

Serpent and TRIPOLI-4[®] transient calculations comparisons for several reactivity insertion scenarios in a 3D PWR minicore benchmark

Diego Ferraro¹, Margaux Faucher², D. Mancusi², A. Zoia², V. Valtavirta³, J. Leppänen³ and V. Sanchez-Espinoza¹

¹ Institute for Neutron Physics and Reactor Technology (INR) ³ VTT Technical Research Centre of Finland ² Den-Service d'Etudes des Réacteurs et de Mathématiques Appliquées (SERMA), CEA

M&C 2019 Portland, Oregon, US, August 25 – 29, 2019

www.kit.edu

Presentation Overview

- Introduction & motivation: the McSAFE: high-fidelity Horizon 2020 multiphysics project
- Proposed verification scheme: Benchmark and scenarios
- Main results comparison and analysis
- Conclusions & further work

1.1 – Introduction & motivation

- Increasing effort to develop highly accurate multi-physics approaches for nuclear reactor analysis of complex phenomenology.
- Increasing demand from designers, operators, regulators and other stakeholders.
- Several projects around the world oriented to provide *high-fidelity results* -> improvement of local phenomena calculation & provide reference solutions).
- Under this framework, the McSAFE project started in 2017 under Horizon 2020 (EU):

McSAFE: High – Performance **M**ontecarlo Methods for **SAFE**ty Demonstration:

- **Cooperation** between code developers, methods developers and industry stakeholders.
- 12 partners from 9 countries around EU and an extended community of users around world.

1.2 – Introduction & motivation

- Global McSAFE goal "move towards high fidelity calculations for steady state, burnup and *transient* calculations"
- Several MC codes involved within McSAFE for the diverse applications
- In this work we focus on Serpent and TRIPOLI-4 for transients calculations
- How to do this → RIA-type scenarios based on a detailed 3D benchmark for a 3x3 PWR Minicore are proposed.
- Scenarios start from critical state and undergo a series of reactivity excursions transients through *control rod (CR) withdrawals.*
 - Scope of this work:

- Analyze and compare *combined capabilities* (and identify potential bottlenecks or issues)
- Analyze performance and requirements (identify VR techniques required for a full scope case)

2.1 – PWR Minicore transients

- We need a well stated benchmark suitable for MC transient calculations → Not an easy task: most oriented to Nodal diffusion codes or out of scope for this stage (full core PWR or not suitable scenarios).
- Here the UAM 3-D 15x15 FA PWR Minicore¹ is used as basis:

For this problem, rated power (141MWth) and TH fields for *fuel pins and coolant are proposed → RIA based* transient scenarios are proposed.

¹Benchmarks for Uncertainty Analysis in Modelling (UAM) for the Design, Operation and Safety Analysis of LWRs - Volume II: Specification and Support Data for the Core Cases (Phase II)

5 <u>D. Ferraro</u> et al – M&C2019

Introduction Problem & Models Results & discussion Summary & Outlook Problem

2.2 – PWR Minicore transient scenarios

Five scenarios are *proposed*:

#	Name	Main description					
1	A	Start from critical state. Withdrawal of CR at constant velocity 40 cm/s from 0.2 to 1.2s. Further insertion at same velocity from 1.2 to 2.2 s					
2	В	Start from critical state. Withdrawal of CR at constant velocity 40 cm/s from 0.2 to 1.2s. Further insertion at same velocity from 1.2 to 2.2 s. Repeat procedure starting at 2.4s.					
3	С	Start from critical state. Withdrawal of CR at constant velocity 40 cm/s from 0.2 to 1.2s. Further insertion at same velocity from 3 to 4 s					
4	D.1	Start from critical state. Withdrawal of CR at constant velocity 40 cm/s from 0.2 to 1.2s.		bins (0.1 s			
5	D.2	Start from critical state. Withdrawal of CR at constant velocity 40 cm/s from 0.2 to 1.2s, but considering simplified TH feedback at fuel level: Additional energy from steady state (E) deposited into the fuel for each time bin, increasing temperature of each fuel level node (with 10 axial levels) as : $E_{time \ bin}^{i,j\ node} = m_{fuel}^{i,j\ node} c_p \Delta T_{time\ bin}^{i,j\ node}$		eacn)			
For each scenario global and pin by pin powers are analyzed and compared							

6 <u>D. Ferraro</u> et al – M&C2019

Introduction Problem & Models Results & discussion Summary & Outlook Scenarios

2.3 – PWR Minicore 3D Models Independent 3-D models were developed:

- ✓ Developed independently
- Transient handling implementation approach depends on code.
- ✓ JEFF 3.1.1 NDL
- Axial dependency of temperature and density for fuel and coolant
- ✓ Control rod movement

Introduction Problem & Models Results & discussion Summary & Outlook

Model

2.4 – Global behavior reference

ρ

- The most simple comparison possible \rightarrow Point kinetics!
- A simplified point kinetic model¹ was developed for these scenarios using kinetic parameters from Serpent (obtained in critical calculations):

$$\dot{P} = \frac{\rho - \beta}{\Lambda} P + \sum_{i=1}^{8} C^{i} \lambda^{i} \qquad \text{Eq. 1}$$

$$\dot{C}^{i} = \frac{\beta^{i}}{\Lambda} P - C^{i} \lambda^{i} \qquad \text{Eq. 2}$$

$$T_{fuel}^{\cdot} = (P - P_{0}) K \qquad \text{Eq. 3}$$

$$= \rho_{CR}(t) + \alpha_{t} (T_{fuel} - T_{fuel_{0}}) \qquad \text{Eq. 4}$$

- Fuel temperature feedback coefficient was calculated using Serpent critical model (only for case D.2)
- CR worth was also calculated using Serpent critical model and converted to reactivity vs time

¹Eq 1 to 4 solved using Wasora code: https://www.seamplex.com/wasora/

3.1 – Results comparison

Scenario A (no TH feedback)

Scenario and global power from Serpent, TRIPOLI-4[®] and PK comparison:

Good and consistent global behavior for this RIA-kind transient
 Some differences (PK overshoot, probably due to leakage in real 3D case)

3.2 – Results comparison

Scenario B (no TH feedback) → Scenario A duplicated

Scenario and global power from Serpent, TRIPOLI-4[®] and PK comparison:

- Good and consistent global behavior for this repeated transient consistent for both codes
- Some differences (PK overshoot)

10 <u>D. Ferraro</u> et al – M&C2019

3.3 – Results comparison

Scenario C (no TH feedback) \rightarrow Scenario A with flat top

Scenario and global power from Serpent, TRIPOLI-4[®] and PK comparison:

✓ Some differences (PK overshoot)

11 <u>D. Ferraro</u> et al – M&C2019

3.4 – Results comparison

Scenario D.1 (no TH feedback) → Scenario A without CR insertion Scenario and global power from Serpent, TRIPOLI-4[®] and PK comparison:

- Good and consistent global behavior for this supercritical transient for both codes
- ✓ Some cumulative differences
- What should we expect with TH feedback?

12 <u>D. Ferraro</u> et al – M&C2019

Introduction Problem & Models Results & discussion Summary & Outlook Scenario D.1

3.5 – Results comparison

Scenario D.2 (D.1 + simplified TH feedback)

Scenario and global power from Serpent and PK comparison:

- ✓ Good global behavior for this supercritical transient → Feedback on TH fields is working properly!
- Some differences (PK overshoot, to be further analyzed)

13 <u>D. Ferraro</u> et al – M&C2019

Introduction Problem & Models Results & discussion Summary & Outlook Scenario D.2

- ✓ Slight differences on reactivity have a clear impact in the long-term power evolution (cumulative).
- TH feedback will have a stabilizing effect on the discrepancies.
- / Impact on further steps?

14 D. Ferraro et al – M&C2019

Introduction Problem & Models Results & discussion Summary & Outlook Further remarks

3.6 – Towards high-fidelity

Karlsruhe Institute of Technology

3.7 – Requirements and performance

The computational costs and performance comparison

Compared computational costs for Serpent and TRIPOLI-4[®]

Parameter / Scenario	Α	В	С	D1				
Serpent ¹								
Active neutron histories	1.00E+07	1.00E+07	1.00E+07	1.00E+07				
Processors	1000	1000	1000	1000				
Running wallclock time [min]	393	412	482	593				
Average stdev [%] 1 sigma	0.65	0.68	0.96	1.26				
Max stdev [%] 1 sigma	1.1	1.2	1.7	3.4				
FOM [(1/(sigma ² T)]	6.0E-02	5.3E-02	2.3E-02	1.1E-02				
TRIPOLI-4®								
Active histories	1.00E+08	1.00E+08	8.00E+07	4.00E+07				
Processors	1000	1000	1000	1000				
Running wallclock time [min]	1006	1103	1388	1254				
Average stdev [%] 1 sigma	0.46	0.47	0.55	0.85				
Max stdev [%] 1 sigma	0.68	0.68	0.78	1.09				
FOM [(1/(sigma ² T)]	4.8E-02	4.2E-02	2.4E-02	1.1E-02				

 1 Run in hybrid MPI/OMP in cluster based on nodes with 2x10 intel Xeon processors E5-2660 v3 @ 2.6 GHz 2 Run in pure MPI in cluster based on nodes with 2x14-cores Intel Broadwell @ 2.4GHz (AVX2)

- Highly detailed (i.e. pin-by-pin) results require high amount of resources
- ✓ Consistent performance for both codes

16 D. Ferraro - 8th SUMG

4 – Conclusions and further work

- The McSAFE is a *high-fidelity* project aimed at developing high-fidelity calculations, including transient analysis
- A detailed 3D benchmark for a 3x3 PWR Minicore is proposed as basis to develop a series of scenarios (RIA-type)
- Results obtained & compared with the Serpent 2 and TRIPOLI-4[®] MC codes → first code-to-code comparison for such RIA type transient simulations
- For all transient scenarios results from TRIPOLI-4[®] and Serpent 2 are in good agreement
- First step towards the verification and performance analysis.
- Further work:
 - Coupling with TH subchannel codes (SUBCHANFLOW)
 - Proper verification (code-to-code) and validation with experimental data

4 – Further work (under development)

- Given the good obtained results, further coupling (master-slave) was developed with SERPENT+SUBCHANFLOW (COBRA-based subchannel thermalhydraulics).
- First verification results already available for Serpent+SCF (consistent behavior)

www.kit.edu

Additional information

Static reactivity comparison between TRIPOLI and Serpent

Code	Boron concentration [ppm]	keff (+/- 1 σ)	Reactivity difference with Serpent [pcm]
Serpent	1480 (adjusted)	1.00006 +/ 2e-5	-
TRIPOLI-4®	1493 (adjusted)	0.99995 +/ -5e-5	-11
TRIPOLI-4®	1480	1.00124 +/ -17 e-5	117

