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Presentation Overview

 Introduction & motivation: the McSAFE: high-fidelity Horizon 

2020 multiphysics project

 Proposed verification scheme: Benchmark and scenarios

 Main results comparison and analysis

 Conclusions & further work
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1.1 – Introduction & motivation

 Increasing effort to develop highly accurate multi-physics approaches 

for nuclear reactor analysis of complex phenomenology. 

 Increasing demand from designers, operators, regulators and other 

stakeholders.

 Several projects around the world oriented to provide high-fidelity 

results  improvement of local phenomena calculation & provide 

reference solutions).

 Under this framework, the McSAFE project started in 2017 under Horizon 

2020 (EU):

McSAFE: High –Performance Montecarlo Methods for SAFEty

Demonstration:

 Cooperation between code developers, methods developers 

and industry stakeholders.

 12 partners from 9 countries around EU and an extended 

community of users around world.

Introduction Results & discussion Summary & OutlookProblem & Model
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1.2 – Introduction & motivation

 Global  McSAFE goal “move towards high fidelity calculations for steady 

state, burnup and transient calculations”

 Several MC codes involved within McSAFE for the diverse applications

 In this work we focus on Serpent and TRIPOLI-4 for transients calculations

 How to do this  RIA-type scenarios based on a detailed 3D benchmark for 

a 3x3 PWR Minicore are proposed.

 Scenarios start from critical state and undergo a series of reactivity 

excursions transients through control rod (CR) withdrawals.

Introduction Results & discussion Summary & OutlookProblem & Model

 Scope of this work:

 Analyze and compare combined capabilities (and identify potential 

bottlenecks or issues)

 Analyze performance and requirements (identify VR techniques 

required for a full scope case)

D. Ferraro et al – M&C2019
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2.1 – PWR Minicore transients

Introduction Results & discussion Summary & OutlookProblem & Models

Problem

 We need a well stated benchmark suitable for MC transient calculations 

 Not an easy task: most oriented to Nodal diffusion codes or out of 

scope for this stage (full core PWR or not suitable scenarios). 

 Here the UAM 3-D 15x15 FA PWR Minicore1 is used as basis:

1Benchmarks for Uncertainty Analysis in Modelling (UAM) for the Design, Operation and Safety Analysis of LWRs - Volume II:

Specification and Support Data for the Core Cases (Phase II )

For this problem, rated power (141MWth) and TH fields for fuel pins and 

coolant are proposed  RIA based transient scenarios are proposed.
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2.2 – PWR Minicore transient scenarios
 Five scenarios are proposed:

Introduction Results & discussion Summary & OutlookProblem & Models

Scenarios

# Name Main description
Time 

scope

1 A
Start from critical state. Withdrawal of CR at constant velocity 40 cm/s 

from 0.2 to 1.2s. Further insertion at same velocity from 1.2 to 2.2 s

0 to 5 s 

with 50 

bins 

(0.1 s 

each)

2 B

Start from critical state. Withdrawal of CR at constant velocity 40 cm/s 

from 0.2 to 1.2s. Further insertion at same velocity from 1.2 to 2.2 s. 

Repeat procedure starting at 2.4s.

3 C
Start from critical state. Withdrawal of CR at constant velocity 40 cm/s 

from 0.2 to 1.2s. Further insertion at same velocity from 3 to 4 s

4 D.1
Start from critical state. Withdrawal of CR at constant velocity 40 cm/s 

from 0.2 to 1.2s.

5 D.2

Start from critical state. Withdrawal of CR at constant velocity 40 cm/s 

from 0.2 to 1.2s, but considering simplified TH feedback at fuel level:

Additional energy from steady state (E) deposited into the fuel for each 

time bin, increasing temperature of each fuel level node (with 10 axial 

levels) as :

𝐸𝑡𝑖𝑚𝑒 𝑏𝑖𝑛
𝑖,𝑗 𝑛𝑜𝑑𝑒

= 𝑚𝑓𝑢𝑒𝑙
𝑖,𝑗 𝑛𝑜𝑑𝑒

𝑐𝑝∆𝑇𝑡𝑖𝑚𝑒 𝑏𝑖𝑛
𝑖,𝑗 𝑛𝑜𝑑𝑒

For each scenario global and pin by pin powers are analyzed and compared 
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2.3 – PWR Minicore 3D Models 

Introduction Results & discussion Summary & OutlookProblem & Models

Model

 Independent 3-D models were developed:

x-y cut

x-z cut (not-scale) 

 Developed 

independently

 Transient handling 

implementation 

approach depends 

on code. 

 JEFF 3.1.1 NDL

 Axial dependency 

of temperature and 

density for fuel and 

coolant

 Control rod 

movement

 For coupled D.2. case (only Serpent)  Python script
D. Ferraro et al – M&C2019
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2.4 – Global behavior reference

 The most simple comparison possible  Point kinetics! 

 A simplified point kinetic model1 was developed for these scenarios using 

kinetic parameters from Serpent (obtained in critical calculations):

Introduction Results & discussion Summary & OutlookProblem & Models
Global comparison

ሶ𝑃 =
𝜌 − 𝛽

Λ
𝑃 +෍

𝑖=1

8

𝐶𝑖 𝜆𝑖 Eq. 1

ሶ𝐶𝑖 =
𝛽𝑖

Λ
𝑃 − 𝐶𝑖𝜆𝑖

Eq. 2

ሶ𝑇𝑓𝑢𝑒𝑙 = 𝑃 − 𝑃0 𝐾 Eq. 3

𝜌 = 𝜌𝐶𝑅 𝑡 + 𝛼𝑡(𝑇𝑓𝑢𝑒𝑙 − 𝑇𝑓𝑢𝑒𝑙0)
Eq. 4

1Eq 1 to 4 solved using Wasora code: https://www.seamplex.com/wasora/

 Fuel temperature feedback coefficient was calculated using Serpent critical 

model (only for case D.2)

 CR worth was also calculated using Serpent critical model and converted to 

reactivity vs time

D. Ferraro et al – M&C2019
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3.1 – Results comparison
Scenario A (no TH feedback)

 Scenario and global power from Serpent, TRIPOLI-4® and PK comparison:

Introduction Results & discussion Summary & OutlookProblem & Models
Scenario A

 Good and consistent global behavior for this RIA-kind transient 

 Some differences (PK overshoot, probably due to leakage in real 3D 

case)

D. Ferraro et al – M&C2019
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3.2 – Results comparison
Scenario B (no TH feedback)  Scenario A duplicated

 Scenario and global power from Serpent, TRIPOLI-4® and PK comparison:
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Scenario B

 Good and consistent global behavior for this repeated transient 

consistent for both codes

 Some differences (PK overshoot)

Scenario B
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3.3 – Results comparison
Scenario C (no TH feedback)  Scenario A with flat top

 Scenario and global power from Serpent, TRIPOLI-4® and PK comparison:
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Scenario C

 Good and consistent global behavior for this flat top transient 

Precursors buildup OK  Delayed neutrons OK

 Some differences (PK overshoot)

Scenario C
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3.4 – Results comparison
Scenario D.1 (no TH feedback)  Scenario A without CR insertion

 Scenario and global power from Serpent, TRIPOLI-4® and PK comparison:
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Scenario D.1

 Good and consistent global behavior for this supercritical transient for 

both codes

 Some cumulative differences

 What should we expect with TH feedback?

Scenario D.1

D. Ferraro et al – M&C2019
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3.5 – Results comparison
Scenario D.2 (D.1 + simplified TH feedback)

 Scenario and global power from Serpent and PK comparison:

Introduction Results & discussion Summary & OutlookProblem & Models
Scenario D.2

 Good global behavior for this supercritical transient  Feedback on 

TH fields is working properly!  

 Some differences (PK overshoot, to be further analyzed)
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3.5 – Some remarks on results differences
 Perturbation analysis of the proposed scenarios (PK model):

Introduction Results & discussion Summary & OutlookProblem & Models
Further remarks
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 Slight differences on reactivity have a clear impact in the long-term power 

evolution (cumulative).

 TH feedback will have a stabilizing effect on the discrepancies.

 Impact on further steps?
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3.6 – Towards high-fidelity
Spatially resolved tallies for scenario A

 Fission Power example (Serpent 2):

D. Ferraro - 8th SUMG
Introduction Results & discussion Summary & OutlookProblem & Models

Towards high-fidelity 

Highly detailed (i.e. pin-by-pin) results feasible

 Total neutron flux example (TRIPOLI-4®)
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3.7  – Requirements and performance
The computational costs and performance comparison

 Compared computational costs for Serpent and TRIPOLI-4®

D. Ferraro - 8th SUMG
Introduction Results & discussion Summary & OutlookProblem & Models

Convergence and performance

 Highly detailed (i.e. pin-by-pin) results require high amount of 

resources

 Consistent performance for both codes

Parameter / Scenario A B C D1

Serpent1

Active neutron histories 1.00E+07 1.00E+07 1.00E+07 1.00E+07

Processors 1000 1000 1000 1000

Running wallclock time [min] 393 412 482 593

Average stdev [%] 1 sigma 0.65 0.68 0.96 1.26

Max stdev [%] 1 sigma 1.1 1.2 1.7 3.4

FOM [ (1/( sigma2T) ] 6.0E-02 5.3E-02 2.3E-02 1.1E-02

TRIPOLI-4

Active histories 1.00E+08 1.00E+08 8.00E+07 4.00E+07

Processors 1000 1000 1000 1000

Running wallclock time [min] 1006 1103 1388 1254

Average stdev [%] 1 sigma 0.46 0.47 0.55 0.85

Max stdev [%] 1 sigma 0.68 0.68 0.78 1.09

FOM [ (1/(sigma2 T) ] 4.8E-02 4.2E-02 2.4E-02 1.1E-02

1 Run in hybrid MPI/OMP in cluster based on nodes with 2x10 intel Xeon processors E5-2660 v3 @ 2.6 GHz
2 Run in pure MPI in cluster based on nodes with 2x14-cores Intel Broadwell @ 2.4GHz (AVX2)
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4 – Conclusions and further work
 The McSAFE is a high-fidelity project aimed at developing 

high-fidelity calculations, including transient analysis

 A detailed 3D benchmark for a 3x3 PWR Minicore is proposed 

as basis to develop a series of scenarios (RIA-type)

 Results obtained & compared with the Serpent 2 and 

TRIPOLI-4® MC codes  first code-to-code comparison for 

such RIA type transient simulations

 For all transient scenarios results from TRIPOLI-4® and 

Serpent 2 are in good agreement

 First step towards the verification and performance analysis. 

 Further work:

• Coupling with TH subchannel codes (SUBCHANFLOW)

• Proper verification (code-to-code) and validation with experimental data

D. Ferraro et al – M&C2019
Introduction Results & discussion Summary & OutlookProblem & Models
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4 – Further work (under development)

D. Ferraro et al – M&C2019

Serpent model SCF model 

(coolant-centered)

Full paper submitted to ANE (May 2019): 

“Serpent/SUBCHANFLOW pin-by-pin coupled transient 

calculations for a PWR minicore” - D. Ferraro et al.

• Given the good obtained results, further coupling (master-slave) was developed 

with SERPENT+SUBCHANFLOW (COBRA-based subchannel thermalhydraulics).

• First verification results already available for Serpent+SCF (consistent behavior)

Introduction Results & discussion Summary & OutlookProblem & Models

TRIPOLI/SUBCHANFLOW also under development
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Additional information 
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Code
Boron concentration 

[ppm]
keff (+/- 1 )

Reactivity difference with Serpent 

[pcm]

Serpent 1480 (adjusted) 1.00006  +/ 2e-5 -

TRIPOLI-4 1493 (adjusted) 0.99995 +/ -5e-5 -11

TRIPOLI-4 1480 1.00124 +/ -17 e-5 117

Static reactivity comparison between TRIPOLI and Serpent 


