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Abstract

Gyrotrons are microwave tubes capable of providing mega-watt power at millimetric
wavelengths. The microwave power is produced by the conversion of the kinetic energy
of an electron beam to electromagnetic wave energy. Simulations of the beam-wave
interaction in the gyrotron cavity are essential for gyrotron design, as well as theoretical
and experimental studies.

In the usual gyrotron operation the spectrum of the generated radiation is concen-
trated around the nominal frequency. For this reason, the usual simulations consider
only a narrow-band output spectrum (e.g. several GHz bandwidth comparing with
the working frequency in the range of 100-200 GHz). As a result, the typical ex-
isting codes use a single-frequency radiation boundary condition for the generated
electromagnetic field in the cavity. This condition is matched only at one frequency.
However, there are two important aspects, which motivate an advanced formulation
and implementation of the cavity boundary condition. Firstly, the occurrence of
broadband effects (which may be several tens of GHz) in some cases , like dynamic
after-cavity-interaction or modulation side-bands, requires a broadband boundary
condition. Secondly, there are reflections from inside and outside of the gyrotron,
which can only be considered in the simulation through a boundary condition with
user-defined, frequency-dependent reflections.

This master thesis proposes an improved formulation of the broadband boundary
condition in the self-consistent, beam-wave interaction code Euridice. In this new
formulation, two physical variables — the wave impedance and the axial wavenumber
are expanded in polynomial series in the frequency domain. Because the beam-wave
interaction process is simulated transiently in the time domain, the boundary condition
should be also expressed in the time domain. This involves a non-trivial inverse Fourier
transform, for which two solutions are proposed, tested and validated.

It has been shown that, through the newly developed formulation, the existing
matched boundary condition (that should yield zero-reflection in ideal case) can be
improved by 15 dB even with a first-order polynomial series. Moreover, a user-defined,
frequency-dependent complex reflection coefficient can be introduced. This was not
possible with the previously existing boundary condition in Euridice.
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1. Introduction

Gyrotron description

Gyrotron oscillators are vacuum tubes, which are used to generate megawatt power at
millimetre wavelength. They are typically applied as sources for ECRH & CD (Electron
Cyclotron Resonance Heating & Current Drive) in fusion experimental reactors, material
processing and as gyrotron amplifier in millimetre-wavelength radars [1] ch. 10. Fig. 1.1
shows the sketch of a typical gyrotron. The high energy electrons from the electron
gun pass through the beam tunnel and travel into the cavity. In the cavity, they will
exchange their energy with the electromagnetic RF field (so-called interaction). In this
process, a part of the kinetic energy is taken from the electron beam and transformed
into the energy of the electromagnetic wave. Afterwards, the electrons are absorbed by
the collector, whereas the high power wave is guided through the launcher, steered by
a few mirrors and transferred to the outside through a wave-transparent window.

Collector

Electronzbeam
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Outputzwindow

Emitter
Anode
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Metalliczmirrors

Launcher

SCzmagnetzcoils
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BC

z
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Fig. 1.1.: Sketch of a gyrotron
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2 1. Introduction

For some practical reasons, each part of a gyrotron (e.g. the gun, cavity, collector
and the quasi-optical system) is simulated separately. In the simulation of cavities, a
system consisting of the Maxwell’s equations and the motion equation of electrons is
solved. The common approach is to solve these two kinds of equations alternatively
in a loop as fig. 1.2 shows.

motion of electrons
F = −𝑒 (E + v × B)

Maxwell’s
equations

J = ∑𝑖 𝜌𝑖v𝑖E, B

Fig. 1.2.: The common approach to simulate the interaction of the
electron beam with the RF wave in the gyrotron cavity

Cavity modelling

A schematic view of the gyrotron cavity is presented in fig. 1.3. It is a part of a
waveguide with a mild variation of the radius (typically < 5∘). The middle section has
a constant radius and the radius variation before and after the middle section makes
the appearance of standing wave possible. The cavity has open ends, in order for the
electromagnetic radiation to be able to leave the region. The geometry is rotationally
symmetric around the 𝑧-axis. For tolerating high power, the cavity is usually overmoded.
The dimension of the cavity as well as the other RF parts is much larger than the
wavelength. This means, that it will take a lot of time and resources to simulate the
interaction of the electron beam with the electromagnetic field in such overmoded
cavity using any well known full-wave analysis. Hence for the purpose of a fast design
and parameter studies, the physical model has to be simplified. Firstly, the RF fields
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Fig. 1.3.: Schematic sketch of the cavity
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are decomposed into transverse eigenmodes. The boundary condition at the open
ends of the cavity will be based on this expansion in cylindrical eigenmodes. Secondly,
since the transverse structure of the eigenmodes is known, the field representation is
reduced to a complex envelope function 𝐴(𝑧, 𝑡), which is spatially one-dimensional.
This function describes the field profile along the gyrotron axis (the 𝑧-axis). For a
specific TE-mode, the vectorial electric field E can be written as

E(𝑟, 𝜙, 𝑧, 𝑡) = 𝐴(𝑧, 𝑡) 𝑒𝑗𝜔0𝑡 e(𝑟, 𝜙 ; 𝑧) ,

where 𝜔0 is a constant carrier frequency. e(𝑟, 𝜙 ; 𝑧) is the mode-specific membrane
vector [1] ch. 3. Its parameter 𝑧 is separated from the other two parameters, because the
membrane vector is assumed to vary weakly along the 𝑧-axis. Thus, the 𝑧-dependence
of the field is essentially described by 𝐴(𝑧, 𝑡).

Boundary condition

The general equation for boundary conditions at the open ends of the cavity in
frequency domain is

̂𝐴(𝑧, 𝜔) = ± 𝑍
𝑗 𝑘

∂ ̂𝐴(𝑧, 𝜔)
∂𝑧 ,

where ̂𝐴 is the transformed envelope function 𝐴 in the frequency domain. 𝑍 is a
normalized wave-impedance and 𝑘 is the axial wavenumber; generally they are both
frequency-dependent. The sign on the right-hand side of this equation depends on the
side of the boundary. More details will be presented in chapter 2.

An initial assumption for the boundary condition is that the electromagnetic wave
can travel through the boundaries of the cavity without being reflected. The commonly
used simple boundary condition for a certain mode has zero reflection only at one single
frequency, because it treats the 𝑍 and 𝑘 as constants. This kind of boundary condition
can be found in most European simulation codes, such as Selft [2], Euridice [3]
, Coaxial [4] and Twang [5]. Although this boundary condition has a limited
bandwidth, it is still valid in the most cases. This is because the output spectrum of
a single mode is as narrow-band as the boundary condition.

However, for several special designs and configurations there are more than one
frequency, which appear under a certain mode. An example is the dynamic After-
Cavity-Interaction (ACI) effect. The beam-wave interaction is designed to occur merely
in the middle section of the cavity, but there is sometimes an undesired energy exchange
in the uptaper region. S. Kern et al. observed in [6] that the non-stationary, dynamic
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ACI causes the appearance of other frequencies. Furthermore A. Schlaich found the
spectral lines experimentally, which are suspected to be the dynamic ACI frequencies
[7]. Even if the dynamic ACI does not exist physically, through the implementation of
a broadband boundary condition the undesired reflection can be excluded from the
reasons, which may cause this simulation effect. Another example of multiple frequencies
in a single mode is the side-bands described in [8] by S. Alberti. For all the above
cases, broadband boundary conditions are required for a precise simulation.

Broadband matched boundary conditions (i.e. without reflections) already exist in
Euridice and Twang. In reality, however there are some reflections at those positions
where the structure is not smooth enough, like the launcher, window or even the load
outside of the gyrotron. The simulation tools should have the capability to adopt an
arbitrary, frequency-dependent reflection, for the reason of setting up a more
realistic simulation or just for the purpose of observing how an undesired reflection
affects the interaction. Most interaction codes can adopt a reflection coefficient for a
single frequency. Among them, the code Euridice is able to set a constant reflection
coefficient for the entire frequency band. However, none of the existing code can handle
a user-defined, frequency-dependent reflection yet.

State of the art

The code package Euridice has the capability to simulate time-dependent, multi-mode,
self-consistent beam-wave interaction and has been successfully used for simulation and
design of several gyrotrons in Europe. There is already a broadband matched boundary
condition implemented in Euridice. Also Twang is equipped with a matched
broadband boundary condition, however it is limited to single-mode calculations.
Taking the dynamic ACI in the 140 GHz, 1 MW gyrotron for the stellarator W7-X [9]
as an example, the current state of the broadband matched boundary condition will
be presented here.

Under the TE28,8 mode, dynamic ACI can be observed in the simulation of the
140 GHz gyrotron. The radius at the end of the cavity yields for this mode 129.9 GHz
cut-off frequency. After the equilibrium state has been reached, the simulation predicts
a spectrum shown in fig. 1.4. In the spectrum, one can see the working frequency
140.23 GHz. Except this, a weak dynamic ACI signal is above the noise level, which
can be found near the cut-off frequency at 131.3 GHz. The ACI appears, because the
energy-exchange criterion (resonance condition) is fulfilled again in the uptaper region.
The field profile with the appearance of ACI can be seen in fig. 1.5.
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Fig. 1.4.: Spectrum of the 140 GHz gyrotron for W7-X with dynamic ACI
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Fig. 1.5.: Field profile for the dynamic ACI case in the 140 GHz gyrotron

The properties of the commonly used single-frequency boundary condition is obtained
from the Euridice simulation result in fig. 1.6. This boundary condition has a perfect
absorption at the carrier frequency (140.20 GHz, which is 30 MHz below the main
signal frequency according to fig. 1.4). However, there is considerable1 reflection at
the ACI frequency of 131.3 GHz.

The reflection coefficient of Euridice’s broadband boundary condition is demon-
strated in fig. 1.7 for a time step of 10 ps. It is clear, that this boundary condition
absorbs not only the carrier frequency but also the other signals, especially in the
frequency band around the dynamic ACI. But the matched band near the ACI in
fig. 1.7 is higher than the exact ACI frequency 131.3 GHz. Fig. 1.8 shows the reflection
coefficient of the broadband boundary condition with a smaller time discretization

1|Γ| ≈ 40%
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Fig. 1.6.: Reflection of the single frequency bound-
ary condition for W7-X ACI simulation in

Euridice
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Fig. 1.7.: Reflection of the existing broadband boundary
for the spectrum in fig. 1.4 with 10 ps time step
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(1 ps). The local optimum moves to the exact dynamic ACI frequency. Besides, the
spectrum is much cleaner than the one with a large time discretization.

It can be also observed, that the optimum of the single-frequency boundary condition
is a little higher above 140 GHz whereas the optimum of the broadband one is below
140 GHz. The reason is supposed to be the approximation of the wave number (see
chapter 2.1.3).

The state of the art, regarding the boundary condition can be summarized as follows:

• The existing matched broadband boundary condition can absorb a multi-frequency
spectrum.

• It needs small time discretizations to obtain a clean and reliable result. This
leads to very time-consuming simulations.

• At the frequencies where there is no defined signal, the broadband boundary con-
dition handles the correlated noise like the single-frequency boundary condition.

• There is no possibility to set a frequency-dependent reflection.

Goal and outline of this master thesis

This master thesis aims at improving the existing broadband boundary condition,
especially at introducing a user-defined, frequency-dependent reflection coefficient to
the broadband boundary condition. In chapter 2, the enhanced broadband boundary
condition which considers user-defined reflections is derived and two possible solutions
to implement this boundary condition are proposed. To verify these two solutions, a
numerical program is written during the thesis, which simulates a simple homogeneous
dispersive waveguide fed by a user-defined current. The methods and results of the
simulations are discussed in chapter 3. Chapter 4 summarizes the ideas as well as
results and gives an outlook to the future work. Appendix A gives a short review
of the Fourier transforms used in this text.





2. Theoretical study of the boundary
condition

2.1. Derivation of boundary condition

2.1.1. Transmission line theory

The electrical values (e.g. the current, voltage or field strength) in a transmission line
can be presented generally as the overlap of a forward and a backward propagating
wave, shown in the following equation. Γ𝑓 is the reflection coefficient for the forward
wave. 𝐸0 ∈ ℂ is a constant.

𝐸(𝑧) = 𝐸0 (𝑒 𝑗(𝜔𝑡−𝑘 𝑧) + Γ𝑓𝑒 𝑗(𝜔𝑡+𝑘 𝑧)) (2.1)

Assuming 𝐸(𝑧) is differentiable over 𝑧

∂𝐸
∂𝑧 = 𝐸0 (−𝑗𝑘 𝑒 𝑗(𝜔𝑡−𝑘 𝑧) + 𝑗𝑘 Γ𝑓𝑒 𝑗(𝜔𝑡+𝑘 𝑧)) (2.2)

Multiplying both sides of (2.1) by 𝑗𝑘

𝑗𝑘 𝐸 = 𝐸0 (𝑗𝑘 𝑒 𝑗(𝜔𝑡−𝑘 𝑧) + 𝑗𝑘 Γ𝑓𝑒 𝑗(𝜔𝑡+𝑘 𝑧)) (2.3)

Summing and subtracting (2.2) and (2.3):

∂𝐸
∂𝑧 + 𝑗𝑘 𝐸 = 2𝑗𝑘 Γ𝑓 𝐸0 𝑒 𝑗(𝜔𝑡+𝑘 𝑧) (2.4a)

∂𝐸
∂𝑧 − 𝑗𝑘 𝐸 = 2𝑗𝑘 Γ𝑓 𝐸0 𝑒 𝑗(𝜔𝑡−𝑘 𝑧) (2.4b)

After combining both equations, there is

∂𝐸
∂𝑧 + 𝑗𝑘 𝐸 = (∂𝐸

∂𝑧 − 𝑗𝑘 𝐸) Γ𝑓𝑒 𝑗 2𝑘 𝑧

The variable 𝑧 equals to the position, where the corresponding reflection coefficient
Γ is given. So if Γ𝑓 is given at 𝑧 = 0, then the relation will be

∂𝐸
∂𝑧 + 𝑗𝑘 𝐸 = (∂𝐸

∂𝑧 − 𝑗𝑘 𝐸) Γ𝑓 (2.5)

9



10 2. Theoretical study of the boundary condition

which can be written as

(Γ𝑓 + 1) ∂𝐸
∂𝑧 = (Γ𝑓 − 1) 𝑗𝑘 𝐸 (2.6)

Doing the same calculation for the backward reflection coefficient Γ𝑏 yields

(1 + Γ𝑏) ∂𝐸
∂𝑧 = (1 − Γ𝑏) 𝑗𝑘 𝐸 (2.7)

If both Γ𝑓 and Γ𝑏 do not equal to one, then

𝐸 = (1 + Γ
1 − Γ) 𝑠

𝑗𝑘
∂𝐸
∂𝑧 (2.8)

where 𝑠 = 1 for the left (Γ = Γ𝑏) side, 𝑠 = −1 for the right (Γ = Γ𝑓) side. This is the
radiation boundary condition for a field component 𝐸 at frequency 𝜔 in a wave guide.

2.1.2. Boundary condition in frequency domain

Equation (2.8) can be written in a frequency-dependent form explicitly

̂𝐸(𝑧𝑏, 𝜔) = 𝑠 𝑍(𝜔)
𝑗𝑘 (𝜔)

∂ ̂𝐸(𝑧, 𝜔)
∂𝑧 ∣

𝑧→𝑧𝑏

(2.9)

where 𝑧𝑏 is the 𝑧-coordinate at the boundary. In the following text the condition 𝑧 → 𝑧𝑏
will be omitted for convenience. 𝑍(𝜔) is the normalized wave impedance and it can
be expanded in a (truncated) Taylor series around frequency 𝜔0

𝑍(𝜔) = 1 + Γ(𝜔)
1 − Γ(𝜔) =

𝑁𝑧

∑
𝑛=0

𝑎𝑛 (𝜔 − 𝜔0)𝑛 (2.10)

𝑘 (𝜔) is the axial wave number, for a dispersive waveguide, it equals

𝑘 (𝜔) = 1
𝑐0

√𝜔2 − 𝜔2
𝑐

†
(2.11)

where

• 𝑐0 is the velocity of the light in the medium.

• 𝜔𝑐 is the cut-off frequency of a certain mode.

•
√

𝑥 indicates the square root with a non-negative real part i.e.

−𝜋
2 ≤ arg {

√
𝑧} ≤ 𝜋

2



2.1. Derivation of boundary condition 11

• 𝑥† stands for the complex conjugate of 𝑥.

The axial wavenumber 𝑘 should be the conjugate of the square root with a non-
negative real part. According to the field modelling in (2.1), the wavenumber should
be positive above the cut-off frequency, so that the wave 𝑒 𝑗(𝜔𝑡±𝑘 𝑧) propagates in the
defined direction. When below cut-off, its imaginary part has to be negative, in order
to attenuate the wave while it is travelling outside from the cavity. The wavenumber
𝑘 will be discussed again in chapter 2.1.3.

The time-dependent TE-mode RF field in the cavity is modelled as a narrow-band
amplitude modulation on the carrier frequency 𝜔0.

E(𝑟, 𝜙, 𝑧, 𝑡) = 𝐴(𝑧, 𝑡)𝑒𝑗𝜔0𝑡 e(𝑟, 𝜙; 𝑧) (2.12)

𝜔0 ∈ ℝ is the carrier frequency, usually chosen as the resonance frequency of the cold
cavity (the cavity without the electron beam). 𝐴(𝑧, 𝑡) is the complex amplitude profile
of the field. e(𝑟, 𝜙; 𝑧) is the membrane vector in the cylindrical coordinate [1]ch. 3,
which is assumed to vary slowly along the 𝑧 axis (i.e. ∣∂e

∂𝑧 ∣ 1
|e| ≪ ∣∂𝐴

∂𝑧
1
𝐴 ∣ ) and there is

(∇2
⟂ + 𝑘2

⟂) e(𝑟, 𝜙; 𝑧) = 0 (2.13)

where
𝑘2

⟂ = 𝜇𝜖 𝜔2 − 𝑘2

∇2
⟂ = ∇2 − ∂2

∂𝑧2

The Fourier transform1 of (2.12) yields

̂E(𝑟, 𝜙, 𝑧, 𝜔) =
√

2𝜋 ̂𝐴(𝑧, 𝜔) ∗ 𝛿(𝜔 − 𝜔0) e(𝑟, 𝜙; 𝑧) (2.14)

The asterisk denotes a convolution. According to lemma 1 from appendix A

̂E(𝑟, 𝜙, 𝑧, 𝜔) =
√

2𝜋 ̂𝐴(𝑧, 𝜔 − 𝜔0) e(𝑟, 𝜙; 𝑧) (2.15)

with the definition of the envelope’s frequency 𝜔𝑎

𝜔𝑎 ∶= 𝜔 − 𝜔0 (2.16)

the field expression becomes

Ê(𝑟, 𝜙, 𝑧, 𝜔) =
√

2𝜋 ̂𝐴(𝑧, 𝜔𝑎) e(𝑟, 𝜙; 𝑧) (2.17)

Therefore

∂ ̂E
∂𝑧 =

√
2𝜋 ∂ ̂𝐴(𝑧, 𝜔𝑎)

∂𝑧 e(𝑟, 𝜙; 𝑧) +
√

2𝜋 ̂𝐴(𝑧, 𝜔𝑎) ∂e(𝑟, 𝜙; 𝑧)
∂𝑧⏟⏟⏟⏟⏟
≈0

(2.18)

1see the definition in appendix A
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Substituting (2.18) into (2.9) and eliminating e(𝑟, 𝜙, 𝑧) on both sides

[ ̂𝐴(𝑧, 𝜔𝑎) = 𝑠 𝑍(𝜔)
𝑗 𝑘 (𝜔)

∂ ̂𝐴(𝑧, 𝜔𝑎)
∂𝑧 ]

𝑧 at boundaries

(2.19)

with 𝑠 = 1 for the boundary on the left-hand (gun) side, −1 for the right-hand (launcher)
side. This is the boundary condition for the field envelope function in frequency domain.

Since the envelope function is simulated in the time domain, there is the need to
have a formulation of the boundary condition also in the time domain. Two kinds of
approaches can be found in the existing simulation codes like Euridice:

1. Assuming 𝑍 and 𝑘 to be frequency independent, e.g. fixing the values of 𝑍(𝜔) and
𝑘(𝜔) at 𝑍(𝜔0) and 𝑘(𝜔0), respectively. ̂𝐴(𝑧, 𝜔𝑎) is inverse Fourier transformed
into 𝐴(𝑧, 𝑡). Then this is the single-frequency boundary condition

𝐴(𝑧, 𝑡) = 𝑠 𝑍(𝜔0)
𝑗 𝑘 (𝜔0)

∂𝐴(𝑧, 𝑡)
∂𝑧 (2.20)

2. Still keeping 𝑍 frequency-independent, but allowing 𝑘 (𝜔) varying with the
frequency, the broadband boundary condition comes out by transforming (2.19)
in the time domain2:

𝐴(𝑧, 𝑡) = 𝑠 𝑍(𝜔0)
𝑗
√

2𝜋
(ℱ−1 1

𝑘 (𝜔)) ∗ ∂𝐴(𝑧, 𝑡)
∂𝑧 (2.21)

However, the current existing broadband boundary condition does not allow 𝑍
also be frequency-dependent.

When taking the second approach, the exact form (2.11) for 1
𝑘 (𝜔) can be easily inverse

Fourier transformed neither analytically nor digitally. The discrete Fourier transform
does not work in the common sense, since the wavenumber is in the denominator, which
causes numerical infinity at the cut-off frequency. Approximated forms of 𝑘 which are
more suitable for the analytical Fourier transform, will be discussed in the next section.

2see lemma 2 in appendix A
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2.1.3. Approximation of the axial wave number

In order to make the analytical inverse Fourier transform in (2.21) easier, the func-
tion 𝑘 (𝜔) should be simplified. There are at least three ways to approximate the
wavenumber. These three methods will be explained and compared in this section and
an improvement will be proposed. With the definition

Δ𝜔 ∶= 𝜔0 − 𝜔𝑐 (2.22)

it is assumed in this thesis, that

• 𝐴(𝑧, 𝜔𝑎) ≈ 0 for |𝜔𝑎| ≫ 0

• 𝜔𝑐 and 𝜔0 are so near, that Δ𝜔 ≪ 𝜔𝑐, 𝜔0

The first point is the basic assumption for the approximations of 𝑘 (𝜔). The second
assumption can be weaker, when the compensation discussed at the end of this
section is used.

The first kind of approximation

Function 𝑘1 ∶ ℝ → ℂ defines the first approximation of the axial wavenumber.

𝑘1(𝜔𝑎 + 𝜔0⏟
=𝜔

) =

⎧{{
⎨{{⎩

1
𝑐0

√|(𝜔𝑎 + 𝜔0)2 − (𝜔0 − Δ𝜔)2| for |𝜔𝑎 + 𝜔0| ≥ 𝜔𝑐

−𝑗 1
𝑐0

√|(𝜔𝑎 + 𝜔0)2 − (𝜔0 − Δ𝜔)2| for |𝜔𝑎 + 𝜔0| < 𝜔𝑐

=

⎧{{
⎨{{⎩

1
𝑐0

√∣��𝜔
2
𝑎 + 2(𝜔𝑎 + Δ𝜔)𝜔0 −�

��Δ𝜔2∣ for 𝜔𝑎 + Δ𝜔 ≥ 0

((((((((((
𝜔𝑎 + Δ𝜔 ≤ −2𝜔𝑐

−𝑗 1
𝑐0

√∣��𝜔
2
𝑎 + 2(𝜔𝑎 + Δ𝜔)𝜔0 −���Δ𝜔2∣ for �����−2𝜔𝑐 <𝜔𝑎 + Δ𝜔 < 0

Some terms are cancelled because they are either negligible or out of the frequency
range of interest. Finally, the approximated wavenumber becomes

𝑘1(𝜔𝑎 + 𝜔0) =

⎧{{
⎨{{
⎩

√2𝜔0
𝑐0

√𝜔𝑎 + Δ𝜔 for 𝜔𝑎 + Δ𝜔 ≥ 0

−𝑗
√2𝜔0

𝑐0
√−(𝜔𝑎 + Δ𝜔) for 𝜔𝑎 + Δ𝜔 < 0

(2.23)
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The second kind of approximation

Another approximation is used in [10], with the leading coefficient √𝜔0 replaced by
√𝜔𝑐. It can be derived in the similar way. Since (𝜔𝑎 + Δ𝜔)2 is negligible in the
frequency range of interest:

√(𝜔𝑎 + 𝜔0)2 − 𝜔2
𝑐

†
= √(𝜔𝑎 + Δ𝜔 + 𝜔𝑐)2 − 𝜔2

𝑐
†

= √
�������(𝜔𝑎 + Δ𝜔)2 + 2(𝜔𝑎 + Δ𝜔)𝜔𝑐

†

= √2𝜔𝑐√𝜔𝑎 + Δ𝜔
†

The entire 𝑘 can be written as

𝑘2(𝜔𝑎 + 𝜔0) =

⎧{{
⎨{{
⎩

√2𝜔𝑐
𝑐0

√𝜔𝑎 + Δ𝜔 for 𝜔𝑎 + Δ𝜔 ≥ 0

−𝑗
√2𝜔𝑐

𝑐0
√−(𝜔𝑎 + Δ𝜔) for 𝜔𝑎 + Δ𝜔 < 0

(2.24)

Like the first one, this approximation also obtains the exact value at the cut-off
frequency. But the wave number at the carrier frequency has a little deviation, i.e.

𝑘2(𝜔𝑐) = 𝑘exact(𝜔𝑐) = 0
𝑘2(𝜔0) ≠ 𝑘exact(𝜔0)

This is implemented in Euridice.

The third kind of approximation

The third approximation is an average of the first two. Again considering the term
under the square root:

√(𝜔𝑎 + 𝜔0)2 − 𝜔2
𝑐

†
= √(��𝜔𝑎 + 𝜔0 + 𝜔𝑐)(𝜔𝑎 + 𝜔0 − 𝜔𝑐)

†

= √𝜔0 + 𝜔𝑐√𝜔𝑎 + Δ𝜔
†

The term 𝜔𝑎 is cancelled, because its range of interest is assumed to be much smaller
than the value of 𝜔𝑐 and 𝜔0.

𝑘3(𝜔𝑎 + 𝜔0) =

⎧{{
⎨{{⎩

√𝜔0 + 𝜔𝑐
𝑐0

√𝜔𝑎 + Δ𝜔 for 𝜔𝑎 + Δ𝜔 ≥ 0

−𝑗
√𝜔0 + 𝜔𝑐

𝑐0
√−(𝜔𝑎 + Δ𝜔) for 𝜔𝑎 + Δ𝜔 < 0

(2.25)
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and it always holds

𝑘3(𝜔0) = 𝑘exact(𝜔0)
𝑘3(𝜔𝑐) = 𝑘exact(𝜔𝑐)

Comparison of the first three approximations

In this section the boundary setting of the 140 GHz gyrotron is used as an example. The
cavity of this gyrotron has ≈ 129.9 GHz cut-off frequency on the right-hand (launcher)
side. 𝜔0 is chosen at 140 GHz. The three above mentioned approximations of 𝑘 will be
compared. Fig. 2.1 and 2.2 are the absolute and relative errors of each approximation.
From both figures it can be seen, that 𝑘3 is a good compromise. Besides, 𝑘3 equals
to the exact 𝑘 at the carrier frequency. But the relative error at cut-off is not zero.
The reason for that will be clarified in the next paragraph.

Improved approximation of the axial wave number

It is possible to let the approximation (2.25) converge to the exact value, since

1. 𝑘 in (2.11) is zero if and only if 𝜔 = 𝜔𝑐. When this happens, 𝑘3 equals to the
exact wave number.

2. Otherwise, the error between 𝑘3 and the exact 𝑘 can be expanded in an Taylor
series at the point 𝜔𝑎 → 0. By using this series, the modified 𝑘3 will converge to
the exact 𝑘 .

This section focuses on the details of the second point. Dividing (2.25) by (2.11) yields

𝑘3
𝑘exact

∣
𝑘≠0

=

⎧{{
⎨{{⎩

√ 𝜔0 + 𝜔𝑐
𝜔𝑎 + 𝜔0 + 𝜔𝑐

for 𝜔𝑎 > −(𝜔0 + 𝜔𝑐)

−𝑗 √− 𝜔0 + 𝜔𝑐
𝜔𝑎 + 𝜔0 + 𝜔𝑐

for 𝜔𝑎 < −(𝜔0 + 𝜔𝑐)
(2.26)

The branch 𝜔𝑎 < −(𝜔0 + 𝜔𝑐) means that the modulated envelope has much broader
frequency spectrum than the carrier, which breaks down the essential assumptions
of the slow time variation3. So this case will not be taken into account. Then (2.26)
will be written as

𝑘3
𝑘exact

∣
𝑘≠0

= √ 𝜔0 + 𝜔𝑐
𝜔𝑎 + 𝜔0 + 𝜔𝑐

(2.27)

3This is discussed further in chapter 3.1.
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In order to study the behaviour of the ratio at cut-off frequency, 𝜔𝑎 will be substi-
tuted with

𝜔𝑎 = 𝜀 + 𝜔𝑐⏟
=𝜔

−𝜔0

𝜀 ∈ ℝ is a small value near zero.

𝑘3
𝑘exact

= √ (𝜔0 + 𝜔𝑐)𝜀
(𝜀 + 𝜔𝑐)2 − 𝜔2

𝑐

Applying de L’Hôpital’s rule results in

𝑘3
𝑘exact

∣
𝑘exact→0

= √ (𝜔0 + 𝜔𝑐)𝜀
(𝜀 + 𝜔𝑐)2 − 𝜔2

𝑐
∣

𝜀→0

= √𝜔0 + 𝜔𝑐
2𝜔𝑐

(2.28)

For 𝜔𝑐 = 130 GHz and 𝜔0 = 140 GHz, this value equals to 1.019. This explains, why
the relative error at cut-off in fig. 2.2 does not equal to zero (101.9% − 100% = 1.9%
at 130 GHz).

Now this error ratio will be used for improving the approximation, by expanding
(2.27) into Taylor series

1
𝑘exact

∣
𝑘≠0

= 1
𝑘3

{
∞

∑
𝑛=0

1 ⋅ 3 ⋅ 5 ⋯ (2𝑛 − 1)
2𝑛 𝑛!

(−1)𝑛

(𝜔0 + 𝜔𝑐)𝑛 𝜔𝑛
𝑎 } (2.29)

Its first three terms are

1
𝑘exact

∣
𝑘≠0

≈ 1
𝑘3

{ 1 − 1
2 ( 𝜔𝑎

𝜔0 + 𝜔𝑐
) + 3

8 ( 𝜔𝑎
𝜔0 + 𝜔𝑐

)
2

− 5
16 ( 𝜔𝑎

𝜔0 + 𝜔𝑐
)

3
}

(2.30)
Their relative errors are presented in fig. 2.3. It can be seen that even the first order
polynomial improves the accuracy significantly. In addition, this polynomial can be
merged into (2.10) in the final calculation.

Conclusion

The final choice of wave number is the approximation based on 𝑘3 and improved
through a polynomial series. For practical reasons, this polynomial is truncated until
the 𝑁𝑘-th order. Even a truncation at the first order will bring significant advances.
Since the inverse of 𝑘 is used in (2.19), the polynomial refers to 1

𝑘 instead 𝑘 itself.

1
𝑘(𝜔𝑎) ≈ 𝑐0

√𝜔0 + 𝜔𝑐 √𝜔𝑎 + Δ𝜔†

𝑁𝑘

∑
𝑛=0

1 ⋅ 3 ⋅ 5 ⋯ (2𝑛 − 1)
2𝑛 𝑛!

(−1)𝑛

(𝜔0 + 𝜔𝑐)𝑛 𝜔𝑛
𝑎 (2.31)
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2.1.4. Transforming into the time domain

Setting (2.10) and (2.31) into (2.19) and merging the two polynomials together results in

̂𝐴(𝑧, 𝜔𝑎) = 𝑐0√𝜔0 + 𝜔𝑐
{ 1

𝑗 √𝜔𝑎 + Δ𝜔†

𝑁𝑧+𝑁𝑘

∑
𝑛=0

𝑎𝑛 (𝜔𝑎 + Δ𝜔)𝑛} ∂ ̂𝐴(𝑧, 𝜔𝑎)
∂𝑧 (2.32)

Through lemma 1 from appendix A, the expression in the parenthesis can be shifted
by Δ𝜔

̂𝐴(𝑧, 𝜔𝑎) = 𝑐0√𝜔0 + 𝜔𝑐
{𝛿(𝜔𝑎 + Δ𝜔) ∗

𝑁𝑧+𝑁𝑘

∑
𝑛=0

𝑎𝑛
𝜔𝑛

𝑎

𝑗 √𝜔𝑎
† } ∂ ̂𝐴(𝑧, 𝜔𝑎)

∂𝑧 (2.33)

Now this equation will be inverse Fourier transformed into the time domain. Lemma 2
is used to map the product into a convolution

𝐴(𝑧, 𝑡) = 𝑐0√𝜔0 + 𝜔𝑐
{ 1√

2𝜋
ℱ−1 (𝛿(𝜔𝑎 + Δ𝜔) ∗

𝑁𝑧+𝑁𝑘

∑
𝑛=0

𝑎𝑛
𝜔𝑛

𝑎

𝑗 √𝜔𝑎
† )} ∗ ∂𝐴(𝑧, 𝑡)

∂𝑧
(2.34)

using lemma 2 yet again from convolution to multiplication and doing an inverse
Fourier on the 𝛿-function according to lemma 3

𝐴(𝑧, 𝑡) = 1√
2𝜋

𝑐0√𝜔0 + 𝜔𝑐
{𝑒−𝑗 Δ𝜔 𝑡 ℱ−1

𝑁𝑧+𝑁𝑘

∑
𝑛=0

𝑎𝑛
𝜔𝑛

𝑎

𝑗 √𝜔𝑎
† } ∗ ∂𝐴(𝑧, 𝑡)

∂𝑧 (2.35)

After sorting the components, the following expression for the broadband boundary
condition in time domain arises

𝐴(𝑧, 𝑡) = 1√
2𝜋

𝑐0√𝜔0 + 𝜔𝑐

𝑁𝑧+𝑁𝑘

∑
𝑛=0

𝑎𝑛 ({𝑒−𝑗 Δ𝜔 𝑡 ℱ−1 𝜔𝑛
𝑎

𝑗 √𝜔𝑎
† } ∗ ∂𝐴(𝑧, 𝑡)

∂𝑧 ) (2.36)

Two solutions for calculating the right-hand side of this equation are discussed in
the following.

2.2. Solution I: Lebesgue integrable function

The (improper) integral ∫𝑥
0

𝜔𝑛
√

𝜔 † d𝜔 , 𝑛 ∈ ℕ, exists for 𝑥 < ∞. This means, if the
value of the integrand can be limited at 𝑥 → ∞, then the Fourier transform in (2.36)
is able to be performed in ℒ1 space. Because of the slow-time-scale assumption, the
spectrum of the envelope function on the left-hand side of (2.33) is concentrated around
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𝜔 ≈ 0. So the value of 𝜔𝑛−0.5 is less important at 𝜔 → ±∞ than its value at 𝜔 ≈ 0.
Therefore a low-pass filter ℎ(𝜔) will be designed to suppress the integrand’s value at
high frequencies. Thus (2.36) can be reformed as

𝐴(𝑧, 𝑡) = 𝑐0√𝜔0 + 𝜔𝑐

1√
2𝜋

(𝑒−𝑗 Δ𝜔 𝑡 ℱ−1𝑔) ∗ ∂𝐴(𝑧, 𝑡)
∂𝑧 (2.37)

where

𝑔(𝜔) = (
𝑁𝑧+𝑁𝑘

∑
𝑛=0

𝑎𝑛
𝜔𝑛

𝑗
√

𝜔† ) ℎ(𝜔) (2.38)

There are a few conventional low-pass filters, like the Butterworth-filter, which
may limit the amplitude of that polynomial function at high frequencies. However,
such filters have two disadvantages. Firstly, they are polynomial filters. For a strong
decaying ramp, the order of these filters has always to be much higher than the function
order 𝑁𝑧 + 𝑁𝑘. This may cause numerical overflows and inaccuracies when summing
and evaluating the polynomials. Secondly, these filters have linear phase, which will
also influence the phase of 𝐴(𝑧, 𝜔) in a broadband spectrum.

Another kind of filter which may overcome the disadvantages of those polynomial
filters is the Gaussian filter, see fig. 2.4. It has the form

ℎ(𝜔) = 𝑒−( 𝜔
Ω )2

(2.39)

However, the Fourier transform ℱ−1 { 𝜔𝑛
√

𝜔 † 𝑒−𝜔2} yields terms like 𝑡𝑛 𝑒− 𝑡2
8 ℐ5

4
( 𝑡2

8 ),
where ℐ is the modified Bessel function. Such terms are hard to be evaluated numerically,
since there is a zero multiply infinity problem for a large 𝑡.

The final idea is a filter, starting from an even function, which has on both sides
the same exponential decays

ℎ𝑒(𝜔) = 𝑒−∣ 𝜔
Ω ∣ (2.40)

where Ω ∈ ℝ+ is the initial bandwidth. A sketch of this function is shown in fig. 2.5.
Although the symmetric exponential function limits the polynomial-like spectrum into
ℒ1 space, it does not have a flat amplitude at the desired passing band. This can be
solved by compensating the filter function with a truncated polynomial, which comes
from the Taylor series of its complementary function 1

ℎ𝑒(𝜔) = 𝑒+∣ 𝜔
Ω ∣

ℎ̃𝑒(𝜔) =
𝑁ℎ

∑
𝑛=0

1
𝑛! ( 1

Ω)
𝑛

|𝜔|𝑛
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In case of 𝑁ℎ → ∞, the product of ℎ𝑒(𝜔) and ℎ̃𝑒(𝜔) converges to unity. Hence the
final filter function consists of these two parts

ℎ(𝜔) = ℎ𝑒(𝜔) ⋅ ℎ̃𝑒(𝜔) = (
𝑁ℎ

∑
𝑛=0

1
𝑛! ( 1

Ω)
𝑛

|𝜔|𝑛) 𝑒−∣ 𝜔
Ω ∣ (2.41)

Fig. 2.6 presents the filter function for different 𝑁ℎ, drawn in normalized units.

The function to be Fourier transformed, which is the 𝑔(𝜔) in (2.38), will now be

𝑔(𝜔) =

⎧{{{
⎨{{{⎩

−𝑗 (
𝑁ℎ

∑
𝑛=0

1
𝑛! ( 1

Ω)
𝑛

𝜔𝑛) (
𝑁𝑧+𝑁𝑘

∑
𝑛=0

𝑎𝑛 𝜔𝑛) 𝑒− 𝜔
Ω

1√
𝜔

for 𝜔 > 0

(
𝑁ℎ

∑
𝑛=0

1
𝑛! ( 1

Ω)
𝑛

(−1)𝑛 𝜔𝑛) (
𝑁𝑧+𝑁𝑘

∑
𝑛=0

𝑎𝑛 𝜔𝑛) 𝑒+ 𝜔
Ω

1√
−𝜔

for 𝜔 < 0

=

⎧{{{
⎨{{{⎩

𝑁
∑
𝑛=0

𝛼𝑛 𝜔𝑛 𝑒− 𝜔
Ω

1√
𝜔

for 𝜔 > 0

𝑁
∑
𝑛=0

𝛽𝑛 𝜔𝑛 𝑒 𝜔
Ω

1√
−𝜔

for 𝜔 < 0

(2.42)

In (2.42) 𝛼𝑛 and 𝛽𝑛 are complex coefficients, 𝑁 is the sum of 𝑁𝑧, 𝑁𝑘 and 𝑁ℎ. It can
be proven easily that 𝑔(𝜔) belongs to ℒ1(ℝ). Thus its Fourier transform is defined as
(A.2). The integral over the whole frequency axis can be separated into two intervals
— the positive 𝜔 and negative 𝜔, both integrals are analytically solvable through

1√
2𝜋

∫
∞

0

𝜔𝑛
√

𝜔
𝑒− 𝜔

Ω 𝑒 𝑗𝜔𝑡 d𝜔 = 1√
2

∏𝑛
𝑝=1(2𝑝 − 1)

2𝑛 ( 1
Ω − 𝑗𝑡)

− 2𝑛+1
2

(2.43a)

1√
2𝜋

∫
0

−∞

𝜔𝑛
√

−𝜔
𝑒 𝜔

Ω 𝑒 𝑗𝜔𝑡 d𝜔 = 1√
2

(−1)𝑛
∏𝑛

𝑝=1(2𝑝 − 1)
2𝑛 ( 1

Ω + 𝑗𝑡)
− 2𝑛+1

2
(2.43b)

An advantage of this solution is the limited signal bandwidth, through which the
required time discretization can be estimated. The requirement of time discretization
for the filter (which may dominate the global time discretization) is decided by the
aliasing effect. As shown in fig. 2.7, when refering to the filter, the term “bandwidth”
is defined through an amplitude drop by 0.1 and maximal −20 dB aliasing is allowed
by default. Under this condition, the time discretization has to be smaller than 1

𝑏2
(see the figure). The value of 𝑏2 and Ω are simply calculated by a binary search
algorithm. Table 2.1 is a comparison of the influence of order and bandwidth to the
time discretization. It shows:
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Fig. 2.4.: Spectrum of a normalized Gaussian filter
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Fig. 2.5.: Spectrum of a normalized exponential filter
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of polynomial compensation



22 2. Theoretical study of the boundary condition

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-15 -10 -5  0  5  10  15

b1

b2

n
o
rm

a
liz

e
d
 a

m
p
lit

u
d
e

normalized frequency

Fig. 2.7.: Bandwidth and the aliasing threshold of the exponential filter

Table 2.1.: Comparison of different filter parameters

order double side Ω max. time
bandwidth discretization

in GHz in GHz in ns

0 20 596.35 0.002
3 20 36.01 0.013
3 40 72.02 0.007
7 20 13.49 0.020
7 40 26.99 0.010
9 20 10.10 0.022
15 20 5.64 0.026
30 20 2.61 0.031

• Doubling the frequency band will halve the time discretization.

• The relation between the order of the filter and its required time discretization is
not linear. The maximal allowed time discretization will be saturated during the
increasing of the number of the filter’s order and a high-order filter is inconvenient
for the numerical evaluation. Thus it seems that the optimal order should be
around 10.

Causality

With the consequence of the last paragraph, (2.37) as well as (2.36) are well defined.
But the filter in (2.41) has an unwanted property, namely the non-causality. This
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Fig. 2.8.: Time signal 𝜓𝑛(𝑡) with different order 𝑛

belongs to the features of the so called “zero-phase-filters”. Since the primary task
of usual simulation codes is predicting the consequence under a given condition, the
data in the far future are therefore not available before they’ve been calculated. It
should be avoided, that any data from the far future appears in the formulation of
boundary conditions. Three approaches have been investigated, through which, the
effects of the non-causality may be circumvented:

1. omitting the whole non-causal part

2. delaying the filter linearly and compensating the dispersion (i.e. phase-errors)
caused by the time-delay, again through a polynomial

3. delaying the filter simultaneously with the rest of the boundary condition

Among them, the third approach will not be discussed at this place, because all of
its details can be found in chapter 3.

With respect to the first approach, both curves in fig. 2.8 are based on the case of
the 140 GHz gyrotron for W7-X, with a 40 GHz double-sided low-pass filter in ninth
order. But one of them has 𝑛 = 0 and the other 𝑛 = 3, where 𝑛 is the order of
𝜓𝑛(𝑡) which is defined as

𝜓𝑛(𝑡) = ℱ−1 { 𝜔𝑛

√
𝜔† ℎ(𝜔)}

Signals in the future have negative time index, since the convolution afterwards will
flip the function 𝜓𝑛(𝑡) around 𝑡 = 0. If the future is ignored, the 𝑛 = 0 case may
still work, because the area between the curve and the 𝑥-axis for 𝑡 < 0 is insignificant
comparing with the area in the past (𝑡 > 0). But the curve for 𝑛 = 3 is almost centred
on the 𝑡 = 0 axis. In this case, the future should not be omitted.

The second approach is shifting the original non-causal filter signal by Δ𝑡 and
omitting the rest insignificant part in the far future. The time shifting by Δ𝑡 means
multiplying its spectrum with 𝑒 𝑗 𝜔 Δ𝑡. The time delay will keep the amplitude of the
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Fig. 2.9.: Filter in fifth order with normalized delay,
phase compensated in third order

spectrum unmodified. However, it does not have zero phase inside the passing band any
more. To compensate this effect, the polynomial will be extended through multiplying
with a finite polynomial series of 𝑒−𝑗 𝜔 Δ𝑡.

𝑒−𝑗 𝜔 Δ𝑡 = 1 − 𝑗Δ𝑡 𝜔 − Δ𝑡2

2 𝜔2 + 𝑗Δ𝑡3

6 𝜔3 + 𝒪(𝜔4) (2.44)

Fig. 2.9 shows the delayed and phase-compensated spectrum. All the units are nor-
malized. Delays and compensations will firstly increase the aliasing effect by keeping
the discretization of time unchanged. Secondly, a larger delay (e.g. the 0.5 time
unit curve) may even cause the filter unstable, because it amplifies the band near
the centre frequency.

Given the discussed limitations of the first two approaches, the third approach seems
more promising. Details on its implementation will be described in chapter 3.5.2.

2.3. Solution II: Distribution

The inverse Fourier transform in (2.36) can be performed in the space of tempered
distribution

𝜙𝑛(𝑡) ∶= ℱ−1 { 𝜔𝑛

√
𝜔† } =

⎧{
⎨{⎩

(1 + 𝑗) 𝑗𝑛 Γ(𝑛 + 1
2)

√
𝜋 𝑡𝑛+ 1

2
𝑡 > 0

0 𝑡 < 0
(2.45)

The transformed signal 𝜙𝑛(𝑡) is causal. However, except for 𝑛 = 0 this function is
not improper integrable over the entire real axis, due to the singularity at 𝑡 = 0.



2.3. Solution II: Distribution 25

Hence, it can not be directly used in the convolution. To make use of the inverse
Fourier in tempered distribution, the final convolution will be treated as a functional.
Focusing on the convolution in (2.36)

{𝑒−𝑗 Δ𝜔 𝑡ℱ−1 𝜔𝑛

√
𝜔† ∗ ∂𝐴(𝑡)

∂𝑧 } (𝑡) = ∫
+∞

−∞
{ℱ−1 (𝜔 + Δ𝜔)𝑛

√
𝜔 + Δ𝜔† } (𝜏) ⋅ ∂𝐴

∂𝑧 (𝑡 − 𝜏) d𝜏

= ⟨{ℱ−1 (𝜔 + Δ𝜔)𝑛

√
𝜔 + Δ𝜔† } (𝜏) , ∂𝐴

∂𝑧 (𝑡 − 𝜏)⟩

By expanding the binomial term (𝜔 + Δ𝜔)𝑛 as

(𝜔 + Δ𝜔)𝑛 = 𝜔𝑛 + 𝐶1𝜔𝑛−1Δ𝜔 + 𝐶2𝜔𝑛−2Δ𝜔2 + ⋯

the last brackets can be written as

⟨{ℱ−1 (𝜔 + Δ𝜔)𝑛

√
𝜔 + Δ𝜔† } (𝜏) , ∂𝐴

∂𝑧 (𝑡 − 𝜏)⟩ =
𝑛

∑
𝑚=0

𝐶𝑚 ⟨{ℱ−1 𝜔𝑚

√
𝜔 + Δ𝜔† } (𝜏) , ∂𝐴

∂𝑧 (𝑡 − 𝜏)⟩

According to the properties of a distribution in (A.5) and (A.7), there is

⟨{ℱ−1 𝜔𝑚

√
𝜔 + Δ𝜔† } (𝜏) , ∂𝐴

∂𝑧 (𝑡 − 𝜏)⟩

= ⟨( ∂
𝑗 ∂𝜏)

𝑚
{ℱ−1 1

√
𝜔 + Δ𝜔† } (𝜏) , ∂𝐴

∂𝑧 (𝑡 − 𝜏)⟩

= (−1
𝑗 )

𝑚
⟨{ℱ−1 1

√
𝜔 + Δ𝜔† } (𝜏) , ( ∂

∂𝜏)
𝑚 ∂𝐴

∂𝑧 (𝑡 − 𝜏)⟩

= (1
𝑗 )

𝑚
⟨{ℱ−1 1

√
𝜔 + Δ𝜔† } (𝜏) , ( ∂

∂(𝑡 − 𝜏))
𝑚 ∂𝐴

∂𝑧 (𝑡 − 𝜏)⟩

= (1
𝑗 )

𝑚
⟨𝑒−𝑗 Δ𝜔 𝜏 {ℱ−1 1

√
𝜔† } (𝜏) , ( ∂

∂(𝑡 − 𝜏))
𝑚 ∂𝐴

∂𝑧 (𝑡 − 𝜏)⟩

= (1
𝑗 )

𝑚
(𝑒−𝑗 Δ𝜔 𝑡ℱ−1 1

√
𝜔† ) ∗ ( ∂

∂𝑡)
𝑚 ∂𝐴

∂𝑧 (𝑡)

Defining

̂𝑔𝑛(𝑡) ∶= (1
𝑗 )

𝑛
(𝑒−𝑗 Δ𝜔 𝑡ℱ−1 1

√
𝜔† ) ∗ ( ∂

∂𝑡)
𝑛 ∂𝐴

∂𝑧 (𝑡) (2.46)

then (2.36) for 𝑧 at boundary becomes

𝐴(𝑡) = 1
𝑗

√
2𝜋

𝑐0√𝜔0 + 𝜔𝑐
∑
𝑛=0

𝑎𝑛 ̂𝑔𝑛(𝑡) (2.47)
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where the coefficients 𝑎𝑛 already include all of the polynomial coefficients’ products.
The inverse Fourier in ̂𝑔𝑛(𝑡) is still a Fourier transform for tempered distributions. It
can be calculated with help of Lebesgue’s dominated convergence theorem and Fubini’s
theorem as the following improper integral

ℱ−1 1
√

𝜔† = 1√
2𝜋

lim
𝑎→∞

lim
𝑏→∞

∫
𝑏

−𝑎

1
√

𝜔† 𝑒 𝑗𝜔𝑡 d𝜔 =
⎧{
⎨{⎩

1 + 𝑗√
𝑡

𝑡 > 0

0 𝑡 < 0
(2.48)

This solution transforms the singularity of ℱ−1 𝜔𝑛
√

𝜔 † into evaluating ( ∂
∂𝑡)𝑛 ∂𝐴(𝑡)

∂𝑧 .
However, 𝐴(𝑡) is a time discrete numerical function, so high order time derivatives
may not be obtained accurately enough.

2.4. Summary

In this chapter, the essential equation (2.36) for a broadband boundary condition with
user-defined, frequency-dependent reflection in time domain is defined. Two methods
are proposed for solving this equation.

The first method performs the inverse Fourier transform in ℒ1 space with help of
an exponential filter. With this method, there is no singularity and the maximal time
discretization for the boundary condition can be easily calculated. The estimation
of the maximal allowed time discretization of the broadband boundary conditions is
meaningful, since this value usually dominates the simulation’s global time discretization.
However the introduced filter should have zero-phase, which means it is a non-causal
filter. Methods to circumvent the non-causality are discussed.

In the second method, the inverse Fourier transform is performed directly in the space
of tempered distributions, by treating the final convolution as a linear functional. This
method however requires time derivatives of ∂𝐴

∂𝑧 , which are numerical and therefore
may be inaccurate at high orders.

In the next chapter, both methods will be used in several examples and their
behaviour as well as suitability will be assessed.



3. Numerical implementation and
validation

In a gyrotron the electromagnetic field is excited by the electron beam. However, in
order to test the broadband boundary conditions without a possible RF noise due
to the electrons and to be able also to feed the system with any arbitrary current
excitations, a prototype program has been written during this master thesis. For
simplicity, a straight homogeneous hollow waveguide is chosen as the test object.
Current excitations can be placed at any user-defined positions inside this waveguide.
Since the boundary conditions will be later integrated into the Euridice code, the
same numerical schemes from Euridice are reimplemented in this test program to
keep the compatibilities of equations

The default test scenario in this chapter is based on the configuration of the 140 GHz
W7-X gyrotron, which is listed in table 3.1. Δ𝑡 and Δ𝑧 are the global time and
spatial discretizations.

waveguide waveguide carrier cut-off Δ𝑡 Δ𝑧mode radius frequency frequency

TE28,8 22.08 mm 140 GHz 129.875 GHz 1 ps 50 𝜇m

Table 3.1.: Configuration of the default test scenario

Although only the homogeneous waveguides are tested, the same equations are also
valid for more general waveguides, like mildly inhomogeneous resonators, where the
𝑧-dependency of the axial wavenumber 𝑘 should be considered.

3.1. Slow time scale

As mentioned in the first chapter, the fields are separated into eigenmodes and there is
a slow-time-scale assumption, which assumes that the mode-related envelope function

27
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𝐴(𝑧, 𝑡) changes slowly over the time, i.e. the spectrum of 𝐴(𝑧, 𝑡) has the maximal
frequency 𝜔𝑚 and it is assumed 𝜔𝑚 ≪ 𝜔0. This implies

∣∂𝐴
∂𝑡 ∣ ≪ 𝜔0 |𝐴| (3.1)

consequently

∣∂
2𝐴

∂𝑡2 ∣ ≪ 𝜔0 ∣∂𝐴
∂𝑡 ∣ (3.2)

Combining the Maxwell’s equations, results in the inhomogeneous Helmholtz equation
with a current excitation J

∇2E − 𝜇𝜖 ∂2

∂𝑡2 E = −𝜇 ∂
∂𝑡J (3.3)

Since the test waveguide is homogeneous, the 𝑧-dependency of e(𝑟, 𝜙 ; 𝑧) in (2.12)
does not exist

E = 𝐴(𝑧, 𝑡) 𝑒𝑗𝜔0𝑡 e(𝑟, 𝜙)

Substituting E into the Helmholtz equation yields

( ∂2

∂𝑧2 + ∇2
⟂) [𝐴(𝑧, 𝑡) 𝑒𝑗𝜔0𝑡 e(𝑟, 𝜙)] − 𝜇𝜖 ∂2

∂𝑡2 [𝐴(𝑧, 𝑡) 𝑒𝑗𝜔0𝑡 e(𝑟, 𝜙)] = −𝜇 ∂
∂𝑡J

Expanding the time derivative once

∂2𝐴(𝑧, 𝑡)
∂𝑧2 𝑒 𝑗𝜔0𝑡 e(𝑟, 𝜙) + 𝐴(𝑧, 𝑡) 𝑒𝑗𝜔0𝑡 ∇2

⟂e(𝑟, 𝜙)

− 𝜇𝜖 { ∂
∂𝑡 (∂𝐴(𝑧, 𝑡)

∂𝑡 𝑒𝑗𝜔0𝑡 + 𝑗𝜔 𝐴(𝑧, 𝑡) 𝑒𝑗𝜔0𝑡)} e(𝑟, 𝜙) = −𝜇 ∂
∂𝑡J (3.4)

Extracting the term in the big brace and using (3.2)

∂
∂𝑡 (∂𝐴

∂𝑡 𝑒𝑗𝜔0𝑡 + 𝑗𝜔 𝐴 𝑒𝑗𝜔0𝑡) = (
�
�
�∂2𝐴

∂𝑡2 + 𝑗𝜔0
∂𝐴
∂𝑡 + 𝑗𝜔0

∂𝐴
∂𝑡 − 𝜔2

0𝐴) 𝑒 𝑗𝜔0𝑡

≈ (2𝑗𝜔0
∂𝐴
∂𝑡 − 𝜔2

0𝐴) 𝑒 𝑗𝜔0𝑡

Since ∇2
⟂e(𝑟, 𝜙) + 𝑘2

⟂e(𝑟, 𝜙) = 0 and 𝑘2 = 𝜇𝜖 𝜔2 − 𝑘2
⟂, choosing

J = 𝐽(𝑧, 𝑡) e(𝑟, 𝜙) (3.5)

(3.4) can be reduced to a scalar equation
∂2𝐴
∂𝑧2 + 𝑘2

0 𝐴 − 2𝑗𝜔0 𝜇𝜖 ∂𝐴
∂𝑡 = −𝜇∂𝐽

∂𝑡 𝑒−𝑗𝜔0𝑡 (3.6)

𝑘0 denotes the 𝑘 at 𝜔0, i.e. 𝑘2
0 = 𝜇𝜖 𝜔2

0 − 𝑘2
⟂. For a TE-mode in a conventional

cylindrical waveguide, 𝑘⟂ = 𝜒
𝑅 , where 𝜒 is a root of the first derivative of the Bessel

function and 𝑅 is the radius of the waveguide.
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3.2. Excitations (source terms)

The waveguide in (3.6) is excited through the mode-relevant current density 𝐽(𝑧, 𝑡).
Instead of the electron movement in a real gyrotron, it is assumed that the current
excitation is placed only at one dedicated position 𝑧0 and does not move. Then, only
the time dependency of the current needs to be studied. There are three kinds of
current sources implemented in this code:

1. an harmonic excitation at the carrier frequency 𝜔0

2. arbitrary number of harmonic excitations at any discrete frequencies

3. Gaussian impulses

Single frequency source

An excitation at one single frequency 𝜔 at the position 𝑧0, has the form

𝐽(𝑧, 𝑡) = 𝑒 𝑗𝜔𝑡 𝛿(𝑧 − 𝑧0)

The right-hand side of (3.6) is then

−𝜇∂𝐽
∂𝑡 𝑒−𝑗𝜔0𝑡 = −𝑗𝜔 𝜇 𝑒 𝑗(𝜔−𝜔0)𝑡 𝛿(𝑧 − 𝑧0) (3.7)

A special case is when the frequency of 𝐽(𝑡) equals to the carrier. The right-hand
side of (3.6) reduces to a constant in time

−𝜇∂𝐽
∂𝑡 𝑒−𝑗𝜔0𝑡 = −𝑗𝜔0 𝜇 𝛿(𝑧 − 𝑧0) (3.8)

Gaussian impulse

A Gaussian impulse has an infinitely broad spectrum. But the most power is centralized
on the frequency band spectrally around the frequency 𝜔𝑧 ∈ ℝ in the form of a Gaussian
distribution. The inverse Fourier transform of this spectrum still keeps its amplitude
in a Gaussian distribution:

̂𝐽 (𝑧, 𝜔) = 𝑒− (𝜔−𝜔𝑧)2
Ω 𝛿(𝑧 − 𝑧0) with Ω ∈ ℝ+ (3.9a)

�

ℱ−1 { ̂𝐽(𝑧, 𝜔)} ∝ 𝑒− Ω
4 𝑡2 𝑒 𝑗 𝜔𝑧 𝑡 𝛿(𝑧 − 𝑧0) (3.9b)
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Fig. 3.1.: Cropping the Gaussian impulse in frequency domain
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Fig. 3.2.: Cropping the Gaussian impulse in time domain

The signal in time domain (3.9b) is intentionally normalized on unity.

Since the Gaussian impulse is infinite along both frequency and time axis, it has
to be cropped in the real applications. Two thresholds 𝑇𝑓 and 𝑇𝑡 are defined for the
limitation of frequency and time. The spectrum will be omitted, when its amplitude is
below 𝑇𝑓. Similarly, in time domain, the signal will be ignored at time instances where
its amplitude its less than 𝑇𝑡. By default 𝑇𝑓 is chosen 10% of the maximum i.e. −20 dB
and 𝑇𝑡 = 10−6. This concept is presented in fig. 3.1 and fig. 3.2 . The variable 𝑓ss
denotes the single-sided bandwidth, which is given by the user as an input parameter.
Estimation of Ω in (3.9) relies on this input. The single side time duration 𝑡ss tells the
program, that this source should be excited twice long as 𝑡ss. Ω and 𝑡ss are calculated by

Ω = −(2𝜋𝑓ss)
2

ln 𝑇𝑓
(3.10)
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and

𝑡ss = √−4 ln 𝑇𝑡
Ω (3.11)

Delaying a signal does not change its spectral amplitude. So the current density
in (3.9b) will be delayed by 𝑡ss for convenience.

−𝜇∂𝐽
∂𝑡 𝑒−𝑗𝜔0𝑡 = 𝜇 (−Ω

2 (𝑡 − 𝑡ss) + 𝑗𝜔𝑧) 𝑒− Ω
4 (𝑡−𝑡ss)2 𝑒 𝑗 (𝜔𝑧−𝜔0) (𝑡−𝑡ss) 𝛿(𝑧 − 𝑧0) (3.12)

This is the Gaussian source used in (3.6).

3.3. Numerical methods

The boundary condition used in this test program1 is formulated as

∂𝐴(𝑧, 𝑡)
∂𝑧 ∣

𝑧→𝑧𝑏

= 𝑋1 𝐴(𝑧𝑏, 𝑡) + 𝑋2 (3.13)

where 𝑧𝑏 is the 𝑧-coordinate at the boundary. 𝑋1 and 𝑋2 will be the results returned
from the subroutines for calculation of the boundary status. For the usual single-
frequency matched boundary condition in (2.20), there is 𝑋2 = 0 and

𝑋1 = {
𝑗𝑘 𝑍 left (gun) side

−𝑗𝑘 𝑍 right (launcher) side

with the wave-impedance

𝑍 = 1 − Γ
1 + Γ

Now (3.13) will be embedded into the numerical equations. In the following, Δ𝑧 is
used for the spatial discretization length, Δ𝑡 for the duration of each time interval
and 𝑘0 is the axial wavenumber 𝑘 at frequency 𝜔0. Letters 𝑧 and 𝑡 stand for discrete
counters of spatial segment and time interval, respectively. Notation 𝐴𝑡

𝑧 means the
value of the envelope function at 𝑡 ⋅ Δ𝑡 time and 𝑧 ⋅ Δ𝑧 position. 𝑓𝑡

𝑧 stands for the
source on the right-hand side of (3.6).

For the numerical implementation of the equations (3.6) and (3.13), two numerical
schemes are used, as described below.

1also in Euridice
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The fully implicit scheme

After applying the implicit finite difference scheme (also called BTCS scheme, see [11]),
(3.6) corresponds to

1
Δ𝑧2 (𝐴𝑡+1

𝑧−1 − 2𝐴𝑡+1
𝑧 + 𝐴𝑡+1

𝑧+1) + 𝑘2
0 𝐴𝑡+1

𝑧 − 𝑗2𝜔0𝜇𝜖
Δ𝑡 (𝐴𝑡+1

𝑧 − 𝐴𝑡
𝑧) = −𝑓𝑡

𝑧

Variables at the time step 𝑡 + 1 are unknown. Sorting the known variables to the left
side and the unknowns to the right side, results in the following vector equation

( 1
Δ𝑧2 , 𝑘2

0 − 2
Δ𝑧2 − 𝑗2𝜔0𝜇𝜖

Δ𝑡 , 1
Δ𝑧2 )

⎛⎜⎜⎜⎜⎜⎜
⎝

𝐴𝑡+1
𝑧−1

𝐴𝑡+1
𝑧

𝐴𝑡+1
𝑧+1

⎞⎟⎟⎟⎟⎟⎟
⎠

= −𝑗2𝜔0𝜇𝜖
Δ𝑡 𝐴𝑡

𝑧 − 𝑓𝑡
𝑧 (3.14)

Applying the same rule on (3.13), yields for the boundary on the left-hand side (which
has a smaller 𝑧 coordinate than the boundary on the right-hand side of the waveguide)

(𝑘2
0 − 2

Δ𝑧2 − 𝑗2𝜔0𝜇𝜖
Δ𝑡 − 2𝑋1

Δ𝑧 , 2
Δ𝑧2 ) ⎛⎜

⎝

𝐴𝑡+1
𝑧

𝐴𝑡+1
𝑧+1

⎞⎟
⎠

= −𝑗2𝜔0𝜇𝜖
Δ𝑡 𝐴𝑡

𝑧 − 𝑓𝑡
𝑧 + 2𝑋2

Δ𝑧 (3.15)

and for the boundary on the right-hand side

( 2
Δ𝑧2 , 𝑘2

0 − 2
Δ𝑧2 − 𝑗2𝜔0𝜇𝜖

Δ𝑡 + 2𝑋1
Δ𝑧 ) ⎛⎜

⎝

𝐴𝑡+1
𝑧−1

𝐴𝑡+1
𝑧

⎞⎟
⎠

= −𝑗2𝜔0𝜇𝜖
Δ𝑡 𝐴𝑡

𝑧 − 𝑓𝑡
𝑧 − 2𝑋2

Δ𝑧 (3.16)

Concatenating these three vector equations at every 𝑧-position together, a matrix
equation can be built, which transforms the system to a classical 𝐴𝑥 = 𝑏 problem.
Furthermore, the matrix 𝐴 is tridiagonal. Therefore, the equation can be solved
efficiently by the Thomas algorithm [12]. This scheme is 1st order accurate in time
and 2nd order accurate in space.

The Crank-Nicolson scheme

Also the Crank-Nicolson method [12] is implemented in the code. It has second-order
convergence in time. In this method the equations are shifted by Δ𝑡

2 through averaging
the variables at 𝑡 and 𝑡 + Δ𝑡. Shifting (3.6) to 𝑡 + Δ𝑡

2 yields

1
2Δ𝑧2 (𝐴𝑡+1

𝑧+1 − 2𝐴𝑡+1
𝑧 + 𝐴𝑡+1

𝑧−1 + 𝐴𝑡
𝑧+1 − 2𝐴𝑡

𝑧 + 𝐴𝑡
𝑧−1)

+ 𝑘2
0
2 (𝐴𝑡+1

𝑧 + 𝐴𝑡
𝑧) − 𝑗2𝜔0𝜇𝜖

Δ𝑡 (𝐴𝑡+1
𝑧 − 𝐴𝑡

𝑧) = −𝑓𝑡��+
1
2𝑧
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The time shifting on 𝑓𝑡
𝑧 is cancelled since the absolute time is not important. After

separating of knowns and unknowns, there is the vector equation

( 1
2Δ𝑧2 , 𝑘2

0
2 − 1

Δ𝑧2 − 𝑗2𝜔0𝜇𝜖
Δ𝑡 , 1

2Δ𝑧2 )
⎛⎜⎜⎜⎜⎜⎜
⎝

𝐴𝑡+1
𝑧−1

𝐴𝑡+1
𝑧

𝐴𝑡+1
𝑧+1

⎞⎟⎟⎟⎟⎟⎟
⎠

= − ( 1
2Δ𝑧2 , 𝑘2

0
2 − 1

Δ𝑧2 + 𝑗2𝜔0𝜇𝜖
Δ𝑡 , 1

2Δ𝑧2 )
⎛⎜⎜⎜⎜⎜⎜
⎝

𝐴𝑡
𝑧−1

𝐴𝑡
𝑧

𝐴𝑡
𝑧+1

⎞⎟⎟⎟⎟⎟⎟
⎠

− 𝑓𝑡
𝑧 (3.17)

Shifting the boundary equations (3.13) by Δ𝑡
2 results in

(𝑘2
0
2 − 1

Δ𝑧2 − 𝑗2𝜔0𝜇𝜖
Δ𝑡 − 𝑋1

Δ𝑧 , 1
Δ𝑧2 ) ⎛⎜

⎝

𝐴𝑡+1
𝑧

𝐴𝑡+1
𝑧+1

⎞⎟
⎠

= − (𝑘2
0
2 − 1

Δ𝑧2 + 𝑗2𝜔0𝜇𝜖
Δ𝑡 − 𝑋1

Δ𝑧 , 1
Δ𝑧2 ) ⎛⎜

⎝

𝐴𝑡
𝑧

𝐴𝑡
𝑧+1

⎞⎟
⎠

− 𝑓𝑡
𝑧 + 2𝑋2

Δ𝑧 (3.18)

for the boundary on the left-hand side of the waveguide. Whereas, for the right-hand side

( 1
Δ𝑧2 , 𝑘2

0
2 − 1

Δ𝑧2 − 𝑗2𝜔0𝜇𝜖
Δ𝑡 + 𝑋1

Δ𝑧) ⎛⎜
⎝

𝐴𝑡+1
𝑧−1

𝐴𝑡+1
𝑧

⎞⎟
⎠

= − ( 1
Δ𝑧2 , 𝑘2

0
2 − 1

Δ𝑧2 + 𝑗2𝜔0𝜇𝜖
Δ𝑡 + 𝑋1

Δ𝑧) ⎛⎜
⎝

𝐴𝑡
𝑧−1

𝐴𝑡
𝑧

⎞⎟
⎠

− 𝑓𝑡
𝑧 − 2𝑋2

Δ𝑧 (3.19)

These equations build up again an 𝐴𝑥 = 𝑏 problem with a tridiagonal matrix 𝐴.

Examples

Both the Crank-Nicolson scheme and the fully implicit scheme give the same result
under non-critical time and spatial discretizations. Fig. 3.3 demonstrates a Gaussian
impulse excited at one point in the centre of a wave guide and travelling towards the
boundaries. These figures are calculated through the above mentioned equation systems
with matched boundary conditions on both sides. (Details on the implementation of
the boundary conditions will be given in the next sections.)
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𝑡 = 30 ps 𝑡 = 0.16 ns
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Fig. 3.3.: Demonstration of the time dependent envelope function by a point Gauss-
ian excitation in the middle of a homogeneous waveguide
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3.4. Single-frequency matched boundary condition

The single-frequency matched boundary condition will be tested first, in order to verify
the code and to compare with the result of the broadband boundary condition later.
This boundary condition has the form

𝐴(𝑧, 𝑡) = 𝑠
𝑗𝑘0

∂𝐴(𝑧, 𝑡)
∂𝑧

𝑠 = ±1 depending on the side. As shown in [13, 14], this boundary condition introduces
a reflection

Γ(𝜔) = 𝑘 (𝜔) − 𝑘0
𝑘 (𝜔) + 𝑘0

(3.20)

At 𝑘 = 𝑘0 (i.e. 𝜔 = 𝜔0) there is zero reflection. The code reproduces exactly this
theoretical result as shown in the following tests.

Testing with discrete frequencies

Still taking the 140 GHz gyrotron case as an example (𝜔0 = 2𝜋 × 140 GHz), several
signals with different frequencies are excited. Because of the linearity of the system,
it does not matter, whether the signals are excited at once or every simulation only
handles one frequency. Since the frequencies are defined discretely, rather than a
diagram for the whole sparse frequency band, table 3.2 shows the reflection coefficients
only at the defined frequencies. The numerical results coincide the theoretical values.

freq. simulated theoretical
GHz |Γ| arg(Γ)/∘ |Γ| arg(Γ)/∘

120 1 −92.86 1 −92.92
125 1 −112.59 1 −112.01
133 0.298 −177.65 0.292 180
138 0.055 180 0.057 180
140 0 - 0 -
142 0.046 0 0.047 0
147 0.138 0 0.137 0
160 0.283 0 0.283 0

Table 3.2.: Numerical results of the single-frequency boundary condition
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Testing with a broadband Gaussian impulse

The same waveguide and boundary condition will be tested now under a Gaussian
impulse source. The spectrum of the Gaussian source is centred at 150 GHz and has
a single-side bandwidth of 30 GHz. This means, the source covers from 120 GHz to
180 GHz and the signal strength at these two frequencies is 20 dB weaker than the
component at 150 GHz (see fig. 3.1). The reflection coefficient excited by a Gaussian
pulse is plotted in fig. 3.4. As it can be seen, this boundary condition has zero reflection
only at the carrier frequency 140 GHz. Nevertheless, the simulated reflection is identical
with the theoretical one in (3.20), which verifies the correctness of the implementation.
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Fig. 3.4.: Reflection coefficient for the single-frequency
boundary condition

3.5. Broadband boundary condition

As can be seen in the previews section, with the single-frequency boundary condition
there is only one frequency that is really matched. The range of the matched frequencies
can be extended by using the formulation of the broadband boundary condition
described in chapter 2.1.4. In addition, a user-defined reflection different from zero
can be introduced.
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3.5.1. Implementation of the solution in the space of
tempered distributions

As (2.47) shows, the broadband boundary condition in tempered distribution is

𝐴(𝑡) = 𝑐0√𝜔0 + 𝜔𝑐

1
𝑗

√
2𝜋

(𝑒𝑗 Δ𝜔 𝑡 ℱ−1 1
√

𝜔† ) ∗ (
𝑁

∑
𝑛=0

𝑎𝑛 ( ∂
∂𝑡)

𝑛 ∂𝐴
∂𝑧 (𝑡))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∶ 𝜙(𝑡)

(3.21)

Performing the inverse Fourier transform according to (2.48), despite the singularity at
𝑡 = 0 which has to be integrated improperly, the signal itself is causal. So only the
integral over the positive axis remains from the convolution , which yields

𝐴(𝑡) = 1 − 𝑗√
2𝜋

𝑐0√𝜔0 + 𝜔𝑐
∫

∞

0

𝑒−𝑗 Δ𝜔 𝜏
√

𝜏
𝜙(𝑡 − 𝜏) d𝜏

The function 𝜙(𝑡) represents the last part of (3.21). Assuming 𝜙 starts from the
zero state i.e. 𝜙(𝑡) = 0 for 𝑡 < 𝑡0, the code does not need to query the signal value
in the infinite past.

𝐴(𝑡) = 1 − 𝑗√
2𝜋

𝑐0√𝜔0 + 𝜔𝑐
∫

𝑡−𝑡0

0

𝑒−𝑗 Δ𝜔 𝜏
√

𝜏
𝜙(𝑡 − 𝜏) d𝜏 (3.22)

Since 𝜙(𝑡 − 𝜏) is numerically defined at discrete points of time, (3.22) can not be
calculated further through the analytical way. The best solution is to interpolate 𝜙
and do this integral carefully. But that is not necessary for the first approximation. In
the present code, (3.22) is evaluated by the approximation (the same as in Euridice):

𝐴(𝑡) ≈ 1 − 𝑗√
2𝜋

𝑐0√𝜔0 + 𝜔𝑐
∑

𝑛
(

𝜙(𝑡 − 𝜏𝑛) + 𝜙(𝑡 − 𝜏𝑛+1)
2 ∫

𝜏𝑛+1

𝜏𝑛

𝑒−𝑗 Δ𝜔 𝜏
√

𝜏
d𝜏) (3.23)

where
∫

𝜏𝑛+1

𝜏𝑛

𝑒−𝑗 Δ𝜔 𝜏
√

𝜏
d𝜏 = ∫

𝜏𝑛+1

0

𝑒−𝑗 Δ𝜔 𝜏
√

𝜏
d𝜏 − ∫

𝜏𝑛

0

𝑒−𝑗 Δ𝜔 𝜏
√

𝜏
d𝜏

and

∫
𝑡

0

𝑒−𝑗 Δ𝜔 𝜏
√

𝜏
d𝜏 = 2

√𝑗 Δ𝜔
∫

𝑡

0
𝑒−𝑗 Δ𝜔 𝜏 d√𝑗 Δ𝜔 𝜏 = √

𝜋
𝑗 Δ𝜔 erf(√𝑗 Δ𝜔 𝑡 )

This complex error function can be decomposed into the Fresnel integrals (used in
Euridice and [14] as well), which results in

∫
𝑡

0

𝑒−𝑗 Δ𝜔 𝜏
√

𝜏
d𝜏 = √ 2𝜋

Δ𝜔 {C (√2
𝜋 Δ𝜔 𝑡 ) − 𝑗S (√2

𝜋 Δ𝜔 𝑡 )} for Δ𝜔 > 0 (3.24)
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C(𝑥) and S(𝑥) are the Fresnel integrals, which are defined as

C(𝑥) = ∫
𝑥

0
cos(𝑡2) d𝑡 (3.25a)

S(𝑥) = ∫
𝑥

0
sin(𝑡2) d𝑡 (3.25b)

The time differentiation is done numerically by the finite difference:

∂
∂𝑡

∂𝐴
∂𝑧 (𝑡) =

∂𝐴
∂𝑧 (𝑡) − ∂𝐴

∂𝑧 (𝑡 − Δ𝑡)
Δ𝑡 (3.26a)

( ∂
∂𝑡)

2 ∂𝐴
∂𝑧 (𝑡) =

∂
∂𝑡

∂𝐴
∂𝑧 (𝑡) − ∂

∂𝑡
∂𝐴
∂𝑧 (𝑡 − Δ𝑡)

Δ𝑡 (3.26b)

⋯

In the first order, this one-sided finite difference is also compatible with the Crank-
Nicolson method, as it becomes automatically a two-sided numerical derivative around
the time 𝑡 − Δ𝑡

2 . So far (3.22) is completely solved and can be transformed into
the form of (3.13).

In the following, the broadband boundary condition is tested for the matched case
(ideally it would be zero reflection at any frequency) and without any polynomial
compensation (zero order). This means, 𝑎0 = ±1, 𝑎1 = 0 and (3.22) reduces to

𝐴(𝑡) = ±1 − 𝑗√
2𝜋

𝑐0√𝜔0 + 𝜔𝑐
∫

𝑡−𝑡0

0

𝑒−𝑗 Δ𝜔 𝜏
√

𝜏
∂𝐴
∂𝑧 (𝑡 − 𝜏) d𝜏 (3.27)

The sign depends on the side of the boundary: plus for the boundary on the left-hand
side, whereas minus for the right-hand side.

Testing with discrete frequencies

Table 3.3 shows the simulated result with excitations in discrete frequencies. 𝑘3 (see
chapter 2.1.3) is used as the axial wavenumber, without any polynomial compensation.
It can be proven in a similar way as in [13], that the zero-order matched broadband
boundary condition (3.27) has a theoretical reflection of

Γ(𝜔) = 𝑘 (𝜔) − 𝑘3(𝜔)
𝑘 (𝜔) + 𝑘3(𝜔) (3.28)

It differs from zero because of the approximation (2.25) for 𝑘 . As it can be seen, that
the amplitude differences of the defined frequencies are not larger than 4 dB, except at
the carrier frequency at 140 GHz. The non-zero reflection at the carrier frequency is
caused by the accuracy level of the discrete Fourier transform. The leading negative
sign of the dB values is self-evident, therefore it is omitted.
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Testing with a broadband Gaussian impulse

Again a Gaussian impulse from 120 GHz to 180 GHz is fed into the default waveguide.
Its reflection coefficient over the entire frequency band is shown in fig. 3.5. The
reflection coefficients are not absolute zero and the farther from the carrier, the higher
is the reflection. The simulation is a bit worse than the theoretical curve, but they
are all in a very low range. Besides, there is a discontinuity at the cut-off frequency
129.9 GHz, since at that frequency the axial wavenumber 𝑘 in the denominator equals
to zero. There is a comparison between this broadband boundary condition and the
single-frequency one in fig. 3.6. The broadband boundary condition has about 20 dB
less reflection, when looking at the whole frequency band.

The above examples show that the implementation of the broadband boundary
condition using the tempered distribution approach works very well in the matched,
zero reflection case. This is the actually state-of-the-art for the broadband boundary
condition in Euridice and [14]. The advantage of the formulation (3.21) compared
to the state-of-the-art formulation lies in two aspects:

1. Using the Polynomial compensation, the matched boundary condition can be
improved further.

2. A user-defined, non-zero reflection can be treated.

These aspects will be discussed in chapter 3.6.

3.5.2. Implementation of the solution in the space of
Lebesgue integrable functions

The broadband boundary condition (2.37) in the Lebesgue integrable space is for-
mulated as

𝐴(𝑡) = 𝑐0√𝜔0 + 𝜔𝑐

1√
2𝜋

(𝑒−𝑗 Δ𝜔 𝑡 ℱ−1𝑔) ∗ ∂𝐴
∂𝑧 (𝑡)

where 𝑔 ∈ ℒ(ℝ), its definition can be found in (2.42). Defining the abbreviation

̃𝑔(𝑡) ∶= 𝑐0√𝜔0 + 𝜔𝑐

1√
2𝜋

(𝑒−𝑗 Δ𝜔 𝑡 ℱ−1𝑔) (3.29)

the last equation becomes

𝐴(𝑡) = ̃𝑔(𝑡) ∗ ∂𝐴
∂𝑧 (𝑡) = ∫

∞

−∞
̃𝑔(𝑡 − 𝜏) ∂𝐴

∂𝑧 (𝜏) d𝜏 (3.30)
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frequency / GHz 120 125 133 138
simulated |Γ| / dB (neg.) 35.63 36.30 42.78 58.70

theoretical |Γ| / dB (neg.) 34.31 36.90 43.65 54.61

frequency / GHz 140 142 147 160
simulated |Γ| / dB (neg.) 64.81 52.22 44.32 33.20

theoretical |Γ| / dB (neg.) ∞ 54.68 43.87 34.96

Table 3.3.: Results of the zero-order matched broadband
boundary condition solved as a tempered
distribution excited with discrete frequencies
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Fig. 3.5.: Results of the zero-order matched broadband
boundary condition solved as a tempered
distribution with a broadband excitation
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Fig. 3.7 shows the typical behaviour of ̃𝑔(𝑡). The two time variables 𝑡𝑝 and 𝑡𝑓 are
introduced. They denote the time duration of the most effective part in the past and
future. 𝑡𝑓 is the time in the future, where the filter signal “disappears”. 𝑡𝑝 is either the
threshold of the filter signal or the starting time of the function 𝐴(𝑡), depending on
which one is larger. Consequently, the convolution in (3.30) is approximated by

𝐴(𝑡) ≈ ∫
𝑡+𝑡𝑓

𝑡−𝑡𝑝

̃𝑔(𝑡 − 𝜏) ∂𝐴
∂𝑧 (𝜏) d𝜏 (3.31)

Firstly, it has been tried to delay the convolution (3.31) into the past, so that
the most effective interval (from −𝑡𝑓 to 𝑡𝑝) is shifted in the past. This is done by
substituting 𝑡 with 𝑡 − 𝑡𝑓, as (3.32) shows.

𝐴(𝑡 − 𝑡𝑓) ≈ ∫
𝑡

𝑡−𝑡𝑝−𝑡𝑓

̃𝑔(𝑡 − 𝜏) ∂𝐴
∂𝑧 (𝜏) d𝜏 (3.32)

This is the 3rd approach mentioned in chapter 2.2 to circumvent the non-causality. The
only unknown to be solved in (3.32) is the variable ∂𝐴

∂𝑧 at the current time 𝑡. When this
happens, 𝑋1 in (3.13) is zero. This implies an explicit, rather than implicit, calculation.

Unfortunately (3.32) does not work, no matter how big 𝑡𝑓 is chosen. The reason is
probably its explicitness, which may require an extraordinary and totally impractical
short time-step.

Another possibility to solve (3.31) is the ignorance of the future (the 1st approach
discussed in chapter 2.2). When 𝑡𝑓 = 0, (3.31) reduces to

𝐴(𝑡) ≈ ∫
𝑡

𝑡−𝑡𝑝

̃𝑔(𝑡 − 𝜏) ∂𝐴
∂𝑧 (𝜏) d𝜏 (3.33)

Taking a seventh order filter (see fig. 2.6), again with zero-order impedance matching
(𝑍 = 1 in equation 2.10) as an example, fig. 3.8 shows the comparison of ̃𝑔(𝑡) with
different filter bandwidths. As it can be seen, after 0.02 ns there is no difference
between all of the low-pass filters. The broader bandwidth this filter has, the more
“causal” it will be. It is expected that the signal of a filter with an infinite bandwidth
in the time domain converges to the signal from the inverse Fourier in the space of
tempered distributions.

By omitting the future, how the causality of the filter influences its reflection coefficient
is presented in fig. 3.9. Also the same Gaussian impulse from 120 GHz to 180 GHz is
excited in the waveguide. The reflection coefficient shows, that when the values in the
future are ignored, a broadband filter has better matching than a narrow band one.
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This is because the causality is related to the bandwidth of the filter. The properties
of the solution with this approach, should be the same as the solution in the space of
Lebesgue integrable functions, when the filter bandwidth is broad enough.

However, it has been observed that the non-causality of the zero-order filter can
be compensated with an equivalent constant. This phenomenon will keep the system
causal even under a filter with relative narrow bandwidth. This is a matter for further
investigation, beyond the time-frame of the present thesis.

3.6. Making use of the polynomial series to
advance the state-of-the-art

The most exciting features introduced by the presented formulations of boundary
condition are the possibilities to set up a user-defined frequency-dependent complex
reflection coefficient and to improve the existing zero-order matched boundary condition,
which is currently the state-of-the-art. These possibilities correspond to the polynomial
of the wave-impedance 𝑍 in (2.10) and the polynomial of the axial wavenumber 𝑘 in
(2.31), respectively. Both polynomials are merged together in the end.

In order to avoid the problem of the non-causality discussed earlier, the solution in
the space of tempered distributions is used for testing the effect of these polynomials.
As mentioned in chapter 3.5.1, the first order time derivative of ∂𝐴

∂𝑧 (𝑡) is accurately
defined both for the implicit finite difference scheme and for the Crank-Nicolson
scheme. Starting from second order, the time derivatives become less accurate. Their
accuracy depends on the global time discretization. For this reason, in case higher-order
polynomials appear in the boundary condition, they may cause numerical instabilities.
As a consequence, only the first order polynomial will be tested. In other words, the
relation in the frequency domain will be

̂𝐴(𝑧, 𝜔) = 𝑐0√𝜔0 + 𝜔𝑐

1
√

𝜔 + Δ𝜔† (𝑎0 + 𝑎1𝜔) ∂ ̂𝐴(𝑧, 𝜔)
∂𝑧 (3.34)

In the time domain, (3.21) is reduced to

𝐴(𝑡) = 𝑐0√𝜔0 + 𝜔𝑐

1√
2𝜋

(𝑒𝑗 Δ𝜔 𝑡 ℱ−1 1
√

𝜔† ) ∗ (𝑎0
∂𝐴
∂𝑧 (𝑡) − 𝑎1𝑗 ∂

∂𝑡
∂𝐴
∂𝑧 (𝑡)) (3.35)
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3.6.1. Improved wavenumber

The broadband matched boundary condition tested in the examples in chapter 3.5
involves a zero-order polynomial for a matched boundary. This means that

𝑎0 = 𝑠 and 𝑎1 = 0 in (3.35)

For the boundary on the left-hand side 𝑠 = 1 and for the right-hand side 𝑠 = −1.
According to (2.31), in order to improve the matched boundary condition by improving
the approximation of the axial wave number, it should be

𝑎0 = 𝑠 and 𝑎1 = − 𝑠
2 (𝜔0 + 𝜔𝑐)

After applying this in (3.35), the simulation shows a better matched boundary. It
can be seen in fig. 3.10, that the reflection coefficient is improved over 15 dB with the
polynomial compensation of 𝑘 . The reflection still can not reach the theoretical value,
for the reason of the numerical inaccuracy. However for practical applications, the
behaviour of this new broadband boundary condition is completely appropriate.
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Fig. 3.10.: Reflection coefficient of the matched boundary with a first-order
polynomial improving the approximation of the axial wavenumber

3.6.2. User defined reflection

Though a PML (Perfect Matching Layer) approach may produce less reflection [15] than
the result in fig. 3.10, one highlight of the developed boundary condition formulation
is the introduction of a frequency-dependent reflection coefficient, of which the PML
is not capable.
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A first-order polynomial in the boundary condition (3.35) corresponds to a line in the
two dimensional space (𝑍, 𝜔). This line has two free variables 𝑎0 and 𝑎1. A user-defined
reflection coefficient can be determined by two arbitrary points on the line. From

𝑍 = 1 + Γ
1 − Γ = 𝑎0 + 𝑎1𝜔

there is

Γ = 𝑍 − 1
𝑍 + 1 = 𝑎1𝜔 + 𝑎0 − 1

𝑎1𝜔 + 𝑎0 + 1 (3.36)

A user-defined curve of reflection coefficient will be demonstrated as a concrete example.
The curve passes through two points:

• Instead of the carrier frequency of 140 GHz, let the boundary have perfect
matching at 150 GHz

• The reflection at 140 GHz is assigned to be 0.05 + 0𝑗, which is −26 dB.

frequency relative 𝜔 Γ 𝑍

140 GHz 0 0.05 1.10526
150 GHz 20𝜋 GHz 0 1

Table 3.4.: Parameters of a user-defined curve of reflec-
tion coefficient (𝑍 = 𝑎1𝜔 + 𝑎0)

Calculated from table 3.4, the coefficients of the polynomial are

𝑎0 = 1.105263 𝑠 and 𝑎1 = −1.675316 × 10−12 𝑠

where 𝑠 = 1 for the left-hand side boundary, 𝑠 = −1 for the right-hand side.

Although the simulation only includes a first-order polynomial, the improvement in
𝑘 can still be incorporated. The series for the user-defined 𝑍 and for the improved 𝑘
(section 2.1.3) can be merged in the way, that both polynomials are firstly multiplied
and then the higher-order terms of their product are omitted.

(𝑎′
1𝜔 + 𝑎′

0) (𝑎″
1𝜔 + 𝑎″

0) = ����𝑎′
1𝑎″

1𝜔2 + (𝑎′
1𝑎″

0 + 𝑎′
0𝑎″

1)⏟⏟⏟⏟⏟⏟⏟
=∶ 𝑎1

𝜔 + 𝑎′
0𝑎″

0⏟
=∶ 𝑎0

Thus, the polynomial coefficients of this user-defined reflection coefficient with an
improved 𝑘 are

𝑎0 = 1.105263 𝑠 and 𝑎1 = − ( 1.105263
2(𝜔0 + 𝜔𝑐) + 1.675316 × 10−12) 𝑠
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Fig. 3.11.: Simulated results of a user-defined reflection
coefficient, compared with the theoretical one

Results of both concepts are plotted in fig. 3.11. In the later concept with an improved
𝑘 , the simulated result concurs fully with the theoretical one: it has an almost perfect
matching at 150 GHz and −26 dB at 140 GHz, exactly the same as the designed values.

Although only a first-order polynomial is used, the resulting user-defined reflection
coefficient can be physically very relevant. This is apparent from the fig. 3.12, showing
the reflection coefficient at the gyrotron window.
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3.7. Summary

In this chapter, the numerical details of the test program are explained. Two approaches
for calculating the inverse Fourier transform and the convolution are tested.

If the Fourier transform and convolution are performed in the space of Lebesgue
integrable functions through a exponential filter, the signal in time domain is non-
causal. In case of taking the values in the future into account by delaying the boundary
condition, the numerical equation becomes explicit, which causes instabilities. However,
this approach can work if the future is neglected, but only for the low-order polynomials.

Performing the Fourier transform and convolution in the space of tempered distribu-
tions requires the numerical time derivative of ∂𝐴

∂𝑓 . This is not accurate enough at high
orders. However when only the first order is used, the scheme works very well.

It has been tested, that the new formulation proposed in the thesis improves the
existing broadband boundary condition by 15 dB and can exactly reproduce a user-
defined complex reflection coefficient in the first-order (see fig. 3.10 and 3.11). These
two points advance further the state of the art.





4. Summary and outlook

Investigation of gyrotron operating regimes with dynamic after cavity interaction [6, 7]
or side-bands in the spectrum [8], requires a broadband boundary condition for the
RF-field in the simulation of the gyrotron cavity. Furthermore, in order to simulate
the realistic reflections from the gyrotron components before and after the cavity, the
boundary condition should be able to account for a frequency-dependent reflection.
All the above motivated the study on advanced formulation and implementation of
the boundary condition.

Starting from the idea of existing broadband boundary conditions [14, 16], an
improved formulation based on the inverse Fourier transform is proposed in this master
thesis, in the way, that several physical variables are represented by polynomial series.
The new formulation achieves not only a quantitative improvement of the existing
matched broadband boundary condition, but also allows the user to define a frequency
dependent curve of complex reflection coefficients, which is on the way to provide the
possibility for emulating the profile of the reflection in reality.

The main task in this new formulation is performing an inverse Fourier transform on
a polynomial-like function and then convoluting it with a discrete signal. Two solutions
are investigated. In the first solution, the function to be transformed is filtered into the
space of Lebesgue integrable functions by a compensated exponential filter. Afterwards
the inverse Fourier is done by the integral formula, which can be found in the most text
books for electrical engineering. This filter has to be non-causal in order to keep the
original phase unchanged. The other solution treats the polynomial-like function with
the convolution as a linear functional and the inverse Fourier transform is performed
in the space of tempered distributions. Due to the properties of distributions, the
polynomial is transferred into the time derivatives of the other component in the
convolution — the time discrete signal.

A program was written during the master thesis to test different boundary conditions.
The code for each boundary condition was so modularized, that its object files can be
directly linked with Euridice. Both approaches have been numerically implemented
and verified, in the case of a matched boundary (zero reflection) for the zero-order poly-
nomial. Then a first-order polynomial was investigated in the frame of the formulation
as a tempered distribution, which appeared to be more stable than the Lebesgue inte-
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grable function. The numerical result shows, that this first-order polynomial improves
the existing matched boundary condition by about 15 dB (see fig. 3.10) and can exactly
reproduce a user-defined reflection in the first-order (fig. 3.11). These two aspects are
beyond the current state-of-the-art of boundary conditions in fast gyrotron simulations.

The improvement of the broadband boundary condition with a first-order polynomial
can be seen in two ways:

1. For a given time-step, the quality of broadband matching in the boundary
condition is enhanced.

2. For a given quality of matching, a larger time-step can be used and this speeds-up
the calculation significantly.

Furthermore, the possibility to introduce a user-defined, frequency-dependent Γ(𝜔)
opens the way towards modelling of realistic reflections inside and outside of the
gyrotron.

The present thesis strongly motivates further investigations on several subjects. First,
the developed boundary condition should be coupled to Euridice, in order to enable
advanced modelling of realistic gyrotrons. Because the equations derived in this thesis
and used in the test program are compatible with Euridice, a port (from C++ to
Fortran for Euridice) of the boundary condition is also conceivable. Regarding the
investigated formulation of the boundary condition, other methods may be tried to
circumvent the instability caused by the non-causal filter. As mentioned before, it
has been observed, that there is a possibility to compensate some non-causality with
a constant or impulse function. Moreover, there could also be another way to do
the high-order time derivative on the envelope function more accurately. Finally, the
boundary condition developed in this thesis already supports a user-defined reflection
at the first order in the (𝑍, 𝜔) plane, but it was not investigated, how the reflection
will be. It has to be analysed or measured, how good it is to approximate the reflection
using the first order polynomial for the equivalent wave-impedance.

In the end, it should be emphasised, that the developed concept of the broadband
boundary condition is a general approach for all of cavities as well as waveguides and
is not limited only in the gyrotron simulation.



Appendix A.

Fourier transforms

Fourier for the ℒ1-space

A function 𝑓 ∶ ℝ → ℝ belongs to the ℒ1(ℝ) space, if it is Lebesgue integrable

∫
+∞

−∞
|𝑓(𝑥)| d𝑥 < ∞ (A.1)

This condition can be extended into ℝ → ℂ by considering the real and imaginary
parts separately. Instead of ∫+∞

−∞
, any integral over the whole real axis will be written

just as ∫ for simplicity. The Fourier and inverse Fourier transform for function in
the ℒ1-space are defined as

(ℱ𝑓)(𝜔) ∶= 1√
2𝜋

∫ 𝑓(𝑡) 𝑒−𝑗 𝜔 𝑡 d𝑡 (A.2a)

(ℱ−1 ̂𝑓 )(𝑡) ∶= 1√
2𝜋

∫ ̂𝑓(𝜔) 𝑒 𝑗 𝜔 𝑡 d𝜔 (A.2b)

where ℱ±1 maps a function from ℒ1-space into ℒ∞-space.

Fourier for the 𝒮-space

A function 𝜑 ∈ 𝒞∞(ℝ) belongs to the (one dimensional) Schwartz space 𝒮(ℝ), if for
any arbitrary index 𝑝, 𝑞 ∈ ℕ

∥𝑥𝑝 ( d
d𝑥)

𝑞
𝜑(𝑥)∥

∞
= sup

𝑥∈ℝ
∣𝑥𝑝 ( d

d𝑥)
𝑞

𝜑(𝑥)∣ < ∞ (A.3)

The Schwartz space is also called space of rapidly decreasing functions. Functions in
this space decrease quicker than any polynomials at 𝑥 → ∞. 𝒮 is dense in ℒ2 and
𝒮(ℝ) belongs to ℒ1(ℝ). This is because, if 𝜑 ∈ 𝒮(ℝ), then by the definition of 𝒮

∣(1 + 𝑥2) 𝜑(𝑥)∣ ≤ |𝐶| , 𝐶 is a constant and 𝑥 ∈ ℝ
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and
|𝜑(𝑥)| ≤ |𝐶|

1 + 𝑥2

Then
∫ |𝜑(𝑥)| d𝑥 ≤ ∫ |𝐶|

1 + 𝑥2 d𝑥 = |𝐶| [ arctan 𝑥]+∞
−∞

= 𝜋 |𝐶| < ∞

Therefore 𝜑 belongs to ℒ1(ℝ). As a result, the Fourier transform defined in (A.2) can
be used directly. Furthermore, the ℱ ∶ 𝒮 → 𝒮 is bijective [17].

Fourier for the 𝒮′-space

𝒮′ space is the space of tempered distributions. Distributions or generalized functions
are continuous linear functionals. In this thesis, a local integrable function 𝑓(𝑥) and
its induced functional 𝑓(𝜑) will be treated as the same thing:

𝑓(𝜑) = ⟨𝑓, 𝜑⟩ ∶= ∫ 𝑓(𝑥) 𝜑(𝑥) d𝑥 (A.4)

A tempered distribution is a distribution, which is defined on the 𝒮 space. If 𝑓(𝑥)
is a tempered distribution, then exists the integral

⟨𝑓, 𝜑⟩ = ∫ 𝑓(𝑥) 𝜑(𝑥) d𝑥 for 𝜑 ∈ 𝒮

which induces a continuous linear functional. Two distributions 𝑓, 𝑔 are equal, if

⟨𝑓, 𝜑⟩ = ⟨𝑔, 𝜑⟩ for every 𝜑

Except the linearity, distributions possess a useful property for the partial derivative

⟨ ∂
∂𝑥𝑓 , 𝜑⟩ = − ⟨𝑓 , ∂

∂𝑥𝜑⟩ (A.5)

The Fourier and inverse Fourier transform ℱ𝑓 for 𝑓 ∈ 𝒮′ is defined as [17]

⟨ℱ𝑓 , 𝜑⟩ = ⟨𝑓 , ℱ𝜑⟩ (A.6a)

⟨ℱ−1𝑓 , 𝜑⟩ = ⟨𝑓 , ℱ−1𝜑⟩ (A.6b)

An example is ℱ𝛿 = 1√
2𝜋 because

⟨ℱ𝛿, 𝜑⟩ = ⟨𝛿, ℱ𝜑⟩ = 1√
2𝜋

∫ 𝜑(𝑡) 𝑒−𝑗 𝜔 𝑡 d𝑡 ∣
𝜔=0

= ⟨ 1√
2𝜋

, 𝜑⟩

For the Fourier in 𝒮′, the following relation is still valid (for proof see [17]).

ℱ {( ∂
∂𝑡)

𝑛
𝑓} = (𝑗𝜔)𝑛 ℱ𝑓 (A.7)
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Lemmas

Lemma 1.
𝑓(𝜔) ∗ 𝛿(𝜔 + Δ𝜔) = 𝑓(𝜔 + Δ𝜔)

Proof.

𝑓(𝜔) ∗ 𝛿(𝜔 + Δ𝜔) = ∫ 𝑓(𝜔 − 𝑥) 𝛿(𝑥 + Δ𝜔) d𝑥 .

Let 𝑦 ∶= 𝑥 + Δ𝜔 then

𝑓(𝜔) ∗ 𝛿(𝜔 + Δ𝜔) = ∫ 𝑓(𝜔 − 𝑦 + Δ𝜔) 𝛿(𝑦) d𝑦

=𝑓(𝜔 + Δ𝜔) .

Lemma 2. If the Fourier transform for ℒ1 is defined as

ℱ±1𝜑 = 1√
2𝜋

∫ 𝜑(𝑥) 𝑒∓𝑗 𝜉 𝑥 d𝑥

then

ℱ±1(𝜑 ∗ 𝜓) =
√

2𝜋 (ℱ±1𝜑) ⋅ (ℱ±1𝜓) (A.8a)

ℱ±1(𝜑 ⋅ 𝜓) = 1√
2𝜋

(ℱ±1𝜑) ∗ (ℱ±1𝜓) (A.8b)

Proof. Firstly (A.8a) will be proven. According to the definitions there is

ℱ±1{𝜑(𝜉) ∗ 𝜓(𝜉)} = 1√
2𝜋

∫ [∫ 𝜑(𝜉 − 𝑢) 𝜓(𝑢) d𝑢 𝑒∓𝑗 𝜉 𝑥] d𝜉

= 1√
2𝜋

∬ 𝜑(𝜉 − 𝑢) 𝜓(𝑢) 𝑒∓𝑗 𝜉 𝑥 d𝑢 d𝜉 ,

and using the Fubini’s theorem yields

ℱ±1{𝜑(𝜉) ∗ 𝜓(𝜉)} = 1√
2𝜋

∬ 𝜑(𝜉 − 𝑢) 𝜓(𝑢) 𝑒∓𝑗 𝜉 𝑥 d𝜉 d𝑢 .

Since 𝜓(𝑢) is independent of 𝜉

ℱ±1{𝜑(𝜉) ∗ 𝜓(𝜉)} = 1√
2𝜋

∬ 𝜑(𝜉 − 𝑢) 𝑒∓𝑗 𝜉 𝑥 d𝜉 𝜓(𝑢) d𝑢 .
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Defining 𝑣 = 𝜉 − 𝑢, since the integral is on the entire ℝ axis, omitting the shifting 𝑢
does not affect the result

ℱ±1{𝜑(𝜉) ∗ 𝜓(𝜉)} = 1√
2𝜋

∬ 𝜑(𝑣) 𝑒∓𝑗 𝑣 𝑥𝑒∓𝑗 𝑢 𝑥 d(𝑣��+𝑢) 𝜓(𝑢) d𝑢

= 1√
2𝜋

∬ 𝜑(𝑣) 𝑒∓𝑗 𝑣 𝑥 d𝑣 𝑒∓𝑗 𝑢 𝑥 𝜓(𝑢) d𝑢

= 1√
2𝜋

∫ 𝜑(𝑣) 𝑒∓𝑗 𝑣 𝑥 d𝑣 ∫ 𝜓(𝑢) 𝑒∓𝑗 𝑢 𝑥 d𝑢

=
√

2𝜋 (ℱ±1𝜑) ⋅ (ℱ±1𝜓) .

So is (A.8a) proved. Denoting

𝑓 ∶=ℱ±1𝜑 ,
𝑔 ∶=ℱ±1𝜓 ,

then (A.8b) can be derived from (A.8a):

ℱ±1(ℱ∓1𝑓 ∗ ℱ∓1𝑔) =
√

2𝜋 𝑓 ⋅ 𝑔

ℱ∓1𝑓 ∗ ℱ∓1𝑔 =
√

2𝜋 ℱ∓1 (𝑓 ⋅ 𝑔) .

Lemma 3.
ℱ−1{𝛿(𝜔 + Δ𝜔)} = 1√

2𝜋
𝑒−𝑗 Δ𝜔 𝑡

Proof. ∀𝜑 ∈ 𝒮

ℱ−1{𝛿(𝜔 + Δ𝜔)}

= ⟨ℱ−1{𝛿(𝜔 + Δ𝜔)} , 𝜑⟩ ∶= ⟨𝛿(𝜔 + Δ𝜔) , ℱ−1𝜑⟩

= 1√
2𝜋

∫ 𝛿(𝜔 + Δ𝜔) [∫ 𝜑 𝑒 𝑗𝜔𝑡 d𝑡] d𝜔 , let Ω = 𝜔 + Δ𝜔

= 1√
2𝜋

∫ 𝜑 𝑒 𝑗(Ω−Δ𝜔)𝑡 d𝑡 ∣
Ω=0

= 1√
2𝜋

⟨𝑒−𝑗 Δ𝜔 𝑡 , 𝜑⟩

= ⟨ 1√
2𝜋

𝑒−𝑗 Δ𝜔 𝑡 , 𝜑⟩

= 1√
2𝜋

𝑒−𝑗 Δ𝜔 𝑡
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Gyrotrons are microwave tubes capable of providing mega-watt power at millimetric
wavelengths. The microwave power is produced by the conversion of the kinetic
energy of an electron beam to electromagnetic wave energy. Simulations of the
beam-wave interaction in the gyrotron cavity are essential for gyrotron design, as
well as theoretical and experimental studies.

In the usual gyrotron operation the spectrum of the generated radiation is concen-
trated around the nominal frequency. For this reason, the usual simulations consider
only a narrow-band output spectrum (e.g. several GHz bandwidth comparing with
the working frequency in the range of 100-200 GHz). As a result, the typical ex-
isting codes use a single-frequency radiation boundary condition for the generated
electromagnetic field in the cavity. This condition is matched only at one frequency.
However, there are two important aspects, which motivate an advanced formulation
and implementation of the cavity boundary condition. Firstly, the occurrence of
broadband effects (which may be several tens of GHz) in some cases , like dynamic
after-cavity-interaction or modulation side-bands, requires a broadband boundary
condition. Secondly, there are reflections from inside and outside of the gyrotron,
which can only be considered in the simulation through a boundary condition with
user-defined, frequency-dependent reflections.

This master thesis proposes an improved formulation of the broadband boundary
condition in the self-consistent, beam-wave interaction code Euridice. In this new
formulation, two physical variables — the wave impedance and the axial wavenumber
are expanded in polynomial series in the frequency domain. Because the beam-
wave interaction process is simulated transiently in the time domain, the boundary
condition should be also expressed in the time domain. This involves a non-trivial
inverse Fourier transform, for which two solutions are proposed, tested and validated.

It has been shown that, through the newly developed formulation, the existing
matched boundary condition (that should yield zero-reflection in ideal case) can
be improved by 15 dB even with a first-order polynomial series. Moreover, a user-
defined, frequency-dependent complex reflection coefficient can be introduced. This
was not possible with the previously existing boundary condition in Euridice.
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