 9,5 (NpO2(OH)), 

and a second 1:2 (NpO2(OH)2
-) species is present above pH > 11, which is also the 

limiting complex. 

In CaCl2 containing solutions ternary CaAm(OH)3
2+ and Ca2Am(OH)4

3+ species are 

reported by Rabung et al. in the hyperalkaline region [58]. A stabilizing effect of Ca2+ 

on the formation of hydrolysed species in hyperalkaline media was observed and 

quantified by Neck et al. [59]. 

 



 
 

 

 Actinide and groundwater geochemistry 

 
13 

 
  

 

 

Figure 2.6: The distribution of Np(V) (1∙10-7 M in 0.1 M NaCl, left) and Cm(III) (1∙10-8 M in 1 M NaCl, 

right) species in solution (a) in absence of CO2 (b) in presence of 0.1 M Na2CO3 (closed system) (c) at 

p
CO2

= 10
-3,3

 bar (d) p
CO2

=  𝟏𝟎−𝟐 bar as function of pH. The solution speciation was calculated using 

PhreeqC [45] geochemical modelling code and the THEREDA database [46]. 

 

2.2.2. Carbonate 

 

With increasing carbonate concentrations, the formation of hydrolysed species is 

successively suppressed. This is visualized in some calculated species distributions 

for Cm(III) and Np(V) at different carbonate concentrations/CO2 partial pressures in 

Figure 2.6 (also in the absence of carbonate). Figure 2.6b is describing a closed model 

system with a fixed carbonate concentration of 0.1 M Na2CO3. Two other species 

distributions were calculated in equilibria with a certain partial pressure of CO2. 

Therefore, ambient conditions (p
CO2

=  10−3,3 bar, c) and an elevated partial pressure 

of CO2 (p
CO2

=  10−2 bar, d) were chosen. With respect to the global increase of 
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atmospheric CO2 the ambient partial pressure of CO2 was changed from 

p
CO2

=  10−3,5 bar (common value in literature) to p
CO2

=  10−3,3 bar. 

Trivalent actinides, like Cm3+ (Figure 2.6.b, right), form much stronger complexes with 

carbonate than actinides in oxidation state V as clearly visible in Figure 2.6. In 

presence of a constant carbonate concentration of 0.1 M Na2CO3 the monocarbonate 

complex Cm(CO3)+ is predominant at pH = 6, followed by the Cm(CO3)2
- complex with 

its maximum at pH = 7 and the Cm(CO3)3
3- complex with its maximum at pH = 8.5. Due 

to a limited amount of carbonate the fourth species, a tetracarbonate complex 

(Cm(CO3)4
5-), is not evolved to a predominant species. From pH = 9-12 both tri and 

tetracarbonate complexes of Cm(III) control the aquatic speciation with a contribution 

of about 50 %. Above pH = 12 Cm(OH)3(aq) and a smaller portion of Cm(OH)2
+ start to 

form. No mixed species or complexes with bicarbonate are reported for trivalent 

actinides [60]. In presence of ambient CO2 (Figure 2.6.c, right) the free Cm3+ is the 

dominant species in the acidic range, the monocarbonate complex reaches its 

maximum at pH = 7.75 (Cm(CO3)+). At pH = 8.4 the Cm(CO3)2
- complex is 

predominant followed by the Cm(CO3)3
3- species at pH = 9.1. Above pH = 9 the 

concentration of the tetra carbonate complex is increasing and is predominant above 

pH = 9.5 (Cm(CO3)4
5-). In equilibrium with an elevated partial pressure of CO2 (Figure 

2.6.d, right) Cm(III) start to form carbonate complexes at a lower pH value. This effect 

is explained by a higher carbonate concentration in solution. 

The neptunyl aquo ion is stable in presence of 0.1 M Na2CO3 in the acidic pH range 

(Figure 2.6.b-d, left). In presence of ambient CO2 NpO2
+ remains as predominant 

species from the acidic range up to pH = 8. The NpO2
+ is then replaced by NpO2(CO3)-, 

with a predominance from pH = 8-9.2. In presence of elevated partial pressures of CO2 

the sequence of dominant species is comparable to the ambient CO2 system, as 

described above. Due to the higher carbonate concentrations the dominance field of 

all species are shifted to lower pH values. The complexation of the pentavalent 

neptunium is less pronounced then for the trivalent curium. 
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2.2.3. Complexation with inorganic ligands – Cl-, SiO4
2-, PO4

3-, 

SeO3
2- 

 

Chloride is a common ligand in groundwater and pore water of clay formations and 

often present in high concentrations. It forms weak complexes with An and Ln, 

compared to hydroxide or carbonate. According to the HASB concept, chloride prefers 

to interact with metal ions with a high effective charge. Trivalent curium forms 

significant amounts of chloro complexes at chloride concentration above 

[NaCl] = 4.0 mol kg-1 H2O. At lower chlorine concentrations (1 M NaCl, < 5 %, Figure 

2.6.a-d, right) only a small contribution of chloride complexes is formed in the acidic 

range. The complexation of pentavalent neptunium with chloride is significantly weaker 

compared to trivalent actinides. 

Phosphate, silicate or selenite usually appear in trace concentrations in natural 

systems. These ligands show extensive protonation and deprotonation reactions, 

which increases the complexity of the respective aquatic system considerably. 

Phosphate forms with An(III) complexes of the type An(III)H2PO4
2+, An(III)HPO4

+, 

An(III)PO4
2 as well as the analogous complexes with a higher number of ligands. The 

aquatic chemistry of silicates is dominated by the formation of polynuclear species. For 

this reason the exact An(III) / SiO4 speciation is not available [56]. The complexation 

of actinides with selenite has not been studied so far. Only a few information of the 

interaction of selenite with trivalent lanthanides are available [61]. 

 

2.2.4. Complexation with organic ligands – Citrate, Gluconate 

 

Organic carboxylic acids are capable to form stable complexes with actinides. In 

general, the organic ligands bind to An and Ln ions via carboxylic groups in a mono- 

or bidentate coordination mode. Additional functional groups (e.g. OH in α-position) 

offer the possibility to form chelates, which increases the complexation strength 

distinctively. Naturally occurring polymeric ligands like humic and fulvic acids are 

strong ligands towards actinides and significantly influence their aquatic chemistry [62-

65]. In analogy to natural macromolecules, synthetic superplasticizer also form strong 
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complexes with actinides [66-69]. Superplasticizer, usually poly-carboxylate (PCE) 

comb copolymers, are used to adjust concrete properties like hardening time or 

flowability during processing. Due to their strong incorporation in the cement matrix, a 

low mobility of superplasticizer in a nuclear waste repository is expected. Furthermore, 

monomeric organic compounds are used as additive to concrete mixtures to control 

their hardening process or rheological properties. Sodium gluconate [28] and citric acid 

[26] are two commonly used additives. Gluconate is also an important analogue for 

isosaccharinic acid, a cellulose degradation product. Citrate is a natural occurring 

ligand and a commercially used decontaminant. Therefore, both ligands are also highly 

relevant in the context of a repository for low and intermediate level radioactive waste. 

The chemical structures and deprotonation constants of gluconate and citrate are 

given in Figure 2.7 and Table 3. The complexation of gluconate [30-32, 34, 70] and 

citrate [33, 35, 36] with calcium and trivalent Ln/An was intensively studied. A summary 

of complexations reactions and stability constants is given in Table 4. Gluconate forms 

mono or bidentate complexes with actinides via its carboxylic group and is expected to 

form a five-membered chelate ring including the α-hydroxyl functional group. Citrate is 

able to bind with all three carboxyl groups and one hydroxyl functional group in the 

centre leading to the formation of six-membered chelate rings. A formation of chelating 

complexes including simultaneous all three carboxylic functional groups is sterically 

hindered. 

 

 

Figure 2.7: Schematic structures of citric acid (left) and D-gluconic acid (right): 
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Table 3: Deprotonation constant of D-gluconic and citric acid. 

Deprotonated species pKa Literature 

H-Glu ↔Glu- + H+ 3.86 [71] 

H3-Cit ↔ H2-Cit- + H+ 3.14 [72] 

H2-Cit- ↔ H-Cit2- + H+ 4.77 [72] 

H-Cit2- ↔ Cit3- + H+ 6.39 [72] 

 

The speciation of gluconate in solution is shown for NaCl (left) and CaCl2 (right) 

electrolyte systems in Figure 2.8. In 0.1 M NaCl (Figure 2.8, left), gluconate is stable 

in its protonated form for pH < 3.86. Above this pH the deprotonated species is 

predominant. The presence of Ca2+ is leading to the formation of a binary Ca(HGLU)+ 

species, which is occurring in the same pH range as the deprotonated species. In the 

alkaline range a ternary species Ca(OH)(HGLU) appears above pH = 11. 

 

Table 4: Complexation constants for Am(III) (as an analogue for Eu(III) and Cm(III)) and Ca(III) with 
gluconate and citrate [73]. 

Complexation reactions of organic ligands with Ca(II)/Am(III) log β0 

Gluconate  

Ca+2  + HGlu- = Ca(HGlu)+ 1.73 

Ca+2  + HGlu- + H2O   = Ca(OH)(HGlu) + H+ -10.4 

Am+3 + HGlu- + 3 OH- = Am(OH)3(HGlu)- -19.70 

Citrate  

Ca+2 + 2 H+ + Cit-3 = Ca(H2Cit)+ 12.67 

Ca+2 + H+ + Cit-3 = Ca(HCit) 9.28 

Ca+2 + Cit-3 = Ca(Cit)- 4.80 

Am+3 + Cit-3 + H+= Am(HCit)+ 12.86 

Am+3 + Cit-3 = Am(Cit) 8.55 

Am+3 + 2 Cit-3 + 2 H+ = Am(HCit)2
- 23.52 

Am+3 + 2 Cit-3 = Am(Cit)2
-3 13.90 
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The impact of gluconate on the aquatic speciation of Am(III) is shown in Figure 2.9 

(0.1 M NaCl, left; 0.06 M CaCl2, right). The free Am3+ ion is predominant from pH = 2-7. 

Hydrolysed species are appearing between pH = 7-8. Above pH = 8 a ternary 

Am(OH)3(HGLU)- species, reported by Tits et al. [74], is predominant. For trivalent 

actinides and lanthanides no ternary or quaternary complexes including gluconate and 

Ca2+ are reported, consequently no effect of calcium on the aquatic speciation is 

observed. A quaternary complex like the CaTh(OH)4(GLU)2 [75] was not yet described 

for Ln(III)/An(III) systems. 

 

 

Figure 2.8: The distribution of gluconate species in solution (0.01 M GLU in 0.1 M NaCl left and 0.06 M 
CaCl2). The solution speciation was calculated using PhreeqC [45] and the Thermochimie database [73]. 

 

 

Figure 2.9: The distribution of Am(III) species in solution in presence of gluconate (10-8 M Am(III), 
0.01 M GLU in 0.1 M NaCl left and 0.06 M CaCl2). The solution speciation was calculated using PhreeqC 
[45] and the Thermochimie database [73]. 
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The calculated aquatic speciation of citrate in NaCl (0.1 M, left) and CaCl2 (0.06 M, 

right) electrolyte solutions is shown in Figure 2.10. Citric acid is stepwise deprotonated 

with increasing pH. Above pH = 6 citric acid is completely deprotonated and the CIT3- 

species is dominant up to the alkaline pH range. In presence of Ca2+ the cationic 

CaH2CIT+ and a neutral CaHCIT species appear already in the acidic region. Above 

pH = 4.5 the anionic CaCIT- species is dominating the aquatic speciation. 

 

 

Figure 2.10: The distribution of citrate species in solution (0.001 M CIT in 0.1 M NaCl left and 0.06 M 
CaCl2). The solution speciation was calculated using PhreeqC [45] and the Thermochimie database [73]. 

 

 

Figure 2.11 The distribution of Am(III) species in solution in presence of citrate (10-8 M Am(III), 0.001 M 
CIT in 0.1 M NaCl left and 0.06 M CaCl2). The solution speciation was calculated using PhreeqC [45] 
and the Thermochimie database [73]. 
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The influence of citrate on the aqueous speciation of Am(III) is shown in Figure 2.11 

(0.1 M NaCl, left; 0.06 M CaCl2, right). According to the deprotonation of the ligand a 

series of binary Am-citrate complexes are formed as function of pH. Above pH > 10 a 

significant amount of hydrolysed species is observed. The presence of Ca2+ reduces 

the free ligand concentration by the formation of Ca-citrate complexes. For this reason 

1:2 complexes like the Am(Cit)2
3- are less dominant and the appearance of hydrolysed 

species above pH > 9 is more pronounced. 

 

2.3. Photoluminescence of 5f-elements 

 

Along the series of the actinides Pa(IV), UO2
2+(VI), Am(III), Cm(III), Bk(III) and Cf(III) 

are showing fluorescence in aqueous solution [76]. Optical spectra of actinides are 

generated by the transition between partially occupied electronic states in the f shell 

and are characterized by a number of weak and sharp emission bands [77]. This was 

explained by the facilitation of forbidden f-f transitions (Laporte rule) by non-

centrosymmetric ligand fields and concomitant mixing of electronic states [78]. Electron 

configuration and oxidation state of the actinides are controlling the energy of the 

emission. 

5f electrons are shielded by inner s- and p-electron shells. Coupling between vibronic 

transitions of ligand molecules and the metal ion causes a lower ligand field splitting 

(100-1000 cm-1), which cannot be resolved at room temperature [79]. Although ligand 

field splitting is comparatively low, it generates a shift in the emission maximum of the 

electronic spectra. 

The contribution of 5f orbitals in chemical bindings is also increasing the spectroscopic 

sensitivity of actinide towards changes in their chemical environment. This can appear 

e.g. as a shift in emission bands and higher extinction coefficients, compared to 

lanthanides. 
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2.3.1. Fluorescence of Cm(III) 
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Figure 2.12: Absorption spectra of Cm(III) in 1 M HClO4 adapted from Carnall et al. [80]. 

 

Curium was used for spectroscopic studies during this work, because of its excellent 

fluorescence properties. The stable oxidation state of curium in aqueous solution is the 

trivalent state, where the 5f orbitals are half filled with electrons (5f7). An optical 

absorption spectra of Cm(III) in 1 M HClO4 is shown in Figure 2.12. It consists of a 

number of sharp f-f transitions. The most intense bands are F (λ = 396.6 nm, 

ε = 55,3 L∙mol-1∙cm-1) G (λ = 381.1 nm, ε = 32.6 L∙mol-1∙cm-1) and H (λ = 375,4 nm, 

ε = 29,3 L∙mol-1∙cm-1). By irradiation with laser light of a wavelength of λ = 396.6 nm 

Cm(III) is excited from its electronic ground state Z (8S’7/2) to the F level (Figure 2.13, 

purple). This absorption process is followed by a non-radiative decay (gray) to the A 

level (6D’7/2). Level A is the first excitation state and lies 16840 cm-1 above the ground 

state. Under the emission of fluorescence a population of state Z from state A takes 

place (orange). A substitution of H2O ligands in the first coordination sphere of the 

Cm3+ aquo ion by a complexing ligand causes a bathochromic shift. The stronger the 

ligand and the higher the number of coordinating ligands the stronger is the shift of the 

fluorescence light to higher wavelengths. This characteristic shift of the fluorescent 

wavelength allows to derive information on the chemical environment of the Cm(III) ion 

(mainly the first coordination sphere) and enables to derive species distributions of 

Cm(III) depending on different parameters as pH, nature and concentration of ligands. 
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Figure 2.13: Schematic description of the Cm(III) fluorescence process according to Beitz et al. [81] 

using the absorption spectra of Crosswhite et al. [80] and Cm fluorescence spectra (this work).  

  

Beside the Cm fluorescence spectra, the measurement of the fluorescence lifetime of 

the excited state can provide additional insights on the coordination environment of 

Cm(III). Like the bathochromic shift, the decay of the fluorescence lifetime from the 

6D’7/2 to 8S’7/2 state is characteristic for each species [82]. The decay of a single species 

can be explained with a mono exponential decay. If different species are present in the 

sample, a bi- or multi exponential decay has to be considered if the lifetime of the 

excited state is lower than the exchange rate between ligands (which is the case for 

sorption reactions) [83]. 

Cm(III) in solution exhibits fluorescence lifetimes in a microsecond scale. This lifetime 

is depending on the quenching of its chemical surrounding which is mainly caused by 

O-H-vibrations. Substitution of water/OH ligands from the first hydration sphere of 

Cm(III) by other ligands reduces the quenching and the fluorescence lifetime is 

increasing [84]. This effect was empirically described for a H2O/D2O system by Kimura 

et al. [85]. According to this linear correlation, a description of the hydration of Cm(III) 
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in aqueous systems is possible (Equation 5). Beside a reduction of the fluorescence 

intensity, ligands like carbonate [60] or aromatic systems [86] are known to increase 

the fluorescence intensity. This effect is quantified by a fluorescence intensity factor 

(FI), defined as the ratio of the fluorescence intensity of the complexed Cm(III) species 

vs. the intensity of the Cm(III) aquo ion. 

Equation 5 

𝑛𝐻2𝑂 = 0.65 ∙ 𝑘𝑜𝑏𝑠 − 0.88 = 0.65 ∙
1

𝜏
− 0.88 

 

 𝑛𝐻2𝑂:  number of H2O in the first coordination sphere 

 𝑘𝑜𝑏𝑠:  decay rate [ms-1] 

 

2.3.2. Vibronic sideband spectroscopy  

 

Vibronic sideband (VSB) spectroscopy is used to probe the coordination sphere of lu-

minescent metal ions [87-90]. The observed emission bands are generated during the 

non-radiative decay after the laser induced excitation of the metal ion from the exited 

states F, H, G to lowest excited state A (Figure 2.13). The emitted VSB can be corre-

lated with vibration modes of coordinated ligands or functional groups. The energy of 

vibronic sidebands is reduced by the energy of the exited state A, compared to the 

main emission of fluorescence (zero phonon line, ZPL) [91]. For this reason the ob-

served energies of VBS has to be corrected according to Equation 6. 

Equation 6 

EVibration=EZPL-EVSB 
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2.4. Clay minerals 

2.4.1. Structure 

 

In the framework of this thesis two different clay minerals, illite and montmorillonite, 

were investigated. Both are 2:1 sheet silicates consisting of periodical sheets of 2 

tetrahedral silicate layers (T) and 1 octahedral alumina layer (O), called TOT layer 

(Figure 2.14). Isomorphic substitution of Si- and Al-ions by ions with a lower charge 

(e.g. T-layer: Si4+ replaced by Al3+, Fe3+; O-layer: Al3+ by Fe2+, Mg2+) generates a 

negative charged (x) layer surface on the basal planes [92]. 

 

 

Figure 2.14: Structure of the clay minerals (a) montmorillonite and (b) illite modified from Grim et al. 

[93]. 

 

According to the layer charge, clay minerals are differentiated in groups with increasing 

charge. Montmorillonite is assigned to the smectite group (x = 0.2-0.6). Illite with a 

higher charge is member of the vermiculite-illite group (x = 0.6-0.9) [4]. The layer 

charge is compensated by cations located in the interlayer. Hydrated Ca2+ and Na+ 

ions are typical cations in the interlayers of the smectite group. In contrast, the 
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interlayer charge of clay minerals of the vermiculite-illite group is balanced by 

nonhydrated K+ ions [94]. The type of interlayer cations is directly influencing the 

physical properties of clay minerals. Hydrated calcium and sodium enable a temporary 

and reversible incorporation of water molecules into the interlayer, allowing the mineral 

to swell when contacted with water. In contrast to montmorillonite, nonhydrated 

potassium in the interlayer of illite results in a collapse of the interlayer. In this case, 

no water molecules can enter the interlayer, this clay shows no swelling behaviour in 

contact with water [95, 96]. The stability of clay minerals is limited by the dissolution of 

the Al- and Si-layers [97-99]. 

 

2.5. Sorption phenomena 

2.5.1. Cation exchange  

 

Clay minerals are usually capable of adsorbing dissolved or gaseous substances. 

Adsorption processes are often driven by the surface reactivity, charge density, 

hydrophobic properties or the roughness of a surface. An important parameter to 

quantify sorption processes is the specific surface: a correlation of particle size and 

surface per mass. According to this relation, small platelets own a bigger specific 

surface then spherical particle with comparable density. Clay minerals are shaped as 

small platelets leading to a very high specific surface (5-500 m2/g). 70 % of this surface 

are located at basal planes between the TOT layers. Only 30 % is attributed to the 

edge sides. Surface areas in the pore space are named inner surface. Edge sides and 

basal planes outside the interlayers are called outer surface [4].  

As the majority of the surface area is located between the interlayers, its availability is 

directly connected with the access to the interlayer pore space. The availability of the 

reactive surface area has a major impact on the characteristic of the clay minerals 

studied in the present work. Montmorillonite, a mineral of the smectite group, enables 

hydrated ions or molecules to access its pore space. This feature is reflected by the 

ability of smectites to swell when contacted with water [95, 96]. After their diffusion into 

the pore space, hydrated ions or molecules can interact with the surface. In contrast to 

this, illite, as member of the vermiculite-illite group, is not able to swell and thus 
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hydrated ions are not able to access the pore space or only to a limited extent [100, 

101]. For this reason the specific surface of illite consists only of outer surface and, 

thus, is significantly lower (50-200 m2/g) compared to smectites (600-800 m2/g) which 

can be completely delaminated in diluted systems [4]. 

In general, clay minerals which are contacted with water show a permanent negative 

surface charge at the basal planes. This charge is attributed to isomorphic substitution 

of ions in the clay structure, which induces in total a permanent und pH-independent 

charge [12]. In addition, amphoteric hydroxyl groups located at the edge sides can be 

protonated in the acidic or deprotonated in the alkaline pH range, leading to a variable 

pH-dependent charge [102, 103]. Further effects of variable surface charge which 

influence the sorption of cations are given in chapter 2.5. 

The permanent surface charge of the basal planes is compensated by the adsorption 

of dissolved counter ions in the diffused double layer. The sum of this charge is called 

the cation exchange capacity (CEC). The concept of CEC describes the ability of a 

clay mineral to exchange adsorbed cations against each other [4]. Two physical 

properties are effecting the affinity of cations to adsorb. Ions with a high effective 

charge tend to stronger absorption on the surface, compared to ions with a lower 

charge (e.g. Na+ < Mg2+ < Al3+ < Th4+). If there is no difference in charge, the ionic 

radius is the key parameter (Li+ > Na+ > K+ > Rb+ > Cs+) [104]. In the presence of high 

salt concentration, the mineral surface will be saturated with cations of the respective 

salt. This saturated surface is not available for a further uptake of cations [17]. 

 

2.5.2. Sorption of lanthanides and actinides 

 

There are various processes of the retention and mobilisation of lanthanides and 

actinides in geochemical systems with different physicochemical reactions relations 

that are illustrated in Figure 2.15. The availability of radionuclides is based on their 

solubility, which is directly affected by redox processes and complex formation 

reactions. Already dissolved actinides can form aqueous complexes with various 

ligands or undergo sorption reactions onto mineral surfaces. In case of an 

oversaturation also colloids (intrinsic colloids) or a fresh precipitates can be form. [4, 



 
 

 

 Actinide and groundwater geochemistry 

 
27 

 
  

105]. Each of these processes can affect the mobility and migration behaviour of 

actinides in the near and far field of a repository for nuclear waste. Interactions between 

cations and mineral surfaces are together with their solubility a key parameter in 

radionuclide retention. Sorption processes, consisting of adsorption and desorption 

reactions, are one of the most important interactions between solid phases (adsorbent) 

and a liquid or gaseous phase (adsorbate).  

 

 

Figure 2.15: Schematic illustration of retention and release mechanisms of metal cations [4, 105]. 

 

An adsorbate enters different steps depending on the distance to the adsorbent during 

the sorption process (Figure 2.15, red box, [4]). Two types of interaction mechanisms 

are reported. Electrostatic effects are forming weak outer sphere complexes 

(physisorption, cation exchange), mostly at surfaces with a permanent charge. 

Covalent bonds are formed with reactive surface groups like the amphoteric hydroxyl 
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groups in clay minerals forming inner sphere complexes. In the first cases 

(physisorption) the bonding energy is relatively low, resulting in a fast sorption and 

desorption kinetic and an easy exchange with other cations. If no other retention 

mechanism is active, like incorporation or surface reduction, these processes are fully 

reversible within a relatively short period of time. Physisorption is described as ion 

exchange. A coordination of the adsorbate with reactive surface groups can involve 

covalent bonding with a significantly higher binding energy. The stronger interaction 

between adsorbate and adsorbents is influencing the chemical structure. Due to 

changes in the first coordination shell induced by the sorption reaction, desorption 

processes can show significantly slower kinetic. At higher adsorbate concentrations 

surface precipitation (at even lower concentrations than from homogeneous solutions) 

or cluster formation at the surface can occur. Both effects are supporting a strong 

retention of the sorbate. Dynamic processes at the solid-liquid interface such as 

dissolution-reprecipitation reactions can result in incorporation of the adsorbate [4]. 

In geochemical model calculations both outer and inner sphere sorption has to be de-

scribed by surface complexation reactions. A cation exchange reaction for a sodium 

saturated clay mineral (Na-X), for example with Eu(III), can be formulated with the fol-

lowing equation: 

Equation 7: 

3 Na-X + Eu3+ → 3 Na3+ + Eu-X3 

The inner sphere sorption process takes places at the amphoteric edge sites of the 

clay mineral. For this reason a pH dependency of the sorption site (≡S) has to be de-

fined. According to Equation 8 and Equation 9 a protonation and deprotonation of these 

surface sites is can be defined. 

Equation 8 

≡S-OH + H+ → ≡S-OH2
+ 

Equation 9 

≡S-OH → ≡S-O- + H+ 
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In analogy to that, the adsorption of cation (Eu3+) to sorption sites can be described 

(Equation 10). 

Equation 10 

≡S-OH + Eu3+ → ≡S-O-Eu2+ + H+ 

Further surface complexation reactions including ligand exchange reactions at the sur-

face site itself, the addition of ligands to the central metal ion or the exchange of the 

central metal ion in favour of a stronger adsorbing ion can be defined in similar ways. 

A summary of the surface complexation reactions relevant for this study are given in 

section 3.3.1. 

Sorption processes are getting more complex, if additional ligands like carbonate or 

organic acids are added to the system. On the one hand these anionic ligands are well 

known for building strong aquatic complexes with actinides [34, 35, 60] and on the 

other hand, an adsorption of the anionic ligands to mineral surface is reported at least 

in the acidic pH range [37, 39, 106-111]. The affinity of organic acids to mineral sur-

faces in cement (CSH phases) was also correlated with their affinity to Ca2+ as counter 

ions [112]. Several studies are describing a strong decrease for An(III) retention on 

clay minerals in the presence of carbonate [22, 113]. So far no data are available for 

the impact of the organic compound citrate or gluconate and their influence on the 

adsorption of actinides onto clay minerals. Beside inorganic or organic ligands added 

to the system, the competition of silicate complexation and adsorption of Ln(III)/An(III) 

is not completely understood.  

Most of the previous studies on the complexation of SiO4 with Cm(III) [18, 56] were 

performed within stability field of the clay minerals (pH = 3-10 [15]). An approach in 

alkaline media up to pH = 12.4 was reported by Huittinen et al. [114]. A similar ap-

proach is demonstrated for the clay minerals illite du puy and montmorillonite in hyper-

alkaline NaCl and Ca(OH)2 solutions in the appendix 7.5. 
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2.5.3. Comparing the sorption of An(III) / An(IV) / An(V) onto   

clay minerals 

 

In the low pH range (pH < 5.5), a constant contribution to the retention of actinides in 

oxidations states 3, 5 and 6 is given by cation exchange. For tetravalent actinide ions 

only inner-sphere surface complexation is found. Cation exchange is suppressed at 

high salt concentrations. With increasing pH the hydroxyl groups at the edge sites are 

successively deprotonated. Thus, at pH > 5.5 inner sphere sorption becomes the 

dominating sorption mechanism for trivalent actinide ions. [42]. In the frame of a deep 

geologic repository for nuclear waste, anoxic and reducing conditions will be 

established within a relatively short time after closing due to the sealing (exclusion of 

oxygen) and corrosion processes (consumption of oxygen). This, of course, has a 

strong impact on redox sensitive radionuclides, by applying reducing conditions in the 

repository. The following general consideration is focused on systems in absence of 

competing ligands. 

The sorption of trivalent actinides shows a strong ionic strength dependency in the low 

pH range, where outer sphere sorption takes place (cation exchange) [18, 115, 116]. 

The retention of An(III) is reduced under saline conditions (I > 0.5). With increasing pH 

the uptake of trivalent actinides is increasing constantly between pH = 6-8 to an almost 

quantitative retention [17, 42, 117]. Above pH > 8 a nearly quantitative retention is 

observed. 

Tetravalent actinides show a significantly higher affinity to charged surfaces, compared 

to trivalent actinides [118]. Already in the acidic range (pH > 3) An(IV) cations are 

adsorbing with high retention ratios. The sorption mechanism is dominated by inner 

sphere complexes up to high pH values [14]. 

Pentavalent actinides only start to form inner sphere complexes above pH > 8, 

followed by an increase in retention with increasing pH [14]. Actinyl ions like the 

pentavalent NpO2
+ are bearing an effective charge of Zeff = 2.3 ± 0.2, compared to a 

low formal charge. This effects a strong impact of ionic strength on the sorption 

behaviour dominated by the formation of outer spherical complexes [119]. The 

retention of AnO2
+ is significantly lower compared to An(III) and An(IV).  
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As described in previous sections, foreign ions which are incorporated in the crystal 

structure of natural clay rock can affect their interaction with actinides. Especially iron 

impurities (as Fe(II) ) can influence the redox speciation and as a result of this, the 

sorption properties of redox sensitive radionuclides like uranium, plutonium and 

neptunium [120, 121]. For pentavalent neptunium a surface reduction model was 

applied to describe anomalies in Np(V) sorption data on the clay mineral illite. Since 

the reduced tetravalent form has a significantly higher affinity to the mineral surface 

reduced neptunium gets immediately adsorbed. This approach can explain an increase 

in Np sorption on iron rich clay minerals [122]. 
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3. Experimental 

All chemicals, clay minerals and analysis methods used in this work are described in 

the following section. The studied systems were modelled with the geochemical code 

PhreeqC [45] using the thermodynamic data given in the THEREDA (thermodynamic 

reference database) [123] or ThermoChimie database [73]. These model calculations 

were performed in order to avoid precipitation of dissolved components. (e.g. the 

anionic ligands tend to form stable precipitates in the presence of Ca2+). The 

concentrations of all compounds in the experiments were at least a factor of 3 below 

their solubility limit. Also the contribution to the total ionic strength of competing ligands 

to the investigated systems was considered within the model calculations. For a more 

detailed description of standard analysis methods please refer to specialised literature. 

3.1. Materials 

3.1.1. Chemicals 

 

The ionic strength of the electrolyte solutions was set to specific values with solid NaCl 

and CaCl2. The pH of the samples was varied with defined addition of aliquots of NaOH, 

CaOH2 and HCl. The concentration of the ligand was adjusted with solid Na-Gluconate, 

Na-Citrate and Na2CO3 / NaHCO3. These chemicals were obtained from Merck (pro 

analysis) and used without further purification. The electrolyte solutions were prepared 

with deionized water produced by a Milli-Q® system of Millipore (resistance 

18.2 MΩ/cm). Commercial buffer solutions for pH calibration were obtained by Merck. 

The samples in D2O solution for FTIR investigations were prepared by dissolving the 

respective salts without crystal water in pure D2O (Aldrich, > 99%). The pH was 

adjusted with DClO4 and NaOD (Aldrich, > 99%). Electrolyte solutions were prepared 

using D2O and salts without crystal water. 

A 152Eu stock solution ([Eu]tot = 6.0 10-4 M) was used as spike in the batch sorption 

experiments (Amersham International). The isotopic composition of the 152Eu solution 

was 151Eu (83%), 152Eu (13%, t1/2 = 13.33 a), 153Eu (4 %). A 248Cm stock solution 

([Cm]tot = 1.3 10-4 M) was used as spike for time resolved laser fluorescence spectros-

copy. The isotopic composition of the 248Cm solution was 248Cm (89.68 %), 

246Cm (9.38 %), 243Cm (0.43 %), 244Cm (0.30 %), 245Cm (0.14 %) and 247Cm (0.07 %). 
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3.1.2. Electrolyte solutions  

 

Carbonate- / Ligand-free solutions 

 

To carry out experimental studies without the influence of a competing ligand (e.g. 

carbonate, gluconate, citrate) background electrolyte solutions with different NaCl and 

CaCl2 concentrations ([NaCl] = 0.1, 1, 3 M; [CaCl2] = 0.06, 0.6, 2 M) were prepared 

with ionic strengths comparable to previous studies by Schnurr et al. [17]. The solutions 

were purged with Ar(g) for 3 h to remove O2 and transferred into an argon atmosphere 

glove box (O2 ~ 2 ppm). All experimental work was performed in protective gas 

atmosphere. 

 

Carbonate solutions 

 

Two different types of carbonate solutions were prepared with a NaCl background 

electrolyte concentration of [NaCl] = 0.1, 1, 3 M.  

Type I (closed system): A background electrolyte solution with a constant total 

carbonate concentration of 0.1 M Na2CO3 /NaHCO3 was prepared in an Ar-CO2 glove 

box (99 % Ar, 1 % CO2) with Ar-purged MilliQ water. The pH was varied from 

pH = 7-12.5 by addition of HCl or NaOH. 

Type II (equilibrated system): For each single pH-value and salt concentration the 

NaHCO3, Na2CO3, HCl and NaOH content was calculated using the geochemical code 

PhreeqC [45] and the THEREDA (thermodynamic reference database) [123] in 

equilibrium with atmospheric CO2 (pCO2 = 10-3.3 bar) and at 1 % CO2. For each pH value 

and partial pressure a single electrolyte batch was prepared by addition of the 

calculated amount of NaHCO3, Na2CO3, HCl and NaOH to MilliQ water, which was 

equilibrated with the CO2 containing atmospheres before to achieve stable initial 

conditions. The samples at pCO2 = 10-3.3 bar were prepared in contact with air and all 

experiments were performed under atmospheric conditions. Sample solutions in 

equilibrium with 1 % CO2 were set up in an Ar-CO2 glovebox (99 % Ar, 1 CO2). 
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Gluconate / Citrate / Selenite solutions 

 

Samples which contain gluconate, citrate or selenite were prepared by adding a 

defined amount of 1 M Na-Gluconate or 0.1 M Na-Citrate / Na2SeO3 standard solution 

to the electrolyte. In case of GLU two different sets of samples were studied. One set 

was prepared with a constant gluconate concentration of [GLU]tot = 1∙10-2 M. The 

second set was prepared with increasing gluconate concentration form [GLU]tot = 

1∙10-5 - 5∙10-3 M. In case of citrate only one set of samples was prepared with a 

constant concentration of [CIT]tot = 1∙10-3 M. Since especially Ca-Citrate phases 

(Ca3(Cit)2:4H2O, SI Figure 7.4) are showing a lower solubility than Na-Citrates it was 

necessary to reduce the total ligand concentration compared to gluconate systems 

from 1∙10-2 M to 1∙10-3 M. A 0.1 M NaCl solution was prepared with 3∙10-3 M Na2SeO3 

for batch sorption experiments. 

 

3.1.3. Clay minerals 

 

Different natural clay minerals used in this work (Illite du Puy (Na-IdP-2), 

montmorillonite (Na-SWy-2)) were provided as an aquatic suspension from the 

Laboratory for Waste Management (LES) of the Paul Scherrer Institute (PSI). Both 

clays were already purified and transformed into a homoionic sodium form. This 

purification process [15] and pre-treatment procedures are well described in the 

literature [12, 15, 42, 124]. Furthermore, a synthetic iron free montmorillonite (IFM, 

[125]) was provided by Laboratoire des Máteriaux Minéraux, Mulhouse, France. 

Montmorillonite 

 

The montmorillonite type “Wyoming” (Na-SWy-2) was obtained from a clay deposit 

opened by the Clay Mineral Society (CMS) of the University of Missouri. Na-SWy-2 

originates from the cretaceous Newcastle formation, Crook County, Wyoming (USA). 

A conditioned [11] clay suspension was obtained from Labor für Entsorgung LES-PSI 

(Switzerland) with a solid to liquid ratio of 11.91 g/L. Additionally, a sample of dried 

clay (same origin and purification) was suspended in D2O and used for experiments 
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on carbonate sorption using infrared spectroscopy. Table 5 summarizes the relevant 

data on this clay mineral. 

 

Table 5: Characterization of Na-SWy-2 [17, 105]. 

Clay s/l ratio CEC N2-BET w-% Fe 

Na-SWy-2 11.91 g/L 87.0 meq/100g 37.6 m2/g 3.80 

 

Illite du Puy 

 

The clay mineral phase Illite du Puy (IdP) originates from the Le Puy en Velay, Massif 

Central in France. A carefully purified suspension of Na-IdP-2 was obtained by Labor 

für Entsorgung LES-PSI (Switzerland) with a solid to liquid ratio of 32.72 g/L.  

 

Table 6: Characterization of Na-IdP-2 [15]. 

Clay s/l ratio CEC N2-BET w-% Fe 

Na-IdP-2 32.72 g/L 22.5 meq/100g 97 m2/g 7.61 

 

Iron free montmorillonite  

 

Natural clay minerals contain variable contents of structural iron, which may lead to 

quenching of Cm(III) luminescence in spectroscopic sorption experiments. To avoid 

such effects, a synthetic iron free montmorillonite (IFM) was obtained from Laboratoire 

des Máteriaux Minéraux, Mulhouse, France. This clay mineral was synthesized using 

the fluorine route by Reinholdt et al. [125]. With this approach an iron free 

montmorillonite was produced with an isomorphic substitution of octahedral aluminum 

by magnesium. According to Soltermann et al. [126] the CEC properties of IFM are 

comparable to that of the montmorillonite Na-SWy-2. 

 

Table 7: Characterization of IFM [17, 125, 126]. 

Clay s/l ratio CEC N2-BET w-% Fe 

IFM powder 81.0 meq/100g n.a. 0* 

*below detection limit [17]. 
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3.2. Experimental methods 

3.2.1. Batch sorption experiments 

 

Batch sorption experiments in presence of different competing ligands were performed 

as a function of pH. A detailed description of the experimental conditions is 

summarized in Table 8. 

Batch sorption experiments in presence of carbonate were performed to investigate 

the retention of Eu(III) onto the clay minerals Illite du Puy (Na-IdP-2) and 

montmorillonite (Na-SWy-2) using a solid to liquid ratio of 1 g/L and different NaCl 

solutions ([NaCl] = 0.1, 1, 3 M, described in 3.1.2). The radionuclide concentration was 

limited to 2∙10-8 M. These electrolyte solutions were equilibrated either with ambient 

CO2 or an Ar atmosphere with 1 % CO2 (see 3.1.2). The stability of the pH of all 

electrolyte solutions was monitored for 2 weeks before used in further experiments. 

Furthermore, all electrolyte solutions showed stable pH values (± 0.15 pH units) over 

more than 4 years. 

Studies in presence of gluconate ([GLU]tot = 0.01 M) and citrate ([CIT]tot = 10-3 M) were 

performed in NaCl ([NaCl] = 0.1, 1, 3 M) and CaCl2 ([CaCl2] = 0.06, 0.6, 2 M) 

electrolyte solutions as described in section 3.1.2. In the case of gluconate an 

additional set of experiments with increasing ligand concentration 

([GLU] = 10-5-10-3 M) at pH = 9, 10.5 and 12 was performed. 

Selenite was chosen as an analogue to carbonate in Eu(III) batch sorption experiments. 

Aim of experiments was to check for the adsorption of similar anionic ligands on clay 

minerals and their impact on cation sorption. The advantage of selenite compared to 

carbonate is the lower volatility and the easier analytical detection. Based on that a 

series of batch sorption experiments to study the sorption of trivalent europium onto 

montmorillonite in presence of 10-3 M SeO3
2- in 0.1 M NaCl was performed as well. 

In case of gluconate, citrate and selenite all studies were performed under anoxic 

conditions in an argon atmosphere (glove box technique). Experiments with carbonate 

were performed in equilibrium with different CO2 containing atmospheres by using 

ambient conditions (pCO2 = 10-3.3 bar) and 10-2 bar CO2 (1% CO2 99 % Ar glove box). 

Beside experiments where the solution was in equilibrium with the gas phase, 

experiments with a constant total carbonate concentration of 0.1 M Na2CO3 / NaHCO3 
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were carried out in closed vessels in a 1% CO2 99 % Ar glove box. All experiments 

were performed at 20 °C following the experimental routine below. 

 

Table 8: Experimental set up of 152Eu(III) batch sorption experiments  

Clay mineral Na-IdP-2 Na-SWy-2 atmosphere 

Solid to liquid ratio 1 g/L  

152Eu 2∙10-8 M  

Equilibration time 3-5 d  

Phase separation 694000 g (90000 rpm), 1 h  

γ-Counting 3 h  

                Electrolyte solutions: 

 Carbonate  

In equilibrium with atm. 

CO2 
0.1, 1, 3 M NaCl 

Ambient 

In equilibrium with 1 % 

CO2 
0.1, 1, 3 M NaCl 

1 % CO2 99 % 

Ar 

Const. [CO3
2-] = 0.1 M 0.1 M NaCl - 

1 % CO2 99 % 

Ar 

 Gluconate  

Const. [GLU] = 0.01 M 
0.1, 1, 3 M NaCl 

0.06, 0.6, 2 M CaCl2 

Ar 

[GLU] = 1∙10-5–5∙10-3 M 
0.1, 1, 3 M NaCl 

0.06, 0.6, 2 M CaCl2 

Ar 

 Citrate  

Const. [CIT] = 10-3 M 
0.1, 1, 3 M NaCl 

0.06, 0.6, 2 M CaCl2 

Ar 

 Selenite  

Const. [SeO3
2-] = 3∙10-3 M - 0.1 M NaCl Ar 

-: No experiments were performed for this systems. 

 

Batch sorption experiments were set up with a total volume of Vtot = 5 mL in 20 mL 

HDPE-Bottles (Zinsser Analytics). In a first step the clay suspension was mixed up with 

the electrolyte solution and a small spike of slightly acidic 152Eu was added. Since the 
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carbonate containing electrolyte solutions were already at a fixed pH no further 

adjustment of the pH was needed due to the buffer capacity of carbonate. In case of 

the organic ligands (GLU / CIT) and selenite or in absence of competing ligands the 

pH was readjusted over the next days. In all experiments the pH was monitored daily. 

Final sampling took place 3 days after a constant pH was reached (ΔpH < ± 0.1). A 

volume of 4.2 mL was taken from each sample and transferred into centrifugation tubes 

(Quick-Seal, Beckman Coulter). The vials were welded and centrifuged for 1 h with a 

relative centrifugal force (rcf) of 694000 g (rotor: 90TI at 90000 rpm, Centrifuge: 

Beckman Coulter OPTIMATM XPN-90). After the centrifugation ~ 3 mL of the 

supernatant are removed and immediately acidified with 50 µL concentrated HNO3 in 

order to reduce sorption to the walls of the vessel. An aliquot of 1 mL of the acidified 

supernatant is then measured with gamma counting for 3 h (Wallac 1480 3‘‘ Wizard 

Automatic Gamma Counter, Chapter 3.3.3). Afterwards the logarithmic distribution 

coefficients log(KD) are calculated. 

 

Distribution coefficient 

 

In general, sorption properties of cations are described by a distribution coefficient (KD). 

The KD characterizes the distribution of substances between two physically separated 

phases, like gaseous, liquid or solid phases or the interface between organic and 

aqueous liquid phases. In case of adsorption experiments the distribution between the 

concentration of the adsorbed species (csorb) and the aqueous species (ceq) is 

quantified by the distribution coefficient (KD, Equation 11). Assuming a thermodynamic 

equilibrium, the systems can be described by a linear adsorption isotherm, using the 

Henry adsorption constant [127]. 

Equation 11 

csorb=KD∙ caq 

 

 csorb: concentration of adsorbed species (mg/kg) 

 caq:  concentration of dissolved species (mg/L) 

 KD:  distribution coefficient (L/kg) 
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This linear correlation between adsorbed and dissolved species is only valid for 

systems with sufficiently low concentrations of adsorbate and if only one sorption site 

contributes significantly to the adsorbate binding. To apply a Henry isotherm an 

adequate number of identical and independent sorption sites must be available. Onto 

these sorption site only a mono layer of adsorbate can be established. Approaching 

the saturation of sorption sites the KD will decrease with the adsorbate concentration 

and can be described with a Langmuir isotherm. The KD is defined as the distribution 

between adsorbed and dissolved metal ions (Equation 12). 

Equation 12 

KD=
csorb

caq

=
c0-caq

caq

 ∙
V

m
  

 

 csorb: total initial concentration of the adsorbate (mol/kg) 

 caq: aqueous concentration of the adsorbate at equilibrium (mol/L) 

 V: sample volume (L) 

 m: mass of the solid / absorbent (kg) 

 

3.2.2. Sample preparation TRLFS 

 

Different procedures for the preparation of samples for TRLFS measurements were 

applied. A summary is given in Table 9: (1) Preparation of wet paste samples was done 

by centrifugation of the suspension. The remaining wet paste of clay was transferred 

into a copper sample holder and sealed airtight. (2) A reduced solid to liquid ratio of 

0.25 g/L was selected for the measurement of aqueous suspensions. This was re-

quired as light scattering or light absorption effects of the incident laser beam and of 

the fluorescence emission would reduce the sensitivity of the measurements. (3) 

Aquatic solutions with no solid phase were studied and titrated directly in cuvettes. All 

samples were treated under anoxic or ambient conditions or under an atmosphere with 

a defined CO2 partial pressure. Wet paste samples were centrifuged, the supernatant 

and sediment were separated and measured separately in cuvettes and solid sample 

holders. 
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Table 9: Experimental setup for Cm(III) spectroscopy. 

Ligand [Cm(III)] Electrolyte Clay c* w.p.** 

CO3
2-  

(Equilibrium ambient CO2) 

1∙10-7 M 

0.1, 1, 3 M NaCl 
0.25 g/L X  

1 g/L  X 

CO3
2-  

(Equilibrium 1 % CO2) 
0.1, 1, 3 M NaCl 

0.25 g/L X  

1 g/L  X 

Gluconate 0.01 M 
0.1 M NaCl 

0.06 M CaCl2 

 X  

0.25 g/L X X 

Citrate 1∙10-3 M 
0.1 M NaCl 

0.06 M CaCl2 

 X  

0.25 g/L X X 

c*:  solution / suspension in cuvette 

w.p.**: wet paste 

 

3.2.3. Sample preparation ATR-IR 

 

Surface sensitive ATR-IR measurements were conducted to derive information on the 

sorption processes of carbonate onto clay mineral surfaces. Therefore, a stock sus-

pension of 10 g/L Na-SWy-2 in D2O with 0.1 M NaCl was prepared. Two different sets 

of samples were prepared: A reference system under anoxic conditions in the absence 

of CO2 and a second set at a fixed concentration of 0.01 M Na2CO3. All chemicals were 

stored and handled under Ar or CO2/Ar atmosphere. The pD was adjusted using a 0.1 

M Na2CO3 solution in D2O, NaOD and DCl solution. The samples were equilibrated at 

pH = 5.5 for 1 week. A volume of ~50 µL deuterated suspension was transferred onto 

an ATR crystal single bounce cell (Bruker, Platinum ATR cell, Bruker Tensor 27 FT-IR). 

The sample was measured in a series of 5 measurements with a delay of 2 min under 

ambient conditions. 

 

3.2.4. Long term sorption experiments 

 

The sorption behaviour of trivalent lanthanides and actinides onto clay minerals was 

studied over 2 years at elevated pH to check for possible phase transformations/dis-

solution effects/recrystallizations of the clay minerals on sorption and possible incor-

poration of radionuclides. Na-IdP-2, Na-SWy-2 and IFM were spiked with Eu(III) or 
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Cm(III) and contacted with portlandite pore water (pH=12.3). A NaCl solution at the 

same pH was set up as a reference system to examine a potential Ca-effect (Table 

10). The sample preparation deviated from the standard batch sorption procedure: A 

saturated Ca(OH)2 solution was prepared under anoxic conditions. After 2 weeks of 

equilibration time the electrolyte suspension was centrifuged with rcf of 37700 g for 30 

min (rotor: 45TI at 18000 rpm, Centrifuge: Beckman Coulter OPTIMATM XPN-90) to 

remove any solid phase (e.g. colloidal species). The pH was determined to be 

pH = 12.3. A 0.1 M NaCl solution was adjusted to the same pH using 4 M NaOH. 

 

Table 10: Experimental setup of long term experiments of Eu(III) / Cm(III) sorption onto clay minerals 

at cement pore water conditions. 

 Eu(III) Cm(III) 

Clay 2 g/L 2 g/L 

Nuclide concentration 2∙10-8 mol/L 1∙10-7 mol/L 

Vtot 60 mL 6 mL 

Electrolytes Clay minerals 

Ca(OH)2 sat. 

pHstart = 12.30  

Na-IdP-2 

Na-SWy-2 

IFM 

Na-IdP-2 

Na-SWy-2 

IFM 

0.1 M NaCl 

pHstart = 12.30 

Na-IdP-2 

Na-SWy-2 

IFM 

Na-IdP-2 

Na-SWy-2 

IFM 

 

The clay suspension was contacted with the slightly acidic radionuclide containing so-

lution first (pH = 6-6.5, V ~ 1-2 mL). By stepwise addition of small aliquots of the port-

landite pore water, the formation of colloidal Cm(OH)3 or Eu(OH)3 species was avoided. 

A step sequence of 4x10 µL with a 1 h sorption phase between each addition step was 

chosen. This procedure was repeated with 20, 50, 100, 500 µL and 1 (and 5 mL in 

case of Eu(III)) until the final volume of 6 mL (Cm(III) sample) or 60 mL (Eu(III) sample) 

were reached. During this phase, the sample was gently titrated to alkaline pH allowing 

the radionuclides to adsorb to the clay phase, without any risk of precipitation. These 

samples were monitored for 2.5 years by measuring pH, TRLFS of Cm(III) containing 
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samples and gamma counting of radiolabelled Eu(III) containing samples. To deter-

mine the state of clay degradation, SEM-EDS measurements were applied to study 

changes in the morphology and XRD analysis was performed to identify changes of 

the bulk structure. Experimental results are given in the appendix 7.5. 

 

3.3. Analytical Methods 

 

3.3.1. pH-measurement 

Atmospheric and anoxic conditions 

 

To analyse pH depending phenomena a precise determination of the pH is essential. 

A direct measurement of the pH is only possible for diluted systems with a low ionic 

strength. In saline systems with higher ionic strength, diffusion potentials and 

interaction between dissolved ions change the measured voltages and only an 

operational pH-value (pHex) can be directly determined. To compensate for these 

effects an empirical correction coefficient (A) was defined in previous studies [128]. As 

described below (Equation 13), the electrolyte composition and concentration has to 

be considered to convert the measured operational pH-values (pHexp) into the molal 

proton concentration (pHm = -log m(H+)). Table 11 summarizes the correction 

coefficients for NaCl and CaCl2 electrolyte systems used in this work.  

The operational pHexp was measured using a Metrohm combined class electrode and 

an Orion Dual Star pH-meter or Orion720 A+. 

Equation 13 

pH
m

=pH
exp

+Asalt 

 

pHm: molal proton concentration 

pHexp: measured operational pH-values 

A: empirical correction coefficient 
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The ionic strength of a solution is defined by the concentration and the charge of the 

dissolved ions. It’s defined as the sum of single species multiplied with the square of 

its charge (Equation 14). 

Equation 14 

Ic=
1

2
∙ ∑ ci∙zi

2

i
 

 

 Ic: ionic strength (depending on the ion concentration, c) 

 ci: concentration of ion i 

 zi: charge of ion i 

 

Table 11: Empirical correction coefficient (A) valid for different background electrolytes and 

concentrations according to Altmaier et al. [128], used in this work.  

[NaCl] ANaCl [CaCl2] ACaCl2 

0.1 M 0 0.06 M -0.08 

1 M 0.09 0.6 M 0.15 

3 M 0.49 2 M 0.85 

 

Elevated CO2 partial pressure 

 

A glovebox with a defined CO2 partial pressure (1% CO2, 99% Ar) was used to work 

with equilibrated carbonate systems. To accurately measure the pH, the filling and 

storage solutions of the electrodes must be equilibrated with the CO2 atmosphere prior 

to the measurement. Otherwise an uptake of carbonate into the filling solution would 

cause a drift during the pH measurement. Standard buffer solutions above pH = 4 

show an in-diffusion of CO2 leading to an acidification. For this reason every calibration 

was performed with fresh buffer solutions, which were stored under ambient conditions 

at 5°C. During a single calibration (max. 5 min), the acidification of the buffer by CO2 

in diffusion was insignificant. 
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3.3.2. Measurement of CO2 gas atmospheres 

 

The CO2 partial pressure of the laboratory atmosphere and the glove boxes in use 

were measured with a Telaire TEL-7001 CO2 infrared sensor and a Zirox SGM5T-6.9A 

instrument. Both instruments are based on a nondispersive infrared sensor (NDIR 

sensor). A schematic illustration of the setup given in Figure 3.1. 

  

 

Figure 3.1: Schematic illustration of a NDIR sensor [129] 

 

An incident infrared beam is focused onto a chopper by a lens. The beam is then sent 

through a reference gas or the actual gas sample. A second lens is focussing the IR 

beams from both pathways back into the detector. As an alternative to the mechanical 

chopper, a system with two detectors, one for each pathway, can also be used. This 

latter type was used in the present work. 

The presence and quantity of CO2 in the gas sample is determined by a transmission 

measurement (ratio: sample/reference). Nitrogen is commonly used as inert reference 

gas with no absorbance of light in the infrared. Both devices use a flow cell for 

continuous measurements. Beside CO2 all infrared active gasses interfere the 

measurement. For experiments during this work neither organic gases nor water were 

present in critical concentrations. 
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3.3.3. 𝜸-Counting 

 

A precise determination of the 𝛾-activity in solution was achieved with a Wallac 1480 

3‘‘ Wizard Automatic Gamma Counter. This device is based on a thallium doped NaI 

single crystal detector (Ø 76.2 mm) with a 75 mm lead shielding. If ionising 𝛾 radiation 

enters the NaI(Tl) crystal, the generated photoelectrons transfer their energy into the 

NaI(Tl) lattice. Excited centres of the lattice subsequently relax under emission of light. 

Emitted photons are multiplied (photomultiplier tube, PMT) and convert into an 

electronic signal. This method provides an accurate and sensitive counting of gamma 

emitting radionuclides with a low energy resolution. 

 

3.3.4. Time resolved laser fluorescence spectroscopy (TRLFS) 

 

TRLFS measurements were performed with a Nd:YAG (Continuum Surelite II, 

λ = 355 nm, repetition rate: 10 s-1) pumped dye laser system (Radiant dyes Narrow 

Scan, Dye: Exalite398, Energy: 1-2 mJ), operated at a constant excitation wavelength 

of λ = 396.6 nm (Figure 3.2). The resulting fluorescence was detected with an optical 

multichannel analyser with polychromator unit (Shamrock 303i, Andor, Grating: 1200 

lines/mm, Range: λ = 580-620 nm) and an ICCD-camera (iStar, Andor; Modell DH720-

18F-63). Measurements were taken with a delay time of 1 µs after the laser pulse. To 

monitor the fluorescence lifetime, series of single spectra measurements with increas-

ing delay time (steps: Δt = 3-100 µs) were taken. 

Beside fluorescence emission, the excitation of Cm(III) with a laser beam of suitable 

wavelength (396.6 nm) generates a local infrared spectra representing the first coordi-

nation sphere of the central metal ion. This local infrared spectra is detected between 

λ ~ 600-790 nm, above the fluorescence emission. Due to the low intensity of these so 

called vibronic side bands (VSB) low wavenumbers are superimposed by the fluores-

cence emission.  

As described in section 3.2.2 different types of samples were used. Measurements of 

clear solutions and suspensions were conducted in cuvettes, while for wet paste 

samples a special solid sample holder made of copper was used. Both devices are 

suitable for treatment of air sensitive samples. 
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Figure 3.2: Schematic description of a Nd:YAG pumped dye laser system for time resolved laser 
fluorescence spectroscopy. 

 

 

Figure 3.3: Sample holder for measuring wet pastes with TRLFS under exclusion of disturbing light 

entrance. In the photo, the shielding has been removed.  
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For the measurement of wet paste samples a new sample holder was designed (Figure 

3.3). The sample holder consists of a cube (Newport Opto-Mechanics) which can be 

moved in x, y, z-direction and is shielded on five sides to exclude interfering light en-

trance. The collection of the fluorescence emission via an optical fibre takes place per-

pendicular to the sample surface maximizing the detection yield of the fluorescence 

emission. The samples were prepared as described for batch sorption experiment, us-

ing 1 g/L clay and 1∙10-7 M Cm(III). Experiments in presence of carbonate were per-

formed in an Ar-CO2 glove box (99 % Ar, 1 % CO2). In the absence of carbonate a CO2 

free Ar glovebox was used (section 3.2.2). 

 

3.3.5. Attenuated total reflection infrared (ATR-IR) 

 

ATR-IR measurements were performed in cooperation with Dr. Peter Weidler and 

Stefan Heißler at the Institute of Functional Interfaces (IFG) at KIT, Karlsruhe. For 

measurements of carbonate adsorbed onto a clay mineral surface, a Bruker Tensor 27 

coupled with a Platinum ATR cell was used. A spectral range from 4000-370 cm-1 was 

covered with 512 scans for each spectrum and a resolution of 4 cm-1 was obtained. All 

measurements were repeated 5 times with a delay of 2 min to let the suspension 

sediment onto the ATR crystal.  

Surface sensitive infrared measurements were performed with a cell for attenuated 

total reflection (ATR-IR). The ATR cell consists of an infrared transparent crystal 

(diamond) with a high refraction index and polished surfaces. An infrared beam is 

coupled into the crystal at an angle of 45°. At the interface between crystal and sample 

the beam is totally reflected. Due to the Goos-Hänchen effect (wave properties of the 

incident beam) the beam is not reflected directly at the crystal plane [130]. The 

reflection takes place on a virtual point which is shifted into the sample media with a 

lower optical density. This is called an evanescent wave. It is probing the sample 

depending on its penetration depth (1.66 µm for diamond/water interface). After the 

reflection in the sample, the light is directed to a detector. As described by Figure 3.4 

the infrared beam can be reflected only once (left) or multiple times (right). Single 

bounce cells are generating the spectral information from only one reflection, multi 

bounce cells are probing the sample more often during one measurement. Since every 
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reflection is causing a loss in intensity multi bounce cells are limited by a low signal to 

noise ratio. Beside different spectral properties, multi-bounce cells are vulnerable 

against mechanical stress (common material ZnSe). Single bounce technique provides 

a higher intensity and the crystal material (diamond) is much more robust against 

chemical and mechanical stress. 

 

 

Figure 3.4: Principle of ATR measurement in single (left) and multi bounce cells. 

 

3.3.6. X-Ray powder diffraction (XRD) 

 

Standard XRD analysis of clay minerals were performed under ambient conditions. 

Clay samples were centrifuged and washed with Milli-Q water to remove the electrolyte 

solution and to avoid the formation of NaCl crystals. 50-150 µL of the clay suspension 

were dried onto a single crystal silicon wafer at room temperature and under Ar 

atmosphere. Radioactive samples were sealed in a special sample holder for 

measurements under anoxic conditions. All x-ray powder diffraction measurements 

were performed using a D8 Advance (Bruker) diffractometer with a Cu K-α radiation 

source (λ = 0.15418 nm, I = 25 mA, U = 40 kV) and an energy dispersive detector 

(Sol-X). Data treatment and phase identification was performed using DIFFRAC.EVA 

3.0 (Bruker) and the JCPDS database. 
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3.3.7. Scanning electron microscopy – energy dispersive 
X-ray spectroscopy (SEM-EDS) 

 

A combined SEM-EDS analysis was used to gain information on the morphology and 

chemical composition of clay minerals in the long term experiments. This surface 

sensitive imaging method was used to monitor early stage alteration, invisible for bulk 

characterization methods like XRD. 

After a phase separation the clay was washed with Milli-Q water to remove the 

electrolyte and prevent the formation of NaCl crystals. 15 µL of the re-suspended 

sample were transferred to a polished carbon sample holder. A Quanta 650 FEG 

instrument (FEI) equipped with a Thermo Scientific UltraDry silicon drift X-ray detector was 

used to perform the SEM-EDS analysis. 

 

3.3.8. N2-BET specific surface area 

 

The characterisation of the specific surface of clay minerals was performed by PSI 

(Switzerland) using the N2-BET method [131]. Gaseous N2 is passed over the sample 

which is cooled with liquid nitrogen. Cooling the sample generates a constant pressure. 

By monitoring changes in the N2 pressure, adsorption-desorption isotherms can be 

measured and the specific surface derived (SI: m2/g). 

 

3.3.1. Theoretical calculations 

 

For a theoretical description of sorption processes on a molecular scale a density func-

tional model for clay edges was applied in cooperation with Dr. Michael Trumm of 

KIT-INE. According to Churakov et al. [132] the infinite clay mineral sheet was cut to 

obtain realistic (100) and (010) edges.  

To properly account for the periodicity of the system, Gaussian and plane-waves 

method [133, 134], a particular implementation of density functional theory (DFT) as 

implemented in the CP2K software package [135] was used. With this approach it is 

possible to determine the local structure of different Ln(III)/An(III) surface complexes, 

their relative energy and vibrational spectra. For the latter, an ab initio molecular dy-
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namics (AIMD) approach based on the DFT wave function was employed at room tem-

perature. Vibrational spectra, determined from the velocity auto-correlation function of 

relevant atoms can directly be compared to vibronic sideband spectra (VSB) [136, 137]. 

 

3.3.1. Geochemical Modelling 

 

Important aspects of the present work are investigations in saline media. In concen-

trated salt solutions, a correction of the activity coefficients e.g. of aquatic actinide 

complexes is needed. For this reason the ion-ion interaction has to be considered in 

geochemical models. Two different interaction models were used to describe concen-

trated electrolyte systems: The semi-empirical Pitzer approach which is especially de-

signed for high salt concentrations [138, 139] and the SIT (specific ion interaction the-

ory) [140] approach for lower concentrated electrolytes. 

The Pitzer approach uses a Debye-Hückel term to describe ion-ion interaction in aque-

ous solution and is extended to take into account the short range, binary and ternary 

interaction between dissolved ions and neutral species into account. With the Pitzer 

approach a realistic description of saline and highly saline electrolytes is possible. The 

ionic strength is included with a Debye-Hückel term, the interaction between different 

species is then described by viral coefficients. The high number of parameters in-

creases the complexity of this approach. A great effort has to be put into the determi-

nation of all these parameters. For a further description see Pitzer et al. [139]. 

Using the simplified SIT approach, the description of many systems is accessible by 

comparing analogue systems without the need of further experimental data [140]. The 

activity coefficient is described in Equation 15. The mathematical expression includes 

the charge of the ion (z), a Debye-Hückel term (brackets) and a sum of interaction 

parameters. The strength of the SIT model is the description of systems up to Imax≤ 3 M. 

In this range the Debye-Hückel term is dominant and the calculated activity coefficients 

are accurate. At higher ionic strength the simplified interaction term is causing inaccu-

racies and the use of a Pitzer model is advisable. 
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Equation 15 

log γ
i
= -zi

2 [
A√I

1+Baj
1.5√I

] + ∑ εijmj 

 

log γ
i
:  logarithmic activity coefficient 

zi :  charge of the ion 𝑖 

mj:  concentration of the ion 𝑖 

εiJ:  interaction parameter of inversely charged ions 

I: ionic strength (molal) 

A/Baj
: constants (temperature / pressure depending) 0.509 and 1.50 kg1/2∙mol1/2  

 (25 °C, 1bar) 

 

Based on batch sorption experiments and time resolved laser fluorescence spectros-

copy, a 2 site protolysis non-electrostatic surface complexation and cation exchange 

(2SPNE SC/CE) sorption model according to Bradbury & Baeyens [11, 42] was applied 

to model the experimental findings. This model approach describes surface complex-

ation at two different sorption sites, strong and weak sites, and as an additional aspect 

an empirical cation exchange term, without considering electrostatic effects on a mo-

lecular level. In a first approach the model parameter for aqueous species (Table 12, 

[123]), surface hydroxyl densities, cation exchange capacities, surface complexation 

reactions in absence of CO3
2- (Table 13, [14, 15, 117]) and surface complexation re-

actions in presence of CO3
2- (Table 14, [113, 141]) from literature were used without 

modification. 
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Table 12: Hydrolysis and carbonate complexation constants for Am(III) as an analogue for Eu(III) and 

Cm(III) [123]. 

Hydrolysis log β0 

Am3+ + H2O ↔ AmOH2+ + H+ -7.2±0.5 

Am3+ + 2 H2O ↔ Am(OH)2
+ + 2 H+ -15.1±0.7 

Am3+ + 3 H2O ↔ Am(OH)0 + 3 H+ -26.2±0.5 

Carbonate complexation  log β0 

Am3+ + CO3
2- ↔ AmCO3

+ 8.0±0.4 

Am3+ + 2 CO3
2- ↔ Am(CO3)2

- 12.9±0.6 

Am3+ + 3 CO3
2- ↔ Am(CO3)3

3- 15.0±1.0 

 

Table 13: Model parameter for surface complexation reactions in absence of competing ligands in NaCl 

containing solutions [14, 15, 117]. 

 Na-IdP-2 Na-SWy-2 

Surface sites / cation exchange capacities n [mol/kg] 

≡SSOH 2.0∙10-3 2.0∙10-3 

≡SW1,W2OH 4.0∙10-2 4.0∙10-2 

CEC 4.0∙10-1 8.7∙10-1 

Surface protolysis reactions log Kprotolysis 

≡SS,W1OH + H+ ↔ ≡SS,W1OH2
+ 4.0 4.5 

≡SS,W1OH↔ ≡SS,W1O- + H+ -6.2 -7.9 

≡SW2OH + H+ ↔ ≡SW2OH2
+ 8.5 6.0 

≡SW2OH↔ ≡SW2O- + H+ -10.5 -10.5 

Surface complexation reactions  log Ksc 

≡SSOH + Am3+ ↔ ≡SSO-Am2+
 + H+ 1.9 1.6 

≡SSOH + Am3+ + H2O ↔ ≡SSO-AmOH+
 + 2 H+ -4.6 -5.9 

≡SSOH + Am3+ + 2 H2O ↔ ≡SSO-Am(OH)2
0
 + 3 H+ -12.8 -14.2 

≡SSOH + Am3+ + 3 H2O ↔ ≡SSO-Am(OH)3
-
 + 4 H+ -25.3 -25.3 
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Table 14: Model parameter for carbonate containing ternary surface complexation reactions [113, 141]. 

 Na-SWy-2 Na-IdP-2 

Surface complexation reactions  log Ksc 

≡SSOH + Am3+ + CO3
2- ↔ ≡SSO-AmCO3

0
 + H+ 8.3 9.8 

≡SSOH + Am3+ +CO3
2- +H2O ↔ ≡SSO-Am(OH)CO3

- +2 H+ -0.25 1.4 

 

In a second step a modified model approach considering carbonate sorption onto the 

clay mineral surface and resulting in a (partly) carbonate coated surface was used 

instead of formation of ternary carbonate surface complexes as shown in Table 14. 

According to Su & Suarez aluminium and iron oxides/hydroxides show similar surface 

reactions with carbonate. Since there is no thermodynamic data for the sorption of 

carbonate onto clay minerals or aluminium oxides/hydroxides, studies on iron oxides 

from Van Geen et al. were used as an analogue system (Table 15, [109]). Following 

this approach, the clay mineral surface is covered with carboxyl groups and exhibits 

new sorption properties after the interaction with carbonate. A detailed description of 

the modified surface and the resulting surface reactions is given in section 4.1.5. Since 

there is no other data available, the constants from the diffuse layer model of Van Geen 

et al. were taken as a first approximation for this modified 2-SPNE/CE approach.  

 

Table 15: Model parameters for carbonate sorption on goethite surfaces [109], used as a model 

compound for clay mineral surfaces (this work). 

Surface complexation reactions  log Ksc 

≡SOH + HCO3
- ↔ ≡S-O-CO2H + OH- 20.78 

≡SOH + CO3
2- ↔ ≡S-O-CO2

- + OH- 12.71 
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4. Results and discussion 
 

The two clay minerals Illite du Puy and Montmorillonite, which are studied in the 

present work, show comparable sorption properties towards Ln(III) and An(III) at low 

as well as high ionic strength [13-15, 17, 22, 113, 119, 142, 143]. For this reason, 

results obtained for both clay minerals are described and discussed together. 

 

4.1. Impact of carbonate on the sorption of Eu(III) and Cm(III) 
onto clay minerals 

 

The retention of trivalent lanthanides and actinides on clay minerals was studied in 

equilibrium with different partial pressures of CO2: (1) Ambient CO2 (pCO2
=10

-3.3
 bar) 

under oxic conditions (laboratory atmosphere) and (2) elevated partial pressure of CO2 

(p
CO2

=10
-2

 bar) under anoxic conditions (99 % Ar, 1 % CO2) and in presence of a 

constant concentration of 0.1 M HCO3
-/CO3

2- (closed system). The equilibrated 

systems are containing an increasing carbonate concentration with increasing partial 

pressure of CO2. Due to the complexity of a system which contains a solid phase, a 

liquid phase and a gaseous reactant, a broad range of different analytical methods was 

applied to study the sorption processes.  

 

4.1.1. Batch sorption experiments 

 

Ambient CO2 conditions (p
CO2

=10
-3.3

 bar) 

 

The sorption behaviour of trivalent actinides and lanthanides, represented by Eu(III), 

onto the clay minerals Illite du Puy and Montmorillonite was studied in diluted and 

concentrated NaCl solutions in the presence of ambient CO2 conditions. In case of 

Montmorillonite similar experiments were also performed in the absence of CO2.  

The sorption edges of Eu(III) are presented as logarithmic distribution coefficients 

(log KD) versus pHm (Figure 4.1) for Na-IdP-2 (left) and Na-SWy-2 (right). Experimental 
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data from diluted to concentrated electrolyte solutions are shown (I-1 / M-1: 0.1 M NaCl, 

black symbols; I-2 / M-2: 1 M, red symbols and I-3 / M-3: 3 M NaCl, blue symbols). The 

composition of each electrolyte solution was separately calculated and prepared.  

 

 

Figure 4.1: Eu(III) sorption edges for Na-IdP-2 (left) and Na-SWy-2 (right), in equilibrium with ambient 

CO2 (closed symbols) and in absence of CO2 (open symbols). * literature data (Schnurr et al. [17]), in 

different saline media ([NaCl] = 0.1 M black I/M-1, 1 M red I/M-2, 3 M blue I/M-3) and in the absence of 

CO2 (crossed symbols, 0.1, 1, 3 M NaCl, this work). 
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Available literature sorption data at similar ionic strength conditions and in absence of 

carbonate were added (open symbols, 0.09, 0.9, 3.6 M NaCl, Schnurr et al. [17]) to 

estimate the impact of carbonate and to compare with own data in case of 

Montmorillonite (crossed symbols 0.1, 1, 3 M NaCl, in absence of CO2). 

The retention of Eu(III) increases in the pH range from 3 to 8 in presence of CO2. At 

low ionic strength (0.1 M NaCl) the log KD increases from log KD ~ 3 to 6. The sorption 

edges of systems with high ionic strength start at log KD ~ 1.5 and rise up to log KD ~ 6. 

For pH > 8 a strong decrease in retention is observed in all systems with only minor 

impact of ionic strength. Overall, the log KD is reduced by about 4 orders in magnitude 

in the selected alkaline pH range. In case of the Eu(III) sorption onto montmorillonite 

(right), this decrease shows a slight difference between high ionic strength (earlier and 

more pronounced decrease) and low ionic strength. The effect of cation exchange 

sorption for Eu(III) is supressed under saline conditions by adsorption of Na+ being 

present in large excess. For this reason the retention of Eu(III) in the lower pH range 

is generally reduced in presence of high NaCl concentrations (1 M, 3 M NaCl). 

An interesting feature which is obvious in Figure 4.1 is, that between pH ~ 4.5-6.5 the 

adsorption of Eu(III) is increased in the presence of CO2 (closed black symbols) 

compared to literature and own data in absence of CO2 (open black symbols). This 

effect is apparent for both studied clays for all investigated ionic strengths. At I=0.1 M 

NaCl the enhancement appears to be less pronounced than at higher ionic strength. 

For both clays a maximum difference of Δmaxlog KD ~ 1-1.5 is observed at pH ~ 5.5 

(red arrow). The increase was further validated by batch sorption experiments in the 

absence of CO2 by using the identical batch of purified montmorillonite (crossed 

symbols). The derived log KD values are comparable or slightly below the data of 

Schnurr et al. [17] and supporting the experimental findings. 

This increase of the log KD values raises the hypothesis that carbonate may enhance 

trivalent lanthanide and actinide sorption to the clay mineral surface in the slightly 

acidic pH-range. These effect was not observed before.  

A comparison of the results of the present work with studies by Marques et al. [22, 113] 

also performed in the presence of atmospheric CO2 is displayed in Figure 4.2 The 

log KD values of Marques et al. are very comparable to those obtained in the present 

work in the neutral to high pH region (pH ≥ 7.5). However, Marques et al. observed no 
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increase in the retention of Eu(III) adsorbed onto Illite du Puy (Figure 4.2, left) nor onto 

Montmorillonite (Na-SWy-2, Figure 4.2, right) between pH = 3-7 where only two data 

points are reported in the slightly acidic pH range. Possible explanations for this 

deviation could be an incomplete equilibration with the CO2 containing gas phase or 

effects of outgassing in the acidic range. In the present work great efforts are made to 

reach and maintain equilibrium conditions especially in the acidic pH range: (1) The 

partial pressure of CO2 under ambient and elevated (next section) conditions was 

monitored during the experimental procedure. (2) The composition of the different 

electrolyte solutions was calculated using the geochemical code PhreeqC [45] 

considering the measured prevailing CO2 partial pressure of the laboratory 

( p
CO2

=10
-3.3

 bar ). Each electrolyte solution was separately prepared by adding 

NaHCO3 / Na2CO3 and checked for pH stability over a period of at least 2 weeks. 

  

 

Figure 4.2: A comparison between Eu(III) sorption edges derived in the present work and literature data 

(closed orange symbols, Marques et al. [22, 113]): Eu(III) adsorbed onto Na-IdP-2 (left) and Na-SWy-2 

(right), in equilibrium with ambient CO2 (closed symbols) and in absence of CO2 (open symbols, 

*Schnurr et al. [17], crossed symbols, this work). 
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Elevated CO2 conditions (p
CO2

=10
-2

 bar) 

 

To study conditions which are comparable to deep groundwater conditions, batch 

sorption experiments were performed at an elevated partial pressure of CO2. Batch 

samples were prepared in equilibrium with an atmosphere containing 1 % CO2, to 

consider the higher carbonate content in deep geological aquifers. For this, a glovebox 

was used with an atmosphere of 99 % Ar and 1 % CO2 (pCO2
=10

-2
 bar). The retention 

of Eu(III) on Illite du Puy (left) and Montmorillonite (right) was investigated in equilibrium 

with 1 % partial pressure of CO2 and at low to high ionic strength. The log KD is shown 

as a function of pH in Figure 4.3 for Na-IdP-2 (left) and Na-SWy-2 (right) for 

[NaCl] = 0.1 M in black, 1 M in red and 3 M in blue (closed symbols in the presence of 

CO2). log KD values in CO2-free aqueous solution (open symbols: 0.09, 0.9, 3.6 M NaCl, 

Schnurr et al. [17]; crossed symbols: 0.1, 1, 3 M this work) are added in the graph for 

comparison. 

As already noticed in experiments with 10
-3.3

 bar CO2, an enhanced retention of Eu(III) 

is observed in equilibrium with an atmosphere containing 1 % CO2 in the acidic to 

neutral pH range (pH ~4-6) compared to own (crossed symbols) and literature data in 

the absence of CO2 (open symbols, *Schnurr et al. [17]). In case of the Eu(III) 

adsorption onto illite, a less pronounced increase in Eu(III) retention is observed and 

the maximum of this effect is observed at lower pH values in equilibrium with 1 % CO2 

compared to ambient conditions. 

The enhanced retention of Eu(III) is observed for Illite du Puy and Montmorillonite for 

all selected ionic strengths. Depending on the subsystem a general difference of 

Δmaxlog KD ~ 0.5-1 is observed. 
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Figure 4.3: Eu(III) sorption edge on Na-IdP-2 (left) and Na-SWy-2 (right), in equilibrium with an elevated 

partial pressure of CO2 (1 % CO2, closed symbols) and in absence of CO2 (open symbols, *Schnurr et 

al. [17]) and this work (crossed symbols), in different saline media ([NaCl] = 0.1 M black I / M-1, 1 M red 

I / M-2, 3 M blue I / M-3). 
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 “Analogue” selenite (SeO3
2-) system  

 

Sorption experiments in presence of carbonate are bearing the potential of outgassing 

notably in the acidic pH range and might lead to experimental artefacts. To confirm and 

test the hypothesis of an enhanced Eu(III) sorption in presence of carbonate in the 

acidic pH range an analogue system was studied. SeO3
2- was selected as a substitute 

for CO3
2, due to the structural analogy a similar chemical behaviour of CO3

2- and 

SeO3
2- is expected. Hiemstra et al. [107] have reported a similar sorption behaviour of 

CO3
2- and SeO3

2- contacted with the iron oxide mineral goethite. Further on, Missana 

et al. have published batch sorption experiments and a corresponding geochemical 

model to describe the adsorption of SeO3
2- onto the clay mineral phases illite and 

montmorillonite, proven that selenite is adsorbing in the slightly acidic pH range [144]. 

In addition to the investigation of binary systems, containing only the solid phase and 

the inorganic ligand, a ternary system was also studied: Shi et al. have reported an 

enhanced Eu(III) sorption onto TiO2 in presence of SeO3
2- [61]. The available literature 

data indicate a similar sorption behaviour of CO3
2- and SeO3

2- onto mineral surfaces, 

as well as stabilizing effects of the anionic ligand on the adsorption of metal cations. 

Therefore, the sorption of Eu(III) onto montmorillonite in presence of SeO3
2- was 

studied in a diluted NaCl electrolyte solution ([NaCl] = 0.1 M). The logarithmic 

distribution coefficient is plotted as function of pH in Figure 4.4 (closed symbols). The 

data are compared with experimental Eu(III) sorption data in absence of CO2 (open 

symbols, *Schnurr et al. [17]) and in equilibrium with ambient CO2. The retention of 

trivalent europium in presence of selenite increases from log KD =3.1-5.5 between 

pH = 3.5-6 and reaches nearly quantitative retention above pH > 6.5. A stabilizing 

effect of selenite on adsorbed Eu(III) is observed. This is in good agreement with 

studies on the effect of carbonate on the Eu(III) retention in clay minerals. 

The sorption behaviour of Eu(III) in presence of both similar inorganic anions, selenite 

and carbonate, has been proven to be congruent under the selected experimental 

conditions. This is a further clear indication that carbonate (or other similar inorganic 

ligands) can enhance the sorption of trivalent actinides on clay minerals in the slightly 

acidic pH range. This general enhancing effect of complexing anions on metal ion 

sorption in the acid pH range is also well known for a variety of organic ligands [119]. 
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Figure 4.4: Eu(III) sorption edge for montmorillonite in presence of 3∙10-3 M SeO3
2- (closed, black 

symbols), in equilibrium with ambient CO2 (closed, orange symbols) and in absence of SeO3
2- (open 

symbols, *Schnurr et al. [17]), in 0.1 M NaCl. 

 

Constant carbonate concentration – 0.1 M NaHCO3/Na2CO3 

 

The total dissolved carbonate of in deep aquifer systems is limited by the solubility of 

carbonate mineral phases. An equilibration with a CO2 containing gas phase leading 

to an increased carbonate concentration with increasing pH as assumed in the 

previously described experiments is, thus, not to be expected. Rather a more or less 

constant carbonate concentration in solution will be expected in aquifers. In order to 

study the pH dependent sorption of Eu(III) at a constant total inorganic carbon (TIC) 

concentration an experimental series was started at a fixed total carbonate 

concentration of 0.1 M NaHCO3/Na2CO3 in the range of pH = 7-12.5 (Figure 4.5, 

closed red symbols).  

The results of the experiments are presented as logarithmic distribution coefficient as 

function of the pH. It is evident that the variation of Eu(III) sorption with pH is completely 

different from those studies, where the solutions are equilibrated with a CO2 containing 

gas phase. The retention of Eu(III) decreases almost linearly from log KD =4 to 3 

between pH = 7-10.5 and increases again at pH > 10.5. The decrease in sorption is 
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explained by formation and competition of non-adsorbing aqueous Eu(III) carbonate 

complexes with surface complexes. Previous results of experiments related to the 

sorption of Eu(III) in equilibrium with ambient CO2 (green symbols), with an elevated 

partial pressure of 1 % CO2 (orange symbols) and in absence of CO2 (open black 

symbols, Schnurr et al. [17]) are added to Figure 4.5. Compared to studies performed 

in equilibrium with a gas phase with a given partial pressure of CO2, Eu(III) sorption 

never decreases to values below log KD = 3 at 0.1 M Na2CO3/NaHCO3. This finding is 

explained by the carbonate concentration steeply increasing with increasing pH when 

in contact with the ambient atmosphere. At pH=10 a more than ten times higher total 

carbonate concentration establishes as compared to that in experiments with 0.1 M 

TIC and results in the predominant formation of non-adsorbing aqueous Eu(III) 

carbonate complexes. The following calculation illustrates this effect: When keeping 

the total carbonate concentration constant, the related calculated partial pressure of 

CO2 is decreasing from 4.3 % (pH = 7, p
CO2

=10
-1.57

 bar) to 5.5∙10-8 % (pH = 12.5, 

p
CO2

=10
-9.3

 bar). The observed increase in retention above pH > 10.5 is caused by the 

progressing formation of inner sphere Eu(III) surface complexes. 

  

 

Figure 4.5: Eu(III) sorption edge on Na-IdP-2 at a constant TIC concentration of 0.1 M (closed, red 

symbols), in comparison to different constant partial pressures of CO2 (closed symbols: ambient CO2 

green, 1 % CO2 orange) and in absence of CO2 (open symbols, *Schnurr et al. [17]), in 0.1 M NaCl. 

 



 
 

 

 Results and discussion 

 
63 

 
  

4.1.2. Attenuated total reflection infrared spectroscopy 

(ATR-IR) 

 

One explanation for the enhanced Eu(III)-sorption to clay minerals in the acidic range 

in the presence of CO2 could be that carbonate is adsorbing at aluminol groups and 

acts as an additional metal binding ligand. Identifying and quantifying carbonate 

sorption by batch experiments, however, is difficult. Experimental problems are due to 

the volatility of CO2 and the relatively low sorption extent. So far the adsorption of 

carbonate to mineral surfaces in the acidic pH range is reported in the literature only 

for minerals like iron or aluminium oxides and hydroxides being positively charged at 

pH < pHpzc (~6-9) [106-109, 145-149]. At present, no direct experimental proof on 

carbonate adsorption onto clay mineral surfaces is available. This is the first study of 

carbonate sorption onto montmorillonite edge sites using ATR-IR spectroscopy. The 

irreversible intercalation of CO2 was already reported by Romanov et al. [150]. 

Montmorillonite was suspended in a 3 M NaCl / D2O solution. The use of D2O was 

necessary to suppress the H2O scissor vibration interfering with carbonate stretching 

vibrations. A suspension of 10 g/L montmorillonite was placed on an ATR crystal. After 

a sedimentation time of 10 min, the spectra were recorded. The infrared spectra of 

montmorillonite in absence of CO2 (grey pD = 6.34) and presence of 1 % CO2 (red 

pD = 5.29, blue pD = 6.36, green pD = 8.41) are displayed as normalized intensity 

against wavenumber in Figure 4.6. The intensity is normalized to the Si-O vibration of 

the clay mineral at 1043 cm-1 [151]. A solvent spectra (D2O, in orange) was added for 

comparison. The vibration band at 1204 cm-1 is attributed to the D2O scissor vibration 

and in agreement with the pure solvent (orange line).  

The absorption band at 1456 cm-1 is observed only in presence of carbonate and the 

intensity increases while clay particles sediment at the ATR crystal so that carbonate 

association to the solid phase can be assumed. After 10 min of sedimentation no 

further changes were observed. Vibrational bands at similar positions are reported for 

adsorbed carbonate on iron oxides [106, 107] and alumina oxides surfaces [146, 152]. 

Although a splitting of the vibrational bands is reported in these studies. According to 

Wijnja et al. [146] hydration effects on the coordinated carbonate can decrease the 
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splitting of the observed vibrational bands. With increasing pD and the related increase 

in the carbonate concentration the vibration band intensity is increasing from 

pD = 5.29-6.36. At pD ≥ 6.36 no further increase is observed up to pD = 8.41. This 

observation and the finding that a carbonate containing D2O solution yields a very low 

CO3
2- stretching vibration signal shows that the band at 1456 cm-1 can be mainly 

assigned to surface bound carbonate species. A monodentate coordination of 

carbonate onto Al-OH surface groups was related to a vibrational band at 1455 cm-1 

by Wijnja et al. [146]. All those findings provide for the first time spectroscopic evidence 

for the carbonate adsorption taking place at clay mineral edge site and point to the 

relevance of this effect in a slightly acidic and neutral pD range. 

 

 

Figure 4.6: ATR-IR spectra of Na-SWy-2 suspended in D2O in presence and absence of ambient CO2 

in saline media (3 M NaCl) as function of the pD. 
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4.1.3. Time resolved laser fluorescence spectroscopy (TRLFS) 

 

In order to provide insight into changes in the coordination sphere of the adsorbing 

metal ion, Cm(III)-TRLFS was performed. Time resolved laser fluorescence 

spectroscopy is a well-established method to gain insights into sorption mechanisms 

and speciation of aquatic or surface complexes of Cm(III) and has been used for a 

variety of mineral phases including illite and montmorillonite. The sorption of Cm(III) 

onto montmorillonite (Na-SWy-2) within this work was studied in NaCl electrolyte 

solutions. In aqueous solution Na-SWy-2 forms intermediately stable suspensions. 

Due to its ability to swell when contacted with water, the clay mineral is easily 

re-suspended after centrifugation or drying. The samples were prepared as described 

in section 3.2.2. These physical properties make the spectroscopic significantly easier 

compared to non-swelling clay minerals like illite. 

 

Emission spectra and fluorescence lifetime measurements 

 

A series of wet paste samples were prepared by centrifugation of suspensions at 

different pH values (pH = 3.16-8.03) in a 3 M NaCl solution in equilibrium with a partial 

pressure of 1 % CO2 and a Cm(III) concentration of 1∙10-7 M. Measuring only the solid 

precipitate allows to obtain spectra of adsorbed Cm(III) with only small contributions of 

dissolved species in adhering solution films. A summary of area normalized 

fluorescence spectra is given in Figure 4.7. Two series of spectra were taken at 1 µs 

(left) and 121 µs delay time (right). A spectrum of the pure Cm3+ aquo-ion was added 

as reference. The adsorbed Cm(III) shows fluorescence spectra similar to the Cm(III)aq 

ion between pHm = 3.16-4.19 for the short delay time of 1 µs. Around pHm = 4.46 a 

shoulder at λ = 600 nm starts to form. With increasing pHm this feature gets more 

significant (pHm = 4.46-8.03). The peak position at λ = 593.6 nm is attributed to traces 

of Cmaq
3+ in the leftover aqueous phase but mainly to cation exchange bound species, 

a physisorbed Cmaq
3+ with a completely remaining first hydration sphere. For this 

reason both species can’t be distinguished by a bathochromic shift, but by 

fluorescence lifetime measurements [105, 116, 153]. Physisorbed species on 
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montmorillonite surfaces exhibit a short lifetime around 30 µs most likely due to 

quenching by structurally bound Fe. To gain more information on the second feature 

around λ = 600 nm, the same samples were measured at a delay time of 121 µs 

(Figure 4.7, right). Due to its short lifetime the physisorbed species becomes 

significantly less dominant at this delay time. At pH = 3.16 the cation exchange species 

at λ ~ 594 nm is still the main component. Starting from pHm = 3.43 a second peak at 

λ ~ 600 nm increases and shifts towards λ ~ 603 nm between pHm = 4.46-8-03. 

 

 

Figure 4.7: Fluorescence spectra of Cm(III) adsorbed onto montmorillonite in presence of 1 % CO2 

presented as area normalized intensities at different delay times (left 1 µs, right 121 µs) measured as 

wet paste sample at high ionic strength (3 M NaCl). 

 

As reported by Schnurr et al. in a TRLFS study conducted in the absence of CO2 and 

in suspension, a first inner sphere surface species starts to form at pHm = 5.5 causing 

a bathochromic shift to λ = 598.5 nm. A second species appears above pHm = 6.5 with 

λ = 602.5 nm. The different peak maxima observed for adsorbed Cm(III) species in 

presence and absence of CO2 point to different prevailing surface species. The 

complexation of Cm(III) in presence of dissolved carbonate takes place at significantly 

lower pH. This is another indication for the formation of a different species.  

To derive further information on the sorption of Eu(III) on Na-Swy-2 in presence of 

carbonate, a peak deconvolution was applied to spectra measured at a delay time of 

121 µs. For this purpose single species spectra, starting from the spectrum of Cm3+
(aq), 

were deconvoluted from the mixed spectra (Figure 4.8, left). In total three different 
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fluorescence lifetimes (Figure 4.8, right) could be derived from spectra measured at 

pHm = 4.46, 7.48 and 8.03. A short one τ = 32 ± 6 µs, an intermediate lifetime with 

τ = 130 ± 5 and a long lifetime with τ = 430 ± 5. According to Hartmann et al. the short 

lifetimes can be assigned to a physisorbed Cm(III) [116]. It can be assumed that the 

intermediate and long fluorescence lifetime both correspond to an inner sphere 

sorption species. In earlier studies a set of two similar lifetimes was reported for 

adsorbed species in carbonate containing systems [24, 154]. These studies were 

performed with different clay mineral phases at significantly higher pH (kaolinite at 

pH = 8.4, t < 20 K, montmorillonite, Na-STx-1 at pH = 9). Within the present study, the 

species with τ = 128-135±10 µs were also found from a slightly acidic to neutral pH 

range. The third species with a longer lifetime is found at neutral pH. This is the first 

investigation of the adsorption of Cm(III) onto a clay minerals in presence of carbonate 

over a pH range from pH = 3-8. 

 

 

Figure 4.8: Deconvolution of Cm(III) TRLFS spectra to derive single species spectra of ternary Cm(III) 

carbonate complexes (left), fluorescence lifetime measurements (right). Measurements were performed 

as wet paste samples in equilibria with 1 % CO2 at high ionic strength (3 M NaCl). 

 

According to Kimura et al. the fluorescence lifetime of species 1 can be correlated with 

n(H2O) = 4.2 ± 0.7 and the lifetime of species 2 with n(H2O) = 0.64 ± 0.2 water 

molecules in the first coordination sphere (Section 2.3.1, Equation 5 [85]). Lifetimes for 

species 1 in presence of carbonate are not deviating much from those reported for 

adsorbed Cm(III) in the absence of carbonate and suggest the similar number of 
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ligands in the first coordination sphere [17]. However, compared to studies in the 

absence of CO2, the first inner sphere surface species appears at lower pH which is 

an indication for a stabilizing effect for clay mineral surface adsorbed Cm(III) by 

carbonate. This interpretation is supported by the stronger red-shift for the emission 

band of species 1 as compared to species 1 in absence of carbonate. The long 

fluorescence lifetime of species 2 can only be explained by a reduction of the number 

of coordinated water molecules of Cm(III) to 1 or even below. Since carbonate is the 

only additional introduced ligand (compared to the carbonate free system), this 

observation indicates a further complexation of Cm(III) by carbonate at the clay mineral 

surface. 

 

Vibronic sideband spectroscopy 

 

Vibronic sideband spectroscopy (VSB) was used to derive additional information on 

the coordination mode of the ligand and the structural order of the Cm(III) surface 

complexes. In previous studies this technique was only used for aqueous or dissolved 

organic systems [136, 137]. Different to the TRLFS experiments described before, VSB 

spectroscopy offers the chance to obtain information not only on the number, but also 

on the nature of ligands. For the first time the applicability was proven for sorption 

studies by measurements of aqueous suspensions in the present work. As described 

in section 4.1.2, the scissor vibration of H2O is overlapping with stretching vibrations of 

the carbonate ligands. Therefore D2O was used as solvent.  

The VSB spectra for Cm(III) adsorbed onto montmorillonite under saline, deuterated 

conditions (3 M NaCl) in presence of carbonate (pD = 5.83, 7.02) and in absence of 

CO2 (pD = 7.24, Figure 4.9) are displayed against wavelength (lower axis) and 

wavenumber (upper axis). These spectra are compared to an infrared spectrum of pure 

D2O to identify solvent effects in the measured spectra. 
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Figure 4.9: VSB spectra for Cm(III) adsorbed onto Na-SWy-2 in presence (red, blue) and absence of 

carbonate (black), compared to a D2O infrared spectra (green). 

 

In previous studies, VSB spectra, e.g. of extraction ligands [137], were normalized 

relative to the position of the maximum of the fluorescence emission (ZPL: zero phonon 

line). This is only possible for systems with a single predominant species. The here 

discussed Cm(III) emission spectra always represent a mixture of different species. 

For this reason all measurements were normalized to the Cmaq
3+ emission band at 

λ = 593.8 nm. The measured spectra in the absence of CO2 (black line) show no 

significant VSB features between λ = 620-660 nm. The broad vibrational band 

between λ = 675-710 nm is assigned to the O-D stretching vibration of D2O. The 

maximum of this feature is located at λ = 694 nm, which is in good agreement with that 

in the infrared spectrum for D2O (green line). The scissor vibration of D2O at 

λ = 639.5 nm is not resolved in the clay suspensions. This is explained by the lower 

intensity and the proximity to the main Cm(III) fluorescence emission band. In the 

presence of carbonate a second feature appears between λ = 642-640 nm (red, blue 

line). Since this feature is only present in carbonate containing systems, it can be 

attributed to adsorbed carbonate species close to adsorbed Cm(III). The position of 
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this feature (λ = 650 nm ≙ 1456 cm-1) was previously identified as adsorbed carbonate 

on the clay mineral surface by ATR-IR spectroscopy (section 4.1.2, Figure 4.6).  

From pD = 5.83-7.02 the feature attributed to the O-D stretching vibration (λ ~694 nm) 

is significantly reduced. This is indicating a reduction of the number of D2O molecules 

in the first coordination sphere around the adsorbed Cm(III) with increasing pH. A 

reduction from ~ 4 to 1 coordinated H2O molecules was previously indicated by 

fluorescence lifetime measurements. The results of VSB spectroscopy further supports 

these earlier findings. 

Results of VSB spectroscopy, TRLFS measurements and ATR-IR measurements 

consistently point to the existence of a carbonate stabilized Cm(III) surface species 

starting from the slightly acidic pH range.  

 

4.1.4. Theoretical calculations (DFT, AIMD) 

 

To validate the indications of both, carbonate sorption on clay minerals and presence 

of carbonate stabilized surface species of An(III) based on spectroscopic and batch 

sorption experiments, a combined theoretical approach was applied using density 

functional theory and ab initio molecular dynamics (AIMD). The adsorption of 

carbonate onto clay mineral edges was studied with AIMD. Two different potential and 

reasonable structures (with carbonate sorption occurring on the clay edge sites) were 

calculated (Figure 4.10): A hydrated clay edge with a carbonate molecule in front, i.e. 

a layer of water molecules between carbonate and the clay surface (A) and the same 

clay edge with a carbonate substituting a hydroxyl group of the octahedral alumina in 

a mono-dentate fashion (B). The energy of the systems was monitored for 4 ns. Over 

the simulated period of time system B was by about 26.7 kJ/mol more stable. With this 

analysis, the stability of carbonate adsorbed to clay mineral surface is supported by 

theory and in-line with experimental findings from ATR-IR measurements 

(section 4.1.2). 
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Figure 4.10: Theoretical consideration of carbonate binding to clay mineral edge surfaces via a kind of 

outer-sphere complexation (A) and inner-sphere adsorption to the surface (B). Atom colour code: O red, 

Al blue, Si beige, C green, H white, K yellow. 

 

Possible surface complexes including An(III) and carbonate ligands (bound only to 

An(III) or bridging between clay and An(III)) were computed, the most stable structures 

are shown in Figure 4.11. The species A is coordinated in a monodentate fashion to 

different Al-OH, Si-OH groups and a carbonate entity which is adsorbed to the surface 

and will be denoted as ≡S-OCO2-An2+. The adsorbed metal ion exhibits monodentate 

bonding to the adsorbed carbonate an average coordination number of 2-3 to the 

mineral surface and 4-5 remaining coordinated water molecules and is thus in 

agreement with TRLFS results. The addition of a second carbonate ligand forms a 

stable surface species B termed hereafter as ≡S-OCO2-AnCO3. The second carbonate 

is coordinated in a bidentate mode via two oxygen atoms, replacing 2 coordinated H2O 

molecules. A monodentate binding to surface adsorbed Carbonate, a bidentate binding 

to the second carbonate ligand and a three-fourfold coordination to the clay edge 

surface reduces the amount of coordinated water molecules to n(H2O)= 2. TRLFS 

lifetime measurements confirm the decreasing number of OH entities in the first 

coordination sphere. Conversion of t via the Kimura equation into n(H2O) results in a 

somewhat lower number of 1 H2O equivalents.  
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The addition of the third carbonate ligand (formally “≡S-OCO2-An(CO3)2
-“) significantly 

changes the structure and forms a three times bidentate coordination of An(III) to 

carbonate (no binding to Al-OH or Si-OH surface groups) (surface species C). For this 

reason, species C is assumed to be desorb after sufficient simulation time. The effect 

is visualized by the development of the distance between An(III) and surfacial Al atoms 

as function of the number of carbonate ligands (Figure 4.11, D). Since clay edges are 

no plane surfaces, the An(III)-Al distance was taken as a measure for the space 

between adsorbate and adsorbent. With increasing number of coordinated carbonate 

ligands the An(III)-Al distance changes from 3.86 Å, to 4.18 Å and to 3.66 Å for 

n(CO3
2-= 0, 1, 2) and to 5.65 Å for n(CO3

2-= 3). 

 

 

Figure 4.11: Calculated structure of potential carbonate stabilized An(III) surface complexes with 

n(CO3
2-) = 1, 2, 3 (A, B, C) and an evaluation of the development of the An(III)-Al distance as function 

of n(CO3
2-) with B-spline function (D). Atom colour code: O red, Al blue, Si beige, C green, H white, 

An(III) yellow. 

 

The structure of the surface species B (Figure 4.11, B) was used to compute VSB 

spectra of the Cm(III) ion (Figure 4.14). Two different spectra were extracted: One for 
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the surface associated carbonate ligand (bridging the surface to the Cm(III); orange) 

and another for the coordinated carbonate ligand with no bonding to surface atoms 

(purple). The carbonate ligand coordinated to An(III) in a bidentate fashion (purple) 

shows 3 vibrational bands at λ = 626.0 nm, λ = 635.8 nm and λ = 641.2 nm. These 

vibrational bands are comparatively weak and partly overlaid by the tailing of the 

excitation band.  

Beside small features of negligible intensity (e.g. at λ = 641.7 nm) a well separated 

signal at λ = 648.9 nm is computed for the carbonate directly located at the surface. 

This is clearly coinciding with the experimentally obtained vibronic sideband of the 

adsorbed carbonate (red and blues spectra). In general, theoretical spectra agree with 

measured data and their interpretation. 

 

Figure 4.12: Computed VSB spectra (DFT) of An(III) adsorbed onto clay mineral edge sites of the 

stabilizing surface bound carbonate (≡S-OCO2-AnCO3, orange) and the additional coordinate carbonate 

ligand (≡S-OCO2-AnCO3, purple) are displayed as function of the wavelength (lower axis) and 

wavenumber (upper axis) and compared to measured vibronic side bands of Cm(III) adsorbed onto 

montmorillonite in the presence of carbonate (red, blue). A measured VSB spectra of Cm(III) adsorption 

onto montmorillonite in absence of CO2 (black) and an infrared spectra of the solvents D2O (green) are 

added for comparison. 
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4.1.5. Geochemical modelling  

 

The results derived from batch sorption experiments, spectroscopic investigations and 

theoretical calculations were used to apply a surface complexation model. For this 

purpose, an established 2SPNE/CE [13] approach was modified as described below. 

All experimental data collected in the present work for Eu(III) and Cm(III) will be 

indicated in the model as “Am(III) data”. The use of Am(III) as an representative for all 

Ln(III)/An(III) is a common practice for the applied 2SPNE/CE model from literature.  

Figure 4.13 displays adsorption data of Eu(III) onto Illite du Puy in presence of ambient 

carbonate reported by Marques et al. (closed symbols, orange, p
CO2

 = 10
-3.5

 bar, [113]) 

as well as data from the present work (black squares, p
CO2

 = 10
-3.3

 bar). Data in the 

absence of carbonate was added for comparison (open symbols [17]).  

 

 

Figure 4.13: pH-depending sorption of Eu(III) onto Illite du Puy (1 g/L) in presence of equilibrium 

concentrations of carbonate related to a partial pressure of pCO2 = 10-3.3 bar, displayed as logarithmic 

distribution coefficient as function of pH. Three different data sets are shown, closed black symbols 

(0.1 M NaCl, this work) and closed yellow symbols (0.1 M NaClO4, Marques et al. [113]) in presence of 

ambient CO2 and a third series in absence of CO2 (open black symbols, 0.09 M NaCl, Schnurr et al. 

[17]). An unmodified geochemical 2 SPNE/CE model was applied according to Marques et al. [113]. The 

relevant ternary surface species are plotted in red. 
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The 2SPNE/CE model developed by Bradbury and Baeyens, for systems in the 

absence of CO2 [11, 16], was extended by Marques et al. [113] to describe the impact 

of carbonate on the retentions of An(III) onto clay mineral surfaces. By taking into 

account the aqueous carbonate complexation [22, 113], ternary An(III) carbonate 

surface species were needed for an description of the experimental data. Without 

considering these species, a strong underestimation of the experimental data is 

predicted by the model. Two carbonate containing surface complexes (≡S-O-Am-CO3, 

≡S-O-Am-CO3OH-) were assumed to describe the experimental finding. With that 

approach (considering 5 different adsorbed species and the cation exchange) a fully 

description of the experimental data was possible [22], despite no mixed hydroxo-

carbonate species are reported in aqueous solution. 

Due to the deviation of experimental data in the present work at slightly acidic pH 

compared the studies of Marques et al., a modified geochemical model was applied 

based on the 2SPNE/CE model from Bradbury and Baeyens [11, 16], derived in the 

absence of CO2. This new approach is also considering the adsorption of carbonate 

on clay mineral edge sites which was demonstrated ATR-IR spectroscopy and 

computational methods (DFT, AIMD). To describe the sorption of HCO3
- and CO3

2- 

onto the clay minerals a model proposed by Van Geen et al. [109] for HCO3
- and CO3

2- 

adsorption onto goethite was used. The parameters for the carbonate adsorption onto 

goethite were adopted without any modifications and are displayed in Table 16. A direct 

quantification of the adsorbed carbonate on clay minerals was not achieved during this 

work. For this reason the following assumptions has been made, knowing that the 

systems and models are not completely comparable. (1) Fe-OH sites of the goethite 

were substituted by the Al-OH sites of the clay mineral, more precisely the strong sites 

defined as ≡SSOH. (2) Surface complexation constants of an electrostatic diffuse 

double-layer model (DLM) for the goethite system were used as parameters for the 

non-electrostatic 2SPNE/CE model. According to the applied model calculation, 100% 

of the strong sites are covered with carbonate (appendix 7.1). The carbonate 

adsorption, as implemented in the current model, show no pH dependency. To improve 

this insufficient description a quantification of the actual amount of adsorbed carbonate 

is needed. According to studies performed on the adsorption of carbonate onto 

goethite a significant pH dependency should be expected [106, 109, 145]. The 

importance and existence of ternary carbonate stabilized surface species was 
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previously discussed in several studies on the adsorption of U(IV) onto different mineral 

phases in presence of carbonate. While the existents and importance for geochemical 

modelling reported by Catalano et al. [155] (adsorbents: montmorillonite) and Müller et 

al. [156] (adsorbents: TiO2), Tournassat et al. [157] (adsorbents: montmorillonite) 

reported in a recent study a modelling approach without the need of ternary surface 

complexes by including the spillover effect in a surface complexation model. 

As the mineral surface is “covered” partly with carbonate, a modified surface is 

available for the adsorption of An(III). This results in the formation of ternary carbonate 

stabilized surface complexes, including the surface, the adsorbed carbonate and the 

actinide. According to the stoichiometry derived from DFT calculations two different 

surface species were assumed (Figure 4.11 A +B). The first species involves one 

surface connected carbonate (≡S-O-CO2Am2+), the second is formed by adding an 

additional carbonate ligand to the previous formed species (≡S-O-CO2AmCO3). The 

structure of both species is supported by spectroscopy and theoretical studies. By that 

it was possible to describe the sorption of Ln(III)/An(III) in presence of carbonate onto 

Illite du Puy (Na-IdP-2) and montmorillonite (Na-SWy-2) for ambient conditions (Figure 

4.14) and an elevated partial pressure of CO2 (Figure 4.15) consistently with one single 

set of constants (Table 16). 

 

Table 16: Surface complexation reactions and stability constants describing the impact of carbonate 

sorption onto the clay surface [109] on Am(III) sorption. 

Surface complexation reactions log K 

≡S-OH + HCO3
- ↔ ≡S-O-CO2H + OH- 20.78* 

≡S-OH + CO3
2- ↔ ≡S-O-CO2

- + OH- 12.71* 

≡S-O-CO2H + Am3+ ↔ ≡S-O-CO2Am2+ + H+ 2.7 

≡S-O-CO2H + Am(CO3)+ ↔ ≡S-O-CO2AmCO3 + H+ 0.3 

 

The surface sorbed carbonate assisted sorption model was first applied to diluted 

systems in equilibrium with ambient CO2 (Figure 4.14). A model description (black line) 

of the adsorption of Eu(III) onto illite (Na-IdP-2, left) and montmorillonite (right) was 

calculated using the geochemical code PhreeqC [45] and the ThermoChimie database 

[73]. The increased retention in presence of carbonate between pH ~ 4-7 is properly 

described by a first carbonate stabilized surface complex (≡S-O-CO2Am2+). This 
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surface complex is predominant between pH = 4-7. The characteristic decrease in 

sorption for pH > 8 is described by the competition of the second ternary surface 

species (≡S-O-CO2AmCO3) and the growing predominance of the dissolved 

Cm(CO3)3
3- complex in the aquatic phase. 

 

 

Figure 4.14: Model calculations (black line) for the Eu(III) sorption edge on Na-IdP-2 (left) and 

Na-SWy-2 (right), in equilibrium with ambient CO2 (closed symbols) and in absence of CO2 (open 

symbols, *Schnurr et al. [17]), in 0.1 M NaCl. Ternary surface species are highlighted in red and green. 

 

To prove the applicability of the model to different experimental conditions the surface 

sorbed carbonate assisted sorption model was applied to systems at an elevated 

partial pressure of CO2. The description of batch sorption experiments in equilibrium 

with an elevated partial pressure of CO2 (1 % CO2) is demonstrated in Figure 4.15. 

The adsorption of Eu(III) onto illite (left) and montmorillonite (right) in presence of 

carbonate (closed symbols) is displayed as log KD vs. pH and compared to literature 

data in the absence of CO2 (open symbols, Schnurr et al. [17]). As described for 

ambient conditions, the increase in Eu(III) retention in the slightly acidic to neutral pH 

range (pH ~ 4.5-7) and the characteristic decrease above pH > 8 are in good 

agreement with the model calculations. Furthermore, the general decrease of the 

maximum sorption compared to ambient conditions at pH ~ 7-8 is well described. 
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Figure 4.15: Model calculations (black line) for the Eu(III) sorption edge on Na-IdP-2 (left) and 

Na-SWy-2 (right), in equilibrium with an elevated partial pressure of 1% CO2 (closed symbols) and in 

absence of CO2 (open symbols, *Schnurr et al. [17]), in 0.1 M NaCl. Ternary surface species are 

highlighted in red and green. 

 

The variation from low to high ionic strength (I = 0.1-3 M) is covered by the applied 

surface complexation model by including the SIT approach for ionic strength correction. 

The model calculation is limited by a steep increase in ionic strength caused by the 

predominance of dissolved CO3
2- (section 2.1) at high pH in equilibrium with a partial 

pressure of CO2. The model is applicable to systems in equilibrium with ambient CO2 

in a range of pH ≤ 9.5. For those systems being equilibrated with an elevated partial 

pressure of CO2 (1 % CO2) the model applicability is limited to pH ≤ 9.0. The 

description of the Eu(III) retention onto Illite du Puy (left) and montmorillonite (right) in 

equilibrium with ambient CO2 (Figure 4.16) and an elevated partial pressure of 1 % 

CO2 (Figure 4.17) are presented for diluted and concentrated electrolyte systems 

(closed symbols, [NaCl] = 0.1, 1, 3 M) and compared to experimental data in absence 

of carbonate (open symbols, Schnurr et al. [17]). As demonstrated for diluted systems, 

the decrease of the Eu(III) retention under alkaline conditions is covered by the current 

model description. Also Batch sorption experiments performed in 3 M NaCl (ambient 

conditions) are in good agreement with the model calculation. While the adsorption of 

Eu(III) onto montmorillonite in 1 M NaCl electrolyte solution (ambient CO2) is covered 

by the model description, a deviation is observed for the retention of Eu(III) onto illite 

under the same conditions. In case of illite the increased adsorption of Eu(III) between 

pH ~ 4.5-6.5 is significantly underestimated. Apart from this deviation, the 
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experimental data is consistent over all experimental conditions. For this reason an 

experimental error might be the most likely explanation. 

The model description at 1 % CO2 is in good agreement with the experimental data 

under all applied experimental conditions for both selected clay minerals (Figure 4.17). 

 

 

Figure 4.16: Model calculations (solid lines) for the Eu(III) sorption edge on Na-IdP-2 (left) and 

Na-SWy-2 (right), in equilibrium with an ambient CO2 partial pressure (closed symbols) and in 

absence of CO2 (open symbols, *Schnurr et al. [17]), in different saline media ([NaCl] = 0.1, 1, 3 M). 

 

 

Figure 4.17: Model calculations (black line) for the Eu(III) sorption edge on Na-IdP-2 (left) and 

Na-SWy-2 (right), in equilibrium with an elevated partial pressure of 1 % CO2 (closed symbols) and in 

absence of CO2 (open symbols, *Schnurr et al. [17]), in different saline media ([NaCl] = 0.1, 1, 3 M). 
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Beside experiments in equilibrium with a partial pressure of CO2, a study on the 

adsorption of Eu(III) onto Na-IdP-2 was conducted at a constant carbonate 

concentration of 0.1 M Na2CO3/NaHCO3 (red symbols Figure 4.18). The surface 

sorbed carbonate assisted sorption model was used to describe these experimental 

results. Only a small deviation between the model description and the experimental 

data is observed from pH = 7-9.5. The applied model describes the steady decrease 

from log KD = 4-3.3, but the predicted retention slightly overestimates the experimental 

data. The following increase in retention is qualitatively described, but the predicted 

retention is significantly overestimated by applied model. Possible explanations for 

these deviations are the following: At high pH > 10 CO2 in-diffusion might increase the 

carbonate concentration and thus decrease sorption. It can also not be excluded that 

at high pH, the surface speciation of Am(III) may change. For instance it is well known 

that dissolution of clay minerals becomes relevant and impact the surface site 

concentration and their chemical nature. A decreasing surface site concentration might 

explain the observed divergence of calculated and measured sorption data. 

 

 

Figure 4.18: Model calculations (red line, Itot= 0.4 M) for the Eu(III) sorption edge in the presence of 

Na-IdP-2 at constant Na2CO3/NaHCO3 concentration (closed, red symbols), compared to experimental 

data in equilibrium with different partial pressures of CO2 (closed symbols: ambient CO2 green, 

1 % CO2 orange) and in absence of CO2 (open symbols, *Schnurr et al. [17]), in 0.1 M NaCl. 
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The present model is able to reproduce the experimental data for the Ln(III)/An(III) 

adsorption on two of the most relevant clay minerals in the context of nuclear waste 

disposal, illite and montmorillonite to pH = 10 and for a large variety of experimental 

conditions (ambient to 1 % CO2, 0.1-3 M NaCl ionic strength etc.). Moreover, the model 

approach is fully consistent with molecular scale information on surface speciation 

derived by spectroscopic and computational investigations. The existence of CO3
2- 

adsorbed at the clay mineral surface was proven for the first time by ATR-IR 

measurements and confirmed by AIMD simulations. The structure and number of 

ternary An(III) carbonate surface complexes were interpreted from pH dependent 

spectroscopic (TRLFS) speciation studies supported by further theoretical studies. For 

the first time VSB spectroscopy was successfully applied to unravel speciation of 

surface complexes of actinides. By combining these information and adding the 

surface sorbed carbonate assisted sorption model to otherwise an unmodified 

2SPNE/CE model from Bradbury and Baeyens [11, 16] a consistent surface 

complexation model was derived. Accordingly, it was possible to describe the majority 

of the experimental results of the present work with a single set of surface 

complexations constants for the An(III) retention onto Illite du Puy and montmorillonite. 

From this study it clearly could be shown that the adsorption of carbonate 

(p
CO2

≥10
-3.3

 bar) onto clay mineral surfaces is dominating the sorption of An(III) by the 

formation of carbonate stabilized surface complexes from slightly acidic to neutral pH 

conditions.  
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4.2. Impact of gluconate on the sorption of Eu(III) and Cm(III) 
onto clay minerals 

4.2.1. Batch sorption experiments 

 

NaCl electrolyte system 

 

The retention of Eu(III) at trace concentrations onto Illite du Puy (Figure 4.19, left) and 

montmorillonite (right) in presence of sodium gluconate is presented as the logarithmic 

distribution coefficient in dependence of pH for diluted and concentrated sodium 

chloride electrolyte solutions (0.1 M black, 1 M blue, 3 M red). Data obtained in the 

absence of gluconate are added for comparison (open black symbols, Schnurr et al. 

[17]).  

 

 

Figure 4.19: Eu(III) sorption onto Illite du Puy (left) and montmorillonite (right), in presence of 0.01 M 

Na-Gluconate, in different NaCl electrolytes solutions (0.1 M black, 1 M blue, 3 M red) shown as 

logarithmic distribution coefficient (log KD) vs. pH. To estimate the effect of gluconate, an experimental 

series from Schnurr et al. in absence of any competing ligand was added (open black symbols, 0.09 M 

NaCl [17]). 

 

In presence of 0.01 M Na-Gluconate, the retention of Eu(III) is reduced within the whole 

investigated pH range of this study in comparison to the gluconate free system. From 

pH = 3-6.5 a linear increase in sorption from log KD ~ 2-3 is observed. In the higher pH 

range of pH = 7-9 the distribution coefficient decreases by about half an order in 

magnitude and increases again between pH = 9 to 11 up to log KD = 4, were it reaches 
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a stable plateau. For pH > 11 a slight decrease about half an order in magnitude is 

observed for the Eu(III) adsorption onto montmorillonite. For the two other investigated 

ionic strengths (1, 3 M NaCl) the derived log KD-values are matching with the values 

for 0.1 M NaCl within the experimental error and over the whole investigated pH range 

(slight deviations only at pH < 4). 

It is obvious that the Eu(III) adsorption onto of illite and montmorillonite in presence of 

gluconate is quite comparable. The shape of the adsorption edge is strongly affected 

by the competition of stable aqueous Eu(III)-gluconate complexes with sorption 

processes. In the acidic pH range the effect of cation exchange on the basal plane 

which is the dominating retention process at low pH is significantly supressed. This can 

be explained by the formation of stable aqueous Eu(III) gluconate complexes. Sorption 

of gluconate on the negatively charged basal planes and blocking these sites is not 

very likely. The latter effect can potentially occur at the edge sites at protonated or 

uncharged surface hydroxyl groups. Therefore, Eu(III) sorption in this pH range up to 

around pH = 6 could be impacted by adsorbing gluconate. Binding of monocarboxylic 

acids to mineral surfaces is usually assumed to occur via the carboxylic group which 

then is no longer available for metal ion complexation. As a consequence, sorption of 

monocarboxylic acids will not increase metal ion sorption to minerals by forming 

additional (or stronger) sorption sites which is possible for ligands with more than 1 

complexing unit (e.g. dicarboxylic acids) if we exclude binding to OH groups. Above 

pH = 6 no further increase in Eu(III) retention in presence of gluconate is observed. 

Due to the completely negative charge of clay platelets (basal and edge sites) in the 

neutral to alkaline pH-range, the adsorption of anionic ligands is unlikely. The strong 

impact of stable aqueous Eu(III) gluconate species is likely, as the retention of Eu(III) 

reduces from nearly quantitative sorption in the absence of gluconate (log KD > 5.5) to 

a log KD > 3±0.5 in presence of gluconate. The adsorption of gluconate itself to the 

clay mineral surface was not determined during this study. 
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Ca-Gluconate system 

 

The cement additive gluconate interacts strongly with metal cations. This includes not 

only the trivalent actinides, but also divalent cations like Ca2+. Calcium can form stable 

complexes with gluconate and is a relevant and omnipresent cation in natural 

groundwater and especially in cementitious systems (section 2.2.4). Therefore the 

effect of gluconate on the retention of Ln(III)/An(III) on clay mineral surface has to be 

studied as well in CaCl2 electrolyte solutions. Batch sorption experiments with Eu(III) 

and the clay minerals illite (Figure 4.20, left) and montmorillonite (right) in presence of 

gluconate ([GLU] = 0.01 M) were conducted in calcium containing electrolytes 

([CaCl2] = 0.06 M black, 0.6 M red, 2 M blue). The retention of Eu(III) is shown as 

distribution coefficient vs. pH in Figure 4.20. Data in the absence of gluconate were 

added for comparison (open black symbols, Schnurr et al. [17]). 

 

 

Figure 4.20: Eu(III) sorption onto Illite du Puy (left) and montmorillonite (right), in presence of 0.01 M 

Ca-Gluconate, in different CaCl2 electrolytes solutions (0.06 M black, 0.6 M blue, 2 M red) shown as 

logarithmic distribution coefficient log KD vs. pH. To estimate the effect of gluconate, experimental data 

from Schnurr et al. [17] in absence of any competing ligand was added (open symbols, 0.06 M CaCl2). 

 

In the acidic pH range (pH = 3-6.5) a steady increase from log KD = 1-3.5 is observed 

for the illite case (identical to the gluconate free system) followed by a small plateau 

region and a further increase up to pH = 8.2 with log KD = 4.  
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A plateau scatter around log KD = 2 is observed for montmorillonite in the acid range. 

Above pH = 6 an increase in retention is observed with a maximum at pH 10 and a 

log KD = 4.5.  

As reported before for NaCl electrolyte solutions (see Figure 4.22) increase in retention 

is observed for the adsorption of Eu(III) onto montmorillonite in presence of gluconate 

between pH = 8.5-11. The retention of Eu(III) onto illite is in the range of log KD = 3.5-4 

Overall, the retention of Eu(III) on both clay minerals between pH = 6.5-10.5 for illite 

and pH = 7.5-10.5 for montmorillonite is reduced by gluconate up to Δlog KD ~ 2. The 

strongest impact of gluconate in calcium containing systems is observed by a step like 

decrease of additional Δlog KD ~ 2 above pH > 11. Compared to data in absence of 

gluconate (open symbols) a decrease of Δlog KD = 3.5-4 is observed in highly alkaline 

solutions. 

The log KD values determined in the acidic pH range of 3-6.5 for illite and 3-7.5 for 

montmorillonite are in good agreement with literature data in absence of gluconate 

(Schnurr et al, [17]) only a minor effect (Δlog KD < 0.5) is observed for montmorillonite 

at low pH. As in the NaCl electrolyte solution (see above), no significant effect of ionic 

strength on the Eu(III) retention is observed also in different calcium electrolyte 

solutions over the whole investigated pH range. At pH ~ 7 the predominance of stable 

aqueous Eu(III) gluconate species starts to significantly decrease Eu(III) retention. The 

step like decrease in Eu(III) retention in the high-pH region indicates the formation of 

very strong aqueous Eu(III)-gluconate complexes. The absence of this feature in 

sodium chloride systems indicates the participation of Ca in the aqueous Eu speciation. 

This species can’t be defined by the formation of ternary Ca-Eu-OH complexes [17], 

because it’s not observed in the absence of gluconate. For this reason a quaternary 

Ca-Eu-OH-GLU complex can be assumed. Quaternary Ca-ThIV-OH-GLU complexes 

were previously reported in the literature [75]. 
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GLU – concentration dependent sorption:  

 

To investigate the effect to the ligand concentration on the Eu(III) adsorption onto clay 

minerals, a batch sorption study focusing on the concentration of gluconate was 

conducted (montmorillonite, Figure 4.21; illite, appendix 7.1) The concentration of 

gluconate was increased from [GLU] = 1∙10-4 - 5∙10-3 M at fixed pH values (pH = 9, 

10.5, 12). These pH values were selected to monitor a region with a significant amount 

of adsorbed Eu(III) and the strong decrease in Eu(III) retention in presence of Ca2+. 

The adsorption of Eu(III) is displayed as log KD versus pH and compared to 

experimental data in presence of a constant gluconate concentration (0.01 M GLU, 

closed black symbols) and in absence of gluconate (open black symbols, Schnurr et 

al. [17]). 

 

 

Figure 4.21: Eu(III) sorption onto montmorillonite under variation of the gluconate concentration in 

diluted and concentrated NaCl (left, 0.1 M squares, 1 M circles, 3 M triangles) and CaCl2 (right, 0.1 M 

squares, 0.6 M circles, 2 M triangles) solutions at pH = 9, 10.5, 12. Data with constant gluconate 

concentration ([GLU] = 0.01 M, closed black symbols) and in absence of gluconate (open symbols, 

0.09 M NaCl / 0.06 M CaCl2 Schnurr et al. [17]) are added for comparison. Equal ligand concentrations 

are highlighted with the same colours and equal ionic strength with the same shape of symbols. 

 

In sodium chloride solutions (Figure 4.21, left) no clear effect of gluconate on the 

retention of Eu(III) on montmorillonite is observed at [GLU] = 1∙10-4 M (green). At 

[GLU]= 5∙10-4 M (orange) a clear decrease of Eu(III) sorption is found which further 

decreases with increasing gluconate concentration. At [GLU] = 5∙10-3 M (blue) the 

log KD’s are only slightly different to the results determined at [GLU] = 1∙10-2 M (see 
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above). In addition, the derived log KD’s show no significant effect of ionic strength. 

The shape of the adsorption edges at the varying gluconate concentrations is very 

comparable to each other. Thus, it can be assumed that the same aqueous Eu(III)-

gluconate species occur within the whole range of investigated ligand concentrations. 

A more complex picture is obvious for the adsorption of Eu(III) onto montmorillonite in 

presence of different concentrations of gluconate in calcium chloride solutions (Figure 

4.21, right). The addition of [GLU] = 1∙10-4 M (green) already reduces the retention of 

Eu(III) by about Δlog KD = 1-1.5 at pH = 9 and up to Δlog KD = 1-3.5 at pH = 12. The 

lowest effect at pH 12 is observed at the lowest Ca concentration pointing to a 

stabilization of aqueous Eu(III)-gluconate species by a further association of Ca2+ 

cations under these conditions. This is in good agreement to literature data regarding 

the complexation of Th(IV) by GLU in CaCl2 solution [75]. It can be assumed that 

ternary Eu(III)-OH-GLU complexes are bearing a highly negative charges. With the 

high affinity of Ca2+ to carboxylic acids, a partly compensation of this charge by the 

formation of Ca-Eu(III)-OH-GLU complexes can be assumed. 

 

4.2.1. Time resolved laser fluorescence spectroscopy (TRLFS) 

 

To gain a deeper insight into the complexation of trivalent actinides with gluconate, the 

aqueous Cm(III)-gluconate system was studied by TRLFS in diluted NaCl and CaCl2 

electrolyte solutions and in absence of CO2. The investigation of the aqueous system 

was necessary to derive reference spectra in the absence of clay minerals that had 

been studied in addition in a second step. In the latter case the adsorption of Cm(III) 

onto the clay minerals illite and montmorillonite was spectroscopically examined in the 

presence of 0.01 M gluconate and in 0.1 M NaCl or 0.06 M CaCl2 to assure the same 

conditions as applied in the batch sorption experiments. Results for illite and 

montmorillonite are quite comparable. Therefore, in the following section only the 

results for montmorillonite will be discussed in detail. The findings for the illite system 

are given in the appendix (7.3). All displayed emission spectra were area normalized 

to assure comparability. 
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Aqueous Cm(III) gluconate systems 

 

The complexation of Cm(III) with gluconate was studied by TRLFS at a fixed ligand 

concentration of 0.01 M gluconate and a metal ion concentration of 1∙10-7 M Cm(III) as 

a function of pH. Spectroscopic measurements were conducted in diluted NaCl (0.1 M, 

Figure 4.22 left) and CaCl2 (0.06 M, Figure 4.22 right) to study the effects of the 

electrolyte composition.  

 

 

Figure 4.22: Fluorescence spectra of dissolved Cm(III) as a function of pH in presence of 0.01 M 

gluconate in 0.1 M NaCl (left) and 0.06 M CaCl2 (right). 

 

A presentation of a reduced amount of spectra is given in Figure 4.23 (0.1 M NaCl left, 

0.06 M CaCl2 right) to highlight the relevant peak maxima, which indicate the presence 

of different species. A strong red shift of the emission band is observed with increasing 

pH in both electrolyte systems, starting from the lowest pH value (pH ~ 3). Besides the 

uncomplexed Cm(III) aquo ion located at λ = 593.8 nm, a first peak maximum is found 

at λ = 596 nm. A further increase of the pH results in a shift to λ = 599 nm in NaCl 

(pH = 3.65) and to λ = 598 nm in CaCl2 solution (pH = 5.60). An additional maximum 

at λ = 604 nm is observed in NaCl electrolyte occurring at pH = 5.71. This feature is 

not observed in CaCl2 solutions. A further increase in pH leads to the appearance of a 

distinct peak maximum at λ ~606 nm at pH > 8.5. In the highly alkaline pH-range and 

in NaCl solutions a shoulder is observed at λ = 611 nm above pH = 11.5. At the same 

position a well separated peak is observed in CaCl2 electrolyte solution. It has to be 

mentioned that similar or even identical spectra must not correspond to identical 
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species. The similar spectra only reflect a similar ligand field in the first coordination 

sphere of the central cation. In contrary, different peak positions clearly point to 

different species. The association of Ca2+ in the second coordination sphere of Cm(III) 

has no direct impact on the peak position of the fluorescence emission. However, a 

stabilization by Ca2+ may have an indirect effect on the first coordination sphere of 

Cm(III) (e.g. by a change of the nature or number of ligands), resulting in a shift of the 

peak position. 

 

 

Figure 4.23: Selected fluorescence spectra of dissolved Cm(III) at different pH values in presence of 

0.01 M gluconate in 0.1 M NaCl (left) and 0.06 M CaCl2 (right). With highlighted distinct peak positions 

indicating the presence of different species. 

 

With this qualitative, pH depending spectroscopic study and without performing a de-

tailed peak deconvolution procedure (at least) 5 different species could clearly be dif-

ferentiated in the NaCl and 4 in the CaCl2 electrolyte system. It is assumed that calcium 

is capable to stabilize negatively charged An(III) hydroxo gluconate species 

AnIII(OH)x(GLU)z
3-x-z. This stabilizing Ca2+ effect on Cm(III) species was already re-

ported for hydrolysed species the trivalent Cm(III) (CaCm(OH)3
2+, Ca2Cm(OH)4

3+ [58]), 

hexavalent U(VI) (Ca2UO2(CO3)3, [158]) the tetravalent Th(IV) (CaTh(OH)4(GLU)2, [75]) 

and Pu(IV) (CaPu(OH)3ISA–H
+ and CaPu(OH)3ISA–2H, [159]). The strong increase of 

the emission band at λ = 611 nm (pH > 11.5) in presence of Ca2+ is a clear indication 

of the mentioned stabilization effect. 
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Precipitation of Cm(OH)3 cannot be excluded at the relatively high Cm(III) concentra-

tion (10-7 M) applied in this study in presence of gluconate [34]. However, due to ex-

tremely low fluorescence intensity of colloidal Cm(OH)3 (concentration quenching) 

[160], recorded fluorescence spectra still can be assigned to dissolved species. Ad-

sorption of Cm(III) onto montmorillonite in presence of gluconate 

To study the mechanistic adsorption of Ln(III)/An(III) onto clay minerals in presence of 

gluconate a comprehensive TRFLS studied was conducted as a function of pH in 

diluted NaCl and CaCl2 electrolyte solutions. A set of fluorescence emission spectra of 

Cm(III) adsorbed onto montmorillonite (and illite, appendix 7.3) in presence of 0.01 M 

gluconate is shown in Figure 4.24 for 0.1 M NaCl (left) and 0.06 M CaCl2 (right). The 

spectra of a Cm3+ aquo ion is added for comparison. Presentation of a reduced amount 

of spectra is given in Figure 4.25 (NaCl left, CaCl2 right) to point out the different peak 

positions more precisely. 

  

 

Figure 4.24: Fluorescence spectra of Cm(III) adsorbed onto montmorillonite as function of the pH in 

presence of 0.01 M gluconate in 0.1 M NaCl (left) and 0.06 M CaCl2 (right).  

 

In the NaCl system and at low pH values (pH = 3.08) the maximum of the Cm(III) 

fluorescence emission is located above λ = 596 nm. A small shoulder at λ = 594 nm 

indicates a small amount of free Cm3+ aquo ion. A successive shift from λ = 597 to 

598.5 nm is observed in the pH range from pH = 3-5. The formation of a second distinct 

peak maximum at λ = 603.5 nm is observed in the neutral pH-range. At pH ~ 9 another 

feature is observed with a relatively sharp peak at λ = 606 nm. Above pH = 11 a 

shoulder forms at λ ~ 611 nm. 
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Figure 4.25: Selected fluorescence spectra of Cm(III) adsorbed onto montmorillonite as function of the 

pH in presence of 0.01 M gluconate in 0.1 M NaCl (left) and 0.06 M CaCl2 (right). With highlighted distinct 

peak positions indicating the presence of different species. 

 

In presence of Ca2+, the same features are observed, except of the one at λ = 603.5 nm. 

This feature is missing, which is in good agreement with the aqueous systems 

described above. It is also remarkable that the main features of the Cm(III) clay 

gluconate system can be attributed to the pure aqueous Cm(III) gluconate species. 

This effect may be explained by a superimposition of the emission bands of adsorbed 

and aqueous species. Another possibility could be that the sorbed species are not very 

much different compared to dissolved species, i.e. the denticity to the surface may be 

reduced compared to strong surface complexes of e.g. pure hydrolysed species. A 

comparison of the fluorescence intensity factors (FI) of aqueous systems and clay 

containing systems in absence and presence of gluconate (Figure 4.26) shows a 

significant decrease in fluorescence intensity, if clay minerals are present (mainly by 

light scattering effects on colloidal particles of the incident laser beam as well as the 

fluorescent light). More important, an increased fluorescence intensity is observed for 

sorption experiments in presence of gluconate compared to experiments in the 

absence of gluconate. The stronger intensity of Cm-gluconate complexes as compared 

to that of Cm-clay surface complexes suggests that the spectra in Figure 4.25 can be 

assigned predominantly to dissolved Cm-gluconate species. 

Similar as for the pure Cm(III) aqueous complexation in presence of gluconate a 

detailed peak deconvolution and assignment of well-defined surface species is simply 
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not possible due to the huge number of potentially adsorbed and aqueous Cm(III) 

species being present in this system simultaneously.  

 

 

System FI-factor 

NaCl(aq) 0.49 

CaCl2, (aq) 0.77 

NaCl, SWy, GLU 0.13 

CaCl2, SWy, GLU 0.21 

NaCl, SWy, no GLU 0.04 

CaCl2, SWy, no GLU 0.02 

 

 

Figure 4.26: Selected Cm(III) fluorescence emission spectra of aqueous and suspended clay sample 

in the presence of 0.01 M gluconate compared to suspended clay samples in the absence of gluconate 

(left). Relative fluorescence intensity factors (FI) of each system (right). 

 

A qualitative separation of the observed influence of gluconate on the adsorption of 

Eu(III) onto montmorillonite is shown in Figure 4.27 for NaCl (left) and CaCl2 (right) 

electrolytes. Both show 3 regions (blue boxes) of different influencing factors. In the 

absence of Ca2+ a small decrease in Eu(III) retention is observed in 0.1 M NaCl solution 

from log KD =2.8-2.3 (pH = 3-3.5), above pH = 3.5 the observed log KD is comparable 

to studies under saline condition. Between pH = 3.5-6.5 a comparable retention is 

found for all investigated ionic strengths (Figure 4.27, left, (1) blue box). The small, but 

observable decrease in the acidic pH indicates a competition between the formation of 

aquatic Eu(III)-gluconate species and the cation exchange of Eu3+ on the basal planes 

of the clay minerals. As observed by pH dependent TRLFS measurements, a 

complexation of Eu(III) with gluconate starts already below pH = 3. The formation of 

complexed species gets more dominant with increasing pH, the availability of Eu3+ is 

reduced and the relevance of the cation exchange effect decreases. A second 

explanatory approach might be an adsorption of gluconate to the clay mineral surface. 

This adsorption could block a decent number of surface sites, which are no longer 

available for a further adsorption of Eu(III). From pH = 6.5-10 (Figure 4.27, left, (2) blue 



 
 

 

 Results and discussion 

 
93 

 
  

box) a competition between aqueous Eu(III)-gluconate species and inner sphere 

sorption processes is the most reasonable explanation for the reduced Eu(III) retention. 

Above pH = 10 (Figure 4.27, left, (3) blue box) stable gluconate containing aquatic 

complexes are formed, as indicated by TRLFS measurements. In addition, an 

instability of the clay mineral is expected in the hyperalkaline pH. The dissolution of the 

mineral phase is related with the release of its components (Si, Al, Fe, Mg) into the 

electrolyte solution. This change of the chemical composition can also influence the 

speciation and adsorption of An(III)/Ln(III) as reported by Schnurr et al. and Huittinen 

et al. [17, 114]. 

 

 

Figure 4.27: Retention of the Eu(III) sorption onto montmorillonite as function of pH, in presence of 0.01 

M gluconate (closed symbols) and absence of gluconate (open symbols, Schnurr et al. [17]), in different 

NaCl (left) and CaCl2 (right) electrolyte solutions (0.1 M black, 1 M blue, 3 M red). To estimate the effect 

of gluconate, an experimental series from Schnurr et al. in absence of any competing ligand was added 

(open black symbols, 0.09 M NaCl or 0.06 M CaCl [17]). 

 

The adsorption of Eu(III) onto montmorillonite in presence of gluconate and Ca2+ 

(Figure 4.27, right) could also be separated into 3 regions with different impact of the 

organic ligand. In the acidic pH a low adsorption of Eu(III) is observed in presence of 

gluconate (Figure 4.27, right, (1) blue box). This was also reported for experimental 

data in the absence of gluconate [17]. According to spectroscopic results (TRLFS) 

similar Cm(III) gluconate species are present, as shown by the same shift in 

wavelength (λ = 597 nm) for both NaCl and CaCl2 solution. The already reduced 

retention of Eu(III) in CaCl2 systems is unaffected by processes in the aquatic phase. 
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This difference between NaCl and CaCl2 electrolyte systems supports the assumption 

of a competition between the formation of aquatic complexes and the cation exchange, 

which is supressed in Ca2+ containing systems and at high ionic strength [17]. A steady 

increase up to log KD =4.5 (pH = 10) characterizes the region from pH = 6.5-10.5 

(Figure 4.27, right, (2) blue box). Compared to systems in the absence of Ca2+ (and 

presence of gluconate) a significant increase in Eu(III) adsorption is observed. A 

reduction of the available free gluconate in solution, by the formation of a Ca(HGlu)+ 

species could explain the weakening of the impact of gluconate on the Eu(III) retention. 

According to TRLFS measurements, a significant amount of complexed species is still 

observed in the aquatic phase. This can explain the lowered retention of Eu(III) onto 

montmorillonite in presence of gluconate as compared to data in the absence of 

gluconate. A third observed effect is a strong decrease in adsorption at pH ≥ 11 (Figure 

4.27, right, (2) blue box). As discussed above, the formation of aquatic quaternary, 

Ca2+ stabilized Ca-An(III)-OH-GLU in the hyperalkaline pH range is the most likely 

explanation for this decrease [58, 75, 158, 159]. A stabilization of An(III)/Ln(III)-GLU 

species in the hyperalkaline pH is also supported by TRLFS measurements. 

In general an oversaturation of the investigated systems with respect to the solubility 

of Eu(OH)3 and Cm(OH)3 could not be excluded. As already discussed at p. 89, In 

presence of clay mineral surfaces the formation of surface complexes and surface 

precipitation , thus cannot be excluded at above pH ~ 9. Due to extremely low 

fluorescence intensity of Cm(OH)3 colloids (concentration quenching) [160], recorded 

fluorescence spectra can be correlated with dissolved species. 

 

4.3. Impact of citrate on the sorption of Eu(III) and Cm(III) onto 
clay minerals 

 

4.3.1. Batch sorption experiments 

NaCl-electrolyte system 

 

The impact of citrate on the retention of Eu(III) adsorbed onto the clay minerals Illite 

du Puy (Figure 4.28, left) and montmorillonite (right) was studied in NaCl solutions. 

The experimental data is presented as logarithmic distribution coefficient log KD versus 
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pHm. Experiments were conducted with a ligand concentration of 0.001 M citrate in 

diluted and concentrated NaCl electrolyte solutions (closed symbols: 0.1 M black, 1 M 

red, 3 M blue NaCl) and compared to a study in the absence of citrate (open symbols: 

0.1 M black, 1 M red, 3 M blue NaCl, Schnurr et al. [17]). 

In diluted NaCl the retention of Eu(III) is slightly decreasing from pH = 3-4 

(Δlog KD ~ 1.5) for illite and less pronounced for montmorillonite. Contrary, in 

concentrated NaCl solutions a more or less constant log KD ~ 1.5-2 is observed in this 

pH range for both clays. Between pH = 4-8 a steady increase in the adsorption of Eu(III) 

onto illite is observed in diluted and concentrated NaCl solutions. Compared to data in 

the absence of citrate, this increase is about 2 logarithmic units lower for 0.1M NaCl 

and 1.5 log units for the higher ionic strengths in presence of citrate. Above pH > 8.5 

a retention higher than log KD > 5.5 is observed for all studied ionic strengths. 

 

 

Figure 4.28: Eu(III) sorption onto Illite du Puy (left) and montmorillonite (right), in presence of 0.001 M 

Na-Citrate as function of the pH, in different NaCl electrolyte solutions (closed symbols: 0.1 M black, 1 

M blue, 3 M red). To estimate the effect of citrate, data in absence of any competing ligand is added 

(open black symbols, 0.09 M black, 0.9 red, 3.6 M NaCl Schnurr et al. [17]). 

 

In case of montmorillonite, a nearly linear increase in adsorption is observed between 

pH = 5-11, with a final retention of log KD > 5.5 for diluted and concentrated NaCl 

solutions. The total deviation between the log KD values in presence and absence of 

citrate is Δlog KD ~ 1.5-2 for diluted systems. No significant deviation is observed for 

saline systems between pH = 4-8. In absence of citrate a log KD > 6 is reached for 

pH > 8, while in presence of citrate this level of retention is reached for pH > 11. An 
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increased retention of Eu(III) is observed with increasing ionic strength in a pH range 

from 4 to 9. 

A general decrease in Eu(III) retention in presence of citrate is observed for both clay 

minerals, illite and montmorillonite, but with a different ionic strength dependence. It is 

assumed that the formation of strong aqueous Eu(III)-citrate complexes, especially 

Eu(Cit)2
-3 (section 2.2.4), outcompetes surface complexation reactions over a broad 

range of pH. The predominance of anionic aqueous species also suppresses the 

electrostatic attraction of cations like Eu3+ to the negatively charged basal planes of 

the clay minerals. With increasing pH inner sphere surface complexes of Eu(III) on the 

clay mineral sites gain more importance, leading to an increase in Eu(III) retention.  

 

CaCl2-electrolyte systems 

 

The adsorption of Eu(III) onto illite (Figure 4.29, left) and montmorillonite (right) in 

presence of 0.001 M citrate (right) was investigated in different CaCl2 electrolyte 

solutions (closed symbols: 0.06 M black, 0.6 M red, 2 M blue CaCl2). To estimate the 

effect of this strong complexing ligand, data in absence of citrate were added for 

comparison (open symbols: 0.06 M, 0.6 M, 2 M CaCl2, Schnurr et al. [17]). 

In deviation to the NaCl system an increase in Eu(III) retention is observed in CaCl2 

electrolyte solutions (Figure 4.29) in presence of 0.001 M citrate for both clay minerals. 

The adsorption of Eu(III) increases from log KD ~ 1-6 (illite, left) and log KD ~ 2-5.5 

(montmorillonite, right) between pH = 3-9. Above pH > 9 the retention of Eu(III) 

remains high (log KD > 5.5). Almost no influence of ionic strength is observed within 

the experimental conditions from pH = 3-12.5. Only in case of the Eu(III) adsorption 

onto illite in 2 M CaCl2 the presence of citrate causes a reduction of the log KD by 0.5-1 

logarithmic units between pH = 7.5-9.5. In contrast to the NaCl system, the formation 

of aqueous Ca-citrate complexes reduces the concentration of the free citrate ligand 

in solution and with this the predominance of the previously dominating Eu(Cit)2
3- 

complex (section 2.2.4). The reduction of competing complexes in solution can also 

support the formation of surface complexed species. 
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Figure 4.29: Eu(III) sorption onto Illite du Puy (left) and montmorillonite (right), in presence of 0.001 M 

Na-Citrate as function of the pH, in different CaCl2 electrolytes solutions (closed symbols: 0.06 M black, 

0.6 M blue, 2 M red). To estimate the effect of citrate, data in absence of any competing ligand is added 

(open symbols: 0.06 M black, 0.6 M blue, 2 M red CaCl2 Schnurr et al. [17]). 

 

4.3.2. Time resolved laser fluorescence spectroscopy (TRLFS) 

 

The adsorption of Cm(III) onto illite (Figure 4.30) in presence of 0.001 M citrate was 

studied as function of the pH in diluted NaCl (left) and CaCl2 solutions using TRLFS. 

To highlight relevant peak positions a presentation with a reduced number of spectra 

is shown in Figure 4.31. 

In 0.1 M NaCl a shift to higher wavelengths is observed for all pH values compared to 

the Cm aquo ion at λ = 593.8 nm. A first species is observed at λ = 597.1 nm 

(pH = 3.13) and a second at λ = 599.9 nm (pH = 5.26). In the alkaline pH range another 

species is observed at λ = 602.5 nm at pH = 9.01. Two shoulders indicate further 

species with larger peak shifts at pH = 10.08 with a wavelength of λ = 605.8 nm and 

for pH > 11.51 around λ = 610.2 nm. According to Heller et al. [35] the first species at 

λ = 597.1 nm is attributed to the neutral CmHCit complex. The peak maximum at 

λ = 599.9 nm is attributed to the 1:2 complex Cm(HCitH)HCit2-. While the appearance 

of the first species is in excellent agreement with Heller et al. [35] regarding pH and 

wavelength, the second species is reported at slightly higher wavelength of 

λ = 600.4 nm in the same pH range. With respect to the increasing retention for pH > 7 

the observed species at λ = 602.5 nm (pH = 9.01), λ = 605.8 nm (pH = 10.08) and 
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λ = 610.2 nm (pH = 11.51) in the alkaline pH range are assigned to adsorbed Cm(III) 

surface complex without the participation of citrate as described by Schnurr et al. [17]. 

Although the comparable peak positions support this assumption, the formation of 

citrate containing surface complexes settled by spectroscopy. 

According to the spectroscopic findings the decrease in An(III)/Ln(III) retention in the 

acidic pH range is related to the predominance of aqueous Cm-Citrate complexes. The 

following increase in retention is caused by the formation of Cm(III) surface complexes. 

 

 

Figure 4.30: Fluorescence spectra of Cm(III) adsorbed onto illite in presence of 0.001 M citrate as 

function of the pH, in 0.1 M NaCl (left) and 0.06 M CaCl2 (right). 

 

 

Figure 4.31: Selected fluorescence spectra of Cm(III) adsorbed onto illite in presence of 0.001 M citrate 

as function of the pH in 0.1 M NaCl (left) and 0.06 M CaCl2 (right). Highlighted distinct peak positions 

indicate the presence of different species. 
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The retention of Cm(III) onto illite in presence of 0.001 M citrate was investigated in 

diluted CaCl2 electrolyte solution (0.06 M CaCl2, Figure 4.30, right). Relevant peak 

maxima are highlighted in Figure 4.31. Already at pH = 3 a significant shift of the 

emission band to higher wavelengths (λ = 597.1 nm, pH = 3.53) compared to the Cm3+ 

aquo ion is observed. A second feature with a broad half width (more than one species 

involved) and a central wavelength of λ = 598.5 nm is detected at pH = 6.56. In the 

alkaline region around pH = 9.03 a feature is observed at λ = 605.8 nm, with a shoulder 

at λ = 610.2 nm forming at pH ≥ 10.97. As discussed for the NaCl electrolyte systems, 

the band at λ = 597.1 nm can be attributed to an aqueous 1:1 Cm citrate complex 

(Heller et al. [35]). The two bands at λ = 605.8 nm and λ = 610.2 nm are identified as 

two adsorbed surface species as reported by Schnurr et al. [17]. The participation of 

citrate in Cm(III) surface complexes was neither confirmed nor excluded. As batch 

sorption experiments (section 4.3.1) show an increased retention of Eu(III) (pH = 6.5) 

the feature at λ = 598.5 nm can also be attributed to an adsorbed Cm species.  

As discussed in section 2.2.4, cement additives like citrate have the potential to adsorb 

to calcium containing surfaces in CSH phases and similarities between silicate 

structures in CSH phases and basal planes of clay minerals are reported [161]. 

Because citrate is known for its high affinity to Ca2+ ions, adsorption of Cm(III) to a 

calcium bridged citrate seems to be possible. It is unlikely that all three carboxylic 

groups will be bound to a single adsorbed Ca2+ ion. For this reason, the formation of 

ternary Clay-Ca-Citrate-Cm(III) surface species might be located at the basal plan of 

the clay mineral. This ternary Cm(III) surface species could explain the observed 

increase of the total An(III)/Ln(III) retention above the level of the ligand free case in 

slightly acidic pH. 
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5. Summary 
 

Within the framework of this PhD thesis the adsorption of trivalent lanthanides and 

actinides onto the clay minerals Illite du Puy (Na-IdP-2) and montmorillonite 

(Na-SWy-2) was studied under the influence of competing anions from low to high ionic 

strength. The main focus was set on the impact of carbonate on the adsorption of 

Ln(III)/An(III). Beside this natural occurring ligand also gluconate, as an analogue for 

the cellulose degradation product isosaccharinic acid, and citrate as a natural occurring 

ligand and commercial decontamination agent were investigated. In addition both 

ligands are commonly used as cement additive. In the following section a short 

summary is given for the different systems and effects of the competing ligands. 

 

Adsorption of Ln(III)/An(III) onto clay minerals in presence of carbonate: 

 

The adsorption of Eu(III) / Cm(III) onto different clay minerals (illite, montmorillonite) 

was studied in NaCl electrolyte solutions (0.1, 1, 3 M) in equilibrium with ambient CO2 

and 1 % CO2. Depending on the applied CO2 partial pressure the retention measured 

as pH dependent distribution coefficient log KD decreases between pH = 9-10 (ambient 

CO2) or pH = 8-9 (1 % CO2) over more than 2 logarithmic units. This significant 

decrease is explained by an increasing carbonate concentration in the alkaline region 

and hence the formation of the predominant 1:3 carbonate species of Ln(III)/An(III) in 

solution. These finding is in good agreement with previous studies by Marques et al. 

[22, 113]. Beside this effect a second effect was identified, which leads to an increasing 

adsorption in the slightly acidic pH-range between pH = 4-6 by about Δlog KD~ 1.5 

(ambient conditions) and Δlog KD~ 1 (1 % CO2) compared to the carbonate free system 

(Schnurr et al. [17]). This increasing effect was also observed in presence of selenite, 

as an analogue for carbonate. To explain this effect a comprehensive theoretical 

computational study using DFT and AIMD was conducted to derive further insights in 

the structural properties of adsorbed species on a molecular scale. In a first step the 

stability of adsorbed carbonate on clay mineral edge sites was proven. The sorption 

mechanism was explained by a ligand exchange reaction between surface hydroxyl 

groups and dissolved carbonate. This is in good agreement with literature reported on 

the adsorption of carbonate onto iron and aluminium hydroxides [108, 109]. Surface 
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sensitive ATR-IR measurements were performed on montmorillonite suspended in 

carbonate containing electrolyte solutions. The results clearly show that carbonate 

binds to the clay mineral surface and has to be considered as a further surface binding 

site for metal ions. The structures of ternary Cm(III)-carbonate surface complexes were 

determined by DFT and AIMD simulations. Localised infrared spectra of the first 

coordination shall of the adsorbed Ln(III) were extracted and compared with vibronic 

sideband spectra. Using time resolved laser fluorescence spectroscopy two different 

surface sorbed species were revealed by peak deconvolution and fluorescence lifetime 

measurements. For both sorbed species vibronic sidebands were recorded and 

compared to computed IR spectra and reference systems in the absence of carbonate. 

As this technique only probes the first coordination shell of the excited metal ion, the 

presence of carbonate in the VSB spectra indicates ternary Cm(III)-carbonate surface 

complexes. This confirms the previous findings. The adsorption of An(III) on clay 

minerals is dominated by the formation of carbonate stabilized surface species from 

slightly acidic to alkaline pH conditions. 

 

 

Figure 5.1: Surface sorbed carbonate assisted sorption model (black line) of the Eu(III) sorption edge 

on Na-IdP-2 (left) and Na-SWy-2 (right), in equilibrium with an elevated partial pressure of 1% CO2 

(closed symbols) and in absence of CO2 (open symbols, *Schnurr et al. [17]), in 0.1 M NaCl. Ternary 

surface species are highlighted in red and green. 

 

Combining the results of batch sorption experiments, time resolved laser fluorescence 

and vibronic sideband measurements, ATR infrared spectroscopy and theoretical 

computations a 2SPNE/CE model was successfully applied (Figure 5.1). The 
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adsorption of carbonate to the clay mineral could not be quantified experimentally 

within the present study. A electrostatic dynamic double-layer model of Van Geen et 

al. [109] for the carbonate adsorption onto goethite was adopted in a nonelectrostatic 

2SPNE/CE model. Although this approach holds some uncertainties, an accurate 

description of the experimental findings was achieved. The two ternary Cm(III) 

carbonate surface species ≡S-O-CO2Am2+ and ≡S-O-CO2AmCO3 were added to the 

2SPNE/CE model of Bradbury and Baeyens [13, 118], which then was able to describe 

the adsorption of Eu(III) onto montmorillonite and illite under different partial pressures 

of CO2 and from diluted to concentrated sodium chloride electrolyte systems. For the 

first time, the impact of carbonate on Eu/Cm(III) sorption was described by the applied 

geochemical model considering consistently batch sorption experiments, 

spectroscopic results from TRLFS, VSB, ATR-FTIR measurements and theoretical 

DFT and AIMD calculations.  

 

Adsorption of Ln(III)/An(III) onto clay minerals in presence of gluconate: 

 

In NaCl solution the Eu(III) retention in presence of 0.01 M gluconate is reduced by 

about 2 orders of magnitude over the whole pH-range, compared to gluconate free 

systems (log KD> 6 to log KD~ 4, Schnurr et al. [17]). Gluconate acts as a competing 

ligand. Hence, a lower limit of the gluconate concentration was derived to estimate its 

impact on the sorption. Below [GLU] < 1∙10-4 M, gluconate shows no significant effect 

on the Eu(III) retention onto Illite du Puy. 

Between pH = 7-11, a similar Eu(III) retention is observed in presence of Ca2+, as 

reported for NaCl electrolyte systems. Above pH = 11 an even further decreased log 

KD~ 2 is observed. A significant effect of ionic strength isn’t observed neither for NaCl 

nor for CaCl2 electrolyte systems. 

Time resolved laser fluorescence spectroscopy was used to study the behaviour of 

adsorbed Cm(III) and aquatic species in presence of gluconate. Due to higher 

fluorescence intensity factors of dissolved Cm(III)-gluconate species, no distinct 

surface species could be identified. Nevertheless, a qualitative description of the 

competition of adsorbed and aquatic species was derived. In addition to that, a 
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stabilizing effect of Ca2+ on the formation of quaternary Ca-Cm-OH-GLU species was 

identified at high pH values. 

 

Adsorption of Ln(III)/An(III) onto clay minerals in presence of citrate: 

 

The influence of citrate on the sorption behaviour of Eu(III) onto Illite du Puy and 

montmorillonite was studied in NaCl and CaCl2 electrolyte solutions in the pH range of 

pH = 3-12.5. In NaCl electrolyte solutions the retention of Eu(III) onto Illite du Puy is 

significantly reduced from the acidic to neutral pH. Under alkaline conditions a quasi-

quantitative sorption is reached. Experiments performed in CaCl2 electrolyte solutions 

show an increased retention in the pH-range of 3 to 8, also reaching quasi-quantitative 

retention in the alkaline pH. A time resolved laser fluorescence study was performed 

on suspended clay samples containing Cm(III) and citrate in NaCl and CaCl2 

electrolyte systems. In the absence of calcium, aquatic Cm(III) citrate complexes 

dominate the speciation in the acidic pH range. Adsorbed species were observed 

similar to studies in the absence of competing ligands from neutral to alkaline. 

Unfortunately, the association of citrate to these surface species could not be clarified. 

The enhanced retention of Eu(III) in CaCl2 electrolyte systems may be explained by 

the formation of a ternary Ln(III)/An(III)-citrate surface complex.  

 

The influence of the different competing anionic ligands used in this study on the 

adsorption of trivalent lanthanides and actinides on clay minerals has been proven to 

be very complex. Not only a competition between adsorbed Ln(III)/An(III) surface 

species and aquatic species is taking place. Also, the adsorption of the competing 

ligands onto clay mineral surface can affect the adsorption behaviour of trivalent 

lanthanide and actinides significantly. While the presence of carbonate (or the 

analogue selenite) and citrate increases the Ln(III)/An(III) adsorption in the slightly 

acidic and neutral pH, gluconate is generally decreasing the retention. A possible 

explanations could be the number of carboxylic acid groups of the ligand (citrate 3, 

gluconate 1), the lower reactivity of alcohol groups and steric hindrance of the organic 

rest.  
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7. Appendix 

7.1. Carbonate coverage of strong sites 

 

 

Figure 7.1: Model calculation of the carbonate coverage of clay mineral strong sites as function of pHm 

in equilibrium with ambient CO2 (pCO2 = 10-3.3 bar), according to the surface complexation model 

developed in the present work. With respect to the s/l ratio 100 % of the available strong sites are loaded 

with carbonate. 

7.2. Concentration depending studies Eu(III)-GLU-illite 

 

 

Figure 7.2: Eu(III) sorption onto illite under variation of the gluconate concentration in diluted and 

concentrated NaCl (left, 0.1 M squares, 1 M circles, 3 M triangles) and CaCl2 (right, 0.1 M squares, 

0.6 M circles, 2 M triangles) solutions at pH = 9, 10.5, 12. Data with constant gluconate concentration 

([GLU] = 0.01 M, closed black symbols) and in absence of gluconate (open symbols, 0.09 M NaCl / 

0.06 M CaCl2 Schnurr et al. [17]) are added for comparison. Equal ligand concentrations are highlighted 

with the same colours and equal ionic strength with the same shape of symbols. 
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7.3. TRFLS spectra of the Cm(III)-GLU-Illite system 

 

 

Figure 7.3: Fluorescence spectra of Cm(III) adsorbed onto montmorillonite as function of the pH in 

presence of 0.01 M gluconate in 0.1 M NaCl (left) and 0.06 M CaCl2 (right). 
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7.4. Ca3(Cit)2:4∙H2O solubility 

 

The total citrate concentration in calcium containing solutions is controlled by a binary 

Ca-Citrate phase (Ca3(Cit)2:4H2O(s)). The pH dependent solubility of 

Ca3(Cit)2:4H2O(s) was calculated as a function of pH using the geochemical code 

PhreeqC [45] with the Thermochimie database [73]. The lowest solubility of calcium 

citrate appears between pH = 7-10.1 resulting in a citrate concentration of 2.48 mM 

citrate. To avoid precipitation effects during batch sorption experiments the total citrate 

concentration was limited to 0.001 M. 
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Figure 7.4: Calculated solubility of Ca3(Cit)2:4H2O as a function of pH in 0.06, 0.6, 2 M CaCl2 electrolyte 

solutions. The calculation was performed using PhreeqC [45] and Thermochimie [73]. 
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7.5. Long-term study: Evolution of batch sorption experiments 

at high pH 

 

The adsorption of Eu(III) and Cm(III) onto montmorillonite, illite and iron free 

montmorillonite was studied for 930 day under portlandite pore water conditions (sat. 

Ca(OH)2, pHstart= 12.3) and a 0.1 M NaCl solution (pHstart= 12.3). This was to 

investigate the alteration of clay surfaces and their sorption capability when in contact 

with alkaline cement porewaters. A slight decrease in pH was observed, ΔpH ~ 0.3 in 

NaCl and ΔpH ~ 0.2 in Ca(OH)2 electrolyte systems. A high retention of Eu(III) 

(log KD > 5.5) was still observed over 930 days. 

 

TRLFS 

 

The adsorption of Cm(III) onto the different clay minerals was studied by TRLFS. In 

NaCl solution, a shift of the fluorescence emission wavelength to λ = 603.9 nm (illite), 

λ = 603 nm (montmorillonite) and λ = 608.2 nm (iron free montmorillonite, IFM) is 

observed (Figure 7.5, left). Comparable, but slightly lower (Δλ = 1-2 nm) peak positions 

were reported for adsorbed species onto illite and IFM within “short term” (48 h) 

sorption studies by Schnurr et al. [17]. A shift to higher wavelength (λ = 602.5-604 nm) 

after the addition of [Si] = 1∙10-3 M was also described in the same study and may 

explain a slight deviations in the present study. A significant difference between the 

natural clay minerals illite and montmorillonite is observed by a strong shift to higher 

wavelength (λ = 608.2 nm) observed for Cm(III) adsorbed to the synthetic iron free 

montmorillonite (IFM). It can be assumed that the high content of structural Mg2+ tends 

to dissolve and reprecipitates as Brucite (Mg(OH)2). Studies in pure Cm(III)-Brucite 

systems by Wiedemann et al. are supporting this assumption, a fluorescence emission 

at λ = 608.1 nm for Cm(III) in Brucite containing systems [162]. Measured fluorescence 

lifetimes are very short: for illite τ = 67±1 µs and for montmorillonite τ = 71±1 µs. The 

fluorescence lifetime measurements of IFM show biexponential decay with a short 

fluorescence lifetime of τ = 93±5 µs and a longer lifetime of τ = 248±5 µs. The 

shortening of the fluorescence lifetime of Cm(III) adsorbed to iron bearing illite at high 

pH was described by Rabung et al. [143] and is in good agreement with the present 
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study. The short lifetimes were explained by the alteration of the clay mineral at high 

pH, formation of FeOOH or Fe silicate secondary phases with Cm(III) associated to. In 

this case fluorescence quenching is known to occur resulting in short fluorescence 

emission lifetimes. In studies on the adsorption and incorporation of Cm(III) into Brucite 

a lifetime of τ >> 210 µs is reported [163]. This is supporting the assumption of the 

formation of Brucite in IFM containing samples after. The shorter lifetime of τ = 93±5 µs 

could not be explained by a comparison with literature data. 

 

  

Figure 7.5: Fluorescence spectra of adsorbed Cm(III) onto illite (black), montmorillonite (red) and iron 

free montmorillonite (blue) after 930 days contacted with a 0.1 M NaCl solution at pH > 12 (left), 

corresponding fluorescence lifetime measurements (right).  

 

  

Figure 7.6: Fluorescence spectra of adsorbed Cm(III) onto illite (black), montmorillonite (red) and iron 

free montmorillonite (blue) after 930 days contacted with a saturated Ca(OH)2 solution at pH > 12 

(left), corresponding fluorescence lifetime measurements (right). 
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In presence of Ca2+ and under portlandite pore water conditions only a single feature 

is observed at λ = 619.9 nm for Cm(III) adsorbed onto the different clay minerals. The 

similar spectra were reported for Cm(III)-CSH (calcium silicate hydrates) sorption 

species by Stumpf et al. [160] and Rabung et al. [143]. Due to a partly dissolution of 

the clay mineral in the hyperalkaline pH range [97], silicate as main component of the 

mineral and calcium from the electrolyte can form CSH phase. The adsorption or 

incorporation of Cm(III) to these phases is then possible. 

 

XRD 

 

XRD measurements were performed on untreated samples (c) and on samples 

contacted with hyperalkaline solutions (a: Ca(OH)2; b: 0.1 M NaCl) as described above 

(Figure 7.7, Figure 7.8, Figure 7.9). In the absence of Ca2+ no significant changes in 

diffractograms are observed. Crystalline halite particles originate from dried electrolyte 

solution. In presence of Ca2+ a number of sharp signal are observed, which can’t be 

attributed to the formation of crystalline Portlandite. The signal could be partly assigned 

to Levyne, a calcium aluminium silicate hydrate (CASH). But it can be assumed that 

not only one secondary phase forms but rather a mixture of solid, partly amorphous, 

phases. 

SEM-EDS 

 

SEM images and EDS analysis of untreated clay samples (Figure 7.10, Figure 7.11, 

Figure 7.12) and samples contacted with 0.1 M NaCl show no significant differences 

(Figure 7.13, Figure 7.14, Figure 7.15) over the period of 2 years. Samples contacted 

with Ca(OH)2 solution show a change in morphology (SEM image, left : Figure 7.16, 

Figure 7.17, Figure 7.18) and chemical composition (EDS analysis, right). These 

analyses verify a change from clay mineral structures to CASH phases, where the 

secondary phase is partly overgrowing the initial clay mineral (Figure 7.18). 
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Conclusion 

 

With the combination of batch sorption experiments over more than 2 years and 

spectroscopic techniques it was possible to observe structural changes on clay 

minerals in presence of Ca2+ ions. In the absence of Ca2+ no significant change in 

morphology were observed. The mineral phases in the Ca-system, originating from 

dissolution and reprecipitation processes, were partly identified as CASH phases. A 

distinct identification of specific CASH phases was not possible, due to the 

heterogeneity of the sample. Unaffected from structural changes of the solid a high 

retention of Eu(III) was observed under all applied conditions. As indicated by TRLFS 

measurements adsorbed Cm(III) species in sodium chloride systems and adsorbed or 

incorporated Cm(III) species in calcium chloride solution are observed. Both 

mechanisms, sorption and incorporation, are known for their capability to immobilize 

Ln(III)/An(III) sufficiently. 

 

 

Figure 7.7: XRD measurements of illite du puy, contacted with a saturated Ca(OH)2 solution (a) or 0.1 M 

NaCl pH=12.3 for 740 d (b) and untreated (as received). XRD pattern of portlandite, illite, Levyne (CASH) 

and halite are added for comparison from the PDF-2 database (d). 
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Figure 7.8: XRD measurements of iron free montmorillonite, contacted with a saturated Ca(OH)2 

solution (a) or 0.1 M NaCl pH=12.3 for 740 d (b) and untreated (as received). XRD pattern of portlandite, 

illite, Levyne (CASH) and halite are added for comparison from the PDF-2 database (d). 

 

 

Figure 7.9: XRD measurements of illite du puy, contacted with a saturated Ca(OH)2 solution (a) or 0.1 M 

NaCl pH=12.3 for 740 d (b) and untreated (as received). XRD pattern of portlandite, illite, Levyne (CASH) 

and halite are added for comparison from the PDF-2 database (d). 
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Figure 7.10: SEM image (left) and EDS analysis (right) of untreated illite du puy. 

 

 
 

Figure 7.11: SEM image (left) and EDS analysis (right) of untreated iron free montmorillonite. 

 

keV 
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Figure 7.12: SEM image (left) and EDS analysis (right) of untreated montmorillonite. 

 

 

 

Figure 7.13: SEM image (left) and EDS analysis (right) of illite du puy contacted with 0.1 M NaCl for 

740 days at pH > 12. 
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Figure 7.14: : SEM image (left) and EDS analysis (right) of iron free montmorillonite contacted with 

0.1 M NaCl for 740 days at pH > 12. 

 

 

 

Figure 7.15: SEM image (left) and EDS analysis (right) of montmorillonite contacted with 0.1 M NaCl 

for 740 days at pH > 12. 
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Figure 7.16: SEM image (left) and EDS analysis (right) of illite du puy contacted with sat. Ca(OH)2 

solution for 740 days at pH > 12. 

 

 
 

Figure 7.17: SEM image (left) and EDS analysis (right) of iron free montmorillonite contacted with sat. 

Ca(OH)2 solution for 740 days at pH > 12. 
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Figure 7.18: SEM image (left) and EDS analysis (right) of montmorillonite contacted with sat. Ca(OH)2 

solution for 740 days at pH > 12. 
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